Merge tag 'ubifs-for-linus-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "fs.h"
13 #include "accessors.h"
14 #include "extent-tree.h"
15
16 /*
17  * HOW DOES SPACE RESERVATION WORK
18  *
19  * If you want to know about delalloc specifically, there is a separate comment
20  * for that with the delalloc code.  This comment is about how the whole system
21  * works generally.
22  *
23  * BASIC CONCEPTS
24  *
25  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
26  *   There's a description of the bytes_ fields with the struct declaration,
27  *   refer to that for specifics on each field.  Suffice it to say that for
28  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
29  *   determining if there is space to make an allocation.  There is a space_info
30  *   for METADATA, SYSTEM, and DATA areas.
31  *
32  *   2) block_rsv's.  These are basically buckets for every different type of
33  *   metadata reservation we have.  You can see the comment in the block_rsv
34  *   code on the rules for each type, but generally block_rsv->reserved is how
35  *   much space is accounted for in space_info->bytes_may_use.
36  *
37  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
38  *   on the number of items we will want to modify.  We have one for changing
39  *   items, and one for inserting new items.  Generally we use these helpers to
40  *   determine the size of the block reserves, and then use the actual bytes
41  *   values to adjust the space_info counters.
42  *
43  * MAKING RESERVATIONS, THE NORMAL CASE
44  *
45  *   We call into either btrfs_reserve_data_bytes() or
46  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
47  *   num_bytes we want to reserve.
48  *
49  *   ->reserve
50  *     space_info->bytes_may_reserve += num_bytes
51  *
52  *   ->extent allocation
53  *     Call btrfs_add_reserved_bytes() which does
54  *     space_info->bytes_may_reserve -= num_bytes
55  *     space_info->bytes_reserved += extent_bytes
56  *
57  *   ->insert reference
58  *     Call btrfs_update_block_group() which does
59  *     space_info->bytes_reserved -= extent_bytes
60  *     space_info->bytes_used += extent_bytes
61  *
62  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
63  *
64  *   Assume we are unable to simply make the reservation because we do not have
65  *   enough space
66  *
67  *   -> __reserve_bytes
68  *     create a reserve_ticket with ->bytes set to our reservation, add it to
69  *     the tail of space_info->tickets, kick async flush thread
70  *
71  *   ->handle_reserve_ticket
72  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
73  *     on the ticket.
74  *
75  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
76  *     Flushes various things attempting to free up space.
77  *
78  *   -> btrfs_try_granting_tickets()
79  *     This is called by anything that either subtracts space from
80  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
81  *     space_info->total_bytes.  This loops through the ->priority_tickets and
82  *     then the ->tickets list checking to see if the reservation can be
83  *     completed.  If it can the space is added to space_info->bytes_may_use and
84  *     the ticket is woken up.
85  *
86  *   -> ticket wakeup
87  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
88  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
89  *     were interrupted.)
90  *
91  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
92  *
93  *   Same as the above, except we add ourselves to the
94  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
95  *   call flush_space() ourselves for the states that are safe for us to call
96  *   without deadlocking and hope for the best.
97  *
98  * THE FLUSHING STATES
99  *
100  *   Generally speaking we will have two cases for each state, a "nice" state
101  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
102  *   reduce the locking over head on the various trees, and even to keep from
103  *   doing any work at all in the case of delayed refs.  Each of these delayed
104  *   things however hold reservations, and so letting them run allows us to
105  *   reclaim space so we can make new reservations.
106  *
107  *   FLUSH_DELAYED_ITEMS
108  *     Every inode has a delayed item to update the inode.  Take a simple write
109  *     for example, we would update the inode item at write time to update the
110  *     mtime, and then again at finish_ordered_io() time in order to update the
111  *     isize or bytes.  We keep these delayed items to coalesce these operations
112  *     into a single operation done on demand.  These are an easy way to reclaim
113  *     metadata space.
114  *
115  *   FLUSH_DELALLOC
116  *     Look at the delalloc comment to get an idea of how much space is reserved
117  *     for delayed allocation.  We can reclaim some of this space simply by
118  *     running delalloc, but usually we need to wait for ordered extents to
119  *     reclaim the bulk of this space.
120  *
121  *   FLUSH_DELAYED_REFS
122  *     We have a block reserve for the outstanding delayed refs space, and every
123  *     delayed ref operation holds a reservation.  Running these is a quick way
124  *     to reclaim space, but we want to hold this until the end because COW can
125  *     churn a lot and we can avoid making some extent tree modifications if we
126  *     are able to delay for as long as possible.
127  *
128  *   ALLOC_CHUNK
129  *     We will skip this the first time through space reservation, because of
130  *     overcommit and we don't want to have a lot of useless metadata space when
131  *     our worst case reservations will likely never come true.
132  *
133  *   RUN_DELAYED_IPUTS
134  *     If we're freeing inodes we're likely freeing checksums, file extent
135  *     items, and extent tree items.  Loads of space could be freed up by these
136  *     operations, however they won't be usable until the transaction commits.
137  *
138  *   COMMIT_TRANS
139  *     This will commit the transaction.  Historically we had a lot of logic
140  *     surrounding whether or not we'd commit the transaction, but this waits born
141  *     out of a pre-tickets era where we could end up committing the transaction
142  *     thousands of times in a row without making progress.  Now thanks to our
143  *     ticketing system we know if we're not making progress and can error
144  *     everybody out after a few commits rather than burning the disk hoping for
145  *     a different answer.
146  *
147  * OVERCOMMIT
148  *
149  *   Because we hold so many reservations for metadata we will allow you to
150  *   reserve more space than is currently free in the currently allocate
151  *   metadata space.  This only happens with metadata, data does not allow
152  *   overcommitting.
153  *
154  *   You can see the current logic for when we allow overcommit in
155  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
156  *   is no unallocated space to be had, all reservations are kept within the
157  *   free space in the allocated metadata chunks.
158  *
159  *   Because of overcommitting, you generally want to use the
160  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
161  *   thing with or without extra unallocated space.
162  */
163
164 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
165                           bool may_use_included)
166 {
167         ASSERT(s_info);
168         return s_info->bytes_used + s_info->bytes_reserved +
169                 s_info->bytes_pinned + s_info->bytes_readonly +
170                 s_info->bytes_zone_unusable +
171                 (may_use_included ? s_info->bytes_may_use : 0);
172 }
173
174 /*
175  * after adding space to the filesystem, we need to clear the full flags
176  * on all the space infos.
177  */
178 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
179 {
180         struct list_head *head = &info->space_info;
181         struct btrfs_space_info *found;
182
183         list_for_each_entry(found, head, list)
184                 found->full = 0;
185 }
186
187 /*
188  * Block groups with more than this value (percents) of unusable space will be
189  * scheduled for background reclaim.
190  */
191 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH                      (75)
192
193 /*
194  * Calculate chunk size depending on volume type (regular or zoned).
195  */
196 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
197 {
198         if (btrfs_is_zoned(fs_info))
199                 return fs_info->zone_size;
200
201         ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
202
203         if (flags & BTRFS_BLOCK_GROUP_DATA)
204                 return BTRFS_MAX_DATA_CHUNK_SIZE;
205         else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
206                 return SZ_32M;
207
208         /* Handle BTRFS_BLOCK_GROUP_METADATA */
209         if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
210                 return SZ_1G;
211
212         return SZ_256M;
213 }
214
215 /*
216  * Update default chunk size.
217  */
218 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
219                                         u64 chunk_size)
220 {
221         WRITE_ONCE(space_info->chunk_size, chunk_size);
222 }
223
224 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
225 {
226
227         struct btrfs_space_info *space_info;
228         int i;
229         int ret;
230
231         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
232         if (!space_info)
233                 return -ENOMEM;
234
235         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
236                 INIT_LIST_HEAD(&space_info->block_groups[i]);
237         init_rwsem(&space_info->groups_sem);
238         spin_lock_init(&space_info->lock);
239         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
240         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
241         INIT_LIST_HEAD(&space_info->ro_bgs);
242         INIT_LIST_HEAD(&space_info->tickets);
243         INIT_LIST_HEAD(&space_info->priority_tickets);
244         space_info->clamp = 1;
245         btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
246
247         if (btrfs_is_zoned(info))
248                 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
249
250         ret = btrfs_sysfs_add_space_info_type(info, space_info);
251         if (ret)
252                 return ret;
253
254         list_add(&space_info->list, &info->space_info);
255         if (flags & BTRFS_BLOCK_GROUP_DATA)
256                 info->data_sinfo = space_info;
257
258         return ret;
259 }
260
261 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
262 {
263         struct btrfs_super_block *disk_super;
264         u64 features;
265         u64 flags;
266         int mixed = 0;
267         int ret;
268
269         disk_super = fs_info->super_copy;
270         if (!btrfs_super_root(disk_super))
271                 return -EINVAL;
272
273         features = btrfs_super_incompat_flags(disk_super);
274         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
275                 mixed = 1;
276
277         flags = BTRFS_BLOCK_GROUP_SYSTEM;
278         ret = create_space_info(fs_info, flags);
279         if (ret)
280                 goto out;
281
282         if (mixed) {
283                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
284                 ret = create_space_info(fs_info, flags);
285         } else {
286                 flags = BTRFS_BLOCK_GROUP_METADATA;
287                 ret = create_space_info(fs_info, flags);
288                 if (ret)
289                         goto out;
290
291                 flags = BTRFS_BLOCK_GROUP_DATA;
292                 ret = create_space_info(fs_info, flags);
293         }
294 out:
295         return ret;
296 }
297
298 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
299                                 struct btrfs_block_group *block_group)
300 {
301         struct btrfs_space_info *found;
302         int factor, index;
303
304         factor = btrfs_bg_type_to_factor(block_group->flags);
305
306         found = btrfs_find_space_info(info, block_group->flags);
307         ASSERT(found);
308         spin_lock(&found->lock);
309         found->total_bytes += block_group->length;
310         found->disk_total += block_group->length * factor;
311         found->bytes_used += block_group->used;
312         found->disk_used += block_group->used * factor;
313         found->bytes_readonly += block_group->bytes_super;
314         found->bytes_zone_unusable += block_group->zone_unusable;
315         if (block_group->length > 0)
316                 found->full = 0;
317         btrfs_try_granting_tickets(info, found);
318         spin_unlock(&found->lock);
319
320         block_group->space_info = found;
321
322         index = btrfs_bg_flags_to_raid_index(block_group->flags);
323         down_write(&found->groups_sem);
324         list_add_tail(&block_group->list, &found->block_groups[index]);
325         up_write(&found->groups_sem);
326 }
327
328 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
329                                                u64 flags)
330 {
331         struct list_head *head = &info->space_info;
332         struct btrfs_space_info *found;
333
334         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
335
336         list_for_each_entry(found, head, list) {
337                 if (found->flags & flags)
338                         return found;
339         }
340         return NULL;
341 }
342
343 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
344                           struct btrfs_space_info *space_info,
345                           enum btrfs_reserve_flush_enum flush)
346 {
347         struct btrfs_space_info *data_sinfo;
348         u64 profile;
349         u64 avail;
350         u64 data_chunk_size;
351         int factor;
352
353         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
354                 profile = btrfs_system_alloc_profile(fs_info);
355         else
356                 profile = btrfs_metadata_alloc_profile(fs_info);
357
358         avail = atomic64_read(&fs_info->free_chunk_space);
359
360         /*
361          * If we have dup, raid1 or raid10 then only half of the free
362          * space is actually usable.  For raid56, the space info used
363          * doesn't include the parity drive, so we don't have to
364          * change the math
365          */
366         factor = btrfs_bg_type_to_factor(profile);
367         avail = div_u64(avail, factor);
368         if (avail == 0)
369                 return 0;
370
371         /*
372          * Calculate the data_chunk_size, space_info->chunk_size is the
373          * "optimal" chunk size based on the fs size.  However when we actually
374          * allocate the chunk we will strip this down further, making it no more
375          * than 10% of the disk or 1G, whichever is smaller.
376          */
377         data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
378         data_chunk_size = min(data_sinfo->chunk_size,
379                               mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
380         data_chunk_size = min_t(u64, data_chunk_size, SZ_1G);
381
382         /*
383          * Since data allocations immediately use block groups as part of the
384          * reservation, because we assume that data reservations will == actual
385          * usage, we could potentially overcommit and then immediately have that
386          * available space used by a data allocation, which could put us in a
387          * bind when we get close to filling the file system.
388          *
389          * To handle this simply remove the data_chunk_size from the available
390          * space.  If we are relatively empty this won't affect our ability to
391          * overcommit much, and if we're very close to full it'll keep us from
392          * getting into a position where we've given ourselves very little
393          * metadata wiggle room.
394          */
395         if (avail <= data_chunk_size)
396                 return 0;
397         avail -= data_chunk_size;
398
399         /*
400          * If we aren't flushing all things, let us overcommit up to
401          * 1/2th of the space. If we can flush, don't let us overcommit
402          * too much, let it overcommit up to 1/8 of the space.
403          */
404         if (flush == BTRFS_RESERVE_FLUSH_ALL)
405                 avail >>= 3;
406         else
407                 avail >>= 1;
408         return avail;
409 }
410
411 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
412                          struct btrfs_space_info *space_info, u64 bytes,
413                          enum btrfs_reserve_flush_enum flush)
414 {
415         u64 avail;
416         u64 used;
417
418         /* Don't overcommit when in mixed mode */
419         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
420                 return 0;
421
422         used = btrfs_space_info_used(space_info, true);
423         avail = calc_available_free_space(fs_info, space_info, flush);
424
425         if (used + bytes < space_info->total_bytes + avail)
426                 return 1;
427         return 0;
428 }
429
430 static void remove_ticket(struct btrfs_space_info *space_info,
431                           struct reserve_ticket *ticket)
432 {
433         if (!list_empty(&ticket->list)) {
434                 list_del_init(&ticket->list);
435                 ASSERT(space_info->reclaim_size >= ticket->bytes);
436                 space_info->reclaim_size -= ticket->bytes;
437         }
438 }
439
440 /*
441  * This is for space we already have accounted in space_info->bytes_may_use, so
442  * basically when we're returning space from block_rsv's.
443  */
444 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
445                                 struct btrfs_space_info *space_info)
446 {
447         struct list_head *head;
448         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
449
450         lockdep_assert_held(&space_info->lock);
451
452         head = &space_info->priority_tickets;
453 again:
454         while (!list_empty(head)) {
455                 struct reserve_ticket *ticket;
456                 u64 used = btrfs_space_info_used(space_info, true);
457
458                 ticket = list_first_entry(head, struct reserve_ticket, list);
459
460                 /* Check and see if our ticket can be satisfied now. */
461                 if ((used + ticket->bytes <= space_info->total_bytes) ||
462                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
463                                          flush)) {
464                         btrfs_space_info_update_bytes_may_use(fs_info,
465                                                               space_info,
466                                                               ticket->bytes);
467                         remove_ticket(space_info, ticket);
468                         ticket->bytes = 0;
469                         space_info->tickets_id++;
470                         wake_up(&ticket->wait);
471                 } else {
472                         break;
473                 }
474         }
475
476         if (head == &space_info->priority_tickets) {
477                 head = &space_info->tickets;
478                 flush = BTRFS_RESERVE_FLUSH_ALL;
479                 goto again;
480         }
481 }
482
483 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
484 do {                                                                    \
485         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
486         spin_lock(&__rsv->lock);                                        \
487         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
488                    __rsv->size, __rsv->reserved);                       \
489         spin_unlock(&__rsv->lock);                                      \
490 } while (0)
491
492 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
493 {
494         switch (space_info->flags) {
495         case BTRFS_BLOCK_GROUP_SYSTEM:
496                 return "SYSTEM";
497         case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
498                 return "DATA+METADATA";
499         case BTRFS_BLOCK_GROUP_DATA:
500                 return "DATA";
501         case BTRFS_BLOCK_GROUP_METADATA:
502                 return "METADATA";
503         default:
504                 return "UNKNOWN";
505         }
506 }
507
508 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
509 {
510         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
511         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
512         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
513         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
514         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
515 }
516
517 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
518                                     struct btrfs_space_info *info)
519 {
520         const char *flag_str = space_info_flag_to_str(info);
521         lockdep_assert_held(&info->lock);
522
523         /* The free space could be negative in case of overcommit */
524         btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
525                    flag_str,
526                    (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
527                    info->full ? "" : "not ");
528         btrfs_info(fs_info,
529 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
530                 info->total_bytes, info->bytes_used, info->bytes_pinned,
531                 info->bytes_reserved, info->bytes_may_use,
532                 info->bytes_readonly, info->bytes_zone_unusable);
533 }
534
535 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
536                            struct btrfs_space_info *info, u64 bytes,
537                            int dump_block_groups)
538 {
539         struct btrfs_block_group *cache;
540         u64 total_avail = 0;
541         int index = 0;
542
543         spin_lock(&info->lock);
544         __btrfs_dump_space_info(fs_info, info);
545         dump_global_block_rsv(fs_info);
546         spin_unlock(&info->lock);
547
548         if (!dump_block_groups)
549                 return;
550
551         down_read(&info->groups_sem);
552 again:
553         list_for_each_entry(cache, &info->block_groups[index], list) {
554                 u64 avail;
555
556                 spin_lock(&cache->lock);
557                 avail = cache->length - cache->used - cache->pinned -
558                         cache->reserved - cache->delalloc_bytes -
559                         cache->bytes_super - cache->zone_unusable;
560                 btrfs_info(fs_info,
561 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
562                            cache->start, cache->length, cache->used, cache->pinned,
563                            cache->reserved, cache->delalloc_bytes,
564                            cache->bytes_super, cache->zone_unusable,
565                            avail, cache->ro ? "[readonly]" : "");
566                 spin_unlock(&cache->lock);
567                 btrfs_dump_free_space(cache, bytes);
568                 total_avail += avail;
569         }
570         if (++index < BTRFS_NR_RAID_TYPES)
571                 goto again;
572         up_read(&info->groups_sem);
573
574         btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
575 }
576
577 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
578                                         u64 to_reclaim)
579 {
580         u64 bytes;
581         u64 nr;
582
583         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
584         nr = div64_u64(to_reclaim, bytes);
585         if (!nr)
586                 nr = 1;
587         return nr;
588 }
589
590 #define EXTENT_SIZE_PER_ITEM    SZ_256K
591
592 /*
593  * shrink metadata reservation for delalloc
594  */
595 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
596                             struct btrfs_space_info *space_info,
597                             u64 to_reclaim, bool wait_ordered,
598                             bool for_preempt)
599 {
600         struct btrfs_trans_handle *trans;
601         u64 delalloc_bytes;
602         u64 ordered_bytes;
603         u64 items;
604         long time_left;
605         int loops;
606
607         delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
608         ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
609         if (delalloc_bytes == 0 && ordered_bytes == 0)
610                 return;
611
612         /* Calc the number of the pages we need flush for space reservation */
613         if (to_reclaim == U64_MAX) {
614                 items = U64_MAX;
615         } else {
616                 /*
617                  * to_reclaim is set to however much metadata we need to
618                  * reclaim, but reclaiming that much data doesn't really track
619                  * exactly.  What we really want to do is reclaim full inode's
620                  * worth of reservations, however that's not available to us
621                  * here.  We will take a fraction of the delalloc bytes for our
622                  * flushing loops and hope for the best.  Delalloc will expand
623                  * the amount we write to cover an entire dirty extent, which
624                  * will reclaim the metadata reservation for that range.  If
625                  * it's not enough subsequent flush stages will be more
626                  * aggressive.
627                  */
628                 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
629                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
630         }
631
632         trans = current->journal_info;
633
634         /*
635          * If we are doing more ordered than delalloc we need to just wait on
636          * ordered extents, otherwise we'll waste time trying to flush delalloc
637          * that likely won't give us the space back we need.
638          */
639         if (ordered_bytes > delalloc_bytes && !for_preempt)
640                 wait_ordered = true;
641
642         loops = 0;
643         while ((delalloc_bytes || ordered_bytes) && loops < 3) {
644                 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
645                 long nr_pages = min_t(u64, temp, LONG_MAX);
646                 int async_pages;
647
648                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
649
650                 /*
651                  * We need to make sure any outstanding async pages are now
652                  * processed before we continue.  This is because things like
653                  * sync_inode() try to be smart and skip writing if the inode is
654                  * marked clean.  We don't use filemap_fwrite for flushing
655                  * because we want to control how many pages we write out at a
656                  * time, thus this is the only safe way to make sure we've
657                  * waited for outstanding compressed workers to have started
658                  * their jobs and thus have ordered extents set up properly.
659                  *
660                  * This exists because we do not want to wait for each
661                  * individual inode to finish its async work, we simply want to
662                  * start the IO on everybody, and then come back here and wait
663                  * for all of the async work to catch up.  Once we're done with
664                  * that we know we'll have ordered extents for everything and we
665                  * can decide if we wait for that or not.
666                  *
667                  * If we choose to replace this in the future, make absolutely
668                  * sure that the proper waiting is being done in the async case,
669                  * as there have been bugs in that area before.
670                  */
671                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
672                 if (!async_pages)
673                         goto skip_async;
674
675                 /*
676                  * We don't want to wait forever, if we wrote less pages in this
677                  * loop than we have outstanding, only wait for that number of
678                  * pages, otherwise we can wait for all async pages to finish
679                  * before continuing.
680                  */
681                 if (async_pages > nr_pages)
682                         async_pages -= nr_pages;
683                 else
684                         async_pages = 0;
685                 wait_event(fs_info->async_submit_wait,
686                            atomic_read(&fs_info->async_delalloc_pages) <=
687                            async_pages);
688 skip_async:
689                 loops++;
690                 if (wait_ordered && !trans) {
691                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
692                 } else {
693                         time_left = schedule_timeout_killable(1);
694                         if (time_left)
695                                 break;
696                 }
697
698                 /*
699                  * If we are for preemption we just want a one-shot of delalloc
700                  * flushing so we can stop flushing if we decide we don't need
701                  * to anymore.
702                  */
703                 if (for_preempt)
704                         break;
705
706                 spin_lock(&space_info->lock);
707                 if (list_empty(&space_info->tickets) &&
708                     list_empty(&space_info->priority_tickets)) {
709                         spin_unlock(&space_info->lock);
710                         break;
711                 }
712                 spin_unlock(&space_info->lock);
713
714                 delalloc_bytes = percpu_counter_sum_positive(
715                                                 &fs_info->delalloc_bytes);
716                 ordered_bytes = percpu_counter_sum_positive(
717                                                 &fs_info->ordered_bytes);
718         }
719 }
720
721 /*
722  * Try to flush some data based on policy set by @state. This is only advisory
723  * and may fail for various reasons. The caller is supposed to examine the
724  * state of @space_info to detect the outcome.
725  */
726 static void flush_space(struct btrfs_fs_info *fs_info,
727                        struct btrfs_space_info *space_info, u64 num_bytes,
728                        enum btrfs_flush_state state, bool for_preempt)
729 {
730         struct btrfs_root *root = fs_info->tree_root;
731         struct btrfs_trans_handle *trans;
732         int nr;
733         int ret = 0;
734
735         switch (state) {
736         case FLUSH_DELAYED_ITEMS_NR:
737         case FLUSH_DELAYED_ITEMS:
738                 if (state == FLUSH_DELAYED_ITEMS_NR)
739                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
740                 else
741                         nr = -1;
742
743                 trans = btrfs_join_transaction_nostart(root);
744                 if (IS_ERR(trans)) {
745                         ret = PTR_ERR(trans);
746                         if (ret == -ENOENT)
747                                 ret = 0;
748                         break;
749                 }
750                 ret = btrfs_run_delayed_items_nr(trans, nr);
751                 btrfs_end_transaction(trans);
752                 break;
753         case FLUSH_DELALLOC:
754         case FLUSH_DELALLOC_WAIT:
755         case FLUSH_DELALLOC_FULL:
756                 if (state == FLUSH_DELALLOC_FULL)
757                         num_bytes = U64_MAX;
758                 shrink_delalloc(fs_info, space_info, num_bytes,
759                                 state != FLUSH_DELALLOC, for_preempt);
760                 break;
761         case FLUSH_DELAYED_REFS_NR:
762         case FLUSH_DELAYED_REFS:
763                 trans = btrfs_join_transaction_nostart(root);
764                 if (IS_ERR(trans)) {
765                         ret = PTR_ERR(trans);
766                         if (ret == -ENOENT)
767                                 ret = 0;
768                         break;
769                 }
770                 if (state == FLUSH_DELAYED_REFS_NR)
771                         btrfs_run_delayed_refs(trans, num_bytes);
772                 else
773                         btrfs_run_delayed_refs(trans, 0);
774                 btrfs_end_transaction(trans);
775                 break;
776         case ALLOC_CHUNK:
777         case ALLOC_CHUNK_FORCE:
778                 trans = btrfs_join_transaction(root);
779                 if (IS_ERR(trans)) {
780                         ret = PTR_ERR(trans);
781                         break;
782                 }
783                 ret = btrfs_chunk_alloc(trans,
784                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
785                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
786                                         CHUNK_ALLOC_FORCE);
787                 btrfs_end_transaction(trans);
788
789                 if (ret > 0 || ret == -ENOSPC)
790                         ret = 0;
791                 break;
792         case RUN_DELAYED_IPUTS:
793                 /*
794                  * If we have pending delayed iputs then we could free up a
795                  * bunch of pinned space, so make sure we run the iputs before
796                  * we do our pinned bytes check below.
797                  */
798                 btrfs_run_delayed_iputs(fs_info);
799                 btrfs_wait_on_delayed_iputs(fs_info);
800                 break;
801         case COMMIT_TRANS:
802                 ASSERT(current->journal_info == NULL);
803                 /*
804                  * We don't want to start a new transaction, just attach to the
805                  * current one or wait it fully commits in case its commit is
806                  * happening at the moment. Note: we don't use a nostart join
807                  * because that does not wait for a transaction to fully commit
808                  * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
809                  */
810                 trans = btrfs_attach_transaction_barrier(root);
811                 if (IS_ERR(trans)) {
812                         ret = PTR_ERR(trans);
813                         if (ret == -ENOENT)
814                                 ret = 0;
815                         break;
816                 }
817                 ret = btrfs_commit_transaction(trans);
818                 break;
819         default:
820                 ret = -ENOSPC;
821                 break;
822         }
823
824         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
825                                 ret, for_preempt);
826         return;
827 }
828
829 static inline u64
830 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
831                                  struct btrfs_space_info *space_info)
832 {
833         u64 used;
834         u64 avail;
835         u64 to_reclaim = space_info->reclaim_size;
836
837         lockdep_assert_held(&space_info->lock);
838
839         avail = calc_available_free_space(fs_info, space_info,
840                                           BTRFS_RESERVE_FLUSH_ALL);
841         used = btrfs_space_info_used(space_info, true);
842
843         /*
844          * We may be flushing because suddenly we have less space than we had
845          * before, and now we're well over-committed based on our current free
846          * space.  If that's the case add in our overage so we make sure to put
847          * appropriate pressure on the flushing state machine.
848          */
849         if (space_info->total_bytes + avail < used)
850                 to_reclaim += used - (space_info->total_bytes + avail);
851
852         return to_reclaim;
853 }
854
855 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
856                                     struct btrfs_space_info *space_info)
857 {
858         const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
859         u64 ordered, delalloc;
860         u64 thresh;
861         u64 used;
862
863         thresh = mult_perc(space_info->total_bytes, 90);
864
865         lockdep_assert_held(&space_info->lock);
866
867         /* If we're just plain full then async reclaim just slows us down. */
868         if ((space_info->bytes_used + space_info->bytes_reserved +
869              global_rsv_size) >= thresh)
870                 return false;
871
872         used = space_info->bytes_may_use + space_info->bytes_pinned;
873
874         /* The total flushable belongs to the global rsv, don't flush. */
875         if (global_rsv_size >= used)
876                 return false;
877
878         /*
879          * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
880          * that devoted to other reservations then there's no sense in flushing,
881          * we don't have a lot of things that need flushing.
882          */
883         if (used - global_rsv_size <= SZ_128M)
884                 return false;
885
886         /*
887          * We have tickets queued, bail so we don't compete with the async
888          * flushers.
889          */
890         if (space_info->reclaim_size)
891                 return false;
892
893         /*
894          * If we have over half of the free space occupied by reservations or
895          * pinned then we want to start flushing.
896          *
897          * We do not do the traditional thing here, which is to say
898          *
899          *   if (used >= ((total_bytes + avail) / 2))
900          *     return 1;
901          *
902          * because this doesn't quite work how we want.  If we had more than 50%
903          * of the space_info used by bytes_used and we had 0 available we'd just
904          * constantly run the background flusher.  Instead we want it to kick in
905          * if our reclaimable space exceeds our clamped free space.
906          *
907          * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
908          * the following:
909          *
910          * Amount of RAM        Minimum threshold       Maximum threshold
911          *
912          *        256GiB                     1GiB                  128GiB
913          *        128GiB                   512MiB                   64GiB
914          *         64GiB                   256MiB                   32GiB
915          *         32GiB                   128MiB                   16GiB
916          *         16GiB                    64MiB                    8GiB
917          *
918          * These are the range our thresholds will fall in, corresponding to how
919          * much delalloc we need for the background flusher to kick in.
920          */
921
922         thresh = calc_available_free_space(fs_info, space_info,
923                                            BTRFS_RESERVE_FLUSH_ALL);
924         used = space_info->bytes_used + space_info->bytes_reserved +
925                space_info->bytes_readonly + global_rsv_size;
926         if (used < space_info->total_bytes)
927                 thresh += space_info->total_bytes - used;
928         thresh >>= space_info->clamp;
929
930         used = space_info->bytes_pinned;
931
932         /*
933          * If we have more ordered bytes than delalloc bytes then we're either
934          * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
935          * around.  Preemptive flushing is only useful in that it can free up
936          * space before tickets need to wait for things to finish.  In the case
937          * of ordered extents, preemptively waiting on ordered extents gets us
938          * nothing, if our reservations are tied up in ordered extents we'll
939          * simply have to slow down writers by forcing them to wait on ordered
940          * extents.
941          *
942          * In the case that ordered is larger than delalloc, only include the
943          * block reserves that we would actually be able to directly reclaim
944          * from.  In this case if we're heavy on metadata operations this will
945          * clearly be heavy enough to warrant preemptive flushing.  In the case
946          * of heavy DIO or ordered reservations, preemptive flushing will just
947          * waste time and cause us to slow down.
948          *
949          * We want to make sure we truly are maxed out on ordered however, so
950          * cut ordered in half, and if it's still higher than delalloc then we
951          * can keep flushing.  This is to avoid the case where we start
952          * flushing, and now delalloc == ordered and we stop preemptively
953          * flushing when we could still have several gigs of delalloc to flush.
954          */
955         ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
956         delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
957         if (ordered >= delalloc)
958                 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
959                         btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
960         else
961                 used += space_info->bytes_may_use - global_rsv_size;
962
963         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
964                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
965 }
966
967 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
968                                   struct btrfs_space_info *space_info,
969                                   struct reserve_ticket *ticket)
970 {
971         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
972         u64 min_bytes;
973
974         if (!ticket->steal)
975                 return false;
976
977         if (global_rsv->space_info != space_info)
978                 return false;
979
980         spin_lock(&global_rsv->lock);
981         min_bytes = mult_perc(global_rsv->size, 10);
982         if (global_rsv->reserved < min_bytes + ticket->bytes) {
983                 spin_unlock(&global_rsv->lock);
984                 return false;
985         }
986         global_rsv->reserved -= ticket->bytes;
987         remove_ticket(space_info, ticket);
988         ticket->bytes = 0;
989         wake_up(&ticket->wait);
990         space_info->tickets_id++;
991         if (global_rsv->reserved < global_rsv->size)
992                 global_rsv->full = 0;
993         spin_unlock(&global_rsv->lock);
994
995         return true;
996 }
997
998 /*
999  * We've exhausted our flushing, start failing tickets.
1000  *
1001  * @fs_info - fs_info for this fs
1002  * @space_info - the space info we were flushing
1003  *
1004  * We call this when we've exhausted our flushing ability and haven't made
1005  * progress in satisfying tickets.  The reservation code handles tickets in
1006  * order, so if there is a large ticket first and then smaller ones we could
1007  * very well satisfy the smaller tickets.  This will attempt to wake up any
1008  * tickets in the list to catch this case.
1009  *
1010  * This function returns true if it was able to make progress by clearing out
1011  * other tickets, or if it stumbles across a ticket that was smaller than the
1012  * first ticket.
1013  */
1014 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1015                                    struct btrfs_space_info *space_info)
1016 {
1017         struct reserve_ticket *ticket;
1018         u64 tickets_id = space_info->tickets_id;
1019         const bool aborted = BTRFS_FS_ERROR(fs_info);
1020
1021         trace_btrfs_fail_all_tickets(fs_info, space_info);
1022
1023         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1024                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1025                 __btrfs_dump_space_info(fs_info, space_info);
1026         }
1027
1028         while (!list_empty(&space_info->tickets) &&
1029                tickets_id == space_info->tickets_id) {
1030                 ticket = list_first_entry(&space_info->tickets,
1031                                           struct reserve_ticket, list);
1032
1033                 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1034                         return true;
1035
1036                 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1037                         btrfs_info(fs_info, "failing ticket with %llu bytes",
1038                                    ticket->bytes);
1039
1040                 remove_ticket(space_info, ticket);
1041                 if (aborted)
1042                         ticket->error = -EIO;
1043                 else
1044                         ticket->error = -ENOSPC;
1045                 wake_up(&ticket->wait);
1046
1047                 /*
1048                  * We're just throwing tickets away, so more flushing may not
1049                  * trip over btrfs_try_granting_tickets, so we need to call it
1050                  * here to see if we can make progress with the next ticket in
1051                  * the list.
1052                  */
1053                 if (!aborted)
1054                         btrfs_try_granting_tickets(fs_info, space_info);
1055         }
1056         return (tickets_id != space_info->tickets_id);
1057 }
1058
1059 /*
1060  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1061  * will loop and continuously try to flush as long as we are making progress.
1062  * We count progress as clearing off tickets each time we have to loop.
1063  */
1064 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1065 {
1066         struct btrfs_fs_info *fs_info;
1067         struct btrfs_space_info *space_info;
1068         u64 to_reclaim;
1069         enum btrfs_flush_state flush_state;
1070         int commit_cycles = 0;
1071         u64 last_tickets_id;
1072
1073         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1074         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1075
1076         spin_lock(&space_info->lock);
1077         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1078         if (!to_reclaim) {
1079                 space_info->flush = 0;
1080                 spin_unlock(&space_info->lock);
1081                 return;
1082         }
1083         last_tickets_id = space_info->tickets_id;
1084         spin_unlock(&space_info->lock);
1085
1086         flush_state = FLUSH_DELAYED_ITEMS_NR;
1087         do {
1088                 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1089                 spin_lock(&space_info->lock);
1090                 if (list_empty(&space_info->tickets)) {
1091                         space_info->flush = 0;
1092                         spin_unlock(&space_info->lock);
1093                         return;
1094                 }
1095                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1096                                                               space_info);
1097                 if (last_tickets_id == space_info->tickets_id) {
1098                         flush_state++;
1099                 } else {
1100                         last_tickets_id = space_info->tickets_id;
1101                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1102                         if (commit_cycles)
1103                                 commit_cycles--;
1104                 }
1105
1106                 /*
1107                  * We do not want to empty the system of delalloc unless we're
1108                  * under heavy pressure, so allow one trip through the flushing
1109                  * logic before we start doing a FLUSH_DELALLOC_FULL.
1110                  */
1111                 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1112                         flush_state++;
1113
1114                 /*
1115                  * We don't want to force a chunk allocation until we've tried
1116                  * pretty hard to reclaim space.  Think of the case where we
1117                  * freed up a bunch of space and so have a lot of pinned space
1118                  * to reclaim.  We would rather use that than possibly create a
1119                  * underutilized metadata chunk.  So if this is our first run
1120                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1121                  * commit the transaction.  If nothing has changed the next go
1122                  * around then we can force a chunk allocation.
1123                  */
1124                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1125                         flush_state++;
1126
1127                 if (flush_state > COMMIT_TRANS) {
1128                         commit_cycles++;
1129                         if (commit_cycles > 2) {
1130                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
1131                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1132                                         commit_cycles--;
1133                                 } else {
1134                                         space_info->flush = 0;
1135                                 }
1136                         } else {
1137                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1138                         }
1139                 }
1140                 spin_unlock(&space_info->lock);
1141         } while (flush_state <= COMMIT_TRANS);
1142 }
1143
1144 /*
1145  * This handles pre-flushing of metadata space before we get to the point that
1146  * we need to start blocking threads on tickets.  The logic here is different
1147  * from the other flush paths because it doesn't rely on tickets to tell us how
1148  * much we need to flush, instead it attempts to keep us below the 80% full
1149  * watermark of space by flushing whichever reservation pool is currently the
1150  * largest.
1151  */
1152 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1153 {
1154         struct btrfs_fs_info *fs_info;
1155         struct btrfs_space_info *space_info;
1156         struct btrfs_block_rsv *delayed_block_rsv;
1157         struct btrfs_block_rsv *delayed_refs_rsv;
1158         struct btrfs_block_rsv *global_rsv;
1159         struct btrfs_block_rsv *trans_rsv;
1160         int loops = 0;
1161
1162         fs_info = container_of(work, struct btrfs_fs_info,
1163                                preempt_reclaim_work);
1164         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1165         delayed_block_rsv = &fs_info->delayed_block_rsv;
1166         delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1167         global_rsv = &fs_info->global_block_rsv;
1168         trans_rsv = &fs_info->trans_block_rsv;
1169
1170         spin_lock(&space_info->lock);
1171         while (need_preemptive_reclaim(fs_info, space_info)) {
1172                 enum btrfs_flush_state flush;
1173                 u64 delalloc_size = 0;
1174                 u64 to_reclaim, block_rsv_size;
1175                 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1176
1177                 loops++;
1178
1179                 /*
1180                  * We don't have a precise counter for the metadata being
1181                  * reserved for delalloc, so we'll approximate it by subtracting
1182                  * out the block rsv's space from the bytes_may_use.  If that
1183                  * amount is higher than the individual reserves, then we can
1184                  * assume it's tied up in delalloc reservations.
1185                  */
1186                 block_rsv_size = global_rsv_size +
1187                         btrfs_block_rsv_reserved(delayed_block_rsv) +
1188                         btrfs_block_rsv_reserved(delayed_refs_rsv) +
1189                         btrfs_block_rsv_reserved(trans_rsv);
1190                 if (block_rsv_size < space_info->bytes_may_use)
1191                         delalloc_size = space_info->bytes_may_use - block_rsv_size;
1192
1193                 /*
1194                  * We don't want to include the global_rsv in our calculation,
1195                  * because that's space we can't touch.  Subtract it from the
1196                  * block_rsv_size for the next checks.
1197                  */
1198                 block_rsv_size -= global_rsv_size;
1199
1200                 /*
1201                  * We really want to avoid flushing delalloc too much, as it
1202                  * could result in poor allocation patterns, so only flush it if
1203                  * it's larger than the rest of the pools combined.
1204                  */
1205                 if (delalloc_size > block_rsv_size) {
1206                         to_reclaim = delalloc_size;
1207                         flush = FLUSH_DELALLOC;
1208                 } else if (space_info->bytes_pinned >
1209                            (btrfs_block_rsv_reserved(delayed_block_rsv) +
1210                             btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1211                         to_reclaim = space_info->bytes_pinned;
1212                         flush = COMMIT_TRANS;
1213                 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1214                            btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1215                         to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1216                         flush = FLUSH_DELAYED_ITEMS_NR;
1217                 } else {
1218                         to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1219                         flush = FLUSH_DELAYED_REFS_NR;
1220                 }
1221
1222                 spin_unlock(&space_info->lock);
1223
1224                 /*
1225                  * We don't want to reclaim everything, just a portion, so scale
1226                  * down the to_reclaim by 1/4.  If it takes us down to 0,
1227                  * reclaim 1 items worth.
1228                  */
1229                 to_reclaim >>= 2;
1230                 if (!to_reclaim)
1231                         to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1232                 flush_space(fs_info, space_info, to_reclaim, flush, true);
1233                 cond_resched();
1234                 spin_lock(&space_info->lock);
1235         }
1236
1237         /* We only went through once, back off our clamping. */
1238         if (loops == 1 && !space_info->reclaim_size)
1239                 space_info->clamp = max(1, space_info->clamp - 1);
1240         trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1241         spin_unlock(&space_info->lock);
1242 }
1243
1244 /*
1245  * FLUSH_DELALLOC_WAIT:
1246  *   Space is freed from flushing delalloc in one of two ways.
1247  *
1248  *   1) compression is on and we allocate less space than we reserved
1249  *   2) we are overwriting existing space
1250  *
1251  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1252  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1253  *   length to ->bytes_reserved, and subtracts the reserved space from
1254  *   ->bytes_may_use.
1255  *
1256  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1257  *   extent in the range we are overwriting, which creates a delayed ref for
1258  *   that freed extent.  This however is not reclaimed until the transaction
1259  *   commits, thus the next stages.
1260  *
1261  * RUN_DELAYED_IPUTS
1262  *   If we are freeing inodes, we want to make sure all delayed iputs have
1263  *   completed, because they could have been on an inode with i_nlink == 0, and
1264  *   thus have been truncated and freed up space.  But again this space is not
1265  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1266  *   run and then the transaction must be committed.
1267  *
1268  * COMMIT_TRANS
1269  *   This is where we reclaim all of the pinned space generated by running the
1270  *   iputs
1271  *
1272  * ALLOC_CHUNK_FORCE
1273  *   For data we start with alloc chunk force, however we could have been full
1274  *   before, and then the transaction commit could have freed new block groups,
1275  *   so if we now have space to allocate do the force chunk allocation.
1276  */
1277 static const enum btrfs_flush_state data_flush_states[] = {
1278         FLUSH_DELALLOC_FULL,
1279         RUN_DELAYED_IPUTS,
1280         COMMIT_TRANS,
1281         ALLOC_CHUNK_FORCE,
1282 };
1283
1284 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1285 {
1286         struct btrfs_fs_info *fs_info;
1287         struct btrfs_space_info *space_info;
1288         u64 last_tickets_id;
1289         enum btrfs_flush_state flush_state = 0;
1290
1291         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1292         space_info = fs_info->data_sinfo;
1293
1294         spin_lock(&space_info->lock);
1295         if (list_empty(&space_info->tickets)) {
1296                 space_info->flush = 0;
1297                 spin_unlock(&space_info->lock);
1298                 return;
1299         }
1300         last_tickets_id = space_info->tickets_id;
1301         spin_unlock(&space_info->lock);
1302
1303         while (!space_info->full) {
1304                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1305                 spin_lock(&space_info->lock);
1306                 if (list_empty(&space_info->tickets)) {
1307                         space_info->flush = 0;
1308                         spin_unlock(&space_info->lock);
1309                         return;
1310                 }
1311
1312                 /* Something happened, fail everything and bail. */
1313                 if (BTRFS_FS_ERROR(fs_info))
1314                         goto aborted_fs;
1315                 last_tickets_id = space_info->tickets_id;
1316                 spin_unlock(&space_info->lock);
1317         }
1318
1319         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1320                 flush_space(fs_info, space_info, U64_MAX,
1321                             data_flush_states[flush_state], false);
1322                 spin_lock(&space_info->lock);
1323                 if (list_empty(&space_info->tickets)) {
1324                         space_info->flush = 0;
1325                         spin_unlock(&space_info->lock);
1326                         return;
1327                 }
1328
1329                 if (last_tickets_id == space_info->tickets_id) {
1330                         flush_state++;
1331                 } else {
1332                         last_tickets_id = space_info->tickets_id;
1333                         flush_state = 0;
1334                 }
1335
1336                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1337                         if (space_info->full) {
1338                                 if (maybe_fail_all_tickets(fs_info, space_info))
1339                                         flush_state = 0;
1340                                 else
1341                                         space_info->flush = 0;
1342                         } else {
1343                                 flush_state = 0;
1344                         }
1345
1346                         /* Something happened, fail everything and bail. */
1347                         if (BTRFS_FS_ERROR(fs_info))
1348                                 goto aborted_fs;
1349
1350                 }
1351                 spin_unlock(&space_info->lock);
1352         }
1353         return;
1354
1355 aborted_fs:
1356         maybe_fail_all_tickets(fs_info, space_info);
1357         space_info->flush = 0;
1358         spin_unlock(&space_info->lock);
1359 }
1360
1361 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1362 {
1363         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1364         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1365         INIT_WORK(&fs_info->preempt_reclaim_work,
1366                   btrfs_preempt_reclaim_metadata_space);
1367 }
1368
1369 static const enum btrfs_flush_state priority_flush_states[] = {
1370         FLUSH_DELAYED_ITEMS_NR,
1371         FLUSH_DELAYED_ITEMS,
1372         ALLOC_CHUNK,
1373 };
1374
1375 static const enum btrfs_flush_state evict_flush_states[] = {
1376         FLUSH_DELAYED_ITEMS_NR,
1377         FLUSH_DELAYED_ITEMS,
1378         FLUSH_DELAYED_REFS_NR,
1379         FLUSH_DELAYED_REFS,
1380         FLUSH_DELALLOC,
1381         FLUSH_DELALLOC_WAIT,
1382         FLUSH_DELALLOC_FULL,
1383         ALLOC_CHUNK,
1384         COMMIT_TRANS,
1385 };
1386
1387 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1388                                 struct btrfs_space_info *space_info,
1389                                 struct reserve_ticket *ticket,
1390                                 const enum btrfs_flush_state *states,
1391                                 int states_nr)
1392 {
1393         u64 to_reclaim;
1394         int flush_state = 0;
1395
1396         spin_lock(&space_info->lock);
1397         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1398         /*
1399          * This is the priority reclaim path, so to_reclaim could be >0 still
1400          * because we may have only satisfied the priority tickets and still
1401          * left non priority tickets on the list.  We would then have
1402          * to_reclaim but ->bytes == 0.
1403          */
1404         if (ticket->bytes == 0) {
1405                 spin_unlock(&space_info->lock);
1406                 return;
1407         }
1408
1409         while (flush_state < states_nr) {
1410                 spin_unlock(&space_info->lock);
1411                 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1412                             false);
1413                 flush_state++;
1414                 spin_lock(&space_info->lock);
1415                 if (ticket->bytes == 0) {
1416                         spin_unlock(&space_info->lock);
1417                         return;
1418                 }
1419         }
1420
1421         /*
1422          * Attempt to steal from the global rsv if we can, except if the fs was
1423          * turned into error mode due to a transaction abort when flushing space
1424          * above, in that case fail with the abort error instead of returning
1425          * success to the caller if we can steal from the global rsv - this is
1426          * just to have caller fail immeditelly instead of later when trying to
1427          * modify the fs, making it easier to debug -ENOSPC problems.
1428          */
1429         if (BTRFS_FS_ERROR(fs_info)) {
1430                 ticket->error = BTRFS_FS_ERROR(fs_info);
1431                 remove_ticket(space_info, ticket);
1432         } else if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1433                 ticket->error = -ENOSPC;
1434                 remove_ticket(space_info, ticket);
1435         }
1436
1437         /*
1438          * We must run try_granting_tickets here because we could be a large
1439          * ticket in front of a smaller ticket that can now be satisfied with
1440          * the available space.
1441          */
1442         btrfs_try_granting_tickets(fs_info, space_info);
1443         spin_unlock(&space_info->lock);
1444 }
1445
1446 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1447                                         struct btrfs_space_info *space_info,
1448                                         struct reserve_ticket *ticket)
1449 {
1450         spin_lock(&space_info->lock);
1451
1452         /* We could have been granted before we got here. */
1453         if (ticket->bytes == 0) {
1454                 spin_unlock(&space_info->lock);
1455                 return;
1456         }
1457
1458         while (!space_info->full) {
1459                 spin_unlock(&space_info->lock);
1460                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1461                 spin_lock(&space_info->lock);
1462                 if (ticket->bytes == 0) {
1463                         spin_unlock(&space_info->lock);
1464                         return;
1465                 }
1466         }
1467
1468         ticket->error = -ENOSPC;
1469         remove_ticket(space_info, ticket);
1470         btrfs_try_granting_tickets(fs_info, space_info);
1471         spin_unlock(&space_info->lock);
1472 }
1473
1474 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1475                                 struct btrfs_space_info *space_info,
1476                                 struct reserve_ticket *ticket)
1477
1478 {
1479         DEFINE_WAIT(wait);
1480         int ret = 0;
1481
1482         spin_lock(&space_info->lock);
1483         while (ticket->bytes > 0 && ticket->error == 0) {
1484                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1485                 if (ret) {
1486                         /*
1487                          * Delete us from the list. After we unlock the space
1488                          * info, we don't want the async reclaim job to reserve
1489                          * space for this ticket. If that would happen, then the
1490                          * ticket's task would not known that space was reserved
1491                          * despite getting an error, resulting in a space leak
1492                          * (bytes_may_use counter of our space_info).
1493                          */
1494                         remove_ticket(space_info, ticket);
1495                         ticket->error = -EINTR;
1496                         break;
1497                 }
1498                 spin_unlock(&space_info->lock);
1499
1500                 schedule();
1501
1502                 finish_wait(&ticket->wait, &wait);
1503                 spin_lock(&space_info->lock);
1504         }
1505         spin_unlock(&space_info->lock);
1506 }
1507
1508 /*
1509  * Do the appropriate flushing and waiting for a ticket.
1510  *
1511  * @fs_info:    the filesystem
1512  * @space_info: space info for the reservation
1513  * @ticket:     ticket for the reservation
1514  * @start_ns:   timestamp when the reservation started
1515  * @orig_bytes: amount of bytes originally reserved
1516  * @flush:      how much we can flush
1517  *
1518  * This does the work of figuring out how to flush for the ticket, waiting for
1519  * the reservation, and returning the appropriate error if there is one.
1520  */
1521 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1522                                  struct btrfs_space_info *space_info,
1523                                  struct reserve_ticket *ticket,
1524                                  u64 start_ns, u64 orig_bytes,
1525                                  enum btrfs_reserve_flush_enum flush)
1526 {
1527         int ret;
1528
1529         switch (flush) {
1530         case BTRFS_RESERVE_FLUSH_DATA:
1531         case BTRFS_RESERVE_FLUSH_ALL:
1532         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1533                 wait_reserve_ticket(fs_info, space_info, ticket);
1534                 break;
1535         case BTRFS_RESERVE_FLUSH_LIMIT:
1536                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1537                                                 priority_flush_states,
1538                                                 ARRAY_SIZE(priority_flush_states));
1539                 break;
1540         case BTRFS_RESERVE_FLUSH_EVICT:
1541                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1542                                                 evict_flush_states,
1543                                                 ARRAY_SIZE(evict_flush_states));
1544                 break;
1545         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1546                 priority_reclaim_data_space(fs_info, space_info, ticket);
1547                 break;
1548         default:
1549                 ASSERT(0);
1550                 break;
1551         }
1552
1553         ret = ticket->error;
1554         ASSERT(list_empty(&ticket->list));
1555         /*
1556          * Check that we can't have an error set if the reservation succeeded,
1557          * as that would confuse tasks and lead them to error out without
1558          * releasing reserved space (if an error happens the expectation is that
1559          * space wasn't reserved at all).
1560          */
1561         ASSERT(!(ticket->bytes == 0 && ticket->error));
1562         trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1563                                    start_ns, flush, ticket->error);
1564         return ret;
1565 }
1566
1567 /*
1568  * This returns true if this flush state will go through the ordinary flushing
1569  * code.
1570  */
1571 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1572 {
1573         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1574                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1575 }
1576
1577 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1578                                        struct btrfs_space_info *space_info)
1579 {
1580         u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1581         u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1582
1583         /*
1584          * If we're heavy on ordered operations then clamping won't help us.  We
1585          * need to clamp specifically to keep up with dirty'ing buffered
1586          * writers, because there's not a 1:1 correlation of writing delalloc
1587          * and freeing space, like there is with flushing delayed refs or
1588          * delayed nodes.  If we're already more ordered than delalloc then
1589          * we're keeping up, otherwise we aren't and should probably clamp.
1590          */
1591         if (ordered < delalloc)
1592                 space_info->clamp = min(space_info->clamp + 1, 8);
1593 }
1594
1595 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1596 {
1597         return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1598                 flush == BTRFS_RESERVE_FLUSH_EVICT);
1599 }
1600
1601 /*
1602  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1603  * fail as quickly as possible.
1604  */
1605 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1606 {
1607         return (flush != BTRFS_RESERVE_NO_FLUSH &&
1608                 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1609 }
1610
1611 /*
1612  * Try to reserve bytes from the block_rsv's space.
1613  *
1614  * @fs_info:    the filesystem
1615  * @space_info: space info we want to allocate from
1616  * @orig_bytes: number of bytes we want
1617  * @flush:      whether or not we can flush to make our reservation
1618  *
1619  * This will reserve orig_bytes number of bytes from the space info associated
1620  * with the block_rsv.  If there is not enough space it will make an attempt to
1621  * flush out space to make room.  It will do this by flushing delalloc if
1622  * possible or committing the transaction.  If flush is 0 then no attempts to
1623  * regain reservations will be made and this will fail if there is not enough
1624  * space already.
1625  */
1626 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1627                            struct btrfs_space_info *space_info, u64 orig_bytes,
1628                            enum btrfs_reserve_flush_enum flush)
1629 {
1630         struct work_struct *async_work;
1631         struct reserve_ticket ticket;
1632         u64 start_ns = 0;
1633         u64 used;
1634         int ret = -ENOSPC;
1635         bool pending_tickets;
1636
1637         ASSERT(orig_bytes);
1638         /*
1639          * If have a transaction handle (current->journal_info != NULL), then
1640          * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1641          * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1642          * flushing methods can trigger transaction commits.
1643          */
1644         if (current->journal_info) {
1645                 /* One assert per line for easier debugging. */
1646                 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL);
1647                 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL);
1648                 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT);
1649         }
1650
1651         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1652                 async_work = &fs_info->async_data_reclaim_work;
1653         else
1654                 async_work = &fs_info->async_reclaim_work;
1655
1656         spin_lock(&space_info->lock);
1657         used = btrfs_space_info_used(space_info, true);
1658
1659         /*
1660          * We don't want NO_FLUSH allocations to jump everybody, they can
1661          * generally handle ENOSPC in a different way, so treat them the same as
1662          * normal flushers when it comes to skipping pending tickets.
1663          */
1664         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1665                 pending_tickets = !list_empty(&space_info->tickets) ||
1666                         !list_empty(&space_info->priority_tickets);
1667         else
1668                 pending_tickets = !list_empty(&space_info->priority_tickets);
1669
1670         /*
1671          * Carry on if we have enough space (short-circuit) OR call
1672          * can_overcommit() to ensure we can overcommit to continue.
1673          */
1674         if (!pending_tickets &&
1675             ((used + orig_bytes <= space_info->total_bytes) ||
1676              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1677                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1678                                                       orig_bytes);
1679                 ret = 0;
1680         }
1681
1682         /*
1683          * Things are dire, we need to make a reservation so we don't abort.  We
1684          * will let this reservation go through as long as we have actual space
1685          * left to allocate for the block.
1686          */
1687         if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1688                 used = btrfs_space_info_used(space_info, false);
1689                 if (used + orig_bytes <= space_info->total_bytes) {
1690                         btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1691                                                               orig_bytes);
1692                         ret = 0;
1693                 }
1694         }
1695
1696         /*
1697          * If we couldn't make a reservation then setup our reservation ticket
1698          * and kick the async worker if it's not already running.
1699          *
1700          * If we are a priority flusher then we just need to add our ticket to
1701          * the list and we will do our own flushing further down.
1702          */
1703         if (ret && can_ticket(flush)) {
1704                 ticket.bytes = orig_bytes;
1705                 ticket.error = 0;
1706                 space_info->reclaim_size += ticket.bytes;
1707                 init_waitqueue_head(&ticket.wait);
1708                 ticket.steal = can_steal(flush);
1709                 if (trace_btrfs_reserve_ticket_enabled())
1710                         start_ns = ktime_get_ns();
1711
1712                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1713                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1714                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1715                         list_add_tail(&ticket.list, &space_info->tickets);
1716                         if (!space_info->flush) {
1717                                 /*
1718                                  * We were forced to add a reserve ticket, so
1719                                  * our preemptive flushing is unable to keep
1720                                  * up.  Clamp down on the threshold for the
1721                                  * preemptive flushing in order to keep up with
1722                                  * the workload.
1723                                  */
1724                                 maybe_clamp_preempt(fs_info, space_info);
1725
1726                                 space_info->flush = 1;
1727                                 trace_btrfs_trigger_flush(fs_info,
1728                                                           space_info->flags,
1729                                                           orig_bytes, flush,
1730                                                           "enospc");
1731                                 queue_work(system_unbound_wq, async_work);
1732                         }
1733                 } else {
1734                         list_add_tail(&ticket.list,
1735                                       &space_info->priority_tickets);
1736                 }
1737         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1738                 /*
1739                  * We will do the space reservation dance during log replay,
1740                  * which means we won't have fs_info->fs_root set, so don't do
1741                  * the async reclaim as we will panic.
1742                  */
1743                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1744                     !work_busy(&fs_info->preempt_reclaim_work) &&
1745                     need_preemptive_reclaim(fs_info, space_info)) {
1746                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1747                                                   orig_bytes, flush, "preempt");
1748                         queue_work(system_unbound_wq,
1749                                    &fs_info->preempt_reclaim_work);
1750                 }
1751         }
1752         spin_unlock(&space_info->lock);
1753         if (!ret || !can_ticket(flush))
1754                 return ret;
1755
1756         return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1757                                      orig_bytes, flush);
1758 }
1759
1760 /*
1761  * Try to reserve metadata bytes from the block_rsv's space.
1762  *
1763  * @fs_info:    the filesystem
1764  * @space_info: the space_info we're allocating for
1765  * @orig_bytes: number of bytes we want
1766  * @flush:      whether or not we can flush to make our reservation
1767  *
1768  * This will reserve orig_bytes number of bytes from the space info associated
1769  * with the block_rsv.  If there is not enough space it will make an attempt to
1770  * flush out space to make room.  It will do this by flushing delalloc if
1771  * possible or committing the transaction.  If flush is 0 then no attempts to
1772  * regain reservations will be made and this will fail if there is not enough
1773  * space already.
1774  */
1775 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1776                                  struct btrfs_space_info *space_info,
1777                                  u64 orig_bytes,
1778                                  enum btrfs_reserve_flush_enum flush)
1779 {
1780         int ret;
1781
1782         ret = __reserve_bytes(fs_info, space_info, orig_bytes, flush);
1783         if (ret == -ENOSPC) {
1784                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1785                                               space_info->flags, orig_bytes, 1);
1786
1787                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1788                         btrfs_dump_space_info(fs_info, space_info, orig_bytes, 0);
1789         }
1790         return ret;
1791 }
1792
1793 /*
1794  * Try to reserve data bytes for an allocation.
1795  *
1796  * @fs_info: the filesystem
1797  * @bytes:   number of bytes we need
1798  * @flush:   how we are allowed to flush
1799  *
1800  * This will reserve bytes from the data space info.  If there is not enough
1801  * space then we will attempt to flush space as specified by flush.
1802  */
1803 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1804                              enum btrfs_reserve_flush_enum flush)
1805 {
1806         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1807         int ret;
1808
1809         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1810                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1811                flush == BTRFS_RESERVE_NO_FLUSH);
1812         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1813
1814         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1815         if (ret == -ENOSPC) {
1816                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1817                                               data_sinfo->flags, bytes, 1);
1818                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1819                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1820         }
1821         return ret;
1822 }
1823
1824 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1825 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1826 {
1827         struct btrfs_space_info *space_info;
1828
1829         btrfs_info(fs_info, "dumping space info:");
1830         list_for_each_entry(space_info, &fs_info->space_info, list) {
1831                 spin_lock(&space_info->lock);
1832                 __btrfs_dump_space_info(fs_info, space_info);
1833                 spin_unlock(&space_info->lock);
1834         }
1835         dump_global_block_rsv(fs_info);
1836 }
1837
1838 /*
1839  * Account the unused space of all the readonly block group in the space_info.
1840  * takes mirrors into account.
1841  */
1842 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1843 {
1844         struct btrfs_block_group *block_group;
1845         u64 free_bytes = 0;
1846         int factor;
1847
1848         /* It's df, we don't care if it's racy */
1849         if (list_empty(&sinfo->ro_bgs))
1850                 return 0;
1851
1852         spin_lock(&sinfo->lock);
1853         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1854                 spin_lock(&block_group->lock);
1855
1856                 if (!block_group->ro) {
1857                         spin_unlock(&block_group->lock);
1858                         continue;
1859                 }
1860
1861                 factor = btrfs_bg_type_to_factor(block_group->flags);
1862                 free_bytes += (block_group->length -
1863                                block_group->used) * factor;
1864
1865                 spin_unlock(&block_group->lock);
1866         }
1867         spin_unlock(&sinfo->lock);
1868
1869         return free_bytes;
1870 }