Merge tag 'pm-5.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-microblaze.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  *   FORCE_COMMIT_TRANS
144  *     For use by the preemptive flusher.  We use this to bypass the ticketing
145  *     checks in may_commit_transaction, as we have more information about the
146  *     overall state of the system and may want to commit the transaction ahead
147  *     of actual ENOSPC conditions.
148  *
149  * OVERCOMMIT
150  *
151  *   Because we hold so many reservations for metadata we will allow you to
152  *   reserve more space than is currently free in the currently allocate
153  *   metadata space.  This only happens with metadata, data does not allow
154  *   overcommitting.
155  *
156  *   You can see the current logic for when we allow overcommit in
157  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
158  *   is no unallocated space to be had, all reservations are kept within the
159  *   free space in the allocated metadata chunks.
160  *
161  *   Because of overcommitting, you generally want to use the
162  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
163  *   thing with or without extra unallocated space.
164  */
165
166 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
167                           bool may_use_included)
168 {
169         ASSERT(s_info);
170         return s_info->bytes_used + s_info->bytes_reserved +
171                 s_info->bytes_pinned + s_info->bytes_readonly +
172                 s_info->bytes_zone_unusable +
173                 (may_use_included ? s_info->bytes_may_use : 0);
174 }
175
176 /*
177  * after adding space to the filesystem, we need to clear the full flags
178  * on all the space infos.
179  */
180 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
181 {
182         struct list_head *head = &info->space_info;
183         struct btrfs_space_info *found;
184
185         list_for_each_entry(found, head, list)
186                 found->full = 0;
187 }
188
189 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
190 {
191
192         struct btrfs_space_info *space_info;
193         int i;
194         int ret;
195
196         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
197         if (!space_info)
198                 return -ENOMEM;
199
200         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
201                                  GFP_KERNEL);
202         if (ret) {
203                 kfree(space_info);
204                 return ret;
205         }
206
207         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
208                 INIT_LIST_HEAD(&space_info->block_groups[i]);
209         init_rwsem(&space_info->groups_sem);
210         spin_lock_init(&space_info->lock);
211         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
212         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
213         INIT_LIST_HEAD(&space_info->ro_bgs);
214         INIT_LIST_HEAD(&space_info->tickets);
215         INIT_LIST_HEAD(&space_info->priority_tickets);
216         space_info->clamp = 1;
217
218         ret = btrfs_sysfs_add_space_info_type(info, space_info);
219         if (ret)
220                 return ret;
221
222         list_add(&space_info->list, &info->space_info);
223         if (flags & BTRFS_BLOCK_GROUP_DATA)
224                 info->data_sinfo = space_info;
225
226         return ret;
227 }
228
229 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
230 {
231         struct btrfs_super_block *disk_super;
232         u64 features;
233         u64 flags;
234         int mixed = 0;
235         int ret;
236
237         disk_super = fs_info->super_copy;
238         if (!btrfs_super_root(disk_super))
239                 return -EINVAL;
240
241         features = btrfs_super_incompat_flags(disk_super);
242         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
243                 mixed = 1;
244
245         flags = BTRFS_BLOCK_GROUP_SYSTEM;
246         ret = create_space_info(fs_info, flags);
247         if (ret)
248                 goto out;
249
250         if (mixed) {
251                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
252                 ret = create_space_info(fs_info, flags);
253         } else {
254                 flags = BTRFS_BLOCK_GROUP_METADATA;
255                 ret = create_space_info(fs_info, flags);
256                 if (ret)
257                         goto out;
258
259                 flags = BTRFS_BLOCK_GROUP_DATA;
260                 ret = create_space_info(fs_info, flags);
261         }
262 out:
263         return ret;
264 }
265
266 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
267                              u64 total_bytes, u64 bytes_used,
268                              u64 bytes_readonly, u64 bytes_zone_unusable,
269                              struct btrfs_space_info **space_info)
270 {
271         struct btrfs_space_info *found;
272         int factor;
273
274         factor = btrfs_bg_type_to_factor(flags);
275
276         found = btrfs_find_space_info(info, flags);
277         ASSERT(found);
278         spin_lock(&found->lock);
279         found->total_bytes += total_bytes;
280         found->disk_total += total_bytes * factor;
281         found->bytes_used += bytes_used;
282         found->disk_used += bytes_used * factor;
283         found->bytes_readonly += bytes_readonly;
284         found->bytes_zone_unusable += bytes_zone_unusable;
285         if (total_bytes > 0)
286                 found->full = 0;
287         btrfs_try_granting_tickets(info, found);
288         spin_unlock(&found->lock);
289         *space_info = found;
290 }
291
292 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
293                                                u64 flags)
294 {
295         struct list_head *head = &info->space_info;
296         struct btrfs_space_info *found;
297
298         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
299
300         list_for_each_entry(found, head, list) {
301                 if (found->flags & flags)
302                         return found;
303         }
304         return NULL;
305 }
306
307 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
308                           struct btrfs_space_info *space_info,
309                           enum btrfs_reserve_flush_enum flush)
310 {
311         u64 profile;
312         u64 avail;
313         int factor;
314
315         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
316                 profile = btrfs_system_alloc_profile(fs_info);
317         else
318                 profile = btrfs_metadata_alloc_profile(fs_info);
319
320         avail = atomic64_read(&fs_info->free_chunk_space);
321
322         /*
323          * If we have dup, raid1 or raid10 then only half of the free
324          * space is actually usable.  For raid56, the space info used
325          * doesn't include the parity drive, so we don't have to
326          * change the math
327          */
328         factor = btrfs_bg_type_to_factor(profile);
329         avail = div_u64(avail, factor);
330
331         /*
332          * If we aren't flushing all things, let us overcommit up to
333          * 1/2th of the space. If we can flush, don't let us overcommit
334          * too much, let it overcommit up to 1/8 of the space.
335          */
336         if (flush == BTRFS_RESERVE_FLUSH_ALL)
337                 avail >>= 3;
338         else
339                 avail >>= 1;
340         return avail;
341 }
342
343 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
344                          struct btrfs_space_info *space_info, u64 bytes,
345                          enum btrfs_reserve_flush_enum flush)
346 {
347         u64 avail;
348         u64 used;
349
350         /* Don't overcommit when in mixed mode */
351         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
352                 return 0;
353
354         used = btrfs_space_info_used(space_info, true);
355         avail = calc_available_free_space(fs_info, space_info, flush);
356
357         if (used + bytes < space_info->total_bytes + avail)
358                 return 1;
359         return 0;
360 }
361
362 static void remove_ticket(struct btrfs_space_info *space_info,
363                           struct reserve_ticket *ticket)
364 {
365         if (!list_empty(&ticket->list)) {
366                 list_del_init(&ticket->list);
367                 ASSERT(space_info->reclaim_size >= ticket->bytes);
368                 space_info->reclaim_size -= ticket->bytes;
369         }
370 }
371
372 /*
373  * This is for space we already have accounted in space_info->bytes_may_use, so
374  * basically when we're returning space from block_rsv's.
375  */
376 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
377                                 struct btrfs_space_info *space_info)
378 {
379         struct list_head *head;
380         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
381
382         lockdep_assert_held(&space_info->lock);
383
384         head = &space_info->priority_tickets;
385 again:
386         while (!list_empty(head)) {
387                 struct reserve_ticket *ticket;
388                 u64 used = btrfs_space_info_used(space_info, true);
389
390                 ticket = list_first_entry(head, struct reserve_ticket, list);
391
392                 /* Check and see if our ticket can be satisified now. */
393                 if ((used + ticket->bytes <= space_info->total_bytes) ||
394                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
395                                          flush)) {
396                         btrfs_space_info_update_bytes_may_use(fs_info,
397                                                               space_info,
398                                                               ticket->bytes);
399                         remove_ticket(space_info, ticket);
400                         ticket->bytes = 0;
401                         space_info->tickets_id++;
402                         wake_up(&ticket->wait);
403                 } else {
404                         break;
405                 }
406         }
407
408         if (head == &space_info->priority_tickets) {
409                 head = &space_info->tickets;
410                 flush = BTRFS_RESERVE_FLUSH_ALL;
411                 goto again;
412         }
413 }
414
415 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
416 do {                                                                    \
417         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
418         spin_lock(&__rsv->lock);                                        \
419         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
420                    __rsv->size, __rsv->reserved);                       \
421         spin_unlock(&__rsv->lock);                                      \
422 } while (0)
423
424 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
425                                     struct btrfs_space_info *info)
426 {
427         lockdep_assert_held(&info->lock);
428
429         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
430                    info->flags,
431                    info->total_bytes - btrfs_space_info_used(info, true),
432                    info->full ? "" : "not ");
433         btrfs_info(fs_info,
434                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
435                 info->total_bytes, info->bytes_used, info->bytes_pinned,
436                 info->bytes_reserved, info->bytes_may_use,
437                 info->bytes_readonly, info->bytes_zone_unusable);
438
439         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
440         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
441         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
442         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
443         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
444
445 }
446
447 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
448                            struct btrfs_space_info *info, u64 bytes,
449                            int dump_block_groups)
450 {
451         struct btrfs_block_group *cache;
452         int index = 0;
453
454         spin_lock(&info->lock);
455         __btrfs_dump_space_info(fs_info, info);
456         spin_unlock(&info->lock);
457
458         if (!dump_block_groups)
459                 return;
460
461         down_read(&info->groups_sem);
462 again:
463         list_for_each_entry(cache, &info->block_groups[index], list) {
464                 spin_lock(&cache->lock);
465                 btrfs_info(fs_info,
466                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
467                         cache->start, cache->length, cache->used, cache->pinned,
468                         cache->reserved, cache->zone_unusable,
469                         cache->ro ? "[readonly]" : "");
470                 spin_unlock(&cache->lock);
471                 btrfs_dump_free_space(cache, bytes);
472         }
473         if (++index < BTRFS_NR_RAID_TYPES)
474                 goto again;
475         up_read(&info->groups_sem);
476 }
477
478 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
479                                         u64 to_reclaim)
480 {
481         u64 bytes;
482         u64 nr;
483
484         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
485         nr = div64_u64(to_reclaim, bytes);
486         if (!nr)
487                 nr = 1;
488         return nr;
489 }
490
491 #define EXTENT_SIZE_PER_ITEM    SZ_256K
492
493 /*
494  * shrink metadata reservation for delalloc
495  */
496 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
497                             struct btrfs_space_info *space_info,
498                             u64 to_reclaim, bool wait_ordered)
499 {
500         struct btrfs_trans_handle *trans;
501         u64 delalloc_bytes;
502         u64 ordered_bytes;
503         u64 items;
504         long time_left;
505         int loops;
506
507         /* Calc the number of the pages we need flush for space reservation */
508         if (to_reclaim == U64_MAX) {
509                 items = U64_MAX;
510         } else {
511                 /*
512                  * to_reclaim is set to however much metadata we need to
513                  * reclaim, but reclaiming that much data doesn't really track
514                  * exactly, so increase the amount to reclaim by 2x in order to
515                  * make sure we're flushing enough delalloc to hopefully reclaim
516                  * some metadata reservations.
517                  */
518                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
519                 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
520         }
521
522         trans = (struct btrfs_trans_handle *)current->journal_info;
523
524         delalloc_bytes = percpu_counter_sum_positive(
525                                                 &fs_info->delalloc_bytes);
526         ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
527         if (delalloc_bytes == 0 && ordered_bytes == 0)
528                 return;
529
530         /*
531          * If we are doing more ordered than delalloc we need to just wait on
532          * ordered extents, otherwise we'll waste time trying to flush delalloc
533          * that likely won't give us the space back we need.
534          */
535         if (ordered_bytes > delalloc_bytes)
536                 wait_ordered = true;
537
538         loops = 0;
539         while ((delalloc_bytes || ordered_bytes) && loops < 3) {
540                 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
541                 long nr_pages = min_t(u64, temp, LONG_MAX);
542
543                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
544
545                 loops++;
546                 if (wait_ordered && !trans) {
547                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
548                 } else {
549                         time_left = schedule_timeout_killable(1);
550                         if (time_left)
551                                 break;
552                 }
553
554                 spin_lock(&space_info->lock);
555                 if (list_empty(&space_info->tickets) &&
556                     list_empty(&space_info->priority_tickets)) {
557                         spin_unlock(&space_info->lock);
558                         break;
559                 }
560                 spin_unlock(&space_info->lock);
561
562                 delalloc_bytes = percpu_counter_sum_positive(
563                                                 &fs_info->delalloc_bytes);
564                 ordered_bytes = percpu_counter_sum_positive(
565                                                 &fs_info->ordered_bytes);
566         }
567 }
568
569 /**
570  * Possibly commit the transaction if its ok to
571  *
572  * @fs_info:    the filesystem
573  * @space_info: space_info we are checking for commit, either data or metadata
574  *
575  * This will check to make sure that committing the transaction will actually
576  * get us somewhere and then commit the transaction if it does.  Otherwise it
577  * will return -ENOSPC.
578  */
579 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
580                                   struct btrfs_space_info *space_info)
581 {
582         struct reserve_ticket *ticket = NULL;
583         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
584         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
585         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
586         struct btrfs_trans_handle *trans;
587         u64 reclaim_bytes = 0;
588         u64 bytes_needed = 0;
589         u64 cur_free_bytes = 0;
590
591         trans = (struct btrfs_trans_handle *)current->journal_info;
592         if (trans)
593                 return -EAGAIN;
594
595         spin_lock(&space_info->lock);
596         cur_free_bytes = btrfs_space_info_used(space_info, true);
597         if (cur_free_bytes < space_info->total_bytes)
598                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
599         else
600                 cur_free_bytes = 0;
601
602         if (!list_empty(&space_info->priority_tickets))
603                 ticket = list_first_entry(&space_info->priority_tickets,
604                                           struct reserve_ticket, list);
605         else if (!list_empty(&space_info->tickets))
606                 ticket = list_first_entry(&space_info->tickets,
607                                           struct reserve_ticket, list);
608         if (ticket)
609                 bytes_needed = ticket->bytes;
610
611         if (bytes_needed > cur_free_bytes)
612                 bytes_needed -= cur_free_bytes;
613         else
614                 bytes_needed = 0;
615         spin_unlock(&space_info->lock);
616
617         if (!bytes_needed)
618                 return 0;
619
620         trans = btrfs_join_transaction(fs_info->extent_root);
621         if (IS_ERR(trans))
622                 return PTR_ERR(trans);
623
624         /*
625          * See if there is enough pinned space to make this reservation, or if
626          * we have block groups that are going to be freed, allowing us to
627          * possibly do a chunk allocation the next loop through.
628          */
629         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
630             __percpu_counter_compare(&space_info->total_bytes_pinned,
631                                      bytes_needed,
632                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
633                 goto commit;
634
635         /*
636          * See if there is some space in the delayed insertion reserve for this
637          * reservation.  If the space_info's don't match (like for DATA or
638          * SYSTEM) then just go enospc, reclaiming this space won't recover any
639          * space to satisfy those reservations.
640          */
641         if (space_info != delayed_rsv->space_info)
642                 goto enospc;
643
644         spin_lock(&delayed_rsv->lock);
645         reclaim_bytes += delayed_rsv->reserved;
646         spin_unlock(&delayed_rsv->lock);
647
648         spin_lock(&delayed_refs_rsv->lock);
649         reclaim_bytes += delayed_refs_rsv->reserved;
650         spin_unlock(&delayed_refs_rsv->lock);
651
652         spin_lock(&trans_rsv->lock);
653         reclaim_bytes += trans_rsv->reserved;
654         spin_unlock(&trans_rsv->lock);
655
656         if (reclaim_bytes >= bytes_needed)
657                 goto commit;
658         bytes_needed -= reclaim_bytes;
659
660         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
661                                    bytes_needed,
662                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
663                 goto enospc;
664
665 commit:
666         return btrfs_commit_transaction(trans);
667 enospc:
668         btrfs_end_transaction(trans);
669         return -ENOSPC;
670 }
671
672 /*
673  * Try to flush some data based on policy set by @state. This is only advisory
674  * and may fail for various reasons. The caller is supposed to examine the
675  * state of @space_info to detect the outcome.
676  */
677 static void flush_space(struct btrfs_fs_info *fs_info,
678                        struct btrfs_space_info *space_info, u64 num_bytes,
679                        enum btrfs_flush_state state, bool for_preempt)
680 {
681         struct btrfs_root *root = fs_info->extent_root;
682         struct btrfs_trans_handle *trans;
683         int nr;
684         int ret = 0;
685
686         switch (state) {
687         case FLUSH_DELAYED_ITEMS_NR:
688         case FLUSH_DELAYED_ITEMS:
689                 if (state == FLUSH_DELAYED_ITEMS_NR)
690                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
691                 else
692                         nr = -1;
693
694                 trans = btrfs_join_transaction(root);
695                 if (IS_ERR(trans)) {
696                         ret = PTR_ERR(trans);
697                         break;
698                 }
699                 ret = btrfs_run_delayed_items_nr(trans, nr);
700                 btrfs_end_transaction(trans);
701                 break;
702         case FLUSH_DELALLOC:
703         case FLUSH_DELALLOC_WAIT:
704                 shrink_delalloc(fs_info, space_info, num_bytes,
705                                 state == FLUSH_DELALLOC_WAIT);
706                 break;
707         case FLUSH_DELAYED_REFS_NR:
708         case FLUSH_DELAYED_REFS:
709                 trans = btrfs_join_transaction(root);
710                 if (IS_ERR(trans)) {
711                         ret = PTR_ERR(trans);
712                         break;
713                 }
714                 if (state == FLUSH_DELAYED_REFS_NR)
715                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
716                 else
717                         nr = 0;
718                 btrfs_run_delayed_refs(trans, nr);
719                 btrfs_end_transaction(trans);
720                 break;
721         case ALLOC_CHUNK:
722         case ALLOC_CHUNK_FORCE:
723                 trans = btrfs_join_transaction(root);
724                 if (IS_ERR(trans)) {
725                         ret = PTR_ERR(trans);
726                         break;
727                 }
728                 ret = btrfs_chunk_alloc(trans,
729                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
730                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
731                                         CHUNK_ALLOC_FORCE);
732                 btrfs_end_transaction(trans);
733                 if (ret > 0 || ret == -ENOSPC)
734                         ret = 0;
735                 break;
736         case RUN_DELAYED_IPUTS:
737                 /*
738                  * If we have pending delayed iputs then we could free up a
739                  * bunch of pinned space, so make sure we run the iputs before
740                  * we do our pinned bytes check below.
741                  */
742                 btrfs_run_delayed_iputs(fs_info);
743                 btrfs_wait_on_delayed_iputs(fs_info);
744                 break;
745         case COMMIT_TRANS:
746                 ret = may_commit_transaction(fs_info, space_info);
747                 break;
748         case FORCE_COMMIT_TRANS:
749                 trans = btrfs_join_transaction(root);
750                 if (IS_ERR(trans)) {
751                         ret = PTR_ERR(trans);
752                         break;
753                 }
754                 ret = btrfs_commit_transaction(trans);
755                 break;
756         default:
757                 ret = -ENOSPC;
758                 break;
759         }
760
761         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
762                                 ret, for_preempt);
763         return;
764 }
765
766 static inline u64
767 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
768                                  struct btrfs_space_info *space_info)
769 {
770         u64 used;
771         u64 avail;
772         u64 to_reclaim = space_info->reclaim_size;
773
774         lockdep_assert_held(&space_info->lock);
775
776         avail = calc_available_free_space(fs_info, space_info,
777                                           BTRFS_RESERVE_FLUSH_ALL);
778         used = btrfs_space_info_used(space_info, true);
779
780         /*
781          * We may be flushing because suddenly we have less space than we had
782          * before, and now we're well over-committed based on our current free
783          * space.  If that's the case add in our overage so we make sure to put
784          * appropriate pressure on the flushing state machine.
785          */
786         if (space_info->total_bytes + avail < used)
787                 to_reclaim += used - (space_info->total_bytes + avail);
788
789         return to_reclaim;
790 }
791
792 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
793                                     struct btrfs_space_info *space_info)
794 {
795         u64 ordered, delalloc;
796         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
797         u64 used;
798
799         /* If we're just plain full then async reclaim just slows us down. */
800         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
801                 return false;
802
803         /*
804          * We have tickets queued, bail so we don't compete with the async
805          * flushers.
806          */
807         if (space_info->reclaim_size)
808                 return false;
809
810         /*
811          * If we have over half of the free space occupied by reservations or
812          * pinned then we want to start flushing.
813          *
814          * We do not do the traditional thing here, which is to say
815          *
816          *   if (used >= ((total_bytes + avail) / 2))
817          *     return 1;
818          *
819          * because this doesn't quite work how we want.  If we had more than 50%
820          * of the space_info used by bytes_used and we had 0 available we'd just
821          * constantly run the background flusher.  Instead we want it to kick in
822          * if our reclaimable space exceeds our clamped free space.
823          *
824          * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
825          * the following:
826          *
827          * Amount of RAM        Minimum threshold       Maximum threshold
828          *
829          *        256GiB                     1GiB                  128GiB
830          *        128GiB                   512MiB                   64GiB
831          *         64GiB                   256MiB                   32GiB
832          *         32GiB                   128MiB                   16GiB
833          *         16GiB                    64MiB                    8GiB
834          *
835          * These are the range our thresholds will fall in, corresponding to how
836          * much delalloc we need for the background flusher to kick in.
837          */
838
839         thresh = calc_available_free_space(fs_info, space_info,
840                                            BTRFS_RESERVE_FLUSH_ALL);
841         thresh += (space_info->total_bytes - space_info->bytes_used -
842                    space_info->bytes_reserved - space_info->bytes_readonly);
843         thresh >>= space_info->clamp;
844
845         used = space_info->bytes_pinned;
846
847         /*
848          * If we have more ordered bytes than delalloc bytes then we're either
849          * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
850          * around.  Preemptive flushing is only useful in that it can free up
851          * space before tickets need to wait for things to finish.  In the case
852          * of ordered extents, preemptively waiting on ordered extents gets us
853          * nothing, if our reservations are tied up in ordered extents we'll
854          * simply have to slow down writers by forcing them to wait on ordered
855          * extents.
856          *
857          * In the case that ordered is larger than delalloc, only include the
858          * block reserves that we would actually be able to directly reclaim
859          * from.  In this case if we're heavy on metadata operations this will
860          * clearly be heavy enough to warrant preemptive flushing.  In the case
861          * of heavy DIO or ordered reservations, preemptive flushing will just
862          * waste time and cause us to slow down.
863          */
864         ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
865         delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
866         if (ordered >= delalloc)
867                 used += fs_info->delayed_refs_rsv.reserved +
868                         fs_info->delayed_block_rsv.reserved;
869         else
870                 used += space_info->bytes_may_use;
871
872         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
873                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
874 }
875
876 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
877                                   struct btrfs_space_info *space_info,
878                                   struct reserve_ticket *ticket)
879 {
880         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
881         u64 min_bytes;
882
883         if (global_rsv->space_info != space_info)
884                 return false;
885
886         spin_lock(&global_rsv->lock);
887         min_bytes = div_factor(global_rsv->size, 1);
888         if (global_rsv->reserved < min_bytes + ticket->bytes) {
889                 spin_unlock(&global_rsv->lock);
890                 return false;
891         }
892         global_rsv->reserved -= ticket->bytes;
893         remove_ticket(space_info, ticket);
894         ticket->bytes = 0;
895         wake_up(&ticket->wait);
896         space_info->tickets_id++;
897         if (global_rsv->reserved < global_rsv->size)
898                 global_rsv->full = 0;
899         spin_unlock(&global_rsv->lock);
900
901         return true;
902 }
903
904 /*
905  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
906  * @fs_info - fs_info for this fs
907  * @space_info - the space info we were flushing
908  *
909  * We call this when we've exhausted our flushing ability and haven't made
910  * progress in satisfying tickets.  The reservation code handles tickets in
911  * order, so if there is a large ticket first and then smaller ones we could
912  * very well satisfy the smaller tickets.  This will attempt to wake up any
913  * tickets in the list to catch this case.
914  *
915  * This function returns true if it was able to make progress by clearing out
916  * other tickets, or if it stumbles across a ticket that was smaller than the
917  * first ticket.
918  */
919 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
920                                    struct btrfs_space_info *space_info)
921 {
922         struct reserve_ticket *ticket;
923         u64 tickets_id = space_info->tickets_id;
924         u64 first_ticket_bytes = 0;
925
926         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
927                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
928                 __btrfs_dump_space_info(fs_info, space_info);
929         }
930
931         while (!list_empty(&space_info->tickets) &&
932                tickets_id == space_info->tickets_id) {
933                 ticket = list_first_entry(&space_info->tickets,
934                                           struct reserve_ticket, list);
935
936                 if (ticket->steal &&
937                     steal_from_global_rsv(fs_info, space_info, ticket))
938                         return true;
939
940                 /*
941                  * may_commit_transaction will avoid committing the transaction
942                  * if it doesn't feel like the space reclaimed by the commit
943                  * would result in the ticket succeeding.  However if we have a
944                  * smaller ticket in the queue it may be small enough to be
945                  * satisified by committing the transaction, so if any
946                  * subsequent ticket is smaller than the first ticket go ahead
947                  * and send us back for another loop through the enospc flushing
948                  * code.
949                  */
950                 if (first_ticket_bytes == 0)
951                         first_ticket_bytes = ticket->bytes;
952                 else if (first_ticket_bytes > ticket->bytes)
953                         return true;
954
955                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
956                         btrfs_info(fs_info, "failing ticket with %llu bytes",
957                                    ticket->bytes);
958
959                 remove_ticket(space_info, ticket);
960                 ticket->error = -ENOSPC;
961                 wake_up(&ticket->wait);
962
963                 /*
964                  * We're just throwing tickets away, so more flushing may not
965                  * trip over btrfs_try_granting_tickets, so we need to call it
966                  * here to see if we can make progress with the next ticket in
967                  * the list.
968                  */
969                 btrfs_try_granting_tickets(fs_info, space_info);
970         }
971         return (tickets_id != space_info->tickets_id);
972 }
973
974 /*
975  * This is for normal flushers, we can wait all goddamned day if we want to.  We
976  * will loop and continuously try to flush as long as we are making progress.
977  * We count progress as clearing off tickets each time we have to loop.
978  */
979 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
980 {
981         struct btrfs_fs_info *fs_info;
982         struct btrfs_space_info *space_info;
983         u64 to_reclaim;
984         enum btrfs_flush_state flush_state;
985         int commit_cycles = 0;
986         u64 last_tickets_id;
987
988         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
989         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
990
991         spin_lock(&space_info->lock);
992         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
993         if (!to_reclaim) {
994                 space_info->flush = 0;
995                 spin_unlock(&space_info->lock);
996                 return;
997         }
998         last_tickets_id = space_info->tickets_id;
999         spin_unlock(&space_info->lock);
1000
1001         flush_state = FLUSH_DELAYED_ITEMS_NR;
1002         do {
1003                 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1004                 spin_lock(&space_info->lock);
1005                 if (list_empty(&space_info->tickets)) {
1006                         space_info->flush = 0;
1007                         spin_unlock(&space_info->lock);
1008                         return;
1009                 }
1010                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1011                                                               space_info);
1012                 if (last_tickets_id == space_info->tickets_id) {
1013                         flush_state++;
1014                 } else {
1015                         last_tickets_id = space_info->tickets_id;
1016                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1017                         if (commit_cycles)
1018                                 commit_cycles--;
1019                 }
1020
1021                 /*
1022                  * We don't want to force a chunk allocation until we've tried
1023                  * pretty hard to reclaim space.  Think of the case where we
1024                  * freed up a bunch of space and so have a lot of pinned space
1025                  * to reclaim.  We would rather use that than possibly create a
1026                  * underutilized metadata chunk.  So if this is our first run
1027                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1028                  * commit the transaction.  If nothing has changed the next go
1029                  * around then we can force a chunk allocation.
1030                  */
1031                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1032                         flush_state++;
1033
1034                 if (flush_state > COMMIT_TRANS) {
1035                         commit_cycles++;
1036                         if (commit_cycles > 2) {
1037                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
1038                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1039                                         commit_cycles--;
1040                                 } else {
1041                                         space_info->flush = 0;
1042                                 }
1043                         } else {
1044                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1045                         }
1046                 }
1047                 spin_unlock(&space_info->lock);
1048         } while (flush_state <= COMMIT_TRANS);
1049 }
1050
1051 /*
1052  * This handles pre-flushing of metadata space before we get to the point that
1053  * we need to start blocking threads on tickets.  The logic here is different
1054  * from the other flush paths because it doesn't rely on tickets to tell us how
1055  * much we need to flush, instead it attempts to keep us below the 80% full
1056  * watermark of space by flushing whichever reservation pool is currently the
1057  * largest.
1058  */
1059 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1060 {
1061         struct btrfs_fs_info *fs_info;
1062         struct btrfs_space_info *space_info;
1063         struct btrfs_block_rsv *delayed_block_rsv;
1064         struct btrfs_block_rsv *delayed_refs_rsv;
1065         struct btrfs_block_rsv *global_rsv;
1066         struct btrfs_block_rsv *trans_rsv;
1067         int loops = 0;
1068
1069         fs_info = container_of(work, struct btrfs_fs_info,
1070                                preempt_reclaim_work);
1071         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1072         delayed_block_rsv = &fs_info->delayed_block_rsv;
1073         delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1074         global_rsv = &fs_info->global_block_rsv;
1075         trans_rsv = &fs_info->trans_block_rsv;
1076
1077         spin_lock(&space_info->lock);
1078         while (need_preemptive_reclaim(fs_info, space_info)) {
1079                 enum btrfs_flush_state flush;
1080                 u64 delalloc_size = 0;
1081                 u64 to_reclaim, block_rsv_size;
1082                 u64 global_rsv_size = global_rsv->reserved;
1083
1084                 loops++;
1085
1086                 /*
1087                  * We don't have a precise counter for the metadata being
1088                  * reserved for delalloc, so we'll approximate it by subtracting
1089                  * out the block rsv's space from the bytes_may_use.  If that
1090                  * amount is higher than the individual reserves, then we can
1091                  * assume it's tied up in delalloc reservations.
1092                  */
1093                 block_rsv_size = global_rsv_size +
1094                         delayed_block_rsv->reserved +
1095                         delayed_refs_rsv->reserved +
1096                         trans_rsv->reserved;
1097                 if (block_rsv_size < space_info->bytes_may_use)
1098                         delalloc_size = space_info->bytes_may_use - block_rsv_size;
1099                 spin_unlock(&space_info->lock);
1100
1101                 /*
1102                  * We don't want to include the global_rsv in our calculation,
1103                  * because that's space we can't touch.  Subtract it from the
1104                  * block_rsv_size for the next checks.
1105                  */
1106                 block_rsv_size -= global_rsv_size;
1107
1108                 /*
1109                  * We really want to avoid flushing delalloc too much, as it
1110                  * could result in poor allocation patterns, so only flush it if
1111                  * it's larger than the rest of the pools combined.
1112                  */
1113                 if (delalloc_size > block_rsv_size) {
1114                         to_reclaim = delalloc_size;
1115                         flush = FLUSH_DELALLOC;
1116                 } else if (space_info->bytes_pinned >
1117                            (delayed_block_rsv->reserved +
1118                             delayed_refs_rsv->reserved)) {
1119                         to_reclaim = space_info->bytes_pinned;
1120                         flush = FORCE_COMMIT_TRANS;
1121                 } else if (delayed_block_rsv->reserved >
1122                            delayed_refs_rsv->reserved) {
1123                         to_reclaim = delayed_block_rsv->reserved;
1124                         flush = FLUSH_DELAYED_ITEMS_NR;
1125                 } else {
1126                         to_reclaim = delayed_refs_rsv->reserved;
1127                         flush = FLUSH_DELAYED_REFS_NR;
1128                 }
1129
1130                 /*
1131                  * We don't want to reclaim everything, just a portion, so scale
1132                  * down the to_reclaim by 1/4.  If it takes us down to 0,
1133                  * reclaim 1 items worth.
1134                  */
1135                 to_reclaim >>= 2;
1136                 if (!to_reclaim)
1137                         to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1138                 flush_space(fs_info, space_info, to_reclaim, flush, true);
1139                 cond_resched();
1140                 spin_lock(&space_info->lock);
1141         }
1142
1143         /* We only went through once, back off our clamping. */
1144         if (loops == 1 && !space_info->reclaim_size)
1145                 space_info->clamp = max(1, space_info->clamp - 1);
1146         trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1147         spin_unlock(&space_info->lock);
1148 }
1149
1150 /*
1151  * FLUSH_DELALLOC_WAIT:
1152  *   Space is freed from flushing delalloc in one of two ways.
1153  *
1154  *   1) compression is on and we allocate less space than we reserved
1155  *   2) we are overwriting existing space
1156  *
1157  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1158  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1159  *   length to ->bytes_reserved, and subtracts the reserved space from
1160  *   ->bytes_may_use.
1161  *
1162  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1163  *   extent in the range we are overwriting, which creates a delayed ref for
1164  *   that freed extent.  This however is not reclaimed until the transaction
1165  *   commits, thus the next stages.
1166  *
1167  * RUN_DELAYED_IPUTS
1168  *   If we are freeing inodes, we want to make sure all delayed iputs have
1169  *   completed, because they could have been on an inode with i_nlink == 0, and
1170  *   thus have been truncated and freed up space.  But again this space is not
1171  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1172  *   run and then the transaction must be committed.
1173  *
1174  * FLUSH_DELAYED_REFS
1175  *   The above two cases generate delayed refs that will affect
1176  *   ->total_bytes_pinned.  However this counter can be inconsistent with
1177  *   reality if there are outstanding delayed refs.  This is because we adjust
1178  *   the counter based solely on the current set of delayed refs and disregard
1179  *   any on-disk state which might include more refs.  So for example, if we
1180  *   have an extent with 2 references, but we only drop 1, we'll see that there
1181  *   is a negative delayed ref count for the extent and assume that the space
1182  *   will be freed, and thus increase ->total_bytes_pinned.
1183  *
1184  *   Running the delayed refs gives us the actual real view of what will be
1185  *   freed at the transaction commit time.  This stage will not actually free
1186  *   space for us, it just makes sure that may_commit_transaction() has all of
1187  *   the information it needs to make the right decision.
1188  *
1189  * COMMIT_TRANS
1190  *   This is where we reclaim all of the pinned space generated by the previous
1191  *   two stages.  We will not commit the transaction if we don't think we're
1192  *   likely to satisfy our request, which means if our current free space +
1193  *   total_bytes_pinned < reservation we will not commit.  This is why the
1194  *   previous states are actually important, to make sure we know for sure
1195  *   whether committing the transaction will allow us to make progress.
1196  *
1197  * ALLOC_CHUNK_FORCE
1198  *   For data we start with alloc chunk force, however we could have been full
1199  *   before, and then the transaction commit could have freed new block groups,
1200  *   so if we now have space to allocate do the force chunk allocation.
1201  */
1202 static const enum btrfs_flush_state data_flush_states[] = {
1203         FLUSH_DELALLOC_WAIT,
1204         RUN_DELAYED_IPUTS,
1205         FLUSH_DELAYED_REFS,
1206         COMMIT_TRANS,
1207         ALLOC_CHUNK_FORCE,
1208 };
1209
1210 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1211 {
1212         struct btrfs_fs_info *fs_info;
1213         struct btrfs_space_info *space_info;
1214         u64 last_tickets_id;
1215         enum btrfs_flush_state flush_state = 0;
1216
1217         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1218         space_info = fs_info->data_sinfo;
1219
1220         spin_lock(&space_info->lock);
1221         if (list_empty(&space_info->tickets)) {
1222                 space_info->flush = 0;
1223                 spin_unlock(&space_info->lock);
1224                 return;
1225         }
1226         last_tickets_id = space_info->tickets_id;
1227         spin_unlock(&space_info->lock);
1228
1229         while (!space_info->full) {
1230                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1231                 spin_lock(&space_info->lock);
1232                 if (list_empty(&space_info->tickets)) {
1233                         space_info->flush = 0;
1234                         spin_unlock(&space_info->lock);
1235                         return;
1236                 }
1237                 last_tickets_id = space_info->tickets_id;
1238                 spin_unlock(&space_info->lock);
1239         }
1240
1241         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1242                 flush_space(fs_info, space_info, U64_MAX,
1243                             data_flush_states[flush_state], false);
1244                 spin_lock(&space_info->lock);
1245                 if (list_empty(&space_info->tickets)) {
1246                         space_info->flush = 0;
1247                         spin_unlock(&space_info->lock);
1248                         return;
1249                 }
1250
1251                 if (last_tickets_id == space_info->tickets_id) {
1252                         flush_state++;
1253                 } else {
1254                         last_tickets_id = space_info->tickets_id;
1255                         flush_state = 0;
1256                 }
1257
1258                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1259                         if (space_info->full) {
1260                                 if (maybe_fail_all_tickets(fs_info, space_info))
1261                                         flush_state = 0;
1262                                 else
1263                                         space_info->flush = 0;
1264                         } else {
1265                                 flush_state = 0;
1266                         }
1267                 }
1268                 spin_unlock(&space_info->lock);
1269         }
1270 }
1271
1272 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1273 {
1274         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1275         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1276         INIT_WORK(&fs_info->preempt_reclaim_work,
1277                   btrfs_preempt_reclaim_metadata_space);
1278 }
1279
1280 static const enum btrfs_flush_state priority_flush_states[] = {
1281         FLUSH_DELAYED_ITEMS_NR,
1282         FLUSH_DELAYED_ITEMS,
1283         ALLOC_CHUNK,
1284 };
1285
1286 static const enum btrfs_flush_state evict_flush_states[] = {
1287         FLUSH_DELAYED_ITEMS_NR,
1288         FLUSH_DELAYED_ITEMS,
1289         FLUSH_DELAYED_REFS_NR,
1290         FLUSH_DELAYED_REFS,
1291         FLUSH_DELALLOC,
1292         FLUSH_DELALLOC_WAIT,
1293         ALLOC_CHUNK,
1294         COMMIT_TRANS,
1295 };
1296
1297 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1298                                 struct btrfs_space_info *space_info,
1299                                 struct reserve_ticket *ticket,
1300                                 const enum btrfs_flush_state *states,
1301                                 int states_nr)
1302 {
1303         u64 to_reclaim;
1304         int flush_state;
1305
1306         spin_lock(&space_info->lock);
1307         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1308         if (!to_reclaim) {
1309                 spin_unlock(&space_info->lock);
1310                 return;
1311         }
1312         spin_unlock(&space_info->lock);
1313
1314         flush_state = 0;
1315         do {
1316                 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1317                             false);
1318                 flush_state++;
1319                 spin_lock(&space_info->lock);
1320                 if (ticket->bytes == 0) {
1321                         spin_unlock(&space_info->lock);
1322                         return;
1323                 }
1324                 spin_unlock(&space_info->lock);
1325         } while (flush_state < states_nr);
1326 }
1327
1328 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1329                                         struct btrfs_space_info *space_info,
1330                                         struct reserve_ticket *ticket)
1331 {
1332         while (!space_info->full) {
1333                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1334                 spin_lock(&space_info->lock);
1335                 if (ticket->bytes == 0) {
1336                         spin_unlock(&space_info->lock);
1337                         return;
1338                 }
1339                 spin_unlock(&space_info->lock);
1340         }
1341 }
1342
1343 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1344                                 struct btrfs_space_info *space_info,
1345                                 struct reserve_ticket *ticket)
1346
1347 {
1348         DEFINE_WAIT(wait);
1349         int ret = 0;
1350
1351         spin_lock(&space_info->lock);
1352         while (ticket->bytes > 0 && ticket->error == 0) {
1353                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1354                 if (ret) {
1355                         /*
1356                          * Delete us from the list. After we unlock the space
1357                          * info, we don't want the async reclaim job to reserve
1358                          * space for this ticket. If that would happen, then the
1359                          * ticket's task would not known that space was reserved
1360                          * despite getting an error, resulting in a space leak
1361                          * (bytes_may_use counter of our space_info).
1362                          */
1363                         remove_ticket(space_info, ticket);
1364                         ticket->error = -EINTR;
1365                         break;
1366                 }
1367                 spin_unlock(&space_info->lock);
1368
1369                 schedule();
1370
1371                 finish_wait(&ticket->wait, &wait);
1372                 spin_lock(&space_info->lock);
1373         }
1374         spin_unlock(&space_info->lock);
1375 }
1376
1377 /**
1378  * Do the appropriate flushing and waiting for a ticket
1379  *
1380  * @fs_info:    the filesystem
1381  * @space_info: space info for the reservation
1382  * @ticket:     ticket for the reservation
1383  * @start_ns:   timestamp when the reservation started
1384  * @orig_bytes: amount of bytes originally reserved
1385  * @flush:      how much we can flush
1386  *
1387  * This does the work of figuring out how to flush for the ticket, waiting for
1388  * the reservation, and returning the appropriate error if there is one.
1389  */
1390 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1391                                  struct btrfs_space_info *space_info,
1392                                  struct reserve_ticket *ticket,
1393                                  u64 start_ns, u64 orig_bytes,
1394                                  enum btrfs_reserve_flush_enum flush)
1395 {
1396         int ret;
1397
1398         switch (flush) {
1399         case BTRFS_RESERVE_FLUSH_DATA:
1400         case BTRFS_RESERVE_FLUSH_ALL:
1401         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1402                 wait_reserve_ticket(fs_info, space_info, ticket);
1403                 break;
1404         case BTRFS_RESERVE_FLUSH_LIMIT:
1405                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1406                                                 priority_flush_states,
1407                                                 ARRAY_SIZE(priority_flush_states));
1408                 break;
1409         case BTRFS_RESERVE_FLUSH_EVICT:
1410                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1411                                                 evict_flush_states,
1412                                                 ARRAY_SIZE(evict_flush_states));
1413                 break;
1414         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1415                 priority_reclaim_data_space(fs_info, space_info, ticket);
1416                 break;
1417         default:
1418                 ASSERT(0);
1419                 break;
1420         }
1421
1422         spin_lock(&space_info->lock);
1423         ret = ticket->error;
1424         if (ticket->bytes || ticket->error) {
1425                 /*
1426                  * We were a priority ticket, so we need to delete ourselves
1427                  * from the list.  Because we could have other priority tickets
1428                  * behind us that require less space, run
1429                  * btrfs_try_granting_tickets() to see if their reservations can
1430                  * now be made.
1431                  */
1432                 if (!list_empty(&ticket->list)) {
1433                         remove_ticket(space_info, ticket);
1434                         btrfs_try_granting_tickets(fs_info, space_info);
1435                 }
1436
1437                 if (!ret)
1438                         ret = -ENOSPC;
1439         }
1440         spin_unlock(&space_info->lock);
1441         ASSERT(list_empty(&ticket->list));
1442         /*
1443          * Check that we can't have an error set if the reservation succeeded,
1444          * as that would confuse tasks and lead them to error out without
1445          * releasing reserved space (if an error happens the expectation is that
1446          * space wasn't reserved at all).
1447          */
1448         ASSERT(!(ticket->bytes == 0 && ticket->error));
1449         trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1450                                    start_ns, flush, ticket->error);
1451         return ret;
1452 }
1453
1454 /*
1455  * This returns true if this flush state will go through the ordinary flushing
1456  * code.
1457  */
1458 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1459 {
1460         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1461                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1462 }
1463
1464 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1465                                        struct btrfs_space_info *space_info)
1466 {
1467         u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1468         u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1469
1470         /*
1471          * If we're heavy on ordered operations then clamping won't help us.  We
1472          * need to clamp specifically to keep up with dirty'ing buffered
1473          * writers, because there's not a 1:1 correlation of writing delalloc
1474          * and freeing space, like there is with flushing delayed refs or
1475          * delayed nodes.  If we're already more ordered than delalloc then
1476          * we're keeping up, otherwise we aren't and should probably clamp.
1477          */
1478         if (ordered < delalloc)
1479                 space_info->clamp = min(space_info->clamp + 1, 8);
1480 }
1481
1482 /**
1483  * Try to reserve bytes from the block_rsv's space
1484  *
1485  * @fs_info:    the filesystem
1486  * @space_info: space info we want to allocate from
1487  * @orig_bytes: number of bytes we want
1488  * @flush:      whether or not we can flush to make our reservation
1489  *
1490  * This will reserve orig_bytes number of bytes from the space info associated
1491  * with the block_rsv.  If there is not enough space it will make an attempt to
1492  * flush out space to make room.  It will do this by flushing delalloc if
1493  * possible or committing the transaction.  If flush is 0 then no attempts to
1494  * regain reservations will be made and this will fail if there is not enough
1495  * space already.
1496  */
1497 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1498                            struct btrfs_space_info *space_info, u64 orig_bytes,
1499                            enum btrfs_reserve_flush_enum flush)
1500 {
1501         struct work_struct *async_work;
1502         struct reserve_ticket ticket;
1503         u64 start_ns = 0;
1504         u64 used;
1505         int ret = 0;
1506         bool pending_tickets;
1507
1508         ASSERT(orig_bytes);
1509         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1510
1511         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1512                 async_work = &fs_info->async_data_reclaim_work;
1513         else
1514                 async_work = &fs_info->async_reclaim_work;
1515
1516         spin_lock(&space_info->lock);
1517         ret = -ENOSPC;
1518         used = btrfs_space_info_used(space_info, true);
1519
1520         /*
1521          * We don't want NO_FLUSH allocations to jump everybody, they can
1522          * generally handle ENOSPC in a different way, so treat them the same as
1523          * normal flushers when it comes to skipping pending tickets.
1524          */
1525         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1526                 pending_tickets = !list_empty(&space_info->tickets) ||
1527                         !list_empty(&space_info->priority_tickets);
1528         else
1529                 pending_tickets = !list_empty(&space_info->priority_tickets);
1530
1531         /*
1532          * Carry on if we have enough space (short-circuit) OR call
1533          * can_overcommit() to ensure we can overcommit to continue.
1534          */
1535         if (!pending_tickets &&
1536             ((used + orig_bytes <= space_info->total_bytes) ||
1537              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1538                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1539                                                       orig_bytes);
1540                 ret = 0;
1541         }
1542
1543         /*
1544          * If we couldn't make a reservation then setup our reservation ticket
1545          * and kick the async worker if it's not already running.
1546          *
1547          * If we are a priority flusher then we just need to add our ticket to
1548          * the list and we will do our own flushing further down.
1549          */
1550         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1551                 ticket.bytes = orig_bytes;
1552                 ticket.error = 0;
1553                 space_info->reclaim_size += ticket.bytes;
1554                 init_waitqueue_head(&ticket.wait);
1555                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1556                 if (trace_btrfs_reserve_ticket_enabled())
1557                         start_ns = ktime_get_ns();
1558
1559                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1560                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1561                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1562                         list_add_tail(&ticket.list, &space_info->tickets);
1563                         if (!space_info->flush) {
1564                                 space_info->flush = 1;
1565                                 trace_btrfs_trigger_flush(fs_info,
1566                                                           space_info->flags,
1567                                                           orig_bytes, flush,
1568                                                           "enospc");
1569                                 queue_work(system_unbound_wq, async_work);
1570                         }
1571                 } else {
1572                         list_add_tail(&ticket.list,
1573                                       &space_info->priority_tickets);
1574                 }
1575
1576                 /*
1577                  * We were forced to add a reserve ticket, so our preemptive
1578                  * flushing is unable to keep up.  Clamp down on the threshold
1579                  * for the preemptive flushing in order to keep up with the
1580                  * workload.
1581                  */
1582                 maybe_clamp_preempt(fs_info, space_info);
1583         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1584                 used += orig_bytes;
1585                 /*
1586                  * We will do the space reservation dance during log replay,
1587                  * which means we won't have fs_info->fs_root set, so don't do
1588                  * the async reclaim as we will panic.
1589                  */
1590                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1591                     need_preemptive_reclaim(fs_info, space_info) &&
1592                     !work_busy(&fs_info->preempt_reclaim_work)) {
1593                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1594                                                   orig_bytes, flush, "preempt");
1595                         queue_work(system_unbound_wq,
1596                                    &fs_info->preempt_reclaim_work);
1597                 }
1598         }
1599         spin_unlock(&space_info->lock);
1600         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1601                 return ret;
1602
1603         return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1604                                      orig_bytes, flush);
1605 }
1606
1607 /**
1608  * Trye to reserve metadata bytes from the block_rsv's space
1609  *
1610  * @root:       the root we're allocating for
1611  * @block_rsv:  block_rsv we're allocating for
1612  * @orig_bytes: number of bytes we want
1613  * @flush:      whether or not we can flush to make our reservation
1614  *
1615  * This will reserve orig_bytes number of bytes from the space info associated
1616  * with the block_rsv.  If there is not enough space it will make an attempt to
1617  * flush out space to make room.  It will do this by flushing delalloc if
1618  * possible or committing the transaction.  If flush is 0 then no attempts to
1619  * regain reservations will be made and this will fail if there is not enough
1620  * space already.
1621  */
1622 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1623                                  struct btrfs_block_rsv *block_rsv,
1624                                  u64 orig_bytes,
1625                                  enum btrfs_reserve_flush_enum flush)
1626 {
1627         struct btrfs_fs_info *fs_info = root->fs_info;
1628         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1629         int ret;
1630
1631         ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1632         if (ret == -ENOSPC &&
1633             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1634                 if (block_rsv != global_rsv &&
1635                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1636                         ret = 0;
1637         }
1638         if (ret == -ENOSPC) {
1639                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1640                                               block_rsv->space_info->flags,
1641                                               orig_bytes, 1);
1642
1643                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1644                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1645                                               orig_bytes, 0);
1646         }
1647         return ret;
1648 }
1649
1650 /**
1651  * Try to reserve data bytes for an allocation
1652  *
1653  * @fs_info: the filesystem
1654  * @bytes:   number of bytes we need
1655  * @flush:   how we are allowed to flush
1656  *
1657  * This will reserve bytes from the data space info.  If there is not enough
1658  * space then we will attempt to flush space as specified by flush.
1659  */
1660 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1661                              enum btrfs_reserve_flush_enum flush)
1662 {
1663         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1664         int ret;
1665
1666         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1667                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE);
1668         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1669
1670         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1671         if (ret == -ENOSPC) {
1672                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1673                                               data_sinfo->flags, bytes, 1);
1674                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1675                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1676         }
1677         return ret;
1678 }