Linux 6.9-rc1
[linux-2.6-microblaze.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39
40 /*
41  * Relocation overview
42  *
43  * [What does relocation do]
44  *
45  * The objective of relocation is to relocate all extents of the target block
46  * group to other block groups.
47  * This is utilized by resize (shrink only), profile converting, compacting
48  * space, or balance routine to spread chunks over devices.
49  *
50  *              Before          |               After
51  * ------------------------------------------------------------------
52  *  BG A: 10 data extents       | BG A: deleted
53  *  BG B:  2 data extents       | BG B: 10 data extents (2 old + 8 relocated)
54  *  BG C:  1 extents            | BG C:  3 data extents (1 old + 2 relocated)
55  *
56  * [How does relocation work]
57  *
58  * 1.   Mark the target block group read-only
59  *      New extents won't be allocated from the target block group.
60  *
61  * 2.1  Record each extent in the target block group
62  *      To build a proper map of extents to be relocated.
63  *
64  * 2.2  Build data reloc tree and reloc trees
65  *      Data reloc tree will contain an inode, recording all newly relocated
66  *      data extents.
67  *      There will be only one data reloc tree for one data block group.
68  *
69  *      Reloc tree will be a special snapshot of its source tree, containing
70  *      relocated tree blocks.
71  *      Each tree referring to a tree block in target block group will get its
72  *      reloc tree built.
73  *
74  * 2.3  Swap source tree with its corresponding reloc tree
75  *      Each involved tree only refers to new extents after swap.
76  *
77  * 3.   Cleanup reloc trees and data reloc tree.
78  *      As old extents in the target block group are still referenced by reloc
79  *      trees, we need to clean them up before really freeing the target block
80  *      group.
81  *
82  * The main complexity is in steps 2.2 and 2.3.
83  *
84  * The entry point of relocation is relocate_block_group() function.
85  */
86
87 #define RELOCATION_RESERVED_NODES       256
88 /*
89  * map address of tree root to tree
90  */
91 struct mapping_node {
92         struct {
93                 struct rb_node rb_node;
94                 u64 bytenr;
95         }; /* Use rb_simle_node for search/insert */
96         void *data;
97 };
98
99 struct mapping_tree {
100         struct rb_root rb_root;
101         spinlock_t lock;
102 };
103
104 /*
105  * present a tree block to process
106  */
107 struct tree_block {
108         struct {
109                 struct rb_node rb_node;
110                 u64 bytenr;
111         }; /* Use rb_simple_node for search/insert */
112         u64 owner;
113         struct btrfs_key key;
114         u8 level;
115         bool key_ready;
116 };
117
118 #define MAX_EXTENTS 128
119
120 struct file_extent_cluster {
121         u64 start;
122         u64 end;
123         u64 boundary[MAX_EXTENTS];
124         unsigned int nr;
125         u64 owning_root;
126 };
127
128 /* Stages of data relocation. */
129 enum reloc_stage {
130         MOVE_DATA_EXTENTS,
131         UPDATE_DATA_PTRS
132 };
133
134 struct reloc_control {
135         /* block group to relocate */
136         struct btrfs_block_group *block_group;
137         /* extent tree */
138         struct btrfs_root *extent_root;
139         /* inode for moving data */
140         struct inode *data_inode;
141
142         struct btrfs_block_rsv *block_rsv;
143
144         struct btrfs_backref_cache backref_cache;
145
146         struct file_extent_cluster cluster;
147         /* tree blocks have been processed */
148         struct extent_io_tree processed_blocks;
149         /* map start of tree root to corresponding reloc tree */
150         struct mapping_tree reloc_root_tree;
151         /* list of reloc trees */
152         struct list_head reloc_roots;
153         /* list of subvolume trees that get relocated */
154         struct list_head dirty_subvol_roots;
155         /* size of metadata reservation for merging reloc trees */
156         u64 merging_rsv_size;
157         /* size of relocated tree nodes */
158         u64 nodes_relocated;
159         /* reserved size for block group relocation*/
160         u64 reserved_bytes;
161
162         u64 search_start;
163         u64 extents_found;
164
165         enum reloc_stage stage;
166         bool create_reloc_tree;
167         bool merge_reloc_tree;
168         bool found_file_extent;
169 };
170
171 static void mark_block_processed(struct reloc_control *rc,
172                                  struct btrfs_backref_node *node)
173 {
174         u32 blocksize;
175
176         if (node->level == 0 ||
177             in_range(node->bytenr, rc->block_group->start,
178                      rc->block_group->length)) {
179                 blocksize = rc->extent_root->fs_info->nodesize;
180                 set_extent_bit(&rc->processed_blocks, node->bytenr,
181                                node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
182         }
183         node->processed = 1;
184 }
185
186 /*
187  * walk up backref nodes until reach node presents tree root
188  */
189 static struct btrfs_backref_node *walk_up_backref(
190                 struct btrfs_backref_node *node,
191                 struct btrfs_backref_edge *edges[], int *index)
192 {
193         struct btrfs_backref_edge *edge;
194         int idx = *index;
195
196         while (!list_empty(&node->upper)) {
197                 edge = list_entry(node->upper.next,
198                                   struct btrfs_backref_edge, list[LOWER]);
199                 edges[idx++] = edge;
200                 node = edge->node[UPPER];
201         }
202         BUG_ON(node->detached);
203         *index = idx;
204         return node;
205 }
206
207 /*
208  * walk down backref nodes to find start of next reference path
209  */
210 static struct btrfs_backref_node *walk_down_backref(
211                 struct btrfs_backref_edge *edges[], int *index)
212 {
213         struct btrfs_backref_edge *edge;
214         struct btrfs_backref_node *lower;
215         int idx = *index;
216
217         while (idx > 0) {
218                 edge = edges[idx - 1];
219                 lower = edge->node[LOWER];
220                 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
221                         idx--;
222                         continue;
223                 }
224                 edge = list_entry(edge->list[LOWER].next,
225                                   struct btrfs_backref_edge, list[LOWER]);
226                 edges[idx - 1] = edge;
227                 *index = idx;
228                 return edge->node[UPPER];
229         }
230         *index = 0;
231         return NULL;
232 }
233
234 static void update_backref_node(struct btrfs_backref_cache *cache,
235                                 struct btrfs_backref_node *node, u64 bytenr)
236 {
237         struct rb_node *rb_node;
238         rb_erase(&node->rb_node, &cache->rb_root);
239         node->bytenr = bytenr;
240         rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
241         if (rb_node)
242                 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
243 }
244
245 /*
246  * update backref cache after a transaction commit
247  */
248 static int update_backref_cache(struct btrfs_trans_handle *trans,
249                                 struct btrfs_backref_cache *cache)
250 {
251         struct btrfs_backref_node *node;
252         int level = 0;
253
254         if (cache->last_trans == 0) {
255                 cache->last_trans = trans->transid;
256                 return 0;
257         }
258
259         if (cache->last_trans == trans->transid)
260                 return 0;
261
262         /*
263          * detached nodes are used to avoid unnecessary backref
264          * lookup. transaction commit changes the extent tree.
265          * so the detached nodes are no longer useful.
266          */
267         while (!list_empty(&cache->detached)) {
268                 node = list_entry(cache->detached.next,
269                                   struct btrfs_backref_node, list);
270                 btrfs_backref_cleanup_node(cache, node);
271         }
272
273         while (!list_empty(&cache->changed)) {
274                 node = list_entry(cache->changed.next,
275                                   struct btrfs_backref_node, list);
276                 list_del_init(&node->list);
277                 BUG_ON(node->pending);
278                 update_backref_node(cache, node, node->new_bytenr);
279         }
280
281         /*
282          * some nodes can be left in the pending list if there were
283          * errors during processing the pending nodes.
284          */
285         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
286                 list_for_each_entry(node, &cache->pending[level], list) {
287                         BUG_ON(!node->pending);
288                         if (node->bytenr == node->new_bytenr)
289                                 continue;
290                         update_backref_node(cache, node, node->new_bytenr);
291                 }
292         }
293
294         cache->last_trans = 0;
295         return 1;
296 }
297
298 static bool reloc_root_is_dead(const struct btrfs_root *root)
299 {
300         /*
301          * Pair with set_bit/clear_bit in clean_dirty_subvols and
302          * btrfs_update_reloc_root. We need to see the updated bit before
303          * trying to access reloc_root
304          */
305         smp_rmb();
306         if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
307                 return true;
308         return false;
309 }
310
311 /*
312  * Check if this subvolume tree has valid reloc tree.
313  *
314  * Reloc tree after swap is considered dead, thus not considered as valid.
315  * This is enough for most callers, as they don't distinguish dead reloc root
316  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
317  * special case.
318  */
319 static bool have_reloc_root(const struct btrfs_root *root)
320 {
321         if (reloc_root_is_dead(root))
322                 return false;
323         if (!root->reloc_root)
324                 return false;
325         return true;
326 }
327
328 bool btrfs_should_ignore_reloc_root(const struct btrfs_root *root)
329 {
330         struct btrfs_root *reloc_root;
331
332         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
333                 return false;
334
335         /* This root has been merged with its reloc tree, we can ignore it */
336         if (reloc_root_is_dead(root))
337                 return true;
338
339         reloc_root = root->reloc_root;
340         if (!reloc_root)
341                 return false;
342
343         if (btrfs_header_generation(reloc_root->commit_root) ==
344             root->fs_info->running_transaction->transid)
345                 return false;
346         /*
347          * If there is reloc tree and it was created in previous transaction
348          * backref lookup can find the reloc tree, so backref node for the fs
349          * tree root is useless for relocation.
350          */
351         return true;
352 }
353
354 /*
355  * find reloc tree by address of tree root
356  */
357 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
358 {
359         struct reloc_control *rc = fs_info->reloc_ctl;
360         struct rb_node *rb_node;
361         struct mapping_node *node;
362         struct btrfs_root *root = NULL;
363
364         ASSERT(rc);
365         spin_lock(&rc->reloc_root_tree.lock);
366         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
367         if (rb_node) {
368                 node = rb_entry(rb_node, struct mapping_node, rb_node);
369                 root = node->data;
370         }
371         spin_unlock(&rc->reloc_root_tree.lock);
372         return btrfs_grab_root(root);
373 }
374
375 /*
376  * For useless nodes, do two major clean ups:
377  *
378  * - Cleanup the children edges and nodes
379  *   If child node is also orphan (no parent) during cleanup, then the child
380  *   node will also be cleaned up.
381  *
382  * - Freeing up leaves (level 0), keeps nodes detached
383  *   For nodes, the node is still cached as "detached"
384  *
385  * Return false if @node is not in the @useless_nodes list.
386  * Return true if @node is in the @useless_nodes list.
387  */
388 static bool handle_useless_nodes(struct reloc_control *rc,
389                                  struct btrfs_backref_node *node)
390 {
391         struct btrfs_backref_cache *cache = &rc->backref_cache;
392         struct list_head *useless_node = &cache->useless_node;
393         bool ret = false;
394
395         while (!list_empty(useless_node)) {
396                 struct btrfs_backref_node *cur;
397
398                 cur = list_first_entry(useless_node, struct btrfs_backref_node,
399                                  list);
400                 list_del_init(&cur->list);
401
402                 /* Only tree root nodes can be added to @useless_nodes */
403                 ASSERT(list_empty(&cur->upper));
404
405                 if (cur == node)
406                         ret = true;
407
408                 /* The node is the lowest node */
409                 if (cur->lowest) {
410                         list_del_init(&cur->lower);
411                         cur->lowest = 0;
412                 }
413
414                 /* Cleanup the lower edges */
415                 while (!list_empty(&cur->lower)) {
416                         struct btrfs_backref_edge *edge;
417                         struct btrfs_backref_node *lower;
418
419                         edge = list_entry(cur->lower.next,
420                                         struct btrfs_backref_edge, list[UPPER]);
421                         list_del(&edge->list[UPPER]);
422                         list_del(&edge->list[LOWER]);
423                         lower = edge->node[LOWER];
424                         btrfs_backref_free_edge(cache, edge);
425
426                         /* Child node is also orphan, queue for cleanup */
427                         if (list_empty(&lower->upper))
428                                 list_add(&lower->list, useless_node);
429                 }
430                 /* Mark this block processed for relocation */
431                 mark_block_processed(rc, cur);
432
433                 /*
434                  * Backref nodes for tree leaves are deleted from the cache.
435                  * Backref nodes for upper level tree blocks are left in the
436                  * cache to avoid unnecessary backref lookup.
437                  */
438                 if (cur->level > 0) {
439                         list_add(&cur->list, &cache->detached);
440                         cur->detached = 1;
441                 } else {
442                         rb_erase(&cur->rb_node, &cache->rb_root);
443                         btrfs_backref_free_node(cache, cur);
444                 }
445         }
446         return ret;
447 }
448
449 /*
450  * Build backref tree for a given tree block. Root of the backref tree
451  * corresponds the tree block, leaves of the backref tree correspond roots of
452  * b-trees that reference the tree block.
453  *
454  * The basic idea of this function is check backrefs of a given block to find
455  * upper level blocks that reference the block, and then check backrefs of
456  * these upper level blocks recursively. The recursion stops when tree root is
457  * reached or backrefs for the block is cached.
458  *
459  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
460  * all upper level blocks that directly/indirectly reference the block are also
461  * cached.
462  */
463 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
464                         struct btrfs_trans_handle *trans,
465                         struct reloc_control *rc, struct btrfs_key *node_key,
466                         int level, u64 bytenr)
467 {
468         struct btrfs_backref_iter *iter;
469         struct btrfs_backref_cache *cache = &rc->backref_cache;
470         /* For searching parent of TREE_BLOCK_REF */
471         struct btrfs_path *path;
472         struct btrfs_backref_node *cur;
473         struct btrfs_backref_node *node = NULL;
474         struct btrfs_backref_edge *edge;
475         int ret;
476         int err = 0;
477
478         iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
479         if (!iter)
480                 return ERR_PTR(-ENOMEM);
481         path = btrfs_alloc_path();
482         if (!path) {
483                 err = -ENOMEM;
484                 goto out;
485         }
486
487         node = btrfs_backref_alloc_node(cache, bytenr, level);
488         if (!node) {
489                 err = -ENOMEM;
490                 goto out;
491         }
492
493         node->lowest = 1;
494         cur = node;
495
496         /* Breadth-first search to build backref cache */
497         do {
498                 ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
499                                                   node_key, cur);
500                 if (ret < 0) {
501                         err = ret;
502                         goto out;
503                 }
504                 edge = list_first_entry_or_null(&cache->pending_edge,
505                                 struct btrfs_backref_edge, list[UPPER]);
506                 /*
507                  * The pending list isn't empty, take the first block to
508                  * process
509                  */
510                 if (edge) {
511                         list_del_init(&edge->list[UPPER]);
512                         cur = edge->node[UPPER];
513                 }
514         } while (edge);
515
516         /* Finish the upper linkage of newly added edges/nodes */
517         ret = btrfs_backref_finish_upper_links(cache, node);
518         if (ret < 0) {
519                 err = ret;
520                 goto out;
521         }
522
523         if (handle_useless_nodes(rc, node))
524                 node = NULL;
525 out:
526         btrfs_free_path(iter->path);
527         kfree(iter);
528         btrfs_free_path(path);
529         if (err) {
530                 btrfs_backref_error_cleanup(cache, node);
531                 return ERR_PTR(err);
532         }
533         ASSERT(!node || !node->detached);
534         ASSERT(list_empty(&cache->useless_node) &&
535                list_empty(&cache->pending_edge));
536         return node;
537 }
538
539 /*
540  * helper to add backref node for the newly created snapshot.
541  * the backref node is created by cloning backref node that
542  * corresponds to root of source tree
543  */
544 static int clone_backref_node(struct btrfs_trans_handle *trans,
545                               struct reloc_control *rc,
546                               const struct btrfs_root *src,
547                               struct btrfs_root *dest)
548 {
549         struct btrfs_root *reloc_root = src->reloc_root;
550         struct btrfs_backref_cache *cache = &rc->backref_cache;
551         struct btrfs_backref_node *node = NULL;
552         struct btrfs_backref_node *new_node;
553         struct btrfs_backref_edge *edge;
554         struct btrfs_backref_edge *new_edge;
555         struct rb_node *rb_node;
556
557         if (cache->last_trans > 0)
558                 update_backref_cache(trans, cache);
559
560         rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
561         if (rb_node) {
562                 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
563                 if (node->detached)
564                         node = NULL;
565                 else
566                         BUG_ON(node->new_bytenr != reloc_root->node->start);
567         }
568
569         if (!node) {
570                 rb_node = rb_simple_search(&cache->rb_root,
571                                            reloc_root->commit_root->start);
572                 if (rb_node) {
573                         node = rb_entry(rb_node, struct btrfs_backref_node,
574                                         rb_node);
575                         BUG_ON(node->detached);
576                 }
577         }
578
579         if (!node)
580                 return 0;
581
582         new_node = btrfs_backref_alloc_node(cache, dest->node->start,
583                                             node->level);
584         if (!new_node)
585                 return -ENOMEM;
586
587         new_node->lowest = node->lowest;
588         new_node->checked = 1;
589         new_node->root = btrfs_grab_root(dest);
590         ASSERT(new_node->root);
591
592         if (!node->lowest) {
593                 list_for_each_entry(edge, &node->lower, list[UPPER]) {
594                         new_edge = btrfs_backref_alloc_edge(cache);
595                         if (!new_edge)
596                                 goto fail;
597
598                         btrfs_backref_link_edge(new_edge, edge->node[LOWER],
599                                                 new_node, LINK_UPPER);
600                 }
601         } else {
602                 list_add_tail(&new_node->lower, &cache->leaves);
603         }
604
605         rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
606                                    &new_node->rb_node);
607         if (rb_node)
608                 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
609
610         if (!new_node->lowest) {
611                 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
612                         list_add_tail(&new_edge->list[LOWER],
613                                       &new_edge->node[LOWER]->upper);
614                 }
615         }
616         return 0;
617 fail:
618         while (!list_empty(&new_node->lower)) {
619                 new_edge = list_entry(new_node->lower.next,
620                                       struct btrfs_backref_edge, list[UPPER]);
621                 list_del(&new_edge->list[UPPER]);
622                 btrfs_backref_free_edge(cache, new_edge);
623         }
624         btrfs_backref_free_node(cache, new_node);
625         return -ENOMEM;
626 }
627
628 /*
629  * helper to add 'address of tree root -> reloc tree' mapping
630  */
631 static int __add_reloc_root(struct btrfs_root *root)
632 {
633         struct btrfs_fs_info *fs_info = root->fs_info;
634         struct rb_node *rb_node;
635         struct mapping_node *node;
636         struct reloc_control *rc = fs_info->reloc_ctl;
637
638         node = kmalloc(sizeof(*node), GFP_NOFS);
639         if (!node)
640                 return -ENOMEM;
641
642         node->bytenr = root->commit_root->start;
643         node->data = root;
644
645         spin_lock(&rc->reloc_root_tree.lock);
646         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
647                                    node->bytenr, &node->rb_node);
648         spin_unlock(&rc->reloc_root_tree.lock);
649         if (rb_node) {
650                 btrfs_err(fs_info,
651                             "Duplicate root found for start=%llu while inserting into relocation tree",
652                             node->bytenr);
653                 return -EEXIST;
654         }
655
656         list_add_tail(&root->root_list, &rc->reloc_roots);
657         return 0;
658 }
659
660 /*
661  * helper to delete the 'address of tree root -> reloc tree'
662  * mapping
663  */
664 static void __del_reloc_root(struct btrfs_root *root)
665 {
666         struct btrfs_fs_info *fs_info = root->fs_info;
667         struct rb_node *rb_node;
668         struct mapping_node *node = NULL;
669         struct reloc_control *rc = fs_info->reloc_ctl;
670         bool put_ref = false;
671
672         if (rc && root->node) {
673                 spin_lock(&rc->reloc_root_tree.lock);
674                 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
675                                            root->commit_root->start);
676                 if (rb_node) {
677                         node = rb_entry(rb_node, struct mapping_node, rb_node);
678                         rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
679                         RB_CLEAR_NODE(&node->rb_node);
680                 }
681                 spin_unlock(&rc->reloc_root_tree.lock);
682                 ASSERT(!node || (struct btrfs_root *)node->data == root);
683         }
684
685         /*
686          * We only put the reloc root here if it's on the list.  There's a lot
687          * of places where the pattern is to splice the rc->reloc_roots, process
688          * the reloc roots, and then add the reloc root back onto
689          * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
690          * list we don't want the reference being dropped, because the guy
691          * messing with the list is in charge of the reference.
692          */
693         spin_lock(&fs_info->trans_lock);
694         if (!list_empty(&root->root_list)) {
695                 put_ref = true;
696                 list_del_init(&root->root_list);
697         }
698         spin_unlock(&fs_info->trans_lock);
699         if (put_ref)
700                 btrfs_put_root(root);
701         kfree(node);
702 }
703
704 /*
705  * helper to update the 'address of tree root -> reloc tree'
706  * mapping
707  */
708 static int __update_reloc_root(struct btrfs_root *root)
709 {
710         struct btrfs_fs_info *fs_info = root->fs_info;
711         struct rb_node *rb_node;
712         struct mapping_node *node = NULL;
713         struct reloc_control *rc = fs_info->reloc_ctl;
714
715         spin_lock(&rc->reloc_root_tree.lock);
716         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
717                                    root->commit_root->start);
718         if (rb_node) {
719                 node = rb_entry(rb_node, struct mapping_node, rb_node);
720                 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
721         }
722         spin_unlock(&rc->reloc_root_tree.lock);
723
724         if (!node)
725                 return 0;
726         BUG_ON((struct btrfs_root *)node->data != root);
727
728         spin_lock(&rc->reloc_root_tree.lock);
729         node->bytenr = root->node->start;
730         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
731                                    node->bytenr, &node->rb_node);
732         spin_unlock(&rc->reloc_root_tree.lock);
733         if (rb_node)
734                 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
735         return 0;
736 }
737
738 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
739                                         struct btrfs_root *root, u64 objectid)
740 {
741         struct btrfs_fs_info *fs_info = root->fs_info;
742         struct btrfs_root *reloc_root;
743         struct extent_buffer *eb;
744         struct btrfs_root_item *root_item;
745         struct btrfs_key root_key;
746         int ret = 0;
747         bool must_abort = false;
748
749         root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
750         if (!root_item)
751                 return ERR_PTR(-ENOMEM);
752
753         root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
754         root_key.type = BTRFS_ROOT_ITEM_KEY;
755         root_key.offset = objectid;
756
757         if (root->root_key.objectid == objectid) {
758                 u64 commit_root_gen;
759
760                 /* called by btrfs_init_reloc_root */
761                 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
762                                       BTRFS_TREE_RELOC_OBJECTID);
763                 if (ret)
764                         goto fail;
765
766                 /*
767                  * Set the last_snapshot field to the generation of the commit
768                  * root - like this ctree.c:btrfs_block_can_be_shared() behaves
769                  * correctly (returns true) when the relocation root is created
770                  * either inside the critical section of a transaction commit
771                  * (through transaction.c:qgroup_account_snapshot()) and when
772                  * it's created before the transaction commit is started.
773                  */
774                 commit_root_gen = btrfs_header_generation(root->commit_root);
775                 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
776         } else {
777                 /*
778                  * called by btrfs_reloc_post_snapshot_hook.
779                  * the source tree is a reloc tree, all tree blocks
780                  * modified after it was created have RELOC flag
781                  * set in their headers. so it's OK to not update
782                  * the 'last_snapshot'.
783                  */
784                 ret = btrfs_copy_root(trans, root, root->node, &eb,
785                                       BTRFS_TREE_RELOC_OBJECTID);
786                 if (ret)
787                         goto fail;
788         }
789
790         /*
791          * We have changed references at this point, we must abort the
792          * transaction if anything fails.
793          */
794         must_abort = true;
795
796         memcpy(root_item, &root->root_item, sizeof(*root_item));
797         btrfs_set_root_bytenr(root_item, eb->start);
798         btrfs_set_root_level(root_item, btrfs_header_level(eb));
799         btrfs_set_root_generation(root_item, trans->transid);
800
801         if (root->root_key.objectid == objectid) {
802                 btrfs_set_root_refs(root_item, 0);
803                 memset(&root_item->drop_progress, 0,
804                        sizeof(struct btrfs_disk_key));
805                 btrfs_set_root_drop_level(root_item, 0);
806         }
807
808         btrfs_tree_unlock(eb);
809         free_extent_buffer(eb);
810
811         ret = btrfs_insert_root(trans, fs_info->tree_root,
812                                 &root_key, root_item);
813         if (ret)
814                 goto fail;
815
816         kfree(root_item);
817
818         reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
819         if (IS_ERR(reloc_root)) {
820                 ret = PTR_ERR(reloc_root);
821                 goto abort;
822         }
823         set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
824         reloc_root->last_trans = trans->transid;
825         return reloc_root;
826 fail:
827         kfree(root_item);
828 abort:
829         if (must_abort)
830                 btrfs_abort_transaction(trans, ret);
831         return ERR_PTR(ret);
832 }
833
834 /*
835  * create reloc tree for a given fs tree. reloc tree is just a
836  * snapshot of the fs tree with special root objectid.
837  *
838  * The reloc_root comes out of here with two references, one for
839  * root->reloc_root, and another for being on the rc->reloc_roots list.
840  */
841 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
842                           struct btrfs_root *root)
843 {
844         struct btrfs_fs_info *fs_info = root->fs_info;
845         struct btrfs_root *reloc_root;
846         struct reloc_control *rc = fs_info->reloc_ctl;
847         struct btrfs_block_rsv *rsv;
848         int clear_rsv = 0;
849         int ret;
850
851         if (!rc)
852                 return 0;
853
854         /*
855          * The subvolume has reloc tree but the swap is finished, no need to
856          * create/update the dead reloc tree
857          */
858         if (reloc_root_is_dead(root))
859                 return 0;
860
861         /*
862          * This is subtle but important.  We do not do
863          * record_root_in_transaction for reloc roots, instead we record their
864          * corresponding fs root, and then here we update the last trans for the
865          * reloc root.  This means that we have to do this for the entire life
866          * of the reloc root, regardless of which stage of the relocation we are
867          * in.
868          */
869         if (root->reloc_root) {
870                 reloc_root = root->reloc_root;
871                 reloc_root->last_trans = trans->transid;
872                 return 0;
873         }
874
875         /*
876          * We are merging reloc roots, we do not need new reloc trees.  Also
877          * reloc trees never need their own reloc tree.
878          */
879         if (!rc->create_reloc_tree ||
880             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
881                 return 0;
882
883         if (!trans->reloc_reserved) {
884                 rsv = trans->block_rsv;
885                 trans->block_rsv = rc->block_rsv;
886                 clear_rsv = 1;
887         }
888         reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
889         if (clear_rsv)
890                 trans->block_rsv = rsv;
891         if (IS_ERR(reloc_root))
892                 return PTR_ERR(reloc_root);
893
894         ret = __add_reloc_root(reloc_root);
895         ASSERT(ret != -EEXIST);
896         if (ret) {
897                 /* Pairs with create_reloc_root */
898                 btrfs_put_root(reloc_root);
899                 return ret;
900         }
901         root->reloc_root = btrfs_grab_root(reloc_root);
902         return 0;
903 }
904
905 /*
906  * update root item of reloc tree
907  */
908 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
909                             struct btrfs_root *root)
910 {
911         struct btrfs_fs_info *fs_info = root->fs_info;
912         struct btrfs_root *reloc_root;
913         struct btrfs_root_item *root_item;
914         int ret;
915
916         if (!have_reloc_root(root))
917                 return 0;
918
919         reloc_root = root->reloc_root;
920         root_item = &reloc_root->root_item;
921
922         /*
923          * We are probably ok here, but __del_reloc_root() will drop its ref of
924          * the root.  We have the ref for root->reloc_root, but just in case
925          * hold it while we update the reloc root.
926          */
927         btrfs_grab_root(reloc_root);
928
929         /* root->reloc_root will stay until current relocation finished */
930         if (fs_info->reloc_ctl->merge_reloc_tree &&
931             btrfs_root_refs(root_item) == 0) {
932                 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
933                 /*
934                  * Mark the tree as dead before we change reloc_root so
935                  * have_reloc_root will not touch it from now on.
936                  */
937                 smp_wmb();
938                 __del_reloc_root(reloc_root);
939         }
940
941         if (reloc_root->commit_root != reloc_root->node) {
942                 __update_reloc_root(reloc_root);
943                 btrfs_set_root_node(root_item, reloc_root->node);
944                 free_extent_buffer(reloc_root->commit_root);
945                 reloc_root->commit_root = btrfs_root_node(reloc_root);
946         }
947
948         ret = btrfs_update_root(trans, fs_info->tree_root,
949                                 &reloc_root->root_key, root_item);
950         btrfs_put_root(reloc_root);
951         return ret;
952 }
953
954 /*
955  * helper to find first cached inode with inode number >= objectid
956  * in a subvolume
957  */
958 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
959 {
960         struct rb_node *node;
961         struct rb_node *prev;
962         struct btrfs_inode *entry;
963         struct inode *inode;
964
965         spin_lock(&root->inode_lock);
966 again:
967         node = root->inode_tree.rb_node;
968         prev = NULL;
969         while (node) {
970                 prev = node;
971                 entry = rb_entry(node, struct btrfs_inode, rb_node);
972
973                 if (objectid < btrfs_ino(entry))
974                         node = node->rb_left;
975                 else if (objectid > btrfs_ino(entry))
976                         node = node->rb_right;
977                 else
978                         break;
979         }
980         if (!node) {
981                 while (prev) {
982                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
983                         if (objectid <= btrfs_ino(entry)) {
984                                 node = prev;
985                                 break;
986                         }
987                         prev = rb_next(prev);
988                 }
989         }
990         while (node) {
991                 entry = rb_entry(node, struct btrfs_inode, rb_node);
992                 inode = igrab(&entry->vfs_inode);
993                 if (inode) {
994                         spin_unlock(&root->inode_lock);
995                         return inode;
996                 }
997
998                 objectid = btrfs_ino(entry) + 1;
999                 if (cond_resched_lock(&root->inode_lock))
1000                         goto again;
1001
1002                 node = rb_next(node);
1003         }
1004         spin_unlock(&root->inode_lock);
1005         return NULL;
1006 }
1007
1008 /*
1009  * get new location of data
1010  */
1011 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1012                             u64 bytenr, u64 num_bytes)
1013 {
1014         struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1015         struct btrfs_path *path;
1016         struct btrfs_file_extent_item *fi;
1017         struct extent_buffer *leaf;
1018         int ret;
1019
1020         path = btrfs_alloc_path();
1021         if (!path)
1022                 return -ENOMEM;
1023
1024         bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1025         ret = btrfs_lookup_file_extent(NULL, root, path,
1026                         btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1027         if (ret < 0)
1028                 goto out;
1029         if (ret > 0) {
1030                 ret = -ENOENT;
1031                 goto out;
1032         }
1033
1034         leaf = path->nodes[0];
1035         fi = btrfs_item_ptr(leaf, path->slots[0],
1036                             struct btrfs_file_extent_item);
1037
1038         BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1039                btrfs_file_extent_compression(leaf, fi) ||
1040                btrfs_file_extent_encryption(leaf, fi) ||
1041                btrfs_file_extent_other_encoding(leaf, fi));
1042
1043         if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1044                 ret = -EINVAL;
1045                 goto out;
1046         }
1047
1048         *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1049         ret = 0;
1050 out:
1051         btrfs_free_path(path);
1052         return ret;
1053 }
1054
1055 /*
1056  * update file extent items in the tree leaf to point to
1057  * the new locations.
1058  */
1059 static noinline_for_stack
1060 int replace_file_extents(struct btrfs_trans_handle *trans,
1061                          struct reloc_control *rc,
1062                          struct btrfs_root *root,
1063                          struct extent_buffer *leaf)
1064 {
1065         struct btrfs_fs_info *fs_info = root->fs_info;
1066         struct btrfs_key key;
1067         struct btrfs_file_extent_item *fi;
1068         struct inode *inode = NULL;
1069         u64 parent;
1070         u64 bytenr;
1071         u64 new_bytenr = 0;
1072         u64 num_bytes;
1073         u64 end;
1074         u32 nritems;
1075         u32 i;
1076         int ret = 0;
1077         int first = 1;
1078         int dirty = 0;
1079
1080         if (rc->stage != UPDATE_DATA_PTRS)
1081                 return 0;
1082
1083         /* reloc trees always use full backref */
1084         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1085                 parent = leaf->start;
1086         else
1087                 parent = 0;
1088
1089         nritems = btrfs_header_nritems(leaf);
1090         for (i = 0; i < nritems; i++) {
1091                 struct btrfs_ref ref = { 0 };
1092
1093                 cond_resched();
1094                 btrfs_item_key_to_cpu(leaf, &key, i);
1095                 if (key.type != BTRFS_EXTENT_DATA_KEY)
1096                         continue;
1097                 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1098                 if (btrfs_file_extent_type(leaf, fi) ==
1099                     BTRFS_FILE_EXTENT_INLINE)
1100                         continue;
1101                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1102                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1103                 if (bytenr == 0)
1104                         continue;
1105                 if (!in_range(bytenr, rc->block_group->start,
1106                               rc->block_group->length))
1107                         continue;
1108
1109                 /*
1110                  * if we are modifying block in fs tree, wait for read_folio
1111                  * to complete and drop the extent cache
1112                  */
1113                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1114                         if (first) {
1115                                 inode = find_next_inode(root, key.objectid);
1116                                 first = 0;
1117                         } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1118                                 btrfs_add_delayed_iput(BTRFS_I(inode));
1119                                 inode = find_next_inode(root, key.objectid);
1120                         }
1121                         if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1122                                 struct extent_state *cached_state = NULL;
1123
1124                                 end = key.offset +
1125                                       btrfs_file_extent_num_bytes(leaf, fi);
1126                                 WARN_ON(!IS_ALIGNED(key.offset,
1127                                                     fs_info->sectorsize));
1128                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1129                                 end--;
1130                                 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1131                                                       key.offset, end,
1132                                                       &cached_state);
1133                                 if (!ret)
1134                                         continue;
1135
1136                                 btrfs_drop_extent_map_range(BTRFS_I(inode),
1137                                                             key.offset, end, true);
1138                                 unlock_extent(&BTRFS_I(inode)->io_tree,
1139                                               key.offset, end, &cached_state);
1140                         }
1141                 }
1142
1143                 ret = get_new_location(rc->data_inode, &new_bytenr,
1144                                        bytenr, num_bytes);
1145                 if (ret) {
1146                         /*
1147                          * Don't have to abort since we've not changed anything
1148                          * in the file extent yet.
1149                          */
1150                         break;
1151                 }
1152
1153                 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1154                 dirty = 1;
1155
1156                 key.offset -= btrfs_file_extent_offset(leaf, fi);
1157                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1158                                        num_bytes, parent, root->root_key.objectid);
1159                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1160                                     key.objectid, key.offset,
1161                                     root->root_key.objectid, false);
1162                 ret = btrfs_inc_extent_ref(trans, &ref);
1163                 if (ret) {
1164                         btrfs_abort_transaction(trans, ret);
1165                         break;
1166                 }
1167
1168                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1169                                        num_bytes, parent, root->root_key.objectid);
1170                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1171                                     key.objectid, key.offset,
1172                                     root->root_key.objectid, false);
1173                 ret = btrfs_free_extent(trans, &ref);
1174                 if (ret) {
1175                         btrfs_abort_transaction(trans, ret);
1176                         break;
1177                 }
1178         }
1179         if (dirty)
1180                 btrfs_mark_buffer_dirty(trans, leaf);
1181         if (inode)
1182                 btrfs_add_delayed_iput(BTRFS_I(inode));
1183         return ret;
1184 }
1185
1186 static noinline_for_stack int memcmp_node_keys(const struct extent_buffer *eb,
1187                                                int slot, const struct btrfs_path *path,
1188                                                int level)
1189 {
1190         struct btrfs_disk_key key1;
1191         struct btrfs_disk_key key2;
1192         btrfs_node_key(eb, &key1, slot);
1193         btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1194         return memcmp(&key1, &key2, sizeof(key1));
1195 }
1196
1197 /*
1198  * try to replace tree blocks in fs tree with the new blocks
1199  * in reloc tree. tree blocks haven't been modified since the
1200  * reloc tree was create can be replaced.
1201  *
1202  * if a block was replaced, level of the block + 1 is returned.
1203  * if no block got replaced, 0 is returned. if there are other
1204  * errors, a negative error number is returned.
1205  */
1206 static noinline_for_stack
1207 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1208                  struct btrfs_root *dest, struct btrfs_root *src,
1209                  struct btrfs_path *path, struct btrfs_key *next_key,
1210                  int lowest_level, int max_level)
1211 {
1212         struct btrfs_fs_info *fs_info = dest->fs_info;
1213         struct extent_buffer *eb;
1214         struct extent_buffer *parent;
1215         struct btrfs_ref ref = { 0 };
1216         struct btrfs_key key;
1217         u64 old_bytenr;
1218         u64 new_bytenr;
1219         u64 old_ptr_gen;
1220         u64 new_ptr_gen;
1221         u64 last_snapshot;
1222         u32 blocksize;
1223         int cow = 0;
1224         int level;
1225         int ret;
1226         int slot;
1227
1228         ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1229         ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1230
1231         last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1232 again:
1233         slot = path->slots[lowest_level];
1234         btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1235
1236         eb = btrfs_lock_root_node(dest);
1237         level = btrfs_header_level(eb);
1238
1239         if (level < lowest_level) {
1240                 btrfs_tree_unlock(eb);
1241                 free_extent_buffer(eb);
1242                 return 0;
1243         }
1244
1245         if (cow) {
1246                 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1247                                       BTRFS_NESTING_COW);
1248                 if (ret) {
1249                         btrfs_tree_unlock(eb);
1250                         free_extent_buffer(eb);
1251                         return ret;
1252                 }
1253         }
1254
1255         if (next_key) {
1256                 next_key->objectid = (u64)-1;
1257                 next_key->type = (u8)-1;
1258                 next_key->offset = (u64)-1;
1259         }
1260
1261         parent = eb;
1262         while (1) {
1263                 level = btrfs_header_level(parent);
1264                 ASSERT(level >= lowest_level);
1265
1266                 ret = btrfs_bin_search(parent, 0, &key, &slot);
1267                 if (ret < 0)
1268                         break;
1269                 if (ret && slot > 0)
1270                         slot--;
1271
1272                 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1273                         btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1274
1275                 old_bytenr = btrfs_node_blockptr(parent, slot);
1276                 blocksize = fs_info->nodesize;
1277                 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1278
1279                 if (level <= max_level) {
1280                         eb = path->nodes[level];
1281                         new_bytenr = btrfs_node_blockptr(eb,
1282                                                         path->slots[level]);
1283                         new_ptr_gen = btrfs_node_ptr_generation(eb,
1284                                                         path->slots[level]);
1285                 } else {
1286                         new_bytenr = 0;
1287                         new_ptr_gen = 0;
1288                 }
1289
1290                 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1291                         ret = level;
1292                         break;
1293                 }
1294
1295                 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1296                     memcmp_node_keys(parent, slot, path, level)) {
1297                         if (level <= lowest_level) {
1298                                 ret = 0;
1299                                 break;
1300                         }
1301
1302                         eb = btrfs_read_node_slot(parent, slot);
1303                         if (IS_ERR(eb)) {
1304                                 ret = PTR_ERR(eb);
1305                                 break;
1306                         }
1307                         btrfs_tree_lock(eb);
1308                         if (cow) {
1309                                 ret = btrfs_cow_block(trans, dest, eb, parent,
1310                                                       slot, &eb,
1311                                                       BTRFS_NESTING_COW);
1312                                 if (ret) {
1313                                         btrfs_tree_unlock(eb);
1314                                         free_extent_buffer(eb);
1315                                         break;
1316                                 }
1317                         }
1318
1319                         btrfs_tree_unlock(parent);
1320                         free_extent_buffer(parent);
1321
1322                         parent = eb;
1323                         continue;
1324                 }
1325
1326                 if (!cow) {
1327                         btrfs_tree_unlock(parent);
1328                         free_extent_buffer(parent);
1329                         cow = 1;
1330                         goto again;
1331                 }
1332
1333                 btrfs_node_key_to_cpu(path->nodes[level], &key,
1334                                       path->slots[level]);
1335                 btrfs_release_path(path);
1336
1337                 path->lowest_level = level;
1338                 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1339                 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1340                 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1341                 path->lowest_level = 0;
1342                 if (ret) {
1343                         if (ret > 0)
1344                                 ret = -ENOENT;
1345                         break;
1346                 }
1347
1348                 /*
1349                  * Info qgroup to trace both subtrees.
1350                  *
1351                  * We must trace both trees.
1352                  * 1) Tree reloc subtree
1353                  *    If not traced, we will leak data numbers
1354                  * 2) Fs subtree
1355                  *    If not traced, we will double count old data
1356                  *
1357                  * We don't scan the subtree right now, but only record
1358                  * the swapped tree blocks.
1359                  * The real subtree rescan is delayed until we have new
1360                  * CoW on the subtree root node before transaction commit.
1361                  */
1362                 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1363                                 rc->block_group, parent, slot,
1364                                 path->nodes[level], path->slots[level],
1365                                 last_snapshot);
1366                 if (ret < 0)
1367                         break;
1368                 /*
1369                  * swap blocks in fs tree and reloc tree.
1370                  */
1371                 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1372                 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1373                 btrfs_mark_buffer_dirty(trans, parent);
1374
1375                 btrfs_set_node_blockptr(path->nodes[level],
1376                                         path->slots[level], old_bytenr);
1377                 btrfs_set_node_ptr_generation(path->nodes[level],
1378                                               path->slots[level], old_ptr_gen);
1379                 btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1380
1381                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1382                                        blocksize, path->nodes[level]->start,
1383                                        src->root_key.objectid);
1384                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1385                                     0, true);
1386                 ret = btrfs_inc_extent_ref(trans, &ref);
1387                 if (ret) {
1388                         btrfs_abort_transaction(trans, ret);
1389                         break;
1390                 }
1391                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1392                                        blocksize, 0, dest->root_key.objectid);
1393                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1394                                     true);
1395                 ret = btrfs_inc_extent_ref(trans, &ref);
1396                 if (ret) {
1397                         btrfs_abort_transaction(trans, ret);
1398                         break;
1399                 }
1400
1401                 /* We don't know the real owning_root, use 0. */
1402                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1403                                        blocksize, path->nodes[level]->start, 0);
1404                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1405                                     0, true);
1406                 ret = btrfs_free_extent(trans, &ref);
1407                 if (ret) {
1408                         btrfs_abort_transaction(trans, ret);
1409                         break;
1410                 }
1411
1412                 /* We don't know the real owning_root, use 0. */
1413                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1414                                        blocksize, 0, 0);
1415                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1416                                     0, true);
1417                 ret = btrfs_free_extent(trans, &ref);
1418                 if (ret) {
1419                         btrfs_abort_transaction(trans, ret);
1420                         break;
1421                 }
1422
1423                 btrfs_unlock_up_safe(path, 0);
1424
1425                 ret = level;
1426                 break;
1427         }
1428         btrfs_tree_unlock(parent);
1429         free_extent_buffer(parent);
1430         return ret;
1431 }
1432
1433 /*
1434  * helper to find next relocated block in reloc tree
1435  */
1436 static noinline_for_stack
1437 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1438                        int *level)
1439 {
1440         struct extent_buffer *eb;
1441         int i;
1442         u64 last_snapshot;
1443         u32 nritems;
1444
1445         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1446
1447         for (i = 0; i < *level; i++) {
1448                 free_extent_buffer(path->nodes[i]);
1449                 path->nodes[i] = NULL;
1450         }
1451
1452         for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1453                 eb = path->nodes[i];
1454                 nritems = btrfs_header_nritems(eb);
1455                 while (path->slots[i] + 1 < nritems) {
1456                         path->slots[i]++;
1457                         if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1458                             last_snapshot)
1459                                 continue;
1460
1461                         *level = i;
1462                         return 0;
1463                 }
1464                 free_extent_buffer(path->nodes[i]);
1465                 path->nodes[i] = NULL;
1466         }
1467         return 1;
1468 }
1469
1470 /*
1471  * walk down reloc tree to find relocated block of lowest level
1472  */
1473 static noinline_for_stack
1474 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1475                          int *level)
1476 {
1477         struct extent_buffer *eb = NULL;
1478         int i;
1479         u64 ptr_gen = 0;
1480         u64 last_snapshot;
1481         u32 nritems;
1482
1483         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1484
1485         for (i = *level; i > 0; i--) {
1486                 eb = path->nodes[i];
1487                 nritems = btrfs_header_nritems(eb);
1488                 while (path->slots[i] < nritems) {
1489                         ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1490                         if (ptr_gen > last_snapshot)
1491                                 break;
1492                         path->slots[i]++;
1493                 }
1494                 if (path->slots[i] >= nritems) {
1495                         if (i == *level)
1496                                 break;
1497                         *level = i + 1;
1498                         return 0;
1499                 }
1500                 if (i == 1) {
1501                         *level = i;
1502                         return 0;
1503                 }
1504
1505                 eb = btrfs_read_node_slot(eb, path->slots[i]);
1506                 if (IS_ERR(eb))
1507                         return PTR_ERR(eb);
1508                 BUG_ON(btrfs_header_level(eb) != i - 1);
1509                 path->nodes[i - 1] = eb;
1510                 path->slots[i - 1] = 0;
1511         }
1512         return 1;
1513 }
1514
1515 /*
1516  * invalidate extent cache for file extents whose key in range of
1517  * [min_key, max_key)
1518  */
1519 static int invalidate_extent_cache(struct btrfs_root *root,
1520                                    const struct btrfs_key *min_key,
1521                                    const struct btrfs_key *max_key)
1522 {
1523         struct btrfs_fs_info *fs_info = root->fs_info;
1524         struct inode *inode = NULL;
1525         u64 objectid;
1526         u64 start, end;
1527         u64 ino;
1528
1529         objectid = min_key->objectid;
1530         while (1) {
1531                 struct extent_state *cached_state = NULL;
1532
1533                 cond_resched();
1534                 iput(inode);
1535
1536                 if (objectid > max_key->objectid)
1537                         break;
1538
1539                 inode = find_next_inode(root, objectid);
1540                 if (!inode)
1541                         break;
1542                 ino = btrfs_ino(BTRFS_I(inode));
1543
1544                 if (ino > max_key->objectid) {
1545                         iput(inode);
1546                         break;
1547                 }
1548
1549                 objectid = ino + 1;
1550                 if (!S_ISREG(inode->i_mode))
1551                         continue;
1552
1553                 if (unlikely(min_key->objectid == ino)) {
1554                         if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1555                                 continue;
1556                         if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1557                                 start = 0;
1558                         else {
1559                                 start = min_key->offset;
1560                                 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1561                         }
1562                 } else {
1563                         start = 0;
1564                 }
1565
1566                 if (unlikely(max_key->objectid == ino)) {
1567                         if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1568                                 continue;
1569                         if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1570                                 end = (u64)-1;
1571                         } else {
1572                                 if (max_key->offset == 0)
1573                                         continue;
1574                                 end = max_key->offset;
1575                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1576                                 end--;
1577                         }
1578                 } else {
1579                         end = (u64)-1;
1580                 }
1581
1582                 /* the lock_extent waits for read_folio to complete */
1583                 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1584                 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1585                 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1586         }
1587         return 0;
1588 }
1589
1590 static int find_next_key(struct btrfs_path *path, int level,
1591                          struct btrfs_key *key)
1592
1593 {
1594         while (level < BTRFS_MAX_LEVEL) {
1595                 if (!path->nodes[level])
1596                         break;
1597                 if (path->slots[level] + 1 <
1598                     btrfs_header_nritems(path->nodes[level])) {
1599                         btrfs_node_key_to_cpu(path->nodes[level], key,
1600                                               path->slots[level] + 1);
1601                         return 0;
1602                 }
1603                 level++;
1604         }
1605         return 1;
1606 }
1607
1608 /*
1609  * Insert current subvolume into reloc_control::dirty_subvol_roots
1610  */
1611 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1612                                struct reloc_control *rc,
1613                                struct btrfs_root *root)
1614 {
1615         struct btrfs_root *reloc_root = root->reloc_root;
1616         struct btrfs_root_item *reloc_root_item;
1617         int ret;
1618
1619         /* @root must be a subvolume tree root with a valid reloc tree */
1620         ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1621         ASSERT(reloc_root);
1622
1623         reloc_root_item = &reloc_root->root_item;
1624         memset(&reloc_root_item->drop_progress, 0,
1625                 sizeof(reloc_root_item->drop_progress));
1626         btrfs_set_root_drop_level(reloc_root_item, 0);
1627         btrfs_set_root_refs(reloc_root_item, 0);
1628         ret = btrfs_update_reloc_root(trans, root);
1629         if (ret)
1630                 return ret;
1631
1632         if (list_empty(&root->reloc_dirty_list)) {
1633                 btrfs_grab_root(root);
1634                 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1635         }
1636
1637         return 0;
1638 }
1639
1640 static int clean_dirty_subvols(struct reloc_control *rc)
1641 {
1642         struct btrfs_root *root;
1643         struct btrfs_root *next;
1644         int ret = 0;
1645         int ret2;
1646
1647         list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1648                                  reloc_dirty_list) {
1649                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1650                         /* Merged subvolume, cleanup its reloc root */
1651                         struct btrfs_root *reloc_root = root->reloc_root;
1652
1653                         list_del_init(&root->reloc_dirty_list);
1654                         root->reloc_root = NULL;
1655                         /*
1656                          * Need barrier to ensure clear_bit() only happens after
1657                          * root->reloc_root = NULL. Pairs with have_reloc_root.
1658                          */
1659                         smp_wmb();
1660                         clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1661                         if (reloc_root) {
1662                                 /*
1663                                  * btrfs_drop_snapshot drops our ref we hold for
1664                                  * ->reloc_root.  If it fails however we must
1665                                  * drop the ref ourselves.
1666                                  */
1667                                 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1668                                 if (ret2 < 0) {
1669                                         btrfs_put_root(reloc_root);
1670                                         if (!ret)
1671                                                 ret = ret2;
1672                                 }
1673                         }
1674                         btrfs_put_root(root);
1675                 } else {
1676                         /* Orphan reloc tree, just clean it up */
1677                         ret2 = btrfs_drop_snapshot(root, 0, 1);
1678                         if (ret2 < 0) {
1679                                 btrfs_put_root(root);
1680                                 if (!ret)
1681                                         ret = ret2;
1682                         }
1683                 }
1684         }
1685         return ret;
1686 }
1687
1688 /*
1689  * merge the relocated tree blocks in reloc tree with corresponding
1690  * fs tree.
1691  */
1692 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1693                                                struct btrfs_root *root)
1694 {
1695         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1696         struct btrfs_key key;
1697         struct btrfs_key next_key;
1698         struct btrfs_trans_handle *trans = NULL;
1699         struct btrfs_root *reloc_root;
1700         struct btrfs_root_item *root_item;
1701         struct btrfs_path *path;
1702         struct extent_buffer *leaf;
1703         int reserve_level;
1704         int level;
1705         int max_level;
1706         int replaced = 0;
1707         int ret = 0;
1708         u32 min_reserved;
1709
1710         path = btrfs_alloc_path();
1711         if (!path)
1712                 return -ENOMEM;
1713         path->reada = READA_FORWARD;
1714
1715         reloc_root = root->reloc_root;
1716         root_item = &reloc_root->root_item;
1717
1718         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1719                 level = btrfs_root_level(root_item);
1720                 atomic_inc(&reloc_root->node->refs);
1721                 path->nodes[level] = reloc_root->node;
1722                 path->slots[level] = 0;
1723         } else {
1724                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1725
1726                 level = btrfs_root_drop_level(root_item);
1727                 BUG_ON(level == 0);
1728                 path->lowest_level = level;
1729                 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1730                 path->lowest_level = 0;
1731                 if (ret < 0) {
1732                         btrfs_free_path(path);
1733                         return ret;
1734                 }
1735
1736                 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1737                                       path->slots[level]);
1738                 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1739
1740                 btrfs_unlock_up_safe(path, 0);
1741         }
1742
1743         /*
1744          * In merge_reloc_root(), we modify the upper level pointer to swap the
1745          * tree blocks between reloc tree and subvolume tree.  Thus for tree
1746          * block COW, we COW at most from level 1 to root level for each tree.
1747          *
1748          * Thus the needed metadata size is at most root_level * nodesize,
1749          * and * 2 since we have two trees to COW.
1750          */
1751         reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1752         min_reserved = fs_info->nodesize * reserve_level * 2;
1753         memset(&next_key, 0, sizeof(next_key));
1754
1755         while (1) {
1756                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1757                                              min_reserved,
1758                                              BTRFS_RESERVE_FLUSH_LIMIT);
1759                 if (ret)
1760                         goto out;
1761                 trans = btrfs_start_transaction(root, 0);
1762                 if (IS_ERR(trans)) {
1763                         ret = PTR_ERR(trans);
1764                         trans = NULL;
1765                         goto out;
1766                 }
1767
1768                 /*
1769                  * At this point we no longer have a reloc_control, so we can't
1770                  * depend on btrfs_init_reloc_root to update our last_trans.
1771                  *
1772                  * But that's ok, we started the trans handle on our
1773                  * corresponding fs_root, which means it's been added to the
1774                  * dirty list.  At commit time we'll still call
1775                  * btrfs_update_reloc_root() and update our root item
1776                  * appropriately.
1777                  */
1778                 reloc_root->last_trans = trans->transid;
1779                 trans->block_rsv = rc->block_rsv;
1780
1781                 replaced = 0;
1782                 max_level = level;
1783
1784                 ret = walk_down_reloc_tree(reloc_root, path, &level);
1785                 if (ret < 0)
1786                         goto out;
1787                 if (ret > 0)
1788                         break;
1789
1790                 if (!find_next_key(path, level, &key) &&
1791                     btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1792                         ret = 0;
1793                 } else {
1794                         ret = replace_path(trans, rc, root, reloc_root, path,
1795                                            &next_key, level, max_level);
1796                 }
1797                 if (ret < 0)
1798                         goto out;
1799                 if (ret > 0) {
1800                         level = ret;
1801                         btrfs_node_key_to_cpu(path->nodes[level], &key,
1802                                               path->slots[level]);
1803                         replaced = 1;
1804                 }
1805
1806                 ret = walk_up_reloc_tree(reloc_root, path, &level);
1807                 if (ret > 0)
1808                         break;
1809
1810                 BUG_ON(level == 0);
1811                 /*
1812                  * save the merging progress in the drop_progress.
1813                  * this is OK since root refs == 1 in this case.
1814                  */
1815                 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1816                                path->slots[level]);
1817                 btrfs_set_root_drop_level(root_item, level);
1818
1819                 btrfs_end_transaction_throttle(trans);
1820                 trans = NULL;
1821
1822                 btrfs_btree_balance_dirty(fs_info);
1823
1824                 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1825                         invalidate_extent_cache(root, &key, &next_key);
1826         }
1827
1828         /*
1829          * handle the case only one block in the fs tree need to be
1830          * relocated and the block is tree root.
1831          */
1832         leaf = btrfs_lock_root_node(root);
1833         ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1834                               BTRFS_NESTING_COW);
1835         btrfs_tree_unlock(leaf);
1836         free_extent_buffer(leaf);
1837 out:
1838         btrfs_free_path(path);
1839
1840         if (ret == 0) {
1841                 ret = insert_dirty_subvol(trans, rc, root);
1842                 if (ret)
1843                         btrfs_abort_transaction(trans, ret);
1844         }
1845
1846         if (trans)
1847                 btrfs_end_transaction_throttle(trans);
1848
1849         btrfs_btree_balance_dirty(fs_info);
1850
1851         if (replaced && rc->stage == UPDATE_DATA_PTRS)
1852                 invalidate_extent_cache(root, &key, &next_key);
1853
1854         return ret;
1855 }
1856
1857 static noinline_for_stack
1858 int prepare_to_merge(struct reloc_control *rc, int err)
1859 {
1860         struct btrfs_root *root = rc->extent_root;
1861         struct btrfs_fs_info *fs_info = root->fs_info;
1862         struct btrfs_root *reloc_root;
1863         struct btrfs_trans_handle *trans;
1864         LIST_HEAD(reloc_roots);
1865         u64 num_bytes = 0;
1866         int ret;
1867
1868         mutex_lock(&fs_info->reloc_mutex);
1869         rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1870         rc->merging_rsv_size += rc->nodes_relocated * 2;
1871         mutex_unlock(&fs_info->reloc_mutex);
1872
1873 again:
1874         if (!err) {
1875                 num_bytes = rc->merging_rsv_size;
1876                 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1877                                           BTRFS_RESERVE_FLUSH_ALL);
1878                 if (ret)
1879                         err = ret;
1880         }
1881
1882         trans = btrfs_join_transaction(rc->extent_root);
1883         if (IS_ERR(trans)) {
1884                 if (!err)
1885                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1886                                                 num_bytes, NULL);
1887                 return PTR_ERR(trans);
1888         }
1889
1890         if (!err) {
1891                 if (num_bytes != rc->merging_rsv_size) {
1892                         btrfs_end_transaction(trans);
1893                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1894                                                 num_bytes, NULL);
1895                         goto again;
1896                 }
1897         }
1898
1899         rc->merge_reloc_tree = true;
1900
1901         while (!list_empty(&rc->reloc_roots)) {
1902                 reloc_root = list_entry(rc->reloc_roots.next,
1903                                         struct btrfs_root, root_list);
1904                 list_del_init(&reloc_root->root_list);
1905
1906                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1907                                 false);
1908                 if (IS_ERR(root)) {
1909                         /*
1910                          * Even if we have an error we need this reloc root
1911                          * back on our list so we can clean up properly.
1912                          */
1913                         list_add(&reloc_root->root_list, &reloc_roots);
1914                         btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1915                         if (!err)
1916                                 err = PTR_ERR(root);
1917                         break;
1918                 }
1919
1920                 if (unlikely(root->reloc_root != reloc_root)) {
1921                         if (root->reloc_root) {
1922                                 btrfs_err(fs_info,
1923 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1924                                           root->root_key.objectid,
1925                                           root->reloc_root->root_key.objectid,
1926                                           root->reloc_root->root_key.type,
1927                                           root->reloc_root->root_key.offset,
1928                                           btrfs_root_generation(
1929                                                   &root->reloc_root->root_item),
1930                                           reloc_root->root_key.objectid,
1931                                           reloc_root->root_key.type,
1932                                           reloc_root->root_key.offset,
1933                                           btrfs_root_generation(
1934                                                   &reloc_root->root_item));
1935                         } else {
1936                                 btrfs_err(fs_info,
1937 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1938                                           root->root_key.objectid,
1939                                           reloc_root->root_key.objectid,
1940                                           reloc_root->root_key.type,
1941                                           reloc_root->root_key.offset,
1942                                           btrfs_root_generation(
1943                                                   &reloc_root->root_item));
1944                         }
1945                         list_add(&reloc_root->root_list, &reloc_roots);
1946                         btrfs_put_root(root);
1947                         btrfs_abort_transaction(trans, -EUCLEAN);
1948                         if (!err)
1949                                 err = -EUCLEAN;
1950                         break;
1951                 }
1952
1953                 /*
1954                  * set reference count to 1, so btrfs_recover_relocation
1955                  * knows it should resumes merging
1956                  */
1957                 if (!err)
1958                         btrfs_set_root_refs(&reloc_root->root_item, 1);
1959                 ret = btrfs_update_reloc_root(trans, root);
1960
1961                 /*
1962                  * Even if we have an error we need this reloc root back on our
1963                  * list so we can clean up properly.
1964                  */
1965                 list_add(&reloc_root->root_list, &reloc_roots);
1966                 btrfs_put_root(root);
1967
1968                 if (ret) {
1969                         btrfs_abort_transaction(trans, ret);
1970                         if (!err)
1971                                 err = ret;
1972                         break;
1973                 }
1974         }
1975
1976         list_splice(&reloc_roots, &rc->reloc_roots);
1977
1978         if (!err)
1979                 err = btrfs_commit_transaction(trans);
1980         else
1981                 btrfs_end_transaction(trans);
1982         return err;
1983 }
1984
1985 static noinline_for_stack
1986 void free_reloc_roots(struct list_head *list)
1987 {
1988         struct btrfs_root *reloc_root, *tmp;
1989
1990         list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1991                 __del_reloc_root(reloc_root);
1992 }
1993
1994 static noinline_for_stack
1995 void merge_reloc_roots(struct reloc_control *rc)
1996 {
1997         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1998         struct btrfs_root *root;
1999         struct btrfs_root *reloc_root;
2000         LIST_HEAD(reloc_roots);
2001         int found = 0;
2002         int ret = 0;
2003 again:
2004         root = rc->extent_root;
2005
2006         /*
2007          * this serializes us with btrfs_record_root_in_transaction,
2008          * we have to make sure nobody is in the middle of
2009          * adding their roots to the list while we are
2010          * doing this splice
2011          */
2012         mutex_lock(&fs_info->reloc_mutex);
2013         list_splice_init(&rc->reloc_roots, &reloc_roots);
2014         mutex_unlock(&fs_info->reloc_mutex);
2015
2016         while (!list_empty(&reloc_roots)) {
2017                 found = 1;
2018                 reloc_root = list_entry(reloc_roots.next,
2019                                         struct btrfs_root, root_list);
2020
2021                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
2022                                          false);
2023                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2024                         if (WARN_ON(IS_ERR(root))) {
2025                                 /*
2026                                  * For recovery we read the fs roots on mount,
2027                                  * and if we didn't find the root then we marked
2028                                  * the reloc root as a garbage root.  For normal
2029                                  * relocation obviously the root should exist in
2030                                  * memory.  However there's no reason we can't
2031                                  * handle the error properly here just in case.
2032                                  */
2033                                 ret = PTR_ERR(root);
2034                                 goto out;
2035                         }
2036                         if (WARN_ON(root->reloc_root != reloc_root)) {
2037                                 /*
2038                                  * This can happen if on-disk metadata has some
2039                                  * corruption, e.g. bad reloc tree key offset.
2040                                  */
2041                                 ret = -EINVAL;
2042                                 goto out;
2043                         }
2044                         ret = merge_reloc_root(rc, root);
2045                         btrfs_put_root(root);
2046                         if (ret) {
2047                                 if (list_empty(&reloc_root->root_list))
2048                                         list_add_tail(&reloc_root->root_list,
2049                                                       &reloc_roots);
2050                                 goto out;
2051                         }
2052                 } else {
2053                         if (!IS_ERR(root)) {
2054                                 if (root->reloc_root == reloc_root) {
2055                                         root->reloc_root = NULL;
2056                                         btrfs_put_root(reloc_root);
2057                                 }
2058                                 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2059                                           &root->state);
2060                                 btrfs_put_root(root);
2061                         }
2062
2063                         list_del_init(&reloc_root->root_list);
2064                         /* Don't forget to queue this reloc root for cleanup */
2065                         list_add_tail(&reloc_root->reloc_dirty_list,
2066                                       &rc->dirty_subvol_roots);
2067                 }
2068         }
2069
2070         if (found) {
2071                 found = 0;
2072                 goto again;
2073         }
2074 out:
2075         if (ret) {
2076                 btrfs_handle_fs_error(fs_info, ret, NULL);
2077                 free_reloc_roots(&reloc_roots);
2078
2079                 /* new reloc root may be added */
2080                 mutex_lock(&fs_info->reloc_mutex);
2081                 list_splice_init(&rc->reloc_roots, &reloc_roots);
2082                 mutex_unlock(&fs_info->reloc_mutex);
2083                 free_reloc_roots(&reloc_roots);
2084         }
2085
2086         /*
2087          * We used to have
2088          *
2089          * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2090          *
2091          * here, but it's wrong.  If we fail to start the transaction in
2092          * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2093          * have actually been removed from the reloc_root_tree rb tree.  This is
2094          * fine because we're bailing here, and we hold a reference on the root
2095          * for the list that holds it, so these roots will be cleaned up when we
2096          * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2097          * will be cleaned up on unmount.
2098          *
2099          * The remaining nodes will be cleaned up by free_reloc_control.
2100          */
2101 }
2102
2103 static void free_block_list(struct rb_root *blocks)
2104 {
2105         struct tree_block *block;
2106         struct rb_node *rb_node;
2107         while ((rb_node = rb_first(blocks))) {
2108                 block = rb_entry(rb_node, struct tree_block, rb_node);
2109                 rb_erase(rb_node, blocks);
2110                 kfree(block);
2111         }
2112 }
2113
2114 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2115                                       struct btrfs_root *reloc_root)
2116 {
2117         struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2118         struct btrfs_root *root;
2119         int ret;
2120
2121         if (reloc_root->last_trans == trans->transid)
2122                 return 0;
2123
2124         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2125
2126         /*
2127          * This should succeed, since we can't have a reloc root without having
2128          * already looked up the actual root and created the reloc root for this
2129          * root.
2130          *
2131          * However if there's some sort of corruption where we have a ref to a
2132          * reloc root without a corresponding root this could return ENOENT.
2133          */
2134         if (IS_ERR(root)) {
2135                 ASSERT(0);
2136                 return PTR_ERR(root);
2137         }
2138         if (root->reloc_root != reloc_root) {
2139                 ASSERT(0);
2140                 btrfs_err(fs_info,
2141                           "root %llu has two reloc roots associated with it",
2142                           reloc_root->root_key.offset);
2143                 btrfs_put_root(root);
2144                 return -EUCLEAN;
2145         }
2146         ret = btrfs_record_root_in_trans(trans, root);
2147         btrfs_put_root(root);
2148
2149         return ret;
2150 }
2151
2152 static noinline_for_stack
2153 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2154                                      struct reloc_control *rc,
2155                                      struct btrfs_backref_node *node,
2156                                      struct btrfs_backref_edge *edges[])
2157 {
2158         struct btrfs_backref_node *next;
2159         struct btrfs_root *root;
2160         int index = 0;
2161         int ret;
2162
2163         next = node;
2164         while (1) {
2165                 cond_resched();
2166                 next = walk_up_backref(next, edges, &index);
2167                 root = next->root;
2168
2169                 /*
2170                  * If there is no root, then our references for this block are
2171                  * incomplete, as we should be able to walk all the way up to a
2172                  * block that is owned by a root.
2173                  *
2174                  * This path is only for SHAREABLE roots, so if we come upon a
2175                  * non-SHAREABLE root then we have backrefs that resolve
2176                  * improperly.
2177                  *
2178                  * Both of these cases indicate file system corruption, or a bug
2179                  * in the backref walking code.
2180                  */
2181                 if (!root) {
2182                         ASSERT(0);
2183                         btrfs_err(trans->fs_info,
2184                 "bytenr %llu doesn't have a backref path ending in a root",
2185                                   node->bytenr);
2186                         return ERR_PTR(-EUCLEAN);
2187                 }
2188                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2189                         ASSERT(0);
2190                         btrfs_err(trans->fs_info,
2191         "bytenr %llu has multiple refs with one ending in a non-shareable root",
2192                                   node->bytenr);
2193                         return ERR_PTR(-EUCLEAN);
2194                 }
2195
2196                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2197                         ret = record_reloc_root_in_trans(trans, root);
2198                         if (ret)
2199                                 return ERR_PTR(ret);
2200                         break;
2201                 }
2202
2203                 ret = btrfs_record_root_in_trans(trans, root);
2204                 if (ret)
2205                         return ERR_PTR(ret);
2206                 root = root->reloc_root;
2207
2208                 /*
2209                  * We could have raced with another thread which failed, so
2210                  * root->reloc_root may not be set, return ENOENT in this case.
2211                  */
2212                 if (!root)
2213                         return ERR_PTR(-ENOENT);
2214
2215                 if (next->new_bytenr != root->node->start) {
2216                         /*
2217                          * We just created the reloc root, so we shouldn't have
2218                          * ->new_bytenr set and this shouldn't be in the changed
2219                          *  list.  If it is then we have multiple roots pointing
2220                          *  at the same bytenr which indicates corruption, or
2221                          *  we've made a mistake in the backref walking code.
2222                          */
2223                         ASSERT(next->new_bytenr == 0);
2224                         ASSERT(list_empty(&next->list));
2225                         if (next->new_bytenr || !list_empty(&next->list)) {
2226                                 btrfs_err(trans->fs_info,
2227         "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2228                                           node->bytenr, next->bytenr);
2229                                 return ERR_PTR(-EUCLEAN);
2230                         }
2231
2232                         next->new_bytenr = root->node->start;
2233                         btrfs_put_root(next->root);
2234                         next->root = btrfs_grab_root(root);
2235                         ASSERT(next->root);
2236                         list_add_tail(&next->list,
2237                                       &rc->backref_cache.changed);
2238                         mark_block_processed(rc, next);
2239                         break;
2240                 }
2241
2242                 WARN_ON(1);
2243                 root = NULL;
2244                 next = walk_down_backref(edges, &index);
2245                 if (!next || next->level <= node->level)
2246                         break;
2247         }
2248         if (!root) {
2249                 /*
2250                  * This can happen if there's fs corruption or if there's a bug
2251                  * in the backref lookup code.
2252                  */
2253                 ASSERT(0);
2254                 return ERR_PTR(-ENOENT);
2255         }
2256
2257         next = node;
2258         /* setup backref node path for btrfs_reloc_cow_block */
2259         while (1) {
2260                 rc->backref_cache.path[next->level] = next;
2261                 if (--index < 0)
2262                         break;
2263                 next = edges[index]->node[UPPER];
2264         }
2265         return root;
2266 }
2267
2268 /*
2269  * Select a tree root for relocation.
2270  *
2271  * Return NULL if the block is not shareable. We should use do_relocation() in
2272  * this case.
2273  *
2274  * Return a tree root pointer if the block is shareable.
2275  * Return -ENOENT if the block is root of reloc tree.
2276  */
2277 static noinline_for_stack
2278 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2279 {
2280         struct btrfs_backref_node *next;
2281         struct btrfs_root *root;
2282         struct btrfs_root *fs_root = NULL;
2283         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2284         int index = 0;
2285
2286         next = node;
2287         while (1) {
2288                 cond_resched();
2289                 next = walk_up_backref(next, edges, &index);
2290                 root = next->root;
2291
2292                 /*
2293                  * This can occur if we have incomplete extent refs leading all
2294                  * the way up a particular path, in this case return -EUCLEAN.
2295                  */
2296                 if (!root)
2297                         return ERR_PTR(-EUCLEAN);
2298
2299                 /* No other choice for non-shareable tree */
2300                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2301                         return root;
2302
2303                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2304                         fs_root = root;
2305
2306                 if (next != node)
2307                         return NULL;
2308
2309                 next = walk_down_backref(edges, &index);
2310                 if (!next || next->level <= node->level)
2311                         break;
2312         }
2313
2314         if (!fs_root)
2315                 return ERR_PTR(-ENOENT);
2316         return fs_root;
2317 }
2318
2319 static noinline_for_stack
2320 u64 calcu_metadata_size(struct reloc_control *rc,
2321                         struct btrfs_backref_node *node, int reserve)
2322 {
2323         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2324         struct btrfs_backref_node *next = node;
2325         struct btrfs_backref_edge *edge;
2326         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2327         u64 num_bytes = 0;
2328         int index = 0;
2329
2330         BUG_ON(reserve && node->processed);
2331
2332         while (next) {
2333                 cond_resched();
2334                 while (1) {
2335                         if (next->processed && (reserve || next != node))
2336                                 break;
2337
2338                         num_bytes += fs_info->nodesize;
2339
2340                         if (list_empty(&next->upper))
2341                                 break;
2342
2343                         edge = list_entry(next->upper.next,
2344                                         struct btrfs_backref_edge, list[LOWER]);
2345                         edges[index++] = edge;
2346                         next = edge->node[UPPER];
2347                 }
2348                 next = walk_down_backref(edges, &index);
2349         }
2350         return num_bytes;
2351 }
2352
2353 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2354                                   struct reloc_control *rc,
2355                                   struct btrfs_backref_node *node)
2356 {
2357         struct btrfs_root *root = rc->extent_root;
2358         struct btrfs_fs_info *fs_info = root->fs_info;
2359         u64 num_bytes;
2360         int ret;
2361         u64 tmp;
2362
2363         num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2364
2365         trans->block_rsv = rc->block_rsv;
2366         rc->reserved_bytes += num_bytes;
2367
2368         /*
2369          * We are under a transaction here so we can only do limited flushing.
2370          * If we get an enospc just kick back -EAGAIN so we know to drop the
2371          * transaction and try to refill when we can flush all the things.
2372          */
2373         ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2374                                      BTRFS_RESERVE_FLUSH_LIMIT);
2375         if (ret) {
2376                 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2377                 while (tmp <= rc->reserved_bytes)
2378                         tmp <<= 1;
2379                 /*
2380                  * only one thread can access block_rsv at this point,
2381                  * so we don't need hold lock to protect block_rsv.
2382                  * we expand more reservation size here to allow enough
2383                  * space for relocation and we will return earlier in
2384                  * enospc case.
2385                  */
2386                 rc->block_rsv->size = tmp + fs_info->nodesize *
2387                                       RELOCATION_RESERVED_NODES;
2388                 return -EAGAIN;
2389         }
2390
2391         return 0;
2392 }
2393
2394 /*
2395  * relocate a block tree, and then update pointers in upper level
2396  * blocks that reference the block to point to the new location.
2397  *
2398  * if called by link_to_upper, the block has already been relocated.
2399  * in that case this function just updates pointers.
2400  */
2401 static int do_relocation(struct btrfs_trans_handle *trans,
2402                          struct reloc_control *rc,
2403                          struct btrfs_backref_node *node,
2404                          struct btrfs_key *key,
2405                          struct btrfs_path *path, int lowest)
2406 {
2407         struct btrfs_backref_node *upper;
2408         struct btrfs_backref_edge *edge;
2409         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2410         struct btrfs_root *root;
2411         struct extent_buffer *eb;
2412         u32 blocksize;
2413         u64 bytenr;
2414         int slot;
2415         int ret = 0;
2416
2417         /*
2418          * If we are lowest then this is the first time we're processing this
2419          * block, and thus shouldn't have an eb associated with it yet.
2420          */
2421         ASSERT(!lowest || !node->eb);
2422
2423         path->lowest_level = node->level + 1;
2424         rc->backref_cache.path[node->level] = node;
2425         list_for_each_entry(edge, &node->upper, list[LOWER]) {
2426                 struct btrfs_ref ref = { 0 };
2427
2428                 cond_resched();
2429
2430                 upper = edge->node[UPPER];
2431                 root = select_reloc_root(trans, rc, upper, edges);
2432                 if (IS_ERR(root)) {
2433                         ret = PTR_ERR(root);
2434                         goto next;
2435                 }
2436
2437                 if (upper->eb && !upper->locked) {
2438                         if (!lowest) {
2439                                 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2440                                 if (ret < 0)
2441                                         goto next;
2442                                 BUG_ON(ret);
2443                                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2444                                 if (node->eb->start == bytenr)
2445                                         goto next;
2446                         }
2447                         btrfs_backref_drop_node_buffer(upper);
2448                 }
2449
2450                 if (!upper->eb) {
2451                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2452                         if (ret) {
2453                                 if (ret > 0)
2454                                         ret = -ENOENT;
2455
2456                                 btrfs_release_path(path);
2457                                 break;
2458                         }
2459
2460                         if (!upper->eb) {
2461                                 upper->eb = path->nodes[upper->level];
2462                                 path->nodes[upper->level] = NULL;
2463                         } else {
2464                                 BUG_ON(upper->eb != path->nodes[upper->level]);
2465                         }
2466
2467                         upper->locked = 1;
2468                         path->locks[upper->level] = 0;
2469
2470                         slot = path->slots[upper->level];
2471                         btrfs_release_path(path);
2472                 } else {
2473                         ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2474                         if (ret < 0)
2475                                 goto next;
2476                         BUG_ON(ret);
2477                 }
2478
2479                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2480                 if (lowest) {
2481                         if (bytenr != node->bytenr) {
2482                                 btrfs_err(root->fs_info,
2483                 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2484                                           bytenr, node->bytenr, slot,
2485                                           upper->eb->start);
2486                                 ret = -EIO;
2487                                 goto next;
2488                         }
2489                 } else {
2490                         if (node->eb->start == bytenr)
2491                                 goto next;
2492                 }
2493
2494                 blocksize = root->fs_info->nodesize;
2495                 eb = btrfs_read_node_slot(upper->eb, slot);
2496                 if (IS_ERR(eb)) {
2497                         ret = PTR_ERR(eb);
2498                         goto next;
2499                 }
2500                 btrfs_tree_lock(eb);
2501
2502                 if (!node->eb) {
2503                         ret = btrfs_cow_block(trans, root, eb, upper->eb,
2504                                               slot, &eb, BTRFS_NESTING_COW);
2505                         btrfs_tree_unlock(eb);
2506                         free_extent_buffer(eb);
2507                         if (ret < 0)
2508                                 goto next;
2509                         /*
2510                          * We've just COWed this block, it should have updated
2511                          * the correct backref node entry.
2512                          */
2513                         ASSERT(node->eb == eb);
2514                 } else {
2515                         btrfs_set_node_blockptr(upper->eb, slot,
2516                                                 node->eb->start);
2517                         btrfs_set_node_ptr_generation(upper->eb, slot,
2518                                                       trans->transid);
2519                         btrfs_mark_buffer_dirty(trans, upper->eb);
2520
2521                         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2522                                                node->eb->start, blocksize,
2523                                                upper->eb->start,
2524                                                btrfs_header_owner(upper->eb));
2525                         btrfs_init_tree_ref(&ref, node->level,
2526                                             btrfs_header_owner(upper->eb),
2527                                             root->root_key.objectid, false);
2528                         ret = btrfs_inc_extent_ref(trans, &ref);
2529                         if (!ret)
2530                                 ret = btrfs_drop_subtree(trans, root, eb,
2531                                                          upper->eb);
2532                         if (ret)
2533                                 btrfs_abort_transaction(trans, ret);
2534                 }
2535 next:
2536                 if (!upper->pending)
2537                         btrfs_backref_drop_node_buffer(upper);
2538                 else
2539                         btrfs_backref_unlock_node_buffer(upper);
2540                 if (ret)
2541                         break;
2542         }
2543
2544         if (!ret && node->pending) {
2545                 btrfs_backref_drop_node_buffer(node);
2546                 list_move_tail(&node->list, &rc->backref_cache.changed);
2547                 node->pending = 0;
2548         }
2549
2550         path->lowest_level = 0;
2551
2552         /*
2553          * We should have allocated all of our space in the block rsv and thus
2554          * shouldn't ENOSPC.
2555          */
2556         ASSERT(ret != -ENOSPC);
2557         return ret;
2558 }
2559
2560 static int link_to_upper(struct btrfs_trans_handle *trans,
2561                          struct reloc_control *rc,
2562                          struct btrfs_backref_node *node,
2563                          struct btrfs_path *path)
2564 {
2565         struct btrfs_key key;
2566
2567         btrfs_node_key_to_cpu(node->eb, &key, 0);
2568         return do_relocation(trans, rc, node, &key, path, 0);
2569 }
2570
2571 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2572                                 struct reloc_control *rc,
2573                                 struct btrfs_path *path, int err)
2574 {
2575         LIST_HEAD(list);
2576         struct btrfs_backref_cache *cache = &rc->backref_cache;
2577         struct btrfs_backref_node *node;
2578         int level;
2579         int ret;
2580
2581         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2582                 while (!list_empty(&cache->pending[level])) {
2583                         node = list_entry(cache->pending[level].next,
2584                                           struct btrfs_backref_node, list);
2585                         list_move_tail(&node->list, &list);
2586                         BUG_ON(!node->pending);
2587
2588                         if (!err) {
2589                                 ret = link_to_upper(trans, rc, node, path);
2590                                 if (ret < 0)
2591                                         err = ret;
2592                         }
2593                 }
2594                 list_splice_init(&list, &cache->pending[level]);
2595         }
2596         return err;
2597 }
2598
2599 /*
2600  * mark a block and all blocks directly/indirectly reference the block
2601  * as processed.
2602  */
2603 static void update_processed_blocks(struct reloc_control *rc,
2604                                     struct btrfs_backref_node *node)
2605 {
2606         struct btrfs_backref_node *next = node;
2607         struct btrfs_backref_edge *edge;
2608         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2609         int index = 0;
2610
2611         while (next) {
2612                 cond_resched();
2613                 while (1) {
2614                         if (next->processed)
2615                                 break;
2616
2617                         mark_block_processed(rc, next);
2618
2619                         if (list_empty(&next->upper))
2620                                 break;
2621
2622                         edge = list_entry(next->upper.next,
2623                                         struct btrfs_backref_edge, list[LOWER]);
2624                         edges[index++] = edge;
2625                         next = edge->node[UPPER];
2626                 }
2627                 next = walk_down_backref(edges, &index);
2628         }
2629 }
2630
2631 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2632 {
2633         u32 blocksize = rc->extent_root->fs_info->nodesize;
2634
2635         if (test_range_bit(&rc->processed_blocks, bytenr,
2636                            bytenr + blocksize - 1, EXTENT_DIRTY, NULL))
2637                 return 1;
2638         return 0;
2639 }
2640
2641 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2642                               struct tree_block *block)
2643 {
2644         struct btrfs_tree_parent_check check = {
2645                 .level = block->level,
2646                 .owner_root = block->owner,
2647                 .transid = block->key.offset
2648         };
2649         struct extent_buffer *eb;
2650
2651         eb = read_tree_block(fs_info, block->bytenr, &check);
2652         if (IS_ERR(eb))
2653                 return PTR_ERR(eb);
2654         if (!extent_buffer_uptodate(eb)) {
2655                 free_extent_buffer(eb);
2656                 return -EIO;
2657         }
2658         if (block->level == 0)
2659                 btrfs_item_key_to_cpu(eb, &block->key, 0);
2660         else
2661                 btrfs_node_key_to_cpu(eb, &block->key, 0);
2662         free_extent_buffer(eb);
2663         block->key_ready = true;
2664         return 0;
2665 }
2666
2667 /*
2668  * helper function to relocate a tree block
2669  */
2670 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2671                                 struct reloc_control *rc,
2672                                 struct btrfs_backref_node *node,
2673                                 struct btrfs_key *key,
2674                                 struct btrfs_path *path)
2675 {
2676         struct btrfs_root *root;
2677         int ret = 0;
2678
2679         if (!node)
2680                 return 0;
2681
2682         /*
2683          * If we fail here we want to drop our backref_node because we are going
2684          * to start over and regenerate the tree for it.
2685          */
2686         ret = reserve_metadata_space(trans, rc, node);
2687         if (ret)
2688                 goto out;
2689
2690         BUG_ON(node->processed);
2691         root = select_one_root(node);
2692         if (IS_ERR(root)) {
2693                 ret = PTR_ERR(root);
2694
2695                 /* See explanation in select_one_root for the -EUCLEAN case. */
2696                 ASSERT(ret == -ENOENT);
2697                 if (ret == -ENOENT) {
2698                         ret = 0;
2699                         update_processed_blocks(rc, node);
2700                 }
2701                 goto out;
2702         }
2703
2704         if (root) {
2705                 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2706                         /*
2707                          * This block was the root block of a root, and this is
2708                          * the first time we're processing the block and thus it
2709                          * should not have had the ->new_bytenr modified and
2710                          * should have not been included on the changed list.
2711                          *
2712                          * However in the case of corruption we could have
2713                          * multiple refs pointing to the same block improperly,
2714                          * and thus we would trip over these checks.  ASSERT()
2715                          * for the developer case, because it could indicate a
2716                          * bug in the backref code, however error out for a
2717                          * normal user in the case of corruption.
2718                          */
2719                         ASSERT(node->new_bytenr == 0);
2720                         ASSERT(list_empty(&node->list));
2721                         if (node->new_bytenr || !list_empty(&node->list)) {
2722                                 btrfs_err(root->fs_info,
2723                                   "bytenr %llu has improper references to it",
2724                                           node->bytenr);
2725                                 ret = -EUCLEAN;
2726                                 goto out;
2727                         }
2728                         ret = btrfs_record_root_in_trans(trans, root);
2729                         if (ret)
2730                                 goto out;
2731                         /*
2732                          * Another thread could have failed, need to check if we
2733                          * have reloc_root actually set.
2734                          */
2735                         if (!root->reloc_root) {
2736                                 ret = -ENOENT;
2737                                 goto out;
2738                         }
2739                         root = root->reloc_root;
2740                         node->new_bytenr = root->node->start;
2741                         btrfs_put_root(node->root);
2742                         node->root = btrfs_grab_root(root);
2743                         ASSERT(node->root);
2744                         list_add_tail(&node->list, &rc->backref_cache.changed);
2745                 } else {
2746                         path->lowest_level = node->level;
2747                         if (root == root->fs_info->chunk_root)
2748                                 btrfs_reserve_chunk_metadata(trans, false);
2749                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2750                         btrfs_release_path(path);
2751                         if (root == root->fs_info->chunk_root)
2752                                 btrfs_trans_release_chunk_metadata(trans);
2753                         if (ret > 0)
2754                                 ret = 0;
2755                 }
2756                 if (!ret)
2757                         update_processed_blocks(rc, node);
2758         } else {
2759                 ret = do_relocation(trans, rc, node, key, path, 1);
2760         }
2761 out:
2762         if (ret || node->level == 0 || node->cowonly)
2763                 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2764         return ret;
2765 }
2766
2767 /*
2768  * relocate a list of blocks
2769  */
2770 static noinline_for_stack
2771 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2772                          struct reloc_control *rc, struct rb_root *blocks)
2773 {
2774         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2775         struct btrfs_backref_node *node;
2776         struct btrfs_path *path;
2777         struct tree_block *block;
2778         struct tree_block *next;
2779         int ret;
2780         int err = 0;
2781
2782         path = btrfs_alloc_path();
2783         if (!path) {
2784                 err = -ENOMEM;
2785                 goto out_free_blocks;
2786         }
2787
2788         /* Kick in readahead for tree blocks with missing keys */
2789         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2790                 if (!block->key_ready)
2791                         btrfs_readahead_tree_block(fs_info, block->bytenr,
2792                                                    block->owner, 0,
2793                                                    block->level);
2794         }
2795
2796         /* Get first keys */
2797         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2798                 if (!block->key_ready) {
2799                         err = get_tree_block_key(fs_info, block);
2800                         if (err)
2801                                 goto out_free_path;
2802                 }
2803         }
2804
2805         /* Do tree relocation */
2806         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2807                 node = build_backref_tree(trans, rc, &block->key,
2808                                           block->level, block->bytenr);
2809                 if (IS_ERR(node)) {
2810                         err = PTR_ERR(node);
2811                         goto out;
2812                 }
2813
2814                 ret = relocate_tree_block(trans, rc, node, &block->key,
2815                                           path);
2816                 if (ret < 0) {
2817                         err = ret;
2818                         break;
2819                 }
2820         }
2821 out:
2822         err = finish_pending_nodes(trans, rc, path, err);
2823
2824 out_free_path:
2825         btrfs_free_path(path);
2826 out_free_blocks:
2827         free_block_list(blocks);
2828         return err;
2829 }
2830
2831 static noinline_for_stack int prealloc_file_extent_cluster(
2832                                 struct btrfs_inode *inode,
2833                                 const struct file_extent_cluster *cluster)
2834 {
2835         u64 alloc_hint = 0;
2836         u64 start;
2837         u64 end;
2838         u64 offset = inode->index_cnt;
2839         u64 num_bytes;
2840         int nr;
2841         int ret = 0;
2842         u64 i_size = i_size_read(&inode->vfs_inode);
2843         u64 prealloc_start = cluster->start - offset;
2844         u64 prealloc_end = cluster->end - offset;
2845         u64 cur_offset = prealloc_start;
2846
2847         /*
2848          * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2849          * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2850          * btrfs_do_readpage() call of previously relocated file cluster.
2851          *
2852          * If the current cluster starts in the above range, btrfs_do_readpage()
2853          * will skip the read, and relocate_one_page() will later writeback
2854          * the padding zeros as new data, causing data corruption.
2855          *
2856          * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2857          */
2858         if (!PAGE_ALIGNED(i_size)) {
2859                 struct address_space *mapping = inode->vfs_inode.i_mapping;
2860                 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2861                 const u32 sectorsize = fs_info->sectorsize;
2862                 struct page *page;
2863
2864                 ASSERT(sectorsize < PAGE_SIZE);
2865                 ASSERT(IS_ALIGNED(i_size, sectorsize));
2866
2867                 /*
2868                  * Subpage can't handle page with DIRTY but without UPTODATE
2869                  * bit as it can lead to the following deadlock:
2870                  *
2871                  * btrfs_read_folio()
2872                  * | Page already *locked*
2873                  * |- btrfs_lock_and_flush_ordered_range()
2874                  *    |- btrfs_start_ordered_extent()
2875                  *       |- extent_write_cache_pages()
2876                  *          |- lock_page()
2877                  *             We try to lock the page we already hold.
2878                  *
2879                  * Here we just writeback the whole data reloc inode, so that
2880                  * we will be ensured to have no dirty range in the page, and
2881                  * are safe to clear the uptodate bits.
2882                  *
2883                  * This shouldn't cause too much overhead, as we need to write
2884                  * the data back anyway.
2885                  */
2886                 ret = filemap_write_and_wait(mapping);
2887                 if (ret < 0)
2888                         return ret;
2889
2890                 clear_extent_bits(&inode->io_tree, i_size,
2891                                   round_up(i_size, PAGE_SIZE) - 1,
2892                                   EXTENT_UPTODATE);
2893                 page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2894                 /*
2895                  * If page is freed we don't need to do anything then, as we
2896                  * will re-read the whole page anyway.
2897                  */
2898                 if (page) {
2899                         btrfs_subpage_clear_uptodate(fs_info, page_folio(page), i_size,
2900                                         round_up(i_size, PAGE_SIZE) - i_size);
2901                         unlock_page(page);
2902                         put_page(page);
2903                 }
2904         }
2905
2906         BUG_ON(cluster->start != cluster->boundary[0]);
2907         ret = btrfs_alloc_data_chunk_ondemand(inode,
2908                                               prealloc_end + 1 - prealloc_start);
2909         if (ret)
2910                 return ret;
2911
2912         btrfs_inode_lock(inode, 0);
2913         for (nr = 0; nr < cluster->nr; nr++) {
2914                 struct extent_state *cached_state = NULL;
2915
2916                 start = cluster->boundary[nr] - offset;
2917                 if (nr + 1 < cluster->nr)
2918                         end = cluster->boundary[nr + 1] - 1 - offset;
2919                 else
2920                         end = cluster->end - offset;
2921
2922                 lock_extent(&inode->io_tree, start, end, &cached_state);
2923                 num_bytes = end + 1 - start;
2924                 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2925                                                 num_bytes, num_bytes,
2926                                                 end + 1, &alloc_hint);
2927                 cur_offset = end + 1;
2928                 unlock_extent(&inode->io_tree, start, end, &cached_state);
2929                 if (ret)
2930                         break;
2931         }
2932         btrfs_inode_unlock(inode, 0);
2933
2934         if (cur_offset < prealloc_end)
2935                 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2936                                                prealloc_end + 1 - cur_offset);
2937         return ret;
2938 }
2939
2940 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2941                                 u64 start, u64 end, u64 block_start)
2942 {
2943         struct extent_map *em;
2944         struct extent_state *cached_state = NULL;
2945         int ret = 0;
2946
2947         em = alloc_extent_map();
2948         if (!em)
2949                 return -ENOMEM;
2950
2951         em->start = start;
2952         em->len = end + 1 - start;
2953         em->block_len = em->len;
2954         em->block_start = block_start;
2955         em->flags |= EXTENT_FLAG_PINNED;
2956
2957         lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2958         ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2959         unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2960         free_extent_map(em);
2961
2962         return ret;
2963 }
2964
2965 /*
2966  * Allow error injection to test balance/relocation cancellation
2967  */
2968 noinline int btrfs_should_cancel_balance(const struct btrfs_fs_info *fs_info)
2969 {
2970         return atomic_read(&fs_info->balance_cancel_req) ||
2971                 atomic_read(&fs_info->reloc_cancel_req) ||
2972                 fatal_signal_pending(current);
2973 }
2974 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2975
2976 static u64 get_cluster_boundary_end(const struct file_extent_cluster *cluster,
2977                                     int cluster_nr)
2978 {
2979         /* Last extent, use cluster end directly */
2980         if (cluster_nr >= cluster->nr - 1)
2981                 return cluster->end;
2982
2983         /* Use next boundary start*/
2984         return cluster->boundary[cluster_nr + 1] - 1;
2985 }
2986
2987 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2988                              const struct file_extent_cluster *cluster,
2989                              int *cluster_nr, unsigned long page_index)
2990 {
2991         struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2992         u64 offset = BTRFS_I(inode)->index_cnt;
2993         const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2994         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2995         struct page *page;
2996         u64 page_start;
2997         u64 page_end;
2998         u64 cur;
2999         int ret;
3000
3001         ASSERT(page_index <= last_index);
3002         page = find_lock_page(inode->i_mapping, page_index);
3003         if (!page) {
3004                 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
3005                                 page_index, last_index + 1 - page_index);
3006                 page = find_or_create_page(inode->i_mapping, page_index, mask);
3007                 if (!page)
3008                         return -ENOMEM;
3009         }
3010
3011         if (PageReadahead(page))
3012                 page_cache_async_readahead(inode->i_mapping, ra, NULL,
3013                                 page_folio(page), page_index,
3014                                 last_index + 1 - page_index);
3015
3016         if (!PageUptodate(page)) {
3017                 btrfs_read_folio(NULL, page_folio(page));
3018                 lock_page(page);
3019                 if (!PageUptodate(page)) {
3020                         ret = -EIO;
3021                         goto release_page;
3022                 }
3023         }
3024
3025         /*
3026          * We could have lost page private when we dropped the lock to read the
3027          * page above, make sure we set_page_extent_mapped here so we have any
3028          * of the subpage blocksize stuff we need in place.
3029          */
3030         ret = set_page_extent_mapped(page);
3031         if (ret < 0)
3032                 goto release_page;
3033
3034         page_start = page_offset(page);
3035         page_end = page_start + PAGE_SIZE - 1;
3036
3037         /*
3038          * Start from the cluster, as for subpage case, the cluster can start
3039          * inside the page.
3040          */
3041         cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3042         while (cur <= page_end) {
3043                 struct extent_state *cached_state = NULL;
3044                 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3045                 u64 extent_end = get_cluster_boundary_end(cluster,
3046                                                 *cluster_nr) - offset;
3047                 u64 clamped_start = max(page_start, extent_start);
3048                 u64 clamped_end = min(page_end, extent_end);
3049                 u32 clamped_len = clamped_end + 1 - clamped_start;
3050
3051                 /* Reserve metadata for this range */
3052                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3053                                                       clamped_len, clamped_len,
3054                                                       false);
3055                 if (ret)
3056                         goto release_page;
3057
3058                 /* Mark the range delalloc and dirty for later writeback */
3059                 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3060                             &cached_state);
3061                 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3062                                                 clamped_end, 0, &cached_state);
3063                 if (ret) {
3064                         clear_extent_bit(&BTRFS_I(inode)->io_tree,
3065                                          clamped_start, clamped_end,
3066                                          EXTENT_LOCKED | EXTENT_BOUNDARY,
3067                                          &cached_state);
3068                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
3069                                                         clamped_len, true);
3070                         btrfs_delalloc_release_extents(BTRFS_I(inode),
3071                                                        clamped_len);
3072                         goto release_page;
3073                 }
3074                 btrfs_folio_set_dirty(fs_info, page_folio(page),
3075                                       clamped_start, clamped_len);
3076
3077                 /*
3078                  * Set the boundary if it's inside the page.
3079                  * Data relocation requires the destination extents to have the
3080                  * same size as the source.
3081                  * EXTENT_BOUNDARY bit prevents current extent from being merged
3082                  * with previous extent.
3083                  */
3084                 if (in_range(cluster->boundary[*cluster_nr] - offset,
3085                              page_start, PAGE_SIZE)) {
3086                         u64 boundary_start = cluster->boundary[*cluster_nr] -
3087                                                 offset;
3088                         u64 boundary_end = boundary_start +
3089                                            fs_info->sectorsize - 1;
3090
3091                         set_extent_bit(&BTRFS_I(inode)->io_tree,
3092                                        boundary_start, boundary_end,
3093                                        EXTENT_BOUNDARY, NULL);
3094                 }
3095                 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3096                               &cached_state);
3097                 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3098                 cur += clamped_len;
3099
3100                 /* Crossed extent end, go to next extent */
3101                 if (cur >= extent_end) {
3102                         (*cluster_nr)++;
3103                         /* Just finished the last extent of the cluster, exit. */
3104                         if (*cluster_nr >= cluster->nr)
3105                                 break;
3106                 }
3107         }
3108         unlock_page(page);
3109         put_page(page);
3110
3111         balance_dirty_pages_ratelimited(inode->i_mapping);
3112         btrfs_throttle(fs_info);
3113         if (btrfs_should_cancel_balance(fs_info))
3114                 ret = -ECANCELED;
3115         return ret;
3116
3117 release_page:
3118         unlock_page(page);
3119         put_page(page);
3120         return ret;
3121 }
3122
3123 static int relocate_file_extent_cluster(struct inode *inode,
3124                                         const struct file_extent_cluster *cluster)
3125 {
3126         u64 offset = BTRFS_I(inode)->index_cnt;
3127         unsigned long index;
3128         unsigned long last_index;
3129         struct file_ra_state *ra;
3130         int cluster_nr = 0;
3131         int ret = 0;
3132
3133         if (!cluster->nr)
3134                 return 0;
3135
3136         ra = kzalloc(sizeof(*ra), GFP_NOFS);
3137         if (!ra)
3138                 return -ENOMEM;
3139
3140         ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3141         if (ret)
3142                 goto out;
3143
3144         file_ra_state_init(ra, inode->i_mapping);
3145
3146         ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3147                                    cluster->end - offset, cluster->start);
3148         if (ret)
3149                 goto out;
3150
3151         last_index = (cluster->end - offset) >> PAGE_SHIFT;
3152         for (index = (cluster->start - offset) >> PAGE_SHIFT;
3153              index <= last_index && !ret; index++)
3154                 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3155         if (ret == 0)
3156                 WARN_ON(cluster_nr != cluster->nr);
3157 out:
3158         kfree(ra);
3159         return ret;
3160 }
3161
3162 static noinline_for_stack int relocate_data_extent(struct inode *inode,
3163                                 const struct btrfs_key *extent_key,
3164                                 struct file_extent_cluster *cluster)
3165 {
3166         int ret;
3167         struct btrfs_root *root = BTRFS_I(inode)->root;
3168
3169         if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3170                 ret = relocate_file_extent_cluster(inode, cluster);
3171                 if (ret)
3172                         return ret;
3173                 cluster->nr = 0;
3174         }
3175
3176         /*
3177          * Under simple quotas, we set root->relocation_src_root when we find
3178          * the extent. If adjacent extents have different owners, we can't merge
3179          * them while relocating. Handle this by storing the owning root that
3180          * started a cluster and if we see an extent from a different root break
3181          * cluster formation (just like the above case of non-adjacent extents).
3182          *
3183          * Without simple quotas, relocation_src_root is always 0, so we should
3184          * never see a mismatch, and it should have no effect on relocation
3185          * clusters.
3186          */
3187         if (cluster->nr > 0 && cluster->owning_root != root->relocation_src_root) {
3188                 u64 tmp = root->relocation_src_root;
3189
3190                 /*
3191                  * root->relocation_src_root is the state that actually affects
3192                  * the preallocation we do here, so set it to the root owning
3193                  * the cluster we need to relocate.
3194                  */
3195                 root->relocation_src_root = cluster->owning_root;
3196                 ret = relocate_file_extent_cluster(inode, cluster);
3197                 if (ret)
3198                         return ret;
3199                 cluster->nr = 0;
3200                 /* And reset it back for the current extent's owning root. */
3201                 root->relocation_src_root = tmp;
3202         }
3203
3204         if (!cluster->nr) {
3205                 cluster->start = extent_key->objectid;
3206                 cluster->owning_root = root->relocation_src_root;
3207         }
3208         else
3209                 BUG_ON(cluster->nr >= MAX_EXTENTS);
3210         cluster->end = extent_key->objectid + extent_key->offset - 1;
3211         cluster->boundary[cluster->nr] = extent_key->objectid;
3212         cluster->nr++;
3213
3214         if (cluster->nr >= MAX_EXTENTS) {
3215                 ret = relocate_file_extent_cluster(inode, cluster);
3216                 if (ret)
3217                         return ret;
3218                 cluster->nr = 0;
3219         }
3220         return 0;
3221 }
3222
3223 /*
3224  * helper to add a tree block to the list.
3225  * the major work is getting the generation and level of the block
3226  */
3227 static int add_tree_block(struct reloc_control *rc,
3228                           const struct btrfs_key *extent_key,
3229                           struct btrfs_path *path,
3230                           struct rb_root *blocks)
3231 {
3232         struct extent_buffer *eb;
3233         struct btrfs_extent_item *ei;
3234         struct btrfs_tree_block_info *bi;
3235         struct tree_block *block;
3236         struct rb_node *rb_node;
3237         u32 item_size;
3238         int level = -1;
3239         u64 generation;
3240         u64 owner = 0;
3241
3242         eb =  path->nodes[0];
3243         item_size = btrfs_item_size(eb, path->slots[0]);
3244
3245         if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3246             item_size >= sizeof(*ei) + sizeof(*bi)) {
3247                 unsigned long ptr = 0, end;
3248
3249                 ei = btrfs_item_ptr(eb, path->slots[0],
3250                                 struct btrfs_extent_item);
3251                 end = (unsigned long)ei + item_size;
3252                 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3253                         bi = (struct btrfs_tree_block_info *)(ei + 1);
3254                         level = btrfs_tree_block_level(eb, bi);
3255                         ptr = (unsigned long)(bi + 1);
3256                 } else {
3257                         level = (int)extent_key->offset;
3258                         ptr = (unsigned long)(ei + 1);
3259                 }
3260                 generation = btrfs_extent_generation(eb, ei);
3261
3262                 /*
3263                  * We're reading random blocks without knowing their owner ahead
3264                  * of time.  This is ok most of the time, as all reloc roots and
3265                  * fs roots have the same lock type.  However normal trees do
3266                  * not, and the only way to know ahead of time is to read the
3267                  * inline ref offset.  We know it's an fs root if
3268                  *
3269                  * 1. There's more than one ref.
3270                  * 2. There's a SHARED_DATA_REF_KEY set.
3271                  * 3. FULL_BACKREF is set on the flags.
3272                  *
3273                  * Otherwise it's safe to assume that the ref offset == the
3274                  * owner of this block, so we can use that when calling
3275                  * read_tree_block.
3276                  */
3277                 if (btrfs_extent_refs(eb, ei) == 1 &&
3278                     !(btrfs_extent_flags(eb, ei) &
3279                       BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3280                     ptr < end) {
3281                         struct btrfs_extent_inline_ref *iref;
3282                         int type;
3283
3284                         iref = (struct btrfs_extent_inline_ref *)ptr;
3285                         type = btrfs_get_extent_inline_ref_type(eb, iref,
3286                                                         BTRFS_REF_TYPE_BLOCK);
3287                         if (type == BTRFS_REF_TYPE_INVALID)
3288                                 return -EINVAL;
3289                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
3290                                 owner = btrfs_extent_inline_ref_offset(eb, iref);
3291                 }
3292         } else {
3293                 btrfs_print_leaf(eb);
3294                 btrfs_err(rc->block_group->fs_info,
3295                           "unrecognized tree backref at tree block %llu slot %u",
3296                           eb->start, path->slots[0]);
3297                 btrfs_release_path(path);
3298                 return -EUCLEAN;
3299         }
3300
3301         btrfs_release_path(path);
3302
3303         BUG_ON(level == -1);
3304
3305         block = kmalloc(sizeof(*block), GFP_NOFS);
3306         if (!block)
3307                 return -ENOMEM;
3308
3309         block->bytenr = extent_key->objectid;
3310         block->key.objectid = rc->extent_root->fs_info->nodesize;
3311         block->key.offset = generation;
3312         block->level = level;
3313         block->key_ready = false;
3314         block->owner = owner;
3315
3316         rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3317         if (rb_node)
3318                 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3319                                     -EEXIST);
3320
3321         return 0;
3322 }
3323
3324 /*
3325  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3326  */
3327 static int __add_tree_block(struct reloc_control *rc,
3328                             u64 bytenr, u32 blocksize,
3329                             struct rb_root *blocks)
3330 {
3331         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3332         struct btrfs_path *path;
3333         struct btrfs_key key;
3334         int ret;
3335         bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3336
3337         if (tree_block_processed(bytenr, rc))
3338                 return 0;
3339
3340         if (rb_simple_search(blocks, bytenr))
3341                 return 0;
3342
3343         path = btrfs_alloc_path();
3344         if (!path)
3345                 return -ENOMEM;
3346 again:
3347         key.objectid = bytenr;
3348         if (skinny) {
3349                 key.type = BTRFS_METADATA_ITEM_KEY;
3350                 key.offset = (u64)-1;
3351         } else {
3352                 key.type = BTRFS_EXTENT_ITEM_KEY;
3353                 key.offset = blocksize;
3354         }
3355
3356         path->search_commit_root = 1;
3357         path->skip_locking = 1;
3358         ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3359         if (ret < 0)
3360                 goto out;
3361
3362         if (ret > 0 && skinny) {
3363                 if (path->slots[0]) {
3364                         path->slots[0]--;
3365                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3366                                               path->slots[0]);
3367                         if (key.objectid == bytenr &&
3368                             (key.type == BTRFS_METADATA_ITEM_KEY ||
3369                              (key.type == BTRFS_EXTENT_ITEM_KEY &&
3370                               key.offset == blocksize)))
3371                                 ret = 0;
3372                 }
3373
3374                 if (ret) {
3375                         skinny = false;
3376                         btrfs_release_path(path);
3377                         goto again;
3378                 }
3379         }
3380         if (ret) {
3381                 ASSERT(ret == 1);
3382                 btrfs_print_leaf(path->nodes[0]);
3383                 btrfs_err(fs_info,
3384              "tree block extent item (%llu) is not found in extent tree",
3385                      bytenr);
3386                 WARN_ON(1);
3387                 ret = -EINVAL;
3388                 goto out;
3389         }
3390
3391         ret = add_tree_block(rc, &key, path, blocks);
3392 out:
3393         btrfs_free_path(path);
3394         return ret;
3395 }
3396
3397 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3398                                     struct btrfs_block_group *block_group,
3399                                     struct inode *inode,
3400                                     u64 ino)
3401 {
3402         struct btrfs_root *root = fs_info->tree_root;
3403         struct btrfs_trans_handle *trans;
3404         int ret = 0;
3405
3406         if (inode)
3407                 goto truncate;
3408
3409         inode = btrfs_iget(fs_info->sb, ino, root);
3410         if (IS_ERR(inode))
3411                 return -ENOENT;
3412
3413 truncate:
3414         ret = btrfs_check_trunc_cache_free_space(fs_info,
3415                                                  &fs_info->global_block_rsv);
3416         if (ret)
3417                 goto out;
3418
3419         trans = btrfs_join_transaction(root);
3420         if (IS_ERR(trans)) {
3421                 ret = PTR_ERR(trans);
3422                 goto out;
3423         }
3424
3425         ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3426
3427         btrfs_end_transaction(trans);
3428         btrfs_btree_balance_dirty(fs_info);
3429 out:
3430         iput(inode);
3431         return ret;
3432 }
3433
3434 /*
3435  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3436  * cache inode, to avoid free space cache data extent blocking data relocation.
3437  */
3438 static int delete_v1_space_cache(struct extent_buffer *leaf,
3439                                  struct btrfs_block_group *block_group,
3440                                  u64 data_bytenr)
3441 {
3442         u64 space_cache_ino;
3443         struct btrfs_file_extent_item *ei;
3444         struct btrfs_key key;
3445         bool found = false;
3446         int i;
3447         int ret;
3448
3449         if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3450                 return 0;
3451
3452         for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3453                 u8 type;
3454
3455                 btrfs_item_key_to_cpu(leaf, &key, i);
3456                 if (key.type != BTRFS_EXTENT_DATA_KEY)
3457                         continue;
3458                 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3459                 type = btrfs_file_extent_type(leaf, ei);
3460
3461                 if ((type == BTRFS_FILE_EXTENT_REG ||
3462                      type == BTRFS_FILE_EXTENT_PREALLOC) &&
3463                     btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3464                         found = true;
3465                         space_cache_ino = key.objectid;
3466                         break;
3467                 }
3468         }
3469         if (!found)
3470                 return -ENOENT;
3471         ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3472                                         space_cache_ino);
3473         return ret;
3474 }
3475
3476 /*
3477  * helper to find all tree blocks that reference a given data extent
3478  */
3479 static noinline_for_stack int add_data_references(struct reloc_control *rc,
3480                                                   const struct btrfs_key *extent_key,
3481                                                   struct btrfs_path *path,
3482                                                   struct rb_root *blocks)
3483 {
3484         struct btrfs_backref_walk_ctx ctx = { 0 };
3485         struct ulist_iterator leaf_uiter;
3486         struct ulist_node *ref_node = NULL;
3487         const u32 blocksize = rc->extent_root->fs_info->nodesize;
3488         int ret = 0;
3489
3490         btrfs_release_path(path);
3491
3492         ctx.bytenr = extent_key->objectid;
3493         ctx.skip_inode_ref_list = true;
3494         ctx.fs_info = rc->extent_root->fs_info;
3495
3496         ret = btrfs_find_all_leafs(&ctx);
3497         if (ret < 0)
3498                 return ret;
3499
3500         ULIST_ITER_INIT(&leaf_uiter);
3501         while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3502                 struct btrfs_tree_parent_check check = { 0 };
3503                 struct extent_buffer *eb;
3504
3505                 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3506                 if (IS_ERR(eb)) {
3507                         ret = PTR_ERR(eb);
3508                         break;
3509                 }
3510                 ret = delete_v1_space_cache(eb, rc->block_group,
3511                                             extent_key->objectid);
3512                 free_extent_buffer(eb);
3513                 if (ret < 0)
3514                         break;
3515                 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3516                 if (ret < 0)
3517                         break;
3518         }
3519         if (ret < 0)
3520                 free_block_list(blocks);
3521         ulist_free(ctx.refs);
3522         return ret;
3523 }
3524
3525 /*
3526  * helper to find next unprocessed extent
3527  */
3528 static noinline_for_stack
3529 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3530                      struct btrfs_key *extent_key)
3531 {
3532         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3533         struct btrfs_key key;
3534         struct extent_buffer *leaf;
3535         u64 start, end, last;
3536         int ret;
3537
3538         last = rc->block_group->start + rc->block_group->length;
3539         while (1) {
3540                 bool block_found;
3541
3542                 cond_resched();
3543                 if (rc->search_start >= last) {
3544                         ret = 1;
3545                         break;
3546                 }
3547
3548                 key.objectid = rc->search_start;
3549                 key.type = BTRFS_EXTENT_ITEM_KEY;
3550                 key.offset = 0;
3551
3552                 path->search_commit_root = 1;
3553                 path->skip_locking = 1;
3554                 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3555                                         0, 0);
3556                 if (ret < 0)
3557                         break;
3558 next:
3559                 leaf = path->nodes[0];
3560                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3561                         ret = btrfs_next_leaf(rc->extent_root, path);
3562                         if (ret != 0)
3563                                 break;
3564                         leaf = path->nodes[0];
3565                 }
3566
3567                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3568                 if (key.objectid >= last) {
3569                         ret = 1;
3570                         break;
3571                 }
3572
3573                 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3574                     key.type != BTRFS_METADATA_ITEM_KEY) {
3575                         path->slots[0]++;
3576                         goto next;
3577                 }
3578
3579                 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3580                     key.objectid + key.offset <= rc->search_start) {
3581                         path->slots[0]++;
3582                         goto next;
3583                 }
3584
3585                 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3586                     key.objectid + fs_info->nodesize <=
3587                     rc->search_start) {
3588                         path->slots[0]++;
3589                         goto next;
3590                 }
3591
3592                 block_found = find_first_extent_bit(&rc->processed_blocks,
3593                                                     key.objectid, &start, &end,
3594                                                     EXTENT_DIRTY, NULL);
3595
3596                 if (block_found && start <= key.objectid) {
3597                         btrfs_release_path(path);
3598                         rc->search_start = end + 1;
3599                 } else {
3600                         if (key.type == BTRFS_EXTENT_ITEM_KEY)
3601                                 rc->search_start = key.objectid + key.offset;
3602                         else
3603                                 rc->search_start = key.objectid +
3604                                         fs_info->nodesize;
3605                         memcpy(extent_key, &key, sizeof(key));
3606                         return 0;
3607                 }
3608         }
3609         btrfs_release_path(path);
3610         return ret;
3611 }
3612
3613 static void set_reloc_control(struct reloc_control *rc)
3614 {
3615         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3616
3617         mutex_lock(&fs_info->reloc_mutex);
3618         fs_info->reloc_ctl = rc;
3619         mutex_unlock(&fs_info->reloc_mutex);
3620 }
3621
3622 static void unset_reloc_control(struct reloc_control *rc)
3623 {
3624         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3625
3626         mutex_lock(&fs_info->reloc_mutex);
3627         fs_info->reloc_ctl = NULL;
3628         mutex_unlock(&fs_info->reloc_mutex);
3629 }
3630
3631 static noinline_for_stack
3632 int prepare_to_relocate(struct reloc_control *rc)
3633 {
3634         struct btrfs_trans_handle *trans;
3635         int ret;
3636
3637         rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3638                                               BTRFS_BLOCK_RSV_TEMP);
3639         if (!rc->block_rsv)
3640                 return -ENOMEM;
3641
3642         memset(&rc->cluster, 0, sizeof(rc->cluster));
3643         rc->search_start = rc->block_group->start;
3644         rc->extents_found = 0;
3645         rc->nodes_relocated = 0;
3646         rc->merging_rsv_size = 0;
3647         rc->reserved_bytes = 0;
3648         rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3649                               RELOCATION_RESERVED_NODES;
3650         ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3651                                      rc->block_rsv, rc->block_rsv->size,
3652                                      BTRFS_RESERVE_FLUSH_ALL);
3653         if (ret)
3654                 return ret;
3655
3656         rc->create_reloc_tree = true;
3657         set_reloc_control(rc);
3658
3659         trans = btrfs_join_transaction(rc->extent_root);
3660         if (IS_ERR(trans)) {
3661                 unset_reloc_control(rc);
3662                 /*
3663                  * extent tree is not a ref_cow tree and has no reloc_root to
3664                  * cleanup.  And callers are responsible to free the above
3665                  * block rsv.
3666                  */
3667                 return PTR_ERR(trans);
3668         }
3669
3670         ret = btrfs_commit_transaction(trans);
3671         if (ret)
3672                 unset_reloc_control(rc);
3673
3674         return ret;
3675 }
3676
3677 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3678 {
3679         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3680         struct rb_root blocks = RB_ROOT;
3681         struct btrfs_key key;
3682         struct btrfs_trans_handle *trans = NULL;
3683         struct btrfs_path *path;
3684         struct btrfs_extent_item *ei;
3685         u64 flags;
3686         int ret;
3687         int err = 0;
3688         int progress = 0;
3689
3690         path = btrfs_alloc_path();
3691         if (!path)
3692                 return -ENOMEM;
3693         path->reada = READA_FORWARD;
3694
3695         ret = prepare_to_relocate(rc);
3696         if (ret) {
3697                 err = ret;
3698                 goto out_free;
3699         }
3700
3701         while (1) {
3702                 rc->reserved_bytes = 0;
3703                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3704                                              rc->block_rsv->size,
3705                                              BTRFS_RESERVE_FLUSH_ALL);
3706                 if (ret) {
3707                         err = ret;
3708                         break;
3709                 }
3710                 progress++;
3711                 trans = btrfs_start_transaction(rc->extent_root, 0);
3712                 if (IS_ERR(trans)) {
3713                         err = PTR_ERR(trans);
3714                         trans = NULL;
3715                         break;
3716                 }
3717 restart:
3718                 if (update_backref_cache(trans, &rc->backref_cache)) {
3719                         btrfs_end_transaction(trans);
3720                         trans = NULL;
3721                         continue;
3722                 }
3723
3724                 ret = find_next_extent(rc, path, &key);
3725                 if (ret < 0)
3726                         err = ret;
3727                 if (ret != 0)
3728                         break;
3729
3730                 rc->extents_found++;
3731
3732                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3733                                     struct btrfs_extent_item);
3734                 flags = btrfs_extent_flags(path->nodes[0], ei);
3735
3736                 /*
3737                  * If we are relocating a simple quota owned extent item, we
3738                  * need to note the owner on the reloc data root so that when
3739                  * we allocate the replacement item, we can attribute it to the
3740                  * correct eventual owner (rather than the reloc data root).
3741                  */
3742                 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE) {
3743                         struct btrfs_root *root = BTRFS_I(rc->data_inode)->root;
3744                         u64 owning_root_id = btrfs_get_extent_owner_root(fs_info,
3745                                                                  path->nodes[0],
3746                                                                  path->slots[0]);
3747
3748                         root->relocation_src_root = owning_root_id;
3749                 }
3750
3751                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3752                         ret = add_tree_block(rc, &key, path, &blocks);
3753                 } else if (rc->stage == UPDATE_DATA_PTRS &&
3754                            (flags & BTRFS_EXTENT_FLAG_DATA)) {
3755                         ret = add_data_references(rc, &key, path, &blocks);
3756                 } else {
3757                         btrfs_release_path(path);
3758                         ret = 0;
3759                 }
3760                 if (ret < 0) {
3761                         err = ret;
3762                         break;
3763                 }
3764
3765                 if (!RB_EMPTY_ROOT(&blocks)) {
3766                         ret = relocate_tree_blocks(trans, rc, &blocks);
3767                         if (ret < 0) {
3768                                 if (ret != -EAGAIN) {
3769                                         err = ret;
3770                                         break;
3771                                 }
3772                                 rc->extents_found--;
3773                                 rc->search_start = key.objectid;
3774                         }
3775                 }
3776
3777                 btrfs_end_transaction_throttle(trans);
3778                 btrfs_btree_balance_dirty(fs_info);
3779                 trans = NULL;
3780
3781                 if (rc->stage == MOVE_DATA_EXTENTS &&
3782                     (flags & BTRFS_EXTENT_FLAG_DATA)) {
3783                         rc->found_file_extent = true;
3784                         ret = relocate_data_extent(rc->data_inode,
3785                                                    &key, &rc->cluster);
3786                         if (ret < 0) {
3787                                 err = ret;
3788                                 break;
3789                         }
3790                 }
3791                 if (btrfs_should_cancel_balance(fs_info)) {
3792                         err = -ECANCELED;
3793                         break;
3794                 }
3795         }
3796         if (trans && progress && err == -ENOSPC) {
3797                 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3798                 if (ret == 1) {
3799                         err = 0;
3800                         progress = 0;
3801                         goto restart;
3802                 }
3803         }
3804
3805         btrfs_release_path(path);
3806         clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3807
3808         if (trans) {
3809                 btrfs_end_transaction_throttle(trans);
3810                 btrfs_btree_balance_dirty(fs_info);
3811         }
3812
3813         if (!err) {
3814                 ret = relocate_file_extent_cluster(rc->data_inode,
3815                                                    &rc->cluster);
3816                 if (ret < 0)
3817                         err = ret;
3818         }
3819
3820         rc->create_reloc_tree = false;
3821         set_reloc_control(rc);
3822
3823         btrfs_backref_release_cache(&rc->backref_cache);
3824         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3825
3826         /*
3827          * Even in the case when the relocation is cancelled, we should all go
3828          * through prepare_to_merge() and merge_reloc_roots().
3829          *
3830          * For error (including cancelled balance), prepare_to_merge() will
3831          * mark all reloc trees orphan, then queue them for cleanup in
3832          * merge_reloc_roots()
3833          */
3834         err = prepare_to_merge(rc, err);
3835
3836         merge_reloc_roots(rc);
3837
3838         rc->merge_reloc_tree = false;
3839         unset_reloc_control(rc);
3840         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3841
3842         /* get rid of pinned extents */
3843         trans = btrfs_join_transaction(rc->extent_root);
3844         if (IS_ERR(trans)) {
3845                 err = PTR_ERR(trans);
3846                 goto out_free;
3847         }
3848         ret = btrfs_commit_transaction(trans);
3849         if (ret && !err)
3850                 err = ret;
3851 out_free:
3852         ret = clean_dirty_subvols(rc);
3853         if (ret < 0 && !err)
3854                 err = ret;
3855         btrfs_free_block_rsv(fs_info, rc->block_rsv);
3856         btrfs_free_path(path);
3857         return err;
3858 }
3859
3860 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3861                                  struct btrfs_root *root, u64 objectid)
3862 {
3863         struct btrfs_path *path;
3864         struct btrfs_inode_item *item;
3865         struct extent_buffer *leaf;
3866         int ret;
3867
3868         path = btrfs_alloc_path();
3869         if (!path)
3870                 return -ENOMEM;
3871
3872         ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3873         if (ret)
3874                 goto out;
3875
3876         leaf = path->nodes[0];
3877         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3878         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3879         btrfs_set_inode_generation(leaf, item, 1);
3880         btrfs_set_inode_size(leaf, item, 0);
3881         btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3882         btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3883                                           BTRFS_INODE_PREALLOC);
3884         btrfs_mark_buffer_dirty(trans, leaf);
3885 out:
3886         btrfs_free_path(path);
3887         return ret;
3888 }
3889
3890 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3891                                 struct btrfs_root *root, u64 objectid)
3892 {
3893         struct btrfs_path *path;
3894         struct btrfs_key key;
3895         int ret = 0;
3896
3897         path = btrfs_alloc_path();
3898         if (!path) {
3899                 ret = -ENOMEM;
3900                 goto out;
3901         }
3902
3903         key.objectid = objectid;
3904         key.type = BTRFS_INODE_ITEM_KEY;
3905         key.offset = 0;
3906         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3907         if (ret) {
3908                 if (ret > 0)
3909                         ret = -ENOENT;
3910                 goto out;
3911         }
3912         ret = btrfs_del_item(trans, root, path);
3913 out:
3914         if (ret)
3915                 btrfs_abort_transaction(trans, ret);
3916         btrfs_free_path(path);
3917 }
3918
3919 /*
3920  * helper to create inode for data relocation.
3921  * the inode is in data relocation tree and its link count is 0
3922  */
3923 static noinline_for_stack struct inode *create_reloc_inode(
3924                                         struct btrfs_fs_info *fs_info,
3925                                         const struct btrfs_block_group *group)
3926 {
3927         struct inode *inode = NULL;
3928         struct btrfs_trans_handle *trans;
3929         struct btrfs_root *root;
3930         u64 objectid;
3931         int err = 0;
3932
3933         root = btrfs_grab_root(fs_info->data_reloc_root);
3934         trans = btrfs_start_transaction(root, 6);
3935         if (IS_ERR(trans)) {
3936                 btrfs_put_root(root);
3937                 return ERR_CAST(trans);
3938         }
3939
3940         err = btrfs_get_free_objectid(root, &objectid);
3941         if (err)
3942                 goto out;
3943
3944         err = __insert_orphan_inode(trans, root, objectid);
3945         if (err)
3946                 goto out;
3947
3948         inode = btrfs_iget(fs_info->sb, objectid, root);
3949         if (IS_ERR(inode)) {
3950                 delete_orphan_inode(trans, root, objectid);
3951                 err = PTR_ERR(inode);
3952                 inode = NULL;
3953                 goto out;
3954         }
3955         BTRFS_I(inode)->index_cnt = group->start;
3956
3957         err = btrfs_orphan_add(trans, BTRFS_I(inode));
3958 out:
3959         btrfs_put_root(root);
3960         btrfs_end_transaction(trans);
3961         btrfs_btree_balance_dirty(fs_info);
3962         if (err) {
3963                 iput(inode);
3964                 inode = ERR_PTR(err);
3965         }
3966         return inode;
3967 }
3968
3969 /*
3970  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3971  * has been requested meanwhile and don't start in that case.
3972  *
3973  * Return:
3974  *   0             success
3975  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3976  *   -ECANCELED    cancellation request was set before the operation started
3977  */
3978 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3979 {
3980         if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3981                 /* This should not happen */
3982                 btrfs_err(fs_info, "reloc already running, cannot start");
3983                 return -EINPROGRESS;
3984         }
3985
3986         if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3987                 btrfs_info(fs_info, "chunk relocation canceled on start");
3988                 /*
3989                  * On cancel, clear all requests but let the caller mark
3990                  * the end after cleanup operations.
3991                  */
3992                 atomic_set(&fs_info->reloc_cancel_req, 0);
3993                 return -ECANCELED;
3994         }
3995         return 0;
3996 }
3997
3998 /*
3999  * Mark end of chunk relocation that is cancellable and wake any waiters.
4000  */
4001 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
4002 {
4003         /* Requested after start, clear bit first so any waiters can continue */
4004         if (atomic_read(&fs_info->reloc_cancel_req) > 0)
4005                 btrfs_info(fs_info, "chunk relocation canceled during operation");
4006         clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
4007         atomic_set(&fs_info->reloc_cancel_req, 0);
4008 }
4009
4010 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4011 {
4012         struct reloc_control *rc;
4013
4014         rc = kzalloc(sizeof(*rc), GFP_NOFS);
4015         if (!rc)
4016                 return NULL;
4017
4018         INIT_LIST_HEAD(&rc->reloc_roots);
4019         INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4020         btrfs_backref_init_cache(fs_info, &rc->backref_cache, true);
4021         rc->reloc_root_tree.rb_root = RB_ROOT;
4022         spin_lock_init(&rc->reloc_root_tree.lock);
4023         extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
4024         return rc;
4025 }
4026
4027 static void free_reloc_control(struct reloc_control *rc)
4028 {
4029         struct mapping_node *node, *tmp;
4030
4031         free_reloc_roots(&rc->reloc_roots);
4032         rbtree_postorder_for_each_entry_safe(node, tmp,
4033                         &rc->reloc_root_tree.rb_root, rb_node)
4034                 kfree(node);
4035
4036         kfree(rc);
4037 }
4038
4039 /*
4040  * Print the block group being relocated
4041  */
4042 static void describe_relocation(struct btrfs_fs_info *fs_info,
4043                                 struct btrfs_block_group *block_group)
4044 {
4045         char buf[128] = {'\0'};
4046
4047         btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4048
4049         btrfs_info(fs_info,
4050                    "relocating block group %llu flags %s",
4051                    block_group->start, buf);
4052 }
4053
4054 static const char *stage_to_string(enum reloc_stage stage)
4055 {
4056         if (stage == MOVE_DATA_EXTENTS)
4057                 return "move data extents";
4058         if (stage == UPDATE_DATA_PTRS)
4059                 return "update data pointers";
4060         return "unknown";
4061 }
4062
4063 /*
4064  * function to relocate all extents in a block group.
4065  */
4066 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4067 {
4068         struct btrfs_block_group *bg;
4069         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4070         struct reloc_control *rc;
4071         struct inode *inode;
4072         struct btrfs_path *path;
4073         int ret;
4074         int rw = 0;
4075         int err = 0;
4076
4077         /*
4078          * This only gets set if we had a half-deleted snapshot on mount.  We
4079          * cannot allow relocation to start while we're still trying to clean up
4080          * these pending deletions.
4081          */
4082         ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4083         if (ret)
4084                 return ret;
4085
4086         /* We may have been woken up by close_ctree, so bail if we're closing. */
4087         if (btrfs_fs_closing(fs_info))
4088                 return -EINTR;
4089
4090         bg = btrfs_lookup_block_group(fs_info, group_start);
4091         if (!bg)
4092                 return -ENOENT;
4093
4094         /*
4095          * Relocation of a data block group creates ordered extents.  Without
4096          * sb_start_write(), we can freeze the filesystem while unfinished
4097          * ordered extents are left. Such ordered extents can cause a deadlock
4098          * e.g. when syncfs() is waiting for their completion but they can't
4099          * finish because they block when joining a transaction, due to the
4100          * fact that the freeze locks are being held in write mode.
4101          */
4102         if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4103                 ASSERT(sb_write_started(fs_info->sb));
4104
4105         if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4106                 btrfs_put_block_group(bg);
4107                 return -ETXTBSY;
4108         }
4109
4110         rc = alloc_reloc_control(fs_info);
4111         if (!rc) {
4112                 btrfs_put_block_group(bg);
4113                 return -ENOMEM;
4114         }
4115
4116         ret = reloc_chunk_start(fs_info);
4117         if (ret < 0) {
4118                 err = ret;
4119                 goto out_put_bg;
4120         }
4121
4122         rc->extent_root = extent_root;
4123         rc->block_group = bg;
4124
4125         ret = btrfs_inc_block_group_ro(rc->block_group, true);
4126         if (ret) {
4127                 err = ret;
4128                 goto out;
4129         }
4130         rw = 1;
4131
4132         path = btrfs_alloc_path();
4133         if (!path) {
4134                 err = -ENOMEM;
4135                 goto out;
4136         }
4137
4138         inode = lookup_free_space_inode(rc->block_group, path);
4139         btrfs_free_path(path);
4140
4141         if (!IS_ERR(inode))
4142                 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4143         else
4144                 ret = PTR_ERR(inode);
4145
4146         if (ret && ret != -ENOENT) {
4147                 err = ret;
4148                 goto out;
4149         }
4150
4151         rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4152         if (IS_ERR(rc->data_inode)) {
4153                 err = PTR_ERR(rc->data_inode);
4154                 rc->data_inode = NULL;
4155                 goto out;
4156         }
4157
4158         describe_relocation(fs_info, rc->block_group);
4159
4160         btrfs_wait_block_group_reservations(rc->block_group);
4161         btrfs_wait_nocow_writers(rc->block_group);
4162         btrfs_wait_ordered_roots(fs_info, U64_MAX,
4163                                  rc->block_group->start,
4164                                  rc->block_group->length);
4165
4166         ret = btrfs_zone_finish(rc->block_group);
4167         WARN_ON(ret && ret != -EAGAIN);
4168
4169         while (1) {
4170                 enum reloc_stage finishes_stage;
4171
4172                 mutex_lock(&fs_info->cleaner_mutex);
4173                 ret = relocate_block_group(rc);
4174                 mutex_unlock(&fs_info->cleaner_mutex);
4175                 if (ret < 0)
4176                         err = ret;
4177
4178                 finishes_stage = rc->stage;
4179                 /*
4180                  * We may have gotten ENOSPC after we already dirtied some
4181                  * extents.  If writeout happens while we're relocating a
4182                  * different block group we could end up hitting the
4183                  * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4184                  * btrfs_reloc_cow_block.  Make sure we write everything out
4185                  * properly so we don't trip over this problem, and then break
4186                  * out of the loop if we hit an error.
4187                  */
4188                 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4189                         ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4190                                                        (u64)-1);
4191                         if (ret)
4192                                 err = ret;
4193                         invalidate_mapping_pages(rc->data_inode->i_mapping,
4194                                                  0, -1);
4195                         rc->stage = UPDATE_DATA_PTRS;
4196                 }
4197
4198                 if (err < 0)
4199                         goto out;
4200
4201                 if (rc->extents_found == 0)
4202                         break;
4203
4204                 btrfs_info(fs_info, "found %llu extents, stage: %s",
4205                            rc->extents_found, stage_to_string(finishes_stage));
4206         }
4207
4208         WARN_ON(rc->block_group->pinned > 0);
4209         WARN_ON(rc->block_group->reserved > 0);
4210         WARN_ON(rc->block_group->used > 0);
4211 out:
4212         if (err && rw)
4213                 btrfs_dec_block_group_ro(rc->block_group);
4214         iput(rc->data_inode);
4215 out_put_bg:
4216         btrfs_put_block_group(bg);
4217         reloc_chunk_end(fs_info);
4218         free_reloc_control(rc);
4219         return err;
4220 }
4221
4222 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4223 {
4224         struct btrfs_fs_info *fs_info = root->fs_info;
4225         struct btrfs_trans_handle *trans;
4226         int ret, err;
4227
4228         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4229         if (IS_ERR(trans))
4230                 return PTR_ERR(trans);
4231
4232         memset(&root->root_item.drop_progress, 0,
4233                 sizeof(root->root_item.drop_progress));
4234         btrfs_set_root_drop_level(&root->root_item, 0);
4235         btrfs_set_root_refs(&root->root_item, 0);
4236         ret = btrfs_update_root(trans, fs_info->tree_root,
4237                                 &root->root_key, &root->root_item);
4238
4239         err = btrfs_end_transaction(trans);
4240         if (err)
4241                 return err;
4242         return ret;
4243 }
4244
4245 /*
4246  * recover relocation interrupted by system crash.
4247  *
4248  * this function resumes merging reloc trees with corresponding fs trees.
4249  * this is important for keeping the sharing of tree blocks
4250  */
4251 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4252 {
4253         LIST_HEAD(reloc_roots);
4254         struct btrfs_key key;
4255         struct btrfs_root *fs_root;
4256         struct btrfs_root *reloc_root;
4257         struct btrfs_path *path;
4258         struct extent_buffer *leaf;
4259         struct reloc_control *rc = NULL;
4260         struct btrfs_trans_handle *trans;
4261         int ret;
4262         int err = 0;
4263
4264         path = btrfs_alloc_path();
4265         if (!path)
4266                 return -ENOMEM;
4267         path->reada = READA_BACK;
4268
4269         key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4270         key.type = BTRFS_ROOT_ITEM_KEY;
4271         key.offset = (u64)-1;
4272
4273         while (1) {
4274                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4275                                         path, 0, 0);
4276                 if (ret < 0) {
4277                         err = ret;
4278                         goto out;
4279                 }
4280                 if (ret > 0) {
4281                         if (path->slots[0] == 0)
4282                                 break;
4283                         path->slots[0]--;
4284                 }
4285                 leaf = path->nodes[0];
4286                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4287                 btrfs_release_path(path);
4288
4289                 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4290                     key.type != BTRFS_ROOT_ITEM_KEY)
4291                         break;
4292
4293                 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4294                 if (IS_ERR(reloc_root)) {
4295                         err = PTR_ERR(reloc_root);
4296                         goto out;
4297                 }
4298
4299                 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4300                 list_add(&reloc_root->root_list, &reloc_roots);
4301
4302                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4303                         fs_root = btrfs_get_fs_root(fs_info,
4304                                         reloc_root->root_key.offset, false);
4305                         if (IS_ERR(fs_root)) {
4306                                 ret = PTR_ERR(fs_root);
4307                                 if (ret != -ENOENT) {
4308                                         err = ret;
4309                                         goto out;
4310                                 }
4311                                 ret = mark_garbage_root(reloc_root);
4312                                 if (ret < 0) {
4313                                         err = ret;
4314                                         goto out;
4315                                 }
4316                         } else {
4317                                 btrfs_put_root(fs_root);
4318                         }
4319                 }
4320
4321                 if (key.offset == 0)
4322                         break;
4323
4324                 key.offset--;
4325         }
4326         btrfs_release_path(path);
4327
4328         if (list_empty(&reloc_roots))
4329                 goto out;
4330
4331         rc = alloc_reloc_control(fs_info);
4332         if (!rc) {
4333                 err = -ENOMEM;
4334                 goto out;
4335         }
4336
4337         ret = reloc_chunk_start(fs_info);
4338         if (ret < 0) {
4339                 err = ret;
4340                 goto out_end;
4341         }
4342
4343         rc->extent_root = btrfs_extent_root(fs_info, 0);
4344
4345         set_reloc_control(rc);
4346
4347         trans = btrfs_join_transaction(rc->extent_root);
4348         if (IS_ERR(trans)) {
4349                 err = PTR_ERR(trans);
4350                 goto out_unset;
4351         }
4352
4353         rc->merge_reloc_tree = true;
4354
4355         while (!list_empty(&reloc_roots)) {
4356                 reloc_root = list_entry(reloc_roots.next,
4357                                         struct btrfs_root, root_list);
4358                 list_del(&reloc_root->root_list);
4359
4360                 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4361                         list_add_tail(&reloc_root->root_list,
4362                                       &rc->reloc_roots);
4363                         continue;
4364                 }
4365
4366                 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4367                                             false);
4368                 if (IS_ERR(fs_root)) {
4369                         err = PTR_ERR(fs_root);
4370                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4371                         btrfs_end_transaction(trans);
4372                         goto out_unset;
4373                 }
4374
4375                 err = __add_reloc_root(reloc_root);
4376                 ASSERT(err != -EEXIST);
4377                 if (err) {
4378                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4379                         btrfs_put_root(fs_root);
4380                         btrfs_end_transaction(trans);
4381                         goto out_unset;
4382                 }
4383                 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4384                 btrfs_put_root(fs_root);
4385         }
4386
4387         err = btrfs_commit_transaction(trans);
4388         if (err)
4389                 goto out_unset;
4390
4391         merge_reloc_roots(rc);
4392
4393         unset_reloc_control(rc);
4394
4395         trans = btrfs_join_transaction(rc->extent_root);
4396         if (IS_ERR(trans)) {
4397                 err = PTR_ERR(trans);
4398                 goto out_clean;
4399         }
4400         err = btrfs_commit_transaction(trans);
4401 out_clean:
4402         ret = clean_dirty_subvols(rc);
4403         if (ret < 0 && !err)
4404                 err = ret;
4405 out_unset:
4406         unset_reloc_control(rc);
4407 out_end:
4408         reloc_chunk_end(fs_info);
4409         free_reloc_control(rc);
4410 out:
4411         free_reloc_roots(&reloc_roots);
4412
4413         btrfs_free_path(path);
4414
4415         if (err == 0) {
4416                 /* cleanup orphan inode in data relocation tree */
4417                 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4418                 ASSERT(fs_root);
4419                 err = btrfs_orphan_cleanup(fs_root);
4420                 btrfs_put_root(fs_root);
4421         }
4422         return err;
4423 }
4424
4425 /*
4426  * helper to add ordered checksum for data relocation.
4427  *
4428  * cloning checksum properly handles the nodatasum extents.
4429  * it also saves CPU time to re-calculate the checksum.
4430  */
4431 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4432 {
4433         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4434         struct btrfs_fs_info *fs_info = inode->root->fs_info;
4435         u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4436         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4437         LIST_HEAD(list);
4438         int ret;
4439
4440         ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4441                                       disk_bytenr + ordered->num_bytes - 1,
4442                                       &list, 0, false);
4443         if (ret)
4444                 return ret;
4445
4446         while (!list_empty(&list)) {
4447                 struct btrfs_ordered_sum *sums =
4448                         list_entry(list.next, struct btrfs_ordered_sum, list);
4449
4450                 list_del_init(&sums->list);
4451
4452                 /*
4453                  * We need to offset the new_bytenr based on where the csum is.
4454                  * We need to do this because we will read in entire prealloc
4455                  * extents but we may have written to say the middle of the
4456                  * prealloc extent, so we need to make sure the csum goes with
4457                  * the right disk offset.
4458                  *
4459                  * We can do this because the data reloc inode refers strictly
4460                  * to the on disk bytes, so we don't have to worry about
4461                  * disk_len vs real len like with real inodes since it's all
4462                  * disk length.
4463                  */
4464                 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4465                 btrfs_add_ordered_sum(ordered, sums);
4466         }
4467
4468         return 0;
4469 }
4470
4471 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4472                           struct btrfs_root *root,
4473                           const struct extent_buffer *buf,
4474                           struct extent_buffer *cow)
4475 {
4476         struct btrfs_fs_info *fs_info = root->fs_info;
4477         struct reloc_control *rc;
4478         struct btrfs_backref_node *node;
4479         int first_cow = 0;
4480         int level;
4481         int ret = 0;
4482
4483         rc = fs_info->reloc_ctl;
4484         if (!rc)
4485                 return 0;
4486
4487         BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4488
4489         level = btrfs_header_level(buf);
4490         if (btrfs_header_generation(buf) <=
4491             btrfs_root_last_snapshot(&root->root_item))
4492                 first_cow = 1;
4493
4494         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4495             rc->create_reloc_tree) {
4496                 WARN_ON(!first_cow && level == 0);
4497
4498                 node = rc->backref_cache.path[level];
4499                 BUG_ON(node->bytenr != buf->start &&
4500                        node->new_bytenr != buf->start);
4501
4502                 btrfs_backref_drop_node_buffer(node);
4503                 atomic_inc(&cow->refs);
4504                 node->eb = cow;
4505                 node->new_bytenr = cow->start;
4506
4507                 if (!node->pending) {
4508                         list_move_tail(&node->list,
4509                                        &rc->backref_cache.pending[level]);
4510                         node->pending = 1;
4511                 }
4512
4513                 if (first_cow)
4514                         mark_block_processed(rc, node);
4515
4516                 if (first_cow && level > 0)
4517                         rc->nodes_relocated += buf->len;
4518         }
4519
4520         if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4521                 ret = replace_file_extents(trans, rc, root, cow);
4522         return ret;
4523 }
4524
4525 /*
4526  * called before creating snapshot. it calculates metadata reservation
4527  * required for relocating tree blocks in the snapshot
4528  */
4529 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4530                               u64 *bytes_to_reserve)
4531 {
4532         struct btrfs_root *root = pending->root;
4533         struct reloc_control *rc = root->fs_info->reloc_ctl;
4534
4535         if (!rc || !have_reloc_root(root))
4536                 return;
4537
4538         if (!rc->merge_reloc_tree)
4539                 return;
4540
4541         root = root->reloc_root;
4542         BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4543         /*
4544          * relocation is in the stage of merging trees. the space
4545          * used by merging a reloc tree is twice the size of
4546          * relocated tree nodes in the worst case. half for cowing
4547          * the reloc tree, half for cowing the fs tree. the space
4548          * used by cowing the reloc tree will be freed after the
4549          * tree is dropped. if we create snapshot, cowing the fs
4550          * tree may use more space than it frees. so we need
4551          * reserve extra space.
4552          */
4553         *bytes_to_reserve += rc->nodes_relocated;
4554 }
4555
4556 /*
4557  * called after snapshot is created. migrate block reservation
4558  * and create reloc root for the newly created snapshot
4559  *
4560  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4561  * references held on the reloc_root, one for root->reloc_root and one for
4562  * rc->reloc_roots.
4563  */
4564 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4565                                struct btrfs_pending_snapshot *pending)
4566 {
4567         struct btrfs_root *root = pending->root;
4568         struct btrfs_root *reloc_root;
4569         struct btrfs_root *new_root;
4570         struct reloc_control *rc = root->fs_info->reloc_ctl;
4571         int ret;
4572
4573         if (!rc || !have_reloc_root(root))
4574                 return 0;
4575
4576         rc = root->fs_info->reloc_ctl;
4577         rc->merging_rsv_size += rc->nodes_relocated;
4578
4579         if (rc->merge_reloc_tree) {
4580                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4581                                               rc->block_rsv,
4582                                               rc->nodes_relocated, true);
4583                 if (ret)
4584                         return ret;
4585         }
4586
4587         new_root = pending->snap;
4588         reloc_root = create_reloc_root(trans, root->reloc_root,
4589                                        new_root->root_key.objectid);
4590         if (IS_ERR(reloc_root))
4591                 return PTR_ERR(reloc_root);
4592
4593         ret = __add_reloc_root(reloc_root);
4594         ASSERT(ret != -EEXIST);
4595         if (ret) {
4596                 /* Pairs with create_reloc_root */
4597                 btrfs_put_root(reloc_root);
4598                 return ret;
4599         }
4600         new_root->reloc_root = btrfs_grab_root(reloc_root);
4601
4602         if (rc->create_reloc_tree)
4603                 ret = clone_backref_node(trans, rc, root, reloc_root);
4604         return ret;
4605 }
4606
4607 /*
4608  * Get the current bytenr for the block group which is being relocated.
4609  *
4610  * Return U64_MAX if no running relocation.
4611  */
4612 u64 btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info *fs_info)
4613 {
4614         u64 logical = U64_MAX;
4615
4616         lockdep_assert_held(&fs_info->reloc_mutex);
4617
4618         if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4619                 logical = fs_info->reloc_ctl->block_group->start;
4620         return logical;
4621 }