Merge branch 'pm-opp'
[linux-2.6-microblaze.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     This will commit the transaction.  Historically we had a lot of logic
137  *     surrounding whether or not we'd commit the transaction, but this waits born
138  *     out of a pre-tickets era where we could end up committing the transaction
139  *     thousands of times in a row without making progress.  Now thanks to our
140  *     ticketing system we know if we're not making progress and can error
141  *     everybody out after a few commits rather than burning the disk hoping for
142  *     a different answer.
143  *
144  * OVERCOMMIT
145  *
146  *   Because we hold so many reservations for metadata we will allow you to
147  *   reserve more space than is currently free in the currently allocate
148  *   metadata space.  This only happens with metadata, data does not allow
149  *   overcommitting.
150  *
151  *   You can see the current logic for when we allow overcommit in
152  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
153  *   is no unallocated space to be had, all reservations are kept within the
154  *   free space in the allocated metadata chunks.
155  *
156  *   Because of overcommitting, you generally want to use the
157  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
158  *   thing with or without extra unallocated space.
159  */
160
161 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
162                           bool may_use_included)
163 {
164         ASSERT(s_info);
165         return s_info->bytes_used + s_info->bytes_reserved +
166                 s_info->bytes_pinned + s_info->bytes_readonly +
167                 s_info->bytes_zone_unusable +
168                 (may_use_included ? s_info->bytes_may_use : 0);
169 }
170
171 /*
172  * after adding space to the filesystem, we need to clear the full flags
173  * on all the space infos.
174  */
175 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
176 {
177         struct list_head *head = &info->space_info;
178         struct btrfs_space_info *found;
179
180         list_for_each_entry(found, head, list)
181                 found->full = 0;
182 }
183
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186
187         struct btrfs_space_info *space_info;
188         int i;
189         int ret;
190
191         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192         if (!space_info)
193                 return -ENOMEM;
194
195         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
196                 INIT_LIST_HEAD(&space_info->block_groups[i]);
197         init_rwsem(&space_info->groups_sem);
198         spin_lock_init(&space_info->lock);
199         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
200         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
201         INIT_LIST_HEAD(&space_info->ro_bgs);
202         INIT_LIST_HEAD(&space_info->tickets);
203         INIT_LIST_HEAD(&space_info->priority_tickets);
204         space_info->clamp = 1;
205
206         ret = btrfs_sysfs_add_space_info_type(info, space_info);
207         if (ret)
208                 return ret;
209
210         list_add(&space_info->list, &info->space_info);
211         if (flags & BTRFS_BLOCK_GROUP_DATA)
212                 info->data_sinfo = space_info;
213
214         return ret;
215 }
216
217 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
218 {
219         struct btrfs_super_block *disk_super;
220         u64 features;
221         u64 flags;
222         int mixed = 0;
223         int ret;
224
225         disk_super = fs_info->super_copy;
226         if (!btrfs_super_root(disk_super))
227                 return -EINVAL;
228
229         features = btrfs_super_incompat_flags(disk_super);
230         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
231                 mixed = 1;
232
233         flags = BTRFS_BLOCK_GROUP_SYSTEM;
234         ret = create_space_info(fs_info, flags);
235         if (ret)
236                 goto out;
237
238         if (mixed) {
239                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
240                 ret = create_space_info(fs_info, flags);
241         } else {
242                 flags = BTRFS_BLOCK_GROUP_METADATA;
243                 ret = create_space_info(fs_info, flags);
244                 if (ret)
245                         goto out;
246
247                 flags = BTRFS_BLOCK_GROUP_DATA;
248                 ret = create_space_info(fs_info, flags);
249         }
250 out:
251         return ret;
252 }
253
254 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
255                              u64 total_bytes, u64 bytes_used,
256                              u64 bytes_readonly, u64 bytes_zone_unusable,
257                              struct btrfs_space_info **space_info)
258 {
259         struct btrfs_space_info *found;
260         int factor;
261
262         factor = btrfs_bg_type_to_factor(flags);
263
264         found = btrfs_find_space_info(info, flags);
265         ASSERT(found);
266         spin_lock(&found->lock);
267         found->total_bytes += total_bytes;
268         found->disk_total += total_bytes * factor;
269         found->bytes_used += bytes_used;
270         found->disk_used += bytes_used * factor;
271         found->bytes_readonly += bytes_readonly;
272         found->bytes_zone_unusable += bytes_zone_unusable;
273         if (total_bytes > 0)
274                 found->full = 0;
275         btrfs_try_granting_tickets(info, found);
276         spin_unlock(&found->lock);
277         *space_info = found;
278 }
279
280 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
281                                                u64 flags)
282 {
283         struct list_head *head = &info->space_info;
284         struct btrfs_space_info *found;
285
286         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
287
288         list_for_each_entry(found, head, list) {
289                 if (found->flags & flags)
290                         return found;
291         }
292         return NULL;
293 }
294
295 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
296                           struct btrfs_space_info *space_info,
297                           enum btrfs_reserve_flush_enum flush)
298 {
299         u64 profile;
300         u64 avail;
301         int factor;
302
303         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
304                 profile = btrfs_system_alloc_profile(fs_info);
305         else
306                 profile = btrfs_metadata_alloc_profile(fs_info);
307
308         avail = atomic64_read(&fs_info->free_chunk_space);
309
310         /*
311          * If we have dup, raid1 or raid10 then only half of the free
312          * space is actually usable.  For raid56, the space info used
313          * doesn't include the parity drive, so we don't have to
314          * change the math
315          */
316         factor = btrfs_bg_type_to_factor(profile);
317         avail = div_u64(avail, factor);
318
319         /*
320          * If we aren't flushing all things, let us overcommit up to
321          * 1/2th of the space. If we can flush, don't let us overcommit
322          * too much, let it overcommit up to 1/8 of the space.
323          */
324         if (flush == BTRFS_RESERVE_FLUSH_ALL)
325                 avail >>= 3;
326         else
327                 avail >>= 1;
328         return avail;
329 }
330
331 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
332                          struct btrfs_space_info *space_info, u64 bytes,
333                          enum btrfs_reserve_flush_enum flush)
334 {
335         u64 avail;
336         u64 used;
337
338         /* Don't overcommit when in mixed mode */
339         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
340                 return 0;
341
342         used = btrfs_space_info_used(space_info, true);
343         avail = calc_available_free_space(fs_info, space_info, flush);
344
345         if (used + bytes < space_info->total_bytes + avail)
346                 return 1;
347         return 0;
348 }
349
350 static void remove_ticket(struct btrfs_space_info *space_info,
351                           struct reserve_ticket *ticket)
352 {
353         if (!list_empty(&ticket->list)) {
354                 list_del_init(&ticket->list);
355                 ASSERT(space_info->reclaim_size >= ticket->bytes);
356                 space_info->reclaim_size -= ticket->bytes;
357         }
358 }
359
360 /*
361  * This is for space we already have accounted in space_info->bytes_may_use, so
362  * basically when we're returning space from block_rsv's.
363  */
364 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
365                                 struct btrfs_space_info *space_info)
366 {
367         struct list_head *head;
368         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
369
370         lockdep_assert_held(&space_info->lock);
371
372         head = &space_info->priority_tickets;
373 again:
374         while (!list_empty(head)) {
375                 struct reserve_ticket *ticket;
376                 u64 used = btrfs_space_info_used(space_info, true);
377
378                 ticket = list_first_entry(head, struct reserve_ticket, list);
379
380                 /* Check and see if our ticket can be satisfied now. */
381                 if ((used + ticket->bytes <= space_info->total_bytes) ||
382                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
383                                          flush)) {
384                         btrfs_space_info_update_bytes_may_use(fs_info,
385                                                               space_info,
386                                                               ticket->bytes);
387                         remove_ticket(space_info, ticket);
388                         ticket->bytes = 0;
389                         space_info->tickets_id++;
390                         wake_up(&ticket->wait);
391                 } else {
392                         break;
393                 }
394         }
395
396         if (head == &space_info->priority_tickets) {
397                 head = &space_info->tickets;
398                 flush = BTRFS_RESERVE_FLUSH_ALL;
399                 goto again;
400         }
401 }
402
403 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
404 do {                                                                    \
405         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
406         spin_lock(&__rsv->lock);                                        \
407         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
408                    __rsv->size, __rsv->reserved);                       \
409         spin_unlock(&__rsv->lock);                                      \
410 } while (0)
411
412 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
413                                     struct btrfs_space_info *info)
414 {
415         lockdep_assert_held(&info->lock);
416
417         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
418                    info->flags,
419                    info->total_bytes - btrfs_space_info_used(info, true),
420                    info->full ? "" : "not ");
421         btrfs_info(fs_info,
422                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
423                 info->total_bytes, info->bytes_used, info->bytes_pinned,
424                 info->bytes_reserved, info->bytes_may_use,
425                 info->bytes_readonly, info->bytes_zone_unusable);
426
427         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
428         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
429         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
430         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
431         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
432
433 }
434
435 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
436                            struct btrfs_space_info *info, u64 bytes,
437                            int dump_block_groups)
438 {
439         struct btrfs_block_group *cache;
440         int index = 0;
441
442         spin_lock(&info->lock);
443         __btrfs_dump_space_info(fs_info, info);
444         spin_unlock(&info->lock);
445
446         if (!dump_block_groups)
447                 return;
448
449         down_read(&info->groups_sem);
450 again:
451         list_for_each_entry(cache, &info->block_groups[index], list) {
452                 spin_lock(&cache->lock);
453                 btrfs_info(fs_info,
454                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
455                         cache->start, cache->length, cache->used, cache->pinned,
456                         cache->reserved, cache->zone_unusable,
457                         cache->ro ? "[readonly]" : "");
458                 spin_unlock(&cache->lock);
459                 btrfs_dump_free_space(cache, bytes);
460         }
461         if (++index < BTRFS_NR_RAID_TYPES)
462                 goto again;
463         up_read(&info->groups_sem);
464 }
465
466 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
467                                         u64 to_reclaim)
468 {
469         u64 bytes;
470         u64 nr;
471
472         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
473         nr = div64_u64(to_reclaim, bytes);
474         if (!nr)
475                 nr = 1;
476         return nr;
477 }
478
479 #define EXTENT_SIZE_PER_ITEM    SZ_256K
480
481 /*
482  * shrink metadata reservation for delalloc
483  */
484 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
485                             struct btrfs_space_info *space_info,
486                             u64 to_reclaim, bool wait_ordered,
487                             bool for_preempt)
488 {
489         struct btrfs_trans_handle *trans;
490         u64 delalloc_bytes;
491         u64 ordered_bytes;
492         u64 items;
493         long time_left;
494         int loops;
495
496         delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
497         ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
498         if (delalloc_bytes == 0 && ordered_bytes == 0)
499                 return;
500
501         /* Calc the number of the pages we need flush for space reservation */
502         if (to_reclaim == U64_MAX) {
503                 items = U64_MAX;
504         } else {
505                 /*
506                  * to_reclaim is set to however much metadata we need to
507                  * reclaim, but reclaiming that much data doesn't really track
508                  * exactly.  What we really want to do is reclaim full inode's
509                  * worth of reservations, however that's not available to us
510                  * here.  We will take a fraction of the delalloc bytes for our
511                  * flushing loops and hope for the best.  Delalloc will expand
512                  * the amount we write to cover an entire dirty extent, which
513                  * will reclaim the metadata reservation for that range.  If
514                  * it's not enough subsequent flush stages will be more
515                  * aggressive.
516                  */
517                 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
518                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
519         }
520
521         trans = (struct btrfs_trans_handle *)current->journal_info;
522
523         /*
524          * If we are doing more ordered than delalloc we need to just wait on
525          * ordered extents, otherwise we'll waste time trying to flush delalloc
526          * that likely won't give us the space back we need.
527          */
528         if (ordered_bytes > delalloc_bytes && !for_preempt)
529                 wait_ordered = true;
530
531         loops = 0;
532         while ((delalloc_bytes || ordered_bytes) && loops < 3) {
533                 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
534                 long nr_pages = min_t(u64, temp, LONG_MAX);
535                 int async_pages;
536
537                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
538
539                 /*
540                  * We need to make sure any outstanding async pages are now
541                  * processed before we continue.  This is because things like
542                  * sync_inode() try to be smart and skip writing if the inode is
543                  * marked clean.  We don't use filemap_fwrite for flushing
544                  * because we want to control how many pages we write out at a
545                  * time, thus this is the only safe way to make sure we've
546                  * waited for outstanding compressed workers to have started
547                  * their jobs and thus have ordered extents set up properly.
548                  *
549                  * This exists because we do not want to wait for each
550                  * individual inode to finish its async work, we simply want to
551                  * start the IO on everybody, and then come back here and wait
552                  * for all of the async work to catch up.  Once we're done with
553                  * that we know we'll have ordered extents for everything and we
554                  * can decide if we wait for that or not.
555                  *
556                  * If we choose to replace this in the future, make absolutely
557                  * sure that the proper waiting is being done in the async case,
558                  * as there have been bugs in that area before.
559                  */
560                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
561                 if (!async_pages)
562                         goto skip_async;
563
564                 /*
565                  * We don't want to wait forever, if we wrote less pages in this
566                  * loop than we have outstanding, only wait for that number of
567                  * pages, otherwise we can wait for all async pages to finish
568                  * before continuing.
569                  */
570                 if (async_pages > nr_pages)
571                         async_pages -= nr_pages;
572                 else
573                         async_pages = 0;
574                 wait_event(fs_info->async_submit_wait,
575                            atomic_read(&fs_info->async_delalloc_pages) <=
576                            async_pages);
577 skip_async:
578                 loops++;
579                 if (wait_ordered && !trans) {
580                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
581                 } else {
582                         time_left = schedule_timeout_killable(1);
583                         if (time_left)
584                                 break;
585                 }
586
587                 /*
588                  * If we are for preemption we just want a one-shot of delalloc
589                  * flushing so we can stop flushing if we decide we don't need
590                  * to anymore.
591                  */
592                 if (for_preempt)
593                         break;
594
595                 spin_lock(&space_info->lock);
596                 if (list_empty(&space_info->tickets) &&
597                     list_empty(&space_info->priority_tickets)) {
598                         spin_unlock(&space_info->lock);
599                         break;
600                 }
601                 spin_unlock(&space_info->lock);
602
603                 delalloc_bytes = percpu_counter_sum_positive(
604                                                 &fs_info->delalloc_bytes);
605                 ordered_bytes = percpu_counter_sum_positive(
606                                                 &fs_info->ordered_bytes);
607         }
608 }
609
610 /*
611  * Try to flush some data based on policy set by @state. This is only advisory
612  * and may fail for various reasons. The caller is supposed to examine the
613  * state of @space_info to detect the outcome.
614  */
615 static void flush_space(struct btrfs_fs_info *fs_info,
616                        struct btrfs_space_info *space_info, u64 num_bytes,
617                        enum btrfs_flush_state state, bool for_preempt)
618 {
619         struct btrfs_root *root = fs_info->extent_root;
620         struct btrfs_trans_handle *trans;
621         int nr;
622         int ret = 0;
623
624         switch (state) {
625         case FLUSH_DELAYED_ITEMS_NR:
626         case FLUSH_DELAYED_ITEMS:
627                 if (state == FLUSH_DELAYED_ITEMS_NR)
628                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
629                 else
630                         nr = -1;
631
632                 trans = btrfs_join_transaction(root);
633                 if (IS_ERR(trans)) {
634                         ret = PTR_ERR(trans);
635                         break;
636                 }
637                 ret = btrfs_run_delayed_items_nr(trans, nr);
638                 btrfs_end_transaction(trans);
639                 break;
640         case FLUSH_DELALLOC:
641         case FLUSH_DELALLOC_WAIT:
642         case FLUSH_DELALLOC_FULL:
643                 if (state == FLUSH_DELALLOC_FULL)
644                         num_bytes = U64_MAX;
645                 shrink_delalloc(fs_info, space_info, num_bytes,
646                                 state != FLUSH_DELALLOC, for_preempt);
647                 break;
648         case FLUSH_DELAYED_REFS_NR:
649         case FLUSH_DELAYED_REFS:
650                 trans = btrfs_join_transaction(root);
651                 if (IS_ERR(trans)) {
652                         ret = PTR_ERR(trans);
653                         break;
654                 }
655                 if (state == FLUSH_DELAYED_REFS_NR)
656                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
657                 else
658                         nr = 0;
659                 btrfs_run_delayed_refs(trans, nr);
660                 btrfs_end_transaction(trans);
661                 break;
662         case ALLOC_CHUNK:
663         case ALLOC_CHUNK_FORCE:
664                 trans = btrfs_join_transaction(root);
665                 if (IS_ERR(trans)) {
666                         ret = PTR_ERR(trans);
667                         break;
668                 }
669                 ret = btrfs_chunk_alloc(trans,
670                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
671                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
672                                         CHUNK_ALLOC_FORCE);
673                 btrfs_end_transaction(trans);
674                 if (ret > 0 || ret == -ENOSPC)
675                         ret = 0;
676                 break;
677         case RUN_DELAYED_IPUTS:
678                 /*
679                  * If we have pending delayed iputs then we could free up a
680                  * bunch of pinned space, so make sure we run the iputs before
681                  * we do our pinned bytes check below.
682                  */
683                 btrfs_run_delayed_iputs(fs_info);
684                 btrfs_wait_on_delayed_iputs(fs_info);
685                 break;
686         case COMMIT_TRANS:
687                 ASSERT(current->journal_info == NULL);
688                 trans = btrfs_join_transaction(root);
689                 if (IS_ERR(trans)) {
690                         ret = PTR_ERR(trans);
691                         break;
692                 }
693                 ret = btrfs_commit_transaction(trans);
694                 break;
695         default:
696                 ret = -ENOSPC;
697                 break;
698         }
699
700         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
701                                 ret, for_preempt);
702         return;
703 }
704
705 static inline u64
706 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
707                                  struct btrfs_space_info *space_info)
708 {
709         u64 used;
710         u64 avail;
711         u64 to_reclaim = space_info->reclaim_size;
712
713         lockdep_assert_held(&space_info->lock);
714
715         avail = calc_available_free_space(fs_info, space_info,
716                                           BTRFS_RESERVE_FLUSH_ALL);
717         used = btrfs_space_info_used(space_info, true);
718
719         /*
720          * We may be flushing because suddenly we have less space than we had
721          * before, and now we're well over-committed based on our current free
722          * space.  If that's the case add in our overage so we make sure to put
723          * appropriate pressure on the flushing state machine.
724          */
725         if (space_info->total_bytes + avail < used)
726                 to_reclaim += used - (space_info->total_bytes + avail);
727
728         return to_reclaim;
729 }
730
731 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
732                                     struct btrfs_space_info *space_info)
733 {
734         u64 global_rsv_size = fs_info->global_block_rsv.reserved;
735         u64 ordered, delalloc;
736         u64 thresh = div_factor_fine(space_info->total_bytes, 90);
737         u64 used;
738
739         /* If we're just plain full then async reclaim just slows us down. */
740         if ((space_info->bytes_used + space_info->bytes_reserved +
741              global_rsv_size) >= thresh)
742                 return false;
743
744         used = space_info->bytes_may_use + space_info->bytes_pinned;
745
746         /* The total flushable belongs to the global rsv, don't flush. */
747         if (global_rsv_size >= used)
748                 return false;
749
750         /*
751          * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
752          * that devoted to other reservations then there's no sense in flushing,
753          * we don't have a lot of things that need flushing.
754          */
755         if (used - global_rsv_size <= SZ_128M)
756                 return false;
757
758         /*
759          * We have tickets queued, bail so we don't compete with the async
760          * flushers.
761          */
762         if (space_info->reclaim_size)
763                 return false;
764
765         /*
766          * If we have over half of the free space occupied by reservations or
767          * pinned then we want to start flushing.
768          *
769          * We do not do the traditional thing here, which is to say
770          *
771          *   if (used >= ((total_bytes + avail) / 2))
772          *     return 1;
773          *
774          * because this doesn't quite work how we want.  If we had more than 50%
775          * of the space_info used by bytes_used and we had 0 available we'd just
776          * constantly run the background flusher.  Instead we want it to kick in
777          * if our reclaimable space exceeds our clamped free space.
778          *
779          * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
780          * the following:
781          *
782          * Amount of RAM        Minimum threshold       Maximum threshold
783          *
784          *        256GiB                     1GiB                  128GiB
785          *        128GiB                   512MiB                   64GiB
786          *         64GiB                   256MiB                   32GiB
787          *         32GiB                   128MiB                   16GiB
788          *         16GiB                    64MiB                    8GiB
789          *
790          * These are the range our thresholds will fall in, corresponding to how
791          * much delalloc we need for the background flusher to kick in.
792          */
793
794         thresh = calc_available_free_space(fs_info, space_info,
795                                            BTRFS_RESERVE_FLUSH_ALL);
796         used = space_info->bytes_used + space_info->bytes_reserved +
797                space_info->bytes_readonly + global_rsv_size;
798         if (used < space_info->total_bytes)
799                 thresh += space_info->total_bytes - used;
800         thresh >>= space_info->clamp;
801
802         used = space_info->bytes_pinned;
803
804         /*
805          * If we have more ordered bytes than delalloc bytes then we're either
806          * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
807          * around.  Preemptive flushing is only useful in that it can free up
808          * space before tickets need to wait for things to finish.  In the case
809          * of ordered extents, preemptively waiting on ordered extents gets us
810          * nothing, if our reservations are tied up in ordered extents we'll
811          * simply have to slow down writers by forcing them to wait on ordered
812          * extents.
813          *
814          * In the case that ordered is larger than delalloc, only include the
815          * block reserves that we would actually be able to directly reclaim
816          * from.  In this case if we're heavy on metadata operations this will
817          * clearly be heavy enough to warrant preemptive flushing.  In the case
818          * of heavy DIO or ordered reservations, preemptive flushing will just
819          * waste time and cause us to slow down.
820          *
821          * We want to make sure we truly are maxed out on ordered however, so
822          * cut ordered in half, and if it's still higher than delalloc then we
823          * can keep flushing.  This is to avoid the case where we start
824          * flushing, and now delalloc == ordered and we stop preemptively
825          * flushing when we could still have several gigs of delalloc to flush.
826          */
827         ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
828         delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
829         if (ordered >= delalloc)
830                 used += fs_info->delayed_refs_rsv.reserved +
831                         fs_info->delayed_block_rsv.reserved;
832         else
833                 used += space_info->bytes_may_use - global_rsv_size;
834
835         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
836                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
837 }
838
839 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
840                                   struct btrfs_space_info *space_info,
841                                   struct reserve_ticket *ticket)
842 {
843         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
844         u64 min_bytes;
845
846         if (global_rsv->space_info != space_info)
847                 return false;
848
849         spin_lock(&global_rsv->lock);
850         min_bytes = div_factor(global_rsv->size, 1);
851         if (global_rsv->reserved < min_bytes + ticket->bytes) {
852                 spin_unlock(&global_rsv->lock);
853                 return false;
854         }
855         global_rsv->reserved -= ticket->bytes;
856         remove_ticket(space_info, ticket);
857         ticket->bytes = 0;
858         wake_up(&ticket->wait);
859         space_info->tickets_id++;
860         if (global_rsv->reserved < global_rsv->size)
861                 global_rsv->full = 0;
862         spin_unlock(&global_rsv->lock);
863
864         return true;
865 }
866
867 /*
868  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
869  * @fs_info - fs_info for this fs
870  * @space_info - the space info we were flushing
871  *
872  * We call this when we've exhausted our flushing ability and haven't made
873  * progress in satisfying tickets.  The reservation code handles tickets in
874  * order, so if there is a large ticket first and then smaller ones we could
875  * very well satisfy the smaller tickets.  This will attempt to wake up any
876  * tickets in the list to catch this case.
877  *
878  * This function returns true if it was able to make progress by clearing out
879  * other tickets, or if it stumbles across a ticket that was smaller than the
880  * first ticket.
881  */
882 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
883                                    struct btrfs_space_info *space_info)
884 {
885         struct reserve_ticket *ticket;
886         u64 tickets_id = space_info->tickets_id;
887
888         trace_btrfs_fail_all_tickets(fs_info, space_info);
889
890         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
891                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
892                 __btrfs_dump_space_info(fs_info, space_info);
893         }
894
895         while (!list_empty(&space_info->tickets) &&
896                tickets_id == space_info->tickets_id) {
897                 ticket = list_first_entry(&space_info->tickets,
898                                           struct reserve_ticket, list);
899
900                 if (ticket->steal &&
901                     steal_from_global_rsv(fs_info, space_info, ticket))
902                         return true;
903
904                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
905                         btrfs_info(fs_info, "failing ticket with %llu bytes",
906                                    ticket->bytes);
907
908                 remove_ticket(space_info, ticket);
909                 ticket->error = -ENOSPC;
910                 wake_up(&ticket->wait);
911
912                 /*
913                  * We're just throwing tickets away, so more flushing may not
914                  * trip over btrfs_try_granting_tickets, so we need to call it
915                  * here to see if we can make progress with the next ticket in
916                  * the list.
917                  */
918                 btrfs_try_granting_tickets(fs_info, space_info);
919         }
920         return (tickets_id != space_info->tickets_id);
921 }
922
923 /*
924  * This is for normal flushers, we can wait all goddamned day if we want to.  We
925  * will loop and continuously try to flush as long as we are making progress.
926  * We count progress as clearing off tickets each time we have to loop.
927  */
928 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
929 {
930         struct btrfs_fs_info *fs_info;
931         struct btrfs_space_info *space_info;
932         u64 to_reclaim;
933         enum btrfs_flush_state flush_state;
934         int commit_cycles = 0;
935         u64 last_tickets_id;
936
937         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
938         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
939
940         spin_lock(&space_info->lock);
941         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
942         if (!to_reclaim) {
943                 space_info->flush = 0;
944                 spin_unlock(&space_info->lock);
945                 return;
946         }
947         last_tickets_id = space_info->tickets_id;
948         spin_unlock(&space_info->lock);
949
950         flush_state = FLUSH_DELAYED_ITEMS_NR;
951         do {
952                 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
953                 spin_lock(&space_info->lock);
954                 if (list_empty(&space_info->tickets)) {
955                         space_info->flush = 0;
956                         spin_unlock(&space_info->lock);
957                         return;
958                 }
959                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
960                                                               space_info);
961                 if (last_tickets_id == space_info->tickets_id) {
962                         flush_state++;
963                 } else {
964                         last_tickets_id = space_info->tickets_id;
965                         flush_state = FLUSH_DELAYED_ITEMS_NR;
966                         if (commit_cycles)
967                                 commit_cycles--;
968                 }
969
970                 /*
971                  * We do not want to empty the system of delalloc unless we're
972                  * under heavy pressure, so allow one trip through the flushing
973                  * logic before we start doing a FLUSH_DELALLOC_FULL.
974                  */
975                 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
976                         flush_state++;
977
978                 /*
979                  * We don't want to force a chunk allocation until we've tried
980                  * pretty hard to reclaim space.  Think of the case where we
981                  * freed up a bunch of space and so have a lot of pinned space
982                  * to reclaim.  We would rather use that than possibly create a
983                  * underutilized metadata chunk.  So if this is our first run
984                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
985                  * commit the transaction.  If nothing has changed the next go
986                  * around then we can force a chunk allocation.
987                  */
988                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
989                         flush_state++;
990
991                 if (flush_state > COMMIT_TRANS) {
992                         commit_cycles++;
993                         if (commit_cycles > 2) {
994                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
995                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
996                                         commit_cycles--;
997                                 } else {
998                                         space_info->flush = 0;
999                                 }
1000                         } else {
1001                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1002                         }
1003                 }
1004                 spin_unlock(&space_info->lock);
1005         } while (flush_state <= COMMIT_TRANS);
1006 }
1007
1008 /*
1009  * This handles pre-flushing of metadata space before we get to the point that
1010  * we need to start blocking threads on tickets.  The logic here is different
1011  * from the other flush paths because it doesn't rely on tickets to tell us how
1012  * much we need to flush, instead it attempts to keep us below the 80% full
1013  * watermark of space by flushing whichever reservation pool is currently the
1014  * largest.
1015  */
1016 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1017 {
1018         struct btrfs_fs_info *fs_info;
1019         struct btrfs_space_info *space_info;
1020         struct btrfs_block_rsv *delayed_block_rsv;
1021         struct btrfs_block_rsv *delayed_refs_rsv;
1022         struct btrfs_block_rsv *global_rsv;
1023         struct btrfs_block_rsv *trans_rsv;
1024         int loops = 0;
1025
1026         fs_info = container_of(work, struct btrfs_fs_info,
1027                                preempt_reclaim_work);
1028         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1029         delayed_block_rsv = &fs_info->delayed_block_rsv;
1030         delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1031         global_rsv = &fs_info->global_block_rsv;
1032         trans_rsv = &fs_info->trans_block_rsv;
1033
1034         spin_lock(&space_info->lock);
1035         while (need_preemptive_reclaim(fs_info, space_info)) {
1036                 enum btrfs_flush_state flush;
1037                 u64 delalloc_size = 0;
1038                 u64 to_reclaim, block_rsv_size;
1039                 u64 global_rsv_size = global_rsv->reserved;
1040
1041                 loops++;
1042
1043                 /*
1044                  * We don't have a precise counter for the metadata being
1045                  * reserved for delalloc, so we'll approximate it by subtracting
1046                  * out the block rsv's space from the bytes_may_use.  If that
1047                  * amount is higher than the individual reserves, then we can
1048                  * assume it's tied up in delalloc reservations.
1049                  */
1050                 block_rsv_size = global_rsv_size +
1051                         delayed_block_rsv->reserved +
1052                         delayed_refs_rsv->reserved +
1053                         trans_rsv->reserved;
1054                 if (block_rsv_size < space_info->bytes_may_use)
1055                         delalloc_size = space_info->bytes_may_use - block_rsv_size;
1056                 spin_unlock(&space_info->lock);
1057
1058                 /*
1059                  * We don't want to include the global_rsv in our calculation,
1060                  * because that's space we can't touch.  Subtract it from the
1061                  * block_rsv_size for the next checks.
1062                  */
1063                 block_rsv_size -= global_rsv_size;
1064
1065                 /*
1066                  * We really want to avoid flushing delalloc too much, as it
1067                  * could result in poor allocation patterns, so only flush it if
1068                  * it's larger than the rest of the pools combined.
1069                  */
1070                 if (delalloc_size > block_rsv_size) {
1071                         to_reclaim = delalloc_size;
1072                         flush = FLUSH_DELALLOC;
1073                 } else if (space_info->bytes_pinned >
1074                            (delayed_block_rsv->reserved +
1075                             delayed_refs_rsv->reserved)) {
1076                         to_reclaim = space_info->bytes_pinned;
1077                         flush = COMMIT_TRANS;
1078                 } else if (delayed_block_rsv->reserved >
1079                            delayed_refs_rsv->reserved) {
1080                         to_reclaim = delayed_block_rsv->reserved;
1081                         flush = FLUSH_DELAYED_ITEMS_NR;
1082                 } else {
1083                         to_reclaim = delayed_refs_rsv->reserved;
1084                         flush = FLUSH_DELAYED_REFS_NR;
1085                 }
1086
1087                 /*
1088                  * We don't want to reclaim everything, just a portion, so scale
1089                  * down the to_reclaim by 1/4.  If it takes us down to 0,
1090                  * reclaim 1 items worth.
1091                  */
1092                 to_reclaim >>= 2;
1093                 if (!to_reclaim)
1094                         to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1095                 flush_space(fs_info, space_info, to_reclaim, flush, true);
1096                 cond_resched();
1097                 spin_lock(&space_info->lock);
1098         }
1099
1100         /* We only went through once, back off our clamping. */
1101         if (loops == 1 && !space_info->reclaim_size)
1102                 space_info->clamp = max(1, space_info->clamp - 1);
1103         trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1104         spin_unlock(&space_info->lock);
1105 }
1106
1107 /*
1108  * FLUSH_DELALLOC_WAIT:
1109  *   Space is freed from flushing delalloc in one of two ways.
1110  *
1111  *   1) compression is on and we allocate less space than we reserved
1112  *   2) we are overwriting existing space
1113  *
1114  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1115  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1116  *   length to ->bytes_reserved, and subtracts the reserved space from
1117  *   ->bytes_may_use.
1118  *
1119  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1120  *   extent in the range we are overwriting, which creates a delayed ref for
1121  *   that freed extent.  This however is not reclaimed until the transaction
1122  *   commits, thus the next stages.
1123  *
1124  * RUN_DELAYED_IPUTS
1125  *   If we are freeing inodes, we want to make sure all delayed iputs have
1126  *   completed, because they could have been on an inode with i_nlink == 0, and
1127  *   thus have been truncated and freed up space.  But again this space is not
1128  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1129  *   run and then the transaction must be committed.
1130  *
1131  * COMMIT_TRANS
1132  *   This is where we reclaim all of the pinned space generated by running the
1133  *   iputs
1134  *
1135  * ALLOC_CHUNK_FORCE
1136  *   For data we start with alloc chunk force, however we could have been full
1137  *   before, and then the transaction commit could have freed new block groups,
1138  *   so if we now have space to allocate do the force chunk allocation.
1139  */
1140 static const enum btrfs_flush_state data_flush_states[] = {
1141         FLUSH_DELALLOC_FULL,
1142         RUN_DELAYED_IPUTS,
1143         COMMIT_TRANS,
1144         ALLOC_CHUNK_FORCE,
1145 };
1146
1147 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1148 {
1149         struct btrfs_fs_info *fs_info;
1150         struct btrfs_space_info *space_info;
1151         u64 last_tickets_id;
1152         enum btrfs_flush_state flush_state = 0;
1153
1154         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1155         space_info = fs_info->data_sinfo;
1156
1157         spin_lock(&space_info->lock);
1158         if (list_empty(&space_info->tickets)) {
1159                 space_info->flush = 0;
1160                 spin_unlock(&space_info->lock);
1161                 return;
1162         }
1163         last_tickets_id = space_info->tickets_id;
1164         spin_unlock(&space_info->lock);
1165
1166         while (!space_info->full) {
1167                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1168                 spin_lock(&space_info->lock);
1169                 if (list_empty(&space_info->tickets)) {
1170                         space_info->flush = 0;
1171                         spin_unlock(&space_info->lock);
1172                         return;
1173                 }
1174                 last_tickets_id = space_info->tickets_id;
1175                 spin_unlock(&space_info->lock);
1176         }
1177
1178         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1179                 flush_space(fs_info, space_info, U64_MAX,
1180                             data_flush_states[flush_state], false);
1181                 spin_lock(&space_info->lock);
1182                 if (list_empty(&space_info->tickets)) {
1183                         space_info->flush = 0;
1184                         spin_unlock(&space_info->lock);
1185                         return;
1186                 }
1187
1188                 if (last_tickets_id == space_info->tickets_id) {
1189                         flush_state++;
1190                 } else {
1191                         last_tickets_id = space_info->tickets_id;
1192                         flush_state = 0;
1193                 }
1194
1195                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1196                         if (space_info->full) {
1197                                 if (maybe_fail_all_tickets(fs_info, space_info))
1198                                         flush_state = 0;
1199                                 else
1200                                         space_info->flush = 0;
1201                         } else {
1202                                 flush_state = 0;
1203                         }
1204                 }
1205                 spin_unlock(&space_info->lock);
1206         }
1207 }
1208
1209 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1210 {
1211         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1212         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1213         INIT_WORK(&fs_info->preempt_reclaim_work,
1214                   btrfs_preempt_reclaim_metadata_space);
1215 }
1216
1217 static const enum btrfs_flush_state priority_flush_states[] = {
1218         FLUSH_DELAYED_ITEMS_NR,
1219         FLUSH_DELAYED_ITEMS,
1220         ALLOC_CHUNK,
1221 };
1222
1223 static const enum btrfs_flush_state evict_flush_states[] = {
1224         FLUSH_DELAYED_ITEMS_NR,
1225         FLUSH_DELAYED_ITEMS,
1226         FLUSH_DELAYED_REFS_NR,
1227         FLUSH_DELAYED_REFS,
1228         FLUSH_DELALLOC,
1229         FLUSH_DELALLOC_WAIT,
1230         FLUSH_DELALLOC_FULL,
1231         ALLOC_CHUNK,
1232         COMMIT_TRANS,
1233 };
1234
1235 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1236                                 struct btrfs_space_info *space_info,
1237                                 struct reserve_ticket *ticket,
1238                                 const enum btrfs_flush_state *states,
1239                                 int states_nr)
1240 {
1241         u64 to_reclaim;
1242         int flush_state;
1243
1244         spin_lock(&space_info->lock);
1245         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1246         if (!to_reclaim) {
1247                 spin_unlock(&space_info->lock);
1248                 return;
1249         }
1250         spin_unlock(&space_info->lock);
1251
1252         flush_state = 0;
1253         do {
1254                 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1255                             false);
1256                 flush_state++;
1257                 spin_lock(&space_info->lock);
1258                 if (ticket->bytes == 0) {
1259                         spin_unlock(&space_info->lock);
1260                         return;
1261                 }
1262                 spin_unlock(&space_info->lock);
1263         } while (flush_state < states_nr);
1264 }
1265
1266 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1267                                         struct btrfs_space_info *space_info,
1268                                         struct reserve_ticket *ticket)
1269 {
1270         while (!space_info->full) {
1271                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1272                 spin_lock(&space_info->lock);
1273                 if (ticket->bytes == 0) {
1274                         spin_unlock(&space_info->lock);
1275                         return;
1276                 }
1277                 spin_unlock(&space_info->lock);
1278         }
1279 }
1280
1281 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1282                                 struct btrfs_space_info *space_info,
1283                                 struct reserve_ticket *ticket)
1284
1285 {
1286         DEFINE_WAIT(wait);
1287         int ret = 0;
1288
1289         spin_lock(&space_info->lock);
1290         while (ticket->bytes > 0 && ticket->error == 0) {
1291                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1292                 if (ret) {
1293                         /*
1294                          * Delete us from the list. After we unlock the space
1295                          * info, we don't want the async reclaim job to reserve
1296                          * space for this ticket. If that would happen, then the
1297                          * ticket's task would not known that space was reserved
1298                          * despite getting an error, resulting in a space leak
1299                          * (bytes_may_use counter of our space_info).
1300                          */
1301                         remove_ticket(space_info, ticket);
1302                         ticket->error = -EINTR;
1303                         break;
1304                 }
1305                 spin_unlock(&space_info->lock);
1306
1307                 schedule();
1308
1309                 finish_wait(&ticket->wait, &wait);
1310                 spin_lock(&space_info->lock);
1311         }
1312         spin_unlock(&space_info->lock);
1313 }
1314
1315 /**
1316  * Do the appropriate flushing and waiting for a ticket
1317  *
1318  * @fs_info:    the filesystem
1319  * @space_info: space info for the reservation
1320  * @ticket:     ticket for the reservation
1321  * @start_ns:   timestamp when the reservation started
1322  * @orig_bytes: amount of bytes originally reserved
1323  * @flush:      how much we can flush
1324  *
1325  * This does the work of figuring out how to flush for the ticket, waiting for
1326  * the reservation, and returning the appropriate error if there is one.
1327  */
1328 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1329                                  struct btrfs_space_info *space_info,
1330                                  struct reserve_ticket *ticket,
1331                                  u64 start_ns, u64 orig_bytes,
1332                                  enum btrfs_reserve_flush_enum flush)
1333 {
1334         int ret;
1335
1336         switch (flush) {
1337         case BTRFS_RESERVE_FLUSH_DATA:
1338         case BTRFS_RESERVE_FLUSH_ALL:
1339         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1340                 wait_reserve_ticket(fs_info, space_info, ticket);
1341                 break;
1342         case BTRFS_RESERVE_FLUSH_LIMIT:
1343                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1344                                                 priority_flush_states,
1345                                                 ARRAY_SIZE(priority_flush_states));
1346                 break;
1347         case BTRFS_RESERVE_FLUSH_EVICT:
1348                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1349                                                 evict_flush_states,
1350                                                 ARRAY_SIZE(evict_flush_states));
1351                 break;
1352         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1353                 priority_reclaim_data_space(fs_info, space_info, ticket);
1354                 break;
1355         default:
1356                 ASSERT(0);
1357                 break;
1358         }
1359
1360         spin_lock(&space_info->lock);
1361         ret = ticket->error;
1362         if (ticket->bytes || ticket->error) {
1363                 /*
1364                  * We were a priority ticket, so we need to delete ourselves
1365                  * from the list.  Because we could have other priority tickets
1366                  * behind us that require less space, run
1367                  * btrfs_try_granting_tickets() to see if their reservations can
1368                  * now be made.
1369                  */
1370                 if (!list_empty(&ticket->list)) {
1371                         remove_ticket(space_info, ticket);
1372                         btrfs_try_granting_tickets(fs_info, space_info);
1373                 }
1374
1375                 if (!ret)
1376                         ret = -ENOSPC;
1377         }
1378         spin_unlock(&space_info->lock);
1379         ASSERT(list_empty(&ticket->list));
1380         /*
1381          * Check that we can't have an error set if the reservation succeeded,
1382          * as that would confuse tasks and lead them to error out without
1383          * releasing reserved space (if an error happens the expectation is that
1384          * space wasn't reserved at all).
1385          */
1386         ASSERT(!(ticket->bytes == 0 && ticket->error));
1387         trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1388                                    start_ns, flush, ticket->error);
1389         return ret;
1390 }
1391
1392 /*
1393  * This returns true if this flush state will go through the ordinary flushing
1394  * code.
1395  */
1396 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1397 {
1398         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1399                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1400 }
1401
1402 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1403                                        struct btrfs_space_info *space_info)
1404 {
1405         u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1406         u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1407
1408         /*
1409          * If we're heavy on ordered operations then clamping won't help us.  We
1410          * need to clamp specifically to keep up with dirty'ing buffered
1411          * writers, because there's not a 1:1 correlation of writing delalloc
1412          * and freeing space, like there is with flushing delayed refs or
1413          * delayed nodes.  If we're already more ordered than delalloc then
1414          * we're keeping up, otherwise we aren't and should probably clamp.
1415          */
1416         if (ordered < delalloc)
1417                 space_info->clamp = min(space_info->clamp + 1, 8);
1418 }
1419
1420 /**
1421  * Try to reserve bytes from the block_rsv's space
1422  *
1423  * @fs_info:    the filesystem
1424  * @space_info: space info we want to allocate from
1425  * @orig_bytes: number of bytes we want
1426  * @flush:      whether or not we can flush to make our reservation
1427  *
1428  * This will reserve orig_bytes number of bytes from the space info associated
1429  * with the block_rsv.  If there is not enough space it will make an attempt to
1430  * flush out space to make room.  It will do this by flushing delalloc if
1431  * possible or committing the transaction.  If flush is 0 then no attempts to
1432  * regain reservations will be made and this will fail if there is not enough
1433  * space already.
1434  */
1435 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1436                            struct btrfs_space_info *space_info, u64 orig_bytes,
1437                            enum btrfs_reserve_flush_enum flush)
1438 {
1439         struct work_struct *async_work;
1440         struct reserve_ticket ticket;
1441         u64 start_ns = 0;
1442         u64 used;
1443         int ret = 0;
1444         bool pending_tickets;
1445
1446         ASSERT(orig_bytes);
1447         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1448
1449         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1450                 async_work = &fs_info->async_data_reclaim_work;
1451         else
1452                 async_work = &fs_info->async_reclaim_work;
1453
1454         spin_lock(&space_info->lock);
1455         ret = -ENOSPC;
1456         used = btrfs_space_info_used(space_info, true);
1457
1458         /*
1459          * We don't want NO_FLUSH allocations to jump everybody, they can
1460          * generally handle ENOSPC in a different way, so treat them the same as
1461          * normal flushers when it comes to skipping pending tickets.
1462          */
1463         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1464                 pending_tickets = !list_empty(&space_info->tickets) ||
1465                         !list_empty(&space_info->priority_tickets);
1466         else
1467                 pending_tickets = !list_empty(&space_info->priority_tickets);
1468
1469         /*
1470          * Carry on if we have enough space (short-circuit) OR call
1471          * can_overcommit() to ensure we can overcommit to continue.
1472          */
1473         if (!pending_tickets &&
1474             ((used + orig_bytes <= space_info->total_bytes) ||
1475              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1476                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1477                                                       orig_bytes);
1478                 ret = 0;
1479         }
1480
1481         /*
1482          * If we couldn't make a reservation then setup our reservation ticket
1483          * and kick the async worker if it's not already running.
1484          *
1485          * If we are a priority flusher then we just need to add our ticket to
1486          * the list and we will do our own flushing further down.
1487          */
1488         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1489                 ticket.bytes = orig_bytes;
1490                 ticket.error = 0;
1491                 space_info->reclaim_size += ticket.bytes;
1492                 init_waitqueue_head(&ticket.wait);
1493                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1494                 if (trace_btrfs_reserve_ticket_enabled())
1495                         start_ns = ktime_get_ns();
1496
1497                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1498                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1499                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1500                         list_add_tail(&ticket.list, &space_info->tickets);
1501                         if (!space_info->flush) {
1502                                 /*
1503                                  * We were forced to add a reserve ticket, so
1504                                  * our preemptive flushing is unable to keep
1505                                  * up.  Clamp down on the threshold for the
1506                                  * preemptive flushing in order to keep up with
1507                                  * the workload.
1508                                  */
1509                                 maybe_clamp_preempt(fs_info, space_info);
1510
1511                                 space_info->flush = 1;
1512                                 trace_btrfs_trigger_flush(fs_info,
1513                                                           space_info->flags,
1514                                                           orig_bytes, flush,
1515                                                           "enospc");
1516                                 queue_work(system_unbound_wq, async_work);
1517                         }
1518                 } else {
1519                         list_add_tail(&ticket.list,
1520                                       &space_info->priority_tickets);
1521                 }
1522         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1523                 used += orig_bytes;
1524                 /*
1525                  * We will do the space reservation dance during log replay,
1526                  * which means we won't have fs_info->fs_root set, so don't do
1527                  * the async reclaim as we will panic.
1528                  */
1529                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1530                     !work_busy(&fs_info->preempt_reclaim_work) &&
1531                     need_preemptive_reclaim(fs_info, space_info)) {
1532                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1533                                                   orig_bytes, flush, "preempt");
1534                         queue_work(system_unbound_wq,
1535                                    &fs_info->preempt_reclaim_work);
1536                 }
1537         }
1538         spin_unlock(&space_info->lock);
1539         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1540                 return ret;
1541
1542         return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1543                                      orig_bytes, flush);
1544 }
1545
1546 /**
1547  * Trye to reserve metadata bytes from the block_rsv's space
1548  *
1549  * @root:       the root we're allocating for
1550  * @block_rsv:  block_rsv we're allocating for
1551  * @orig_bytes: number of bytes we want
1552  * @flush:      whether or not we can flush to make our reservation
1553  *
1554  * This will reserve orig_bytes number of bytes from the space info associated
1555  * with the block_rsv.  If there is not enough space it will make an attempt to
1556  * flush out space to make room.  It will do this by flushing delalloc if
1557  * possible or committing the transaction.  If flush is 0 then no attempts to
1558  * regain reservations will be made and this will fail if there is not enough
1559  * space already.
1560  */
1561 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1562                                  struct btrfs_block_rsv *block_rsv,
1563                                  u64 orig_bytes,
1564                                  enum btrfs_reserve_flush_enum flush)
1565 {
1566         struct btrfs_fs_info *fs_info = root->fs_info;
1567         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1568         int ret;
1569
1570         ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1571         if (ret == -ENOSPC &&
1572             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1573                 if (block_rsv != global_rsv &&
1574                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1575                         ret = 0;
1576         }
1577         if (ret == -ENOSPC) {
1578                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1579                                               block_rsv->space_info->flags,
1580                                               orig_bytes, 1);
1581
1582                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1583                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1584                                               orig_bytes, 0);
1585         }
1586         return ret;
1587 }
1588
1589 /**
1590  * Try to reserve data bytes for an allocation
1591  *
1592  * @fs_info: the filesystem
1593  * @bytes:   number of bytes we need
1594  * @flush:   how we are allowed to flush
1595  *
1596  * This will reserve bytes from the data space info.  If there is not enough
1597  * space then we will attempt to flush space as specified by flush.
1598  */
1599 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1600                              enum btrfs_reserve_flush_enum flush)
1601 {
1602         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1603         int ret;
1604
1605         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1606                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1607         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1608
1609         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1610         if (ret == -ENOSPC) {
1611                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1612                                               data_sinfo->flags, bytes, 1);
1613                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1614                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1615         }
1616         return ret;
1617 }