Merge tag 'auxdisplay-for-linus-v5.15-rc1' of git://github.com/ojeda/linux
[linux-2.6-microblaze.git] / fs / btrfs / reada.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/slab.h>
11 #include <linux/workqueue.h>
12 #include "ctree.h"
13 #include "volumes.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "block-group.h"
18
19 #undef DEBUG
20
21 /*
22  * This is the implementation for the generic read ahead framework.
23  *
24  * To trigger a readahead, btrfs_reada_add must be called. It will start
25  * a read ahead for the given range [start, end) on tree root. The returned
26  * handle can either be used to wait on the readahead to finish
27  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
28  *
29  * The read ahead works as follows:
30  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
31  * reada_start_machine will then search for extents to prefetch and trigger
32  * some reads. When a read finishes for a node, all contained node/leaf
33  * pointers that lie in the given range will also be enqueued. The reads will
34  * be triggered in sequential order, thus giving a big win over a naive
35  * enumeration. It will also make use of multi-device layouts. Each disk
36  * will have its on read pointer and all disks will by utilized in parallel.
37  * Also will no two disks read both sides of a mirror simultaneously, as this
38  * would waste seeking capacity. Instead both disks will read different parts
39  * of the filesystem.
40  * Any number of readaheads can be started in parallel. The read order will be
41  * determined globally, i.e. 2 parallel readaheads will normally finish faster
42  * than the 2 started one after another.
43  */
44
45 #define MAX_IN_FLIGHT 6
46
47 struct reada_extctl {
48         struct list_head        list;
49         struct reada_control    *rc;
50         u64                     generation;
51 };
52
53 struct reada_extent {
54         u64                     logical;
55         u64                     owner_root;
56         struct btrfs_key        top;
57         struct list_head        extctl;
58         int                     refcnt;
59         spinlock_t              lock;
60         struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
61         int                     nzones;
62         int                     scheduled;
63         int                     level;
64 };
65
66 struct reada_zone {
67         u64                     start;
68         u64                     end;
69         u64                     elems;
70         struct list_head        list;
71         spinlock_t              lock;
72         int                     locked;
73         struct btrfs_device     *device;
74         struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
75                                                            * self */
76         int                     ndevs;
77         struct kref             refcnt;
78 };
79
80 struct reada_machine_work {
81         struct btrfs_work       work;
82         struct btrfs_fs_info    *fs_info;
83 };
84
85 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
86 static void reada_control_release(struct kref *kref);
87 static void reada_zone_release(struct kref *kref);
88 static void reada_start_machine(struct btrfs_fs_info *fs_info);
89 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
90
91 static int reada_add_block(struct reada_control *rc, u64 logical,
92                            struct btrfs_key *top, u64 owner_root,
93                            u64 generation, int level);
94
95 /* recurses */
96 /* in case of err, eb might be NULL */
97 static void __readahead_hook(struct btrfs_fs_info *fs_info,
98                              struct reada_extent *re, struct extent_buffer *eb,
99                              int err)
100 {
101         int nritems;
102         int i;
103         u64 bytenr;
104         u64 generation;
105         struct list_head list;
106
107         spin_lock(&re->lock);
108         /*
109          * just take the full list from the extent. afterwards we
110          * don't need the lock anymore
111          */
112         list_replace_init(&re->extctl, &list);
113         re->scheduled = 0;
114         spin_unlock(&re->lock);
115
116         /*
117          * this is the error case, the extent buffer has not been
118          * read correctly. We won't access anything from it and
119          * just cleanup our data structures. Effectively this will
120          * cut the branch below this node from read ahead.
121          */
122         if (err)
123                 goto cleanup;
124
125         /*
126          * FIXME: currently we just set nritems to 0 if this is a leaf,
127          * effectively ignoring the content. In a next step we could
128          * trigger more readahead depending from the content, e.g.
129          * fetch the checksums for the extents in the leaf.
130          */
131         if (!btrfs_header_level(eb))
132                 goto cleanup;
133
134         nritems = btrfs_header_nritems(eb);
135         generation = btrfs_header_generation(eb);
136         for (i = 0; i < nritems; i++) {
137                 struct reada_extctl *rec;
138                 u64 n_gen;
139                 struct btrfs_key key;
140                 struct btrfs_key next_key;
141
142                 btrfs_node_key_to_cpu(eb, &key, i);
143                 if (i + 1 < nritems)
144                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
145                 else
146                         next_key = re->top;
147                 bytenr = btrfs_node_blockptr(eb, i);
148                 n_gen = btrfs_node_ptr_generation(eb, i);
149
150                 list_for_each_entry(rec, &list, list) {
151                         struct reada_control *rc = rec->rc;
152
153                         /*
154                          * if the generation doesn't match, just ignore this
155                          * extctl. This will probably cut off a branch from
156                          * prefetch. Alternatively one could start a new (sub-)
157                          * prefetch for this branch, starting again from root.
158                          * FIXME: move the generation check out of this loop
159                          */
160 #ifdef DEBUG
161                         if (rec->generation != generation) {
162                                 btrfs_debug(fs_info,
163                                             "generation mismatch for (%llu,%d,%llu) %llu != %llu",
164                                             key.objectid, key.type, key.offset,
165                                             rec->generation, generation);
166                         }
167 #endif
168                         if (rec->generation == generation &&
169                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
170                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
171                                 reada_add_block(rc, bytenr, &next_key,
172                                                 btrfs_header_owner(eb), n_gen,
173                                                 btrfs_header_level(eb) - 1);
174                 }
175         }
176
177 cleanup:
178         /*
179          * free extctl records
180          */
181         while (!list_empty(&list)) {
182                 struct reada_control *rc;
183                 struct reada_extctl *rec;
184
185                 rec = list_first_entry(&list, struct reada_extctl, list);
186                 list_del(&rec->list);
187                 rc = rec->rc;
188                 kfree(rec);
189
190                 kref_get(&rc->refcnt);
191                 if (atomic_dec_and_test(&rc->elems)) {
192                         kref_put(&rc->refcnt, reada_control_release);
193                         wake_up(&rc->wait);
194                 }
195                 kref_put(&rc->refcnt, reada_control_release);
196
197                 reada_extent_put(fs_info, re);  /* one ref for each entry */
198         }
199
200         return;
201 }
202
203 int btree_readahead_hook(struct extent_buffer *eb, int err)
204 {
205         struct btrfs_fs_info *fs_info = eb->fs_info;
206         int ret = 0;
207         struct reada_extent *re;
208
209         /* find extent */
210         spin_lock(&fs_info->reada_lock);
211         re = radix_tree_lookup(&fs_info->reada_tree,
212                                eb->start >> fs_info->sectorsize_bits);
213         if (re)
214                 re->refcnt++;
215         spin_unlock(&fs_info->reada_lock);
216         if (!re) {
217                 ret = -1;
218                 goto start_machine;
219         }
220
221         __readahead_hook(fs_info, re, eb, err);
222         reada_extent_put(fs_info, re);  /* our ref */
223
224 start_machine:
225         reada_start_machine(fs_info);
226         return ret;
227 }
228
229 static struct reada_zone *reada_find_zone(struct btrfs_device *dev, u64 logical,
230                                           struct btrfs_bio *bbio)
231 {
232         struct btrfs_fs_info *fs_info = dev->fs_info;
233         int ret;
234         struct reada_zone *zone;
235         struct btrfs_block_group *cache = NULL;
236         u64 start;
237         u64 end;
238         int i;
239
240         zone = NULL;
241         spin_lock(&fs_info->reada_lock);
242         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
243                                      logical >> fs_info->sectorsize_bits, 1);
244         if (ret == 1 && logical >= zone->start && logical <= zone->end) {
245                 kref_get(&zone->refcnt);
246                 spin_unlock(&fs_info->reada_lock);
247                 return zone;
248         }
249
250         spin_unlock(&fs_info->reada_lock);
251
252         cache = btrfs_lookup_block_group(fs_info, logical);
253         if (!cache)
254                 return NULL;
255
256         start = cache->start;
257         end = start + cache->length - 1;
258         btrfs_put_block_group(cache);
259
260         zone = kzalloc(sizeof(*zone), GFP_KERNEL);
261         if (!zone)
262                 return NULL;
263
264         ret = radix_tree_preload(GFP_KERNEL);
265         if (ret) {
266                 kfree(zone);
267                 return NULL;
268         }
269
270         zone->start = start;
271         zone->end = end;
272         INIT_LIST_HEAD(&zone->list);
273         spin_lock_init(&zone->lock);
274         zone->locked = 0;
275         kref_init(&zone->refcnt);
276         zone->elems = 0;
277         zone->device = dev; /* our device always sits at index 0 */
278         for (i = 0; i < bbio->num_stripes; ++i) {
279                 /* bounds have already been checked */
280                 zone->devs[i] = bbio->stripes[i].dev;
281         }
282         zone->ndevs = bbio->num_stripes;
283
284         spin_lock(&fs_info->reada_lock);
285         ret = radix_tree_insert(&dev->reada_zones,
286                         (unsigned long)(zone->end >> fs_info->sectorsize_bits),
287                         zone);
288
289         if (ret == -EEXIST) {
290                 kfree(zone);
291                 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
292                                         logical >> fs_info->sectorsize_bits, 1);
293                 if (ret == 1 && logical >= zone->start && logical <= zone->end)
294                         kref_get(&zone->refcnt);
295                 else
296                         zone = NULL;
297         }
298         spin_unlock(&fs_info->reada_lock);
299         radix_tree_preload_end();
300
301         return zone;
302 }
303
304 static struct reada_extent *reada_find_extent(struct btrfs_fs_info *fs_info,
305                                               u64 logical,
306                                               struct btrfs_key *top,
307                                               u64 owner_root, int level)
308 {
309         int ret;
310         struct reada_extent *re = NULL;
311         struct reada_extent *re_exist = NULL;
312         struct btrfs_bio *bbio = NULL;
313         struct btrfs_device *dev;
314         struct btrfs_device *prev_dev;
315         u64 length;
316         int real_stripes;
317         int nzones = 0;
318         unsigned long index = logical >> fs_info->sectorsize_bits;
319         int dev_replace_is_ongoing;
320         int have_zone = 0;
321
322         spin_lock(&fs_info->reada_lock);
323         re = radix_tree_lookup(&fs_info->reada_tree, index);
324         if (re)
325                 re->refcnt++;
326         spin_unlock(&fs_info->reada_lock);
327
328         if (re)
329                 return re;
330
331         re = kzalloc(sizeof(*re), GFP_KERNEL);
332         if (!re)
333                 return NULL;
334
335         re->logical = logical;
336         re->top = *top;
337         INIT_LIST_HEAD(&re->extctl);
338         spin_lock_init(&re->lock);
339         re->refcnt = 1;
340         re->owner_root = owner_root;
341         re->level = level;
342
343         /*
344          * map block
345          */
346         length = fs_info->nodesize;
347         ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
348                         &length, &bbio, 0);
349         if (ret || !bbio || length < fs_info->nodesize)
350                 goto error;
351
352         if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
353                 btrfs_err(fs_info,
354                            "readahead: more than %d copies not supported",
355                            BTRFS_MAX_MIRRORS);
356                 goto error;
357         }
358
359         real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
360         for (nzones = 0; nzones < real_stripes; ++nzones) {
361                 struct reada_zone *zone;
362
363                 dev = bbio->stripes[nzones].dev;
364
365                 /* cannot read ahead on missing device. */
366                 if (!dev->bdev)
367                         continue;
368
369                 zone = reada_find_zone(dev, logical, bbio);
370                 if (!zone)
371                         continue;
372
373                 re->zones[re->nzones++] = zone;
374                 spin_lock(&zone->lock);
375                 if (!zone->elems)
376                         kref_get(&zone->refcnt);
377                 ++zone->elems;
378                 spin_unlock(&zone->lock);
379                 spin_lock(&fs_info->reada_lock);
380                 kref_put(&zone->refcnt, reada_zone_release);
381                 spin_unlock(&fs_info->reada_lock);
382         }
383         if (re->nzones == 0) {
384                 /* not a single zone found, error and out */
385                 goto error;
386         }
387
388         /* Insert extent in reada tree + all per-device trees, all or nothing */
389         down_read(&fs_info->dev_replace.rwsem);
390         ret = radix_tree_preload(GFP_KERNEL);
391         if (ret) {
392                 up_read(&fs_info->dev_replace.rwsem);
393                 goto error;
394         }
395
396         spin_lock(&fs_info->reada_lock);
397         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
398         if (ret == -EEXIST) {
399                 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
400                 re_exist->refcnt++;
401                 spin_unlock(&fs_info->reada_lock);
402                 radix_tree_preload_end();
403                 up_read(&fs_info->dev_replace.rwsem);
404                 goto error;
405         }
406         if (ret) {
407                 spin_unlock(&fs_info->reada_lock);
408                 radix_tree_preload_end();
409                 up_read(&fs_info->dev_replace.rwsem);
410                 goto error;
411         }
412         radix_tree_preload_end();
413         prev_dev = NULL;
414         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
415                         &fs_info->dev_replace);
416         for (nzones = 0; nzones < re->nzones; ++nzones) {
417                 dev = re->zones[nzones]->device;
418
419                 if (dev == prev_dev) {
420                         /*
421                          * in case of DUP, just add the first zone. As both
422                          * are on the same device, there's nothing to gain
423                          * from adding both.
424                          * Also, it wouldn't work, as the tree is per device
425                          * and adding would fail with EEXIST
426                          */
427                         continue;
428                 }
429                 if (!dev->bdev)
430                         continue;
431
432                 if (test_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state))
433                         continue;
434
435                 if (dev_replace_is_ongoing &&
436                     dev == fs_info->dev_replace.tgtdev) {
437                         /*
438                          * as this device is selected for reading only as
439                          * a last resort, skip it for read ahead.
440                          */
441                         continue;
442                 }
443                 prev_dev = dev;
444                 ret = radix_tree_insert(&dev->reada_extents, index, re);
445                 if (ret) {
446                         while (--nzones >= 0) {
447                                 dev = re->zones[nzones]->device;
448                                 BUG_ON(dev == NULL);
449                                 /* ignore whether the entry was inserted */
450                                 radix_tree_delete(&dev->reada_extents, index);
451                         }
452                         radix_tree_delete(&fs_info->reada_tree, index);
453                         spin_unlock(&fs_info->reada_lock);
454                         up_read(&fs_info->dev_replace.rwsem);
455                         goto error;
456                 }
457                 have_zone = 1;
458         }
459         if (!have_zone)
460                 radix_tree_delete(&fs_info->reada_tree, index);
461         spin_unlock(&fs_info->reada_lock);
462         up_read(&fs_info->dev_replace.rwsem);
463
464         if (!have_zone)
465                 goto error;
466
467         btrfs_put_bbio(bbio);
468         return re;
469
470 error:
471         for (nzones = 0; nzones < re->nzones; ++nzones) {
472                 struct reada_zone *zone;
473
474                 zone = re->zones[nzones];
475                 kref_get(&zone->refcnt);
476                 spin_lock(&zone->lock);
477                 --zone->elems;
478                 if (zone->elems == 0) {
479                         /*
480                          * no fs_info->reada_lock needed, as this can't be
481                          * the last ref
482                          */
483                         kref_put(&zone->refcnt, reada_zone_release);
484                 }
485                 spin_unlock(&zone->lock);
486
487                 spin_lock(&fs_info->reada_lock);
488                 kref_put(&zone->refcnt, reada_zone_release);
489                 spin_unlock(&fs_info->reada_lock);
490         }
491         btrfs_put_bbio(bbio);
492         kfree(re);
493         return re_exist;
494 }
495
496 static void reada_extent_put(struct btrfs_fs_info *fs_info,
497                              struct reada_extent *re)
498 {
499         int i;
500         unsigned long index = re->logical >> fs_info->sectorsize_bits;
501
502         spin_lock(&fs_info->reada_lock);
503         if (--re->refcnt) {
504                 spin_unlock(&fs_info->reada_lock);
505                 return;
506         }
507
508         radix_tree_delete(&fs_info->reada_tree, index);
509         for (i = 0; i < re->nzones; ++i) {
510                 struct reada_zone *zone = re->zones[i];
511
512                 radix_tree_delete(&zone->device->reada_extents, index);
513         }
514
515         spin_unlock(&fs_info->reada_lock);
516
517         for (i = 0; i < re->nzones; ++i) {
518                 struct reada_zone *zone = re->zones[i];
519
520                 kref_get(&zone->refcnt);
521                 spin_lock(&zone->lock);
522                 --zone->elems;
523                 if (zone->elems == 0) {
524                         /* no fs_info->reada_lock needed, as this can't be
525                          * the last ref */
526                         kref_put(&zone->refcnt, reada_zone_release);
527                 }
528                 spin_unlock(&zone->lock);
529
530                 spin_lock(&fs_info->reada_lock);
531                 kref_put(&zone->refcnt, reada_zone_release);
532                 spin_unlock(&fs_info->reada_lock);
533         }
534
535         kfree(re);
536 }
537
538 static void reada_zone_release(struct kref *kref)
539 {
540         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
541         struct btrfs_fs_info *fs_info = zone->device->fs_info;
542
543         lockdep_assert_held(&fs_info->reada_lock);
544
545         radix_tree_delete(&zone->device->reada_zones,
546                           zone->end >> fs_info->sectorsize_bits);
547
548         kfree(zone);
549 }
550
551 static void reada_control_release(struct kref *kref)
552 {
553         struct reada_control *rc = container_of(kref, struct reada_control,
554                                                 refcnt);
555
556         kfree(rc);
557 }
558
559 static int reada_add_block(struct reada_control *rc, u64 logical,
560                            struct btrfs_key *top, u64 owner_root,
561                            u64 generation, int level)
562 {
563         struct btrfs_fs_info *fs_info = rc->fs_info;
564         struct reada_extent *re;
565         struct reada_extctl *rec;
566
567         /* takes one ref */
568         re = reada_find_extent(fs_info, logical, top, owner_root, level);
569         if (!re)
570                 return -1;
571
572         rec = kzalloc(sizeof(*rec), GFP_KERNEL);
573         if (!rec) {
574                 reada_extent_put(fs_info, re);
575                 return -ENOMEM;
576         }
577
578         rec->rc = rc;
579         rec->generation = generation;
580         atomic_inc(&rc->elems);
581
582         spin_lock(&re->lock);
583         list_add_tail(&rec->list, &re->extctl);
584         spin_unlock(&re->lock);
585
586         /* leave the ref on the extent */
587
588         return 0;
589 }
590
591 /*
592  * called with fs_info->reada_lock held
593  */
594 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
595 {
596         int i;
597         unsigned long index = zone->end >> zone->device->fs_info->sectorsize_bits;
598
599         for (i = 0; i < zone->ndevs; ++i) {
600                 struct reada_zone *peer;
601                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
602                 if (peer && peer->device != zone->device)
603                         peer->locked = lock;
604         }
605 }
606
607 /*
608  * called with fs_info->reada_lock held
609  */
610 static int reada_pick_zone(struct btrfs_device *dev)
611 {
612         struct reada_zone *top_zone = NULL;
613         struct reada_zone *top_locked_zone = NULL;
614         u64 top_elems = 0;
615         u64 top_locked_elems = 0;
616         unsigned long index = 0;
617         int ret;
618
619         if (dev->reada_curr_zone) {
620                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
621                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
622                 dev->reada_curr_zone = NULL;
623         }
624         /* pick the zone with the most elements */
625         while (1) {
626                 struct reada_zone *zone;
627
628                 ret = radix_tree_gang_lookup(&dev->reada_zones,
629                                              (void **)&zone, index, 1);
630                 if (ret == 0)
631                         break;
632                 index = (zone->end >> dev->fs_info->sectorsize_bits) + 1;
633                 if (zone->locked) {
634                         if (zone->elems > top_locked_elems) {
635                                 top_locked_elems = zone->elems;
636                                 top_locked_zone = zone;
637                         }
638                 } else {
639                         if (zone->elems > top_elems) {
640                                 top_elems = zone->elems;
641                                 top_zone = zone;
642                         }
643                 }
644         }
645         if (top_zone)
646                 dev->reada_curr_zone = top_zone;
647         else if (top_locked_zone)
648                 dev->reada_curr_zone = top_locked_zone;
649         else
650                 return 0;
651
652         dev->reada_next = dev->reada_curr_zone->start;
653         kref_get(&dev->reada_curr_zone->refcnt);
654         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
655
656         return 1;
657 }
658
659 static int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
660                                     u64 owner_root, int level, int mirror_num,
661                                     struct extent_buffer **eb)
662 {
663         struct extent_buffer *buf = NULL;
664         int ret;
665
666         buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
667         if (IS_ERR(buf))
668                 return 0;
669
670         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
671
672         ret = read_extent_buffer_pages(buf, WAIT_PAGE_LOCK, mirror_num);
673         if (ret) {
674                 free_extent_buffer_stale(buf);
675                 return ret;
676         }
677
678         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
679                 free_extent_buffer_stale(buf);
680                 return -EIO;
681         } else if (extent_buffer_uptodate(buf)) {
682                 *eb = buf;
683         } else {
684                 free_extent_buffer(buf);
685         }
686         return 0;
687 }
688
689 static int reada_start_machine_dev(struct btrfs_device *dev)
690 {
691         struct btrfs_fs_info *fs_info = dev->fs_info;
692         struct reada_extent *re = NULL;
693         int mirror_num = 0;
694         struct extent_buffer *eb = NULL;
695         u64 logical;
696         int ret;
697         int i;
698
699         spin_lock(&fs_info->reada_lock);
700         if (dev->reada_curr_zone == NULL) {
701                 ret = reada_pick_zone(dev);
702                 if (!ret) {
703                         spin_unlock(&fs_info->reada_lock);
704                         return 0;
705                 }
706         }
707         /*
708          * FIXME currently we issue the reads one extent at a time. If we have
709          * a contiguous block of extents, we could also coagulate them or use
710          * plugging to speed things up
711          */
712         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
713                                 dev->reada_next >> fs_info->sectorsize_bits, 1);
714         if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
715                 ret = reada_pick_zone(dev);
716                 if (!ret) {
717                         spin_unlock(&fs_info->reada_lock);
718                         return 0;
719                 }
720                 re = NULL;
721                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
722                                 dev->reada_next >> fs_info->sectorsize_bits, 1);
723         }
724         if (ret == 0) {
725                 spin_unlock(&fs_info->reada_lock);
726                 return 0;
727         }
728         dev->reada_next = re->logical + fs_info->nodesize;
729         re->refcnt++;
730
731         spin_unlock(&fs_info->reada_lock);
732
733         spin_lock(&re->lock);
734         if (re->scheduled || list_empty(&re->extctl)) {
735                 spin_unlock(&re->lock);
736                 reada_extent_put(fs_info, re);
737                 return 0;
738         }
739         re->scheduled = 1;
740         spin_unlock(&re->lock);
741
742         /*
743          * find mirror num
744          */
745         for (i = 0; i < re->nzones; ++i) {
746                 if (re->zones[i]->device == dev) {
747                         mirror_num = i + 1;
748                         break;
749                 }
750         }
751         logical = re->logical;
752
753         atomic_inc(&dev->reada_in_flight);
754         ret = reada_tree_block_flagged(fs_info, logical, re->owner_root,
755                                        re->level, mirror_num, &eb);
756         if (ret)
757                 __readahead_hook(fs_info, re, NULL, ret);
758         else if (eb)
759                 __readahead_hook(fs_info, re, eb, ret);
760
761         if (eb)
762                 free_extent_buffer(eb);
763
764         atomic_dec(&dev->reada_in_flight);
765         reada_extent_put(fs_info, re);
766
767         return 1;
768
769 }
770
771 static void reada_start_machine_worker(struct btrfs_work *work)
772 {
773         struct reada_machine_work *rmw;
774         int old_ioprio;
775
776         rmw = container_of(work, struct reada_machine_work, work);
777
778         old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
779                                        task_nice_ioprio(current));
780         set_task_ioprio(current, BTRFS_IOPRIO_READA);
781         __reada_start_machine(rmw->fs_info);
782         set_task_ioprio(current, old_ioprio);
783
784         atomic_dec(&rmw->fs_info->reada_works_cnt);
785
786         kfree(rmw);
787 }
788
789 /* Try to start up to 10k READA requests for a group of devices */
790 static int reada_start_for_fsdevs(struct btrfs_fs_devices *fs_devices)
791 {
792         u64 enqueued;
793         u64 total = 0;
794         struct btrfs_device *device;
795
796         do {
797                 enqueued = 0;
798                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
799                         if (atomic_read(&device->reada_in_flight) <
800                             MAX_IN_FLIGHT)
801                                 enqueued += reada_start_machine_dev(device);
802                 }
803                 total += enqueued;
804         } while (enqueued && total < 10000);
805
806         return total;
807 }
808
809 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
810 {
811         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
812         int i;
813         u64 enqueued = 0;
814
815         mutex_lock(&fs_devices->device_list_mutex);
816
817         enqueued += reada_start_for_fsdevs(fs_devices);
818         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
819                 enqueued += reada_start_for_fsdevs(seed_devs);
820
821         mutex_unlock(&fs_devices->device_list_mutex);
822         if (enqueued == 0)
823                 return;
824
825         /*
826          * If everything is already in the cache, this is effectively single
827          * threaded. To a) not hold the caller for too long and b) to utilize
828          * more cores, we broke the loop above after 10000 iterations and now
829          * enqueue to workers to finish it. This will distribute the load to
830          * the cores.
831          */
832         for (i = 0; i < 2; ++i) {
833                 reada_start_machine(fs_info);
834                 if (atomic_read(&fs_info->reada_works_cnt) >
835                     BTRFS_MAX_MIRRORS * 2)
836                         break;
837         }
838 }
839
840 static void reada_start_machine(struct btrfs_fs_info *fs_info)
841 {
842         struct reada_machine_work *rmw;
843
844         rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
845         if (!rmw) {
846                 /* FIXME we cannot handle this properly right now */
847                 BUG();
848         }
849         btrfs_init_work(&rmw->work, reada_start_machine_worker, NULL, NULL);
850         rmw->fs_info = fs_info;
851
852         btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
853         atomic_inc(&fs_info->reada_works_cnt);
854 }
855
856 #ifdef DEBUG
857 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
858 {
859         struct btrfs_device *device;
860         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
861         unsigned long index;
862         int ret;
863         int i;
864         int j;
865         int cnt;
866
867         spin_lock(&fs_info->reada_lock);
868         list_for_each_entry(device, &fs_devices->devices, dev_list) {
869                 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
870                         atomic_read(&device->reada_in_flight));
871                 index = 0;
872                 while (1) {
873                         struct reada_zone *zone;
874                         ret = radix_tree_gang_lookup(&device->reada_zones,
875                                                      (void **)&zone, index, 1);
876                         if (ret == 0)
877                                 break;
878                         pr_debug("  zone %llu-%llu elems %llu locked %d devs",
879                                     zone->start, zone->end, zone->elems,
880                                     zone->locked);
881                         for (j = 0; j < zone->ndevs; ++j) {
882                                 pr_cont(" %lld",
883                                         zone->devs[j]->devid);
884                         }
885                         if (device->reada_curr_zone == zone)
886                                 pr_cont(" curr off %llu",
887                                         device->reada_next - zone->start);
888                         pr_cont("\n");
889                         index = (zone->end >> fs_info->sectorsize_bits) + 1;
890                 }
891                 cnt = 0;
892                 index = 0;
893                 while (all) {
894                         struct reada_extent *re = NULL;
895
896                         ret = radix_tree_gang_lookup(&device->reada_extents,
897                                                      (void **)&re, index, 1);
898                         if (ret == 0)
899                                 break;
900                         pr_debug("  re: logical %llu size %u empty %d scheduled %d",
901                                 re->logical, fs_info->nodesize,
902                                 list_empty(&re->extctl), re->scheduled);
903
904                         for (i = 0; i < re->nzones; ++i) {
905                                 pr_cont(" zone %llu-%llu devs",
906                                         re->zones[i]->start,
907                                         re->zones[i]->end);
908                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
909                                         pr_cont(" %lld",
910                                                 re->zones[i]->devs[j]->devid);
911                                 }
912                         }
913                         pr_cont("\n");
914                         index = (re->logical >> fs_info->sectorsize_bits) + 1;
915                         if (++cnt > 15)
916                                 break;
917                 }
918         }
919
920         index = 0;
921         cnt = 0;
922         while (all) {
923                 struct reada_extent *re = NULL;
924
925                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
926                                              index, 1);
927                 if (ret == 0)
928                         break;
929                 if (!re->scheduled) {
930                         index = (re->logical >> fs_info->sectorsize_bits) + 1;
931                         continue;
932                 }
933                 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
934                         re->logical, fs_info->nodesize,
935                         list_empty(&re->extctl), re->scheduled);
936                 for (i = 0; i < re->nzones; ++i) {
937                         pr_cont(" zone %llu-%llu devs",
938                                 re->zones[i]->start,
939                                 re->zones[i]->end);
940                         for (j = 0; j < re->zones[i]->ndevs; ++j) {
941                                 pr_cont(" %lld",
942                                        re->zones[i]->devs[j]->devid);
943                         }
944                 }
945                 pr_cont("\n");
946                 index = (re->logical >> fs_info->sectorsize_bits) + 1;
947         }
948         spin_unlock(&fs_info->reada_lock);
949 }
950 #endif
951
952 /*
953  * interface
954  */
955 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
956                         struct btrfs_key *key_start, struct btrfs_key *key_end)
957 {
958         struct reada_control *rc;
959         u64 start;
960         u64 generation;
961         int ret;
962         int level;
963         struct extent_buffer *node;
964         static struct btrfs_key max_key = {
965                 .objectid = (u64)-1,
966                 .type = (u8)-1,
967                 .offset = (u64)-1
968         };
969
970         rc = kzalloc(sizeof(*rc), GFP_KERNEL);
971         if (!rc)
972                 return ERR_PTR(-ENOMEM);
973
974         rc->fs_info = root->fs_info;
975         rc->key_start = *key_start;
976         rc->key_end = *key_end;
977         atomic_set(&rc->elems, 0);
978         init_waitqueue_head(&rc->wait);
979         kref_init(&rc->refcnt);
980         kref_get(&rc->refcnt); /* one ref for having elements */
981
982         node = btrfs_root_node(root);
983         start = node->start;
984         generation = btrfs_header_generation(node);
985         level = btrfs_header_level(node);
986         free_extent_buffer(node);
987
988         ret = reada_add_block(rc, start, &max_key, root->root_key.objectid,
989                               generation, level);
990         if (ret) {
991                 kfree(rc);
992                 return ERR_PTR(ret);
993         }
994
995         reada_start_machine(root->fs_info);
996
997         return rc;
998 }
999
1000 #ifdef DEBUG
1001 int btrfs_reada_wait(void *handle)
1002 {
1003         struct reada_control *rc = handle;
1004         struct btrfs_fs_info *fs_info = rc->fs_info;
1005
1006         while (atomic_read(&rc->elems)) {
1007                 if (!atomic_read(&fs_info->reada_works_cnt))
1008                         reada_start_machine(fs_info);
1009                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1010                                    5 * HZ);
1011                 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
1012         }
1013
1014         dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
1015
1016         kref_put(&rc->refcnt, reada_control_release);
1017
1018         return 0;
1019 }
1020 #else
1021 int btrfs_reada_wait(void *handle)
1022 {
1023         struct reada_control *rc = handle;
1024         struct btrfs_fs_info *fs_info = rc->fs_info;
1025
1026         while (atomic_read(&rc->elems)) {
1027                 if (!atomic_read(&fs_info->reada_works_cnt))
1028                         reada_start_machine(fs_info);
1029                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
1030                                    (HZ + 9) / 10);
1031         }
1032
1033         kref_put(&rc->refcnt, reada_control_release);
1034
1035         return 0;
1036 }
1037 #endif
1038
1039 void btrfs_reada_detach(void *handle)
1040 {
1041         struct reada_control *rc = handle;
1042
1043         kref_put(&rc->refcnt, reada_control_release);
1044 }
1045
1046 /*
1047  * Before removing a device (device replace or device remove ioctls), call this
1048  * function to wait for all existing readahead requests on the device and to
1049  * make sure no one queues more readahead requests for the device.
1050  *
1051  * Must be called without holding neither the device list mutex nor the device
1052  * replace semaphore, otherwise it will deadlock.
1053  */
1054 void btrfs_reada_remove_dev(struct btrfs_device *dev)
1055 {
1056         struct btrfs_fs_info *fs_info = dev->fs_info;
1057
1058         /* Serialize with readahead extent creation at reada_find_extent(). */
1059         spin_lock(&fs_info->reada_lock);
1060         set_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1061         spin_unlock(&fs_info->reada_lock);
1062
1063         /*
1064          * There might be readahead requests added to the radix trees which
1065          * were not yet added to the readahead work queue. We need to start
1066          * them and wait for their completion, otherwise we can end up with
1067          * use-after-free problems when dropping the last reference on the
1068          * readahead extents and their zones, as they need to access the
1069          * device structure.
1070          */
1071         reada_start_machine(fs_info);
1072         btrfs_flush_workqueue(fs_info->readahead_workers);
1073 }
1074
1075 /*
1076  * If when removing a device (device replace or device remove ioctls) an error
1077  * happens after calling btrfs_reada_remove_dev(), call this to undo what that
1078  * function did. This is safe to call even if btrfs_reada_remove_dev() was not
1079  * called before.
1080  */
1081 void btrfs_reada_undo_remove_dev(struct btrfs_device *dev)
1082 {
1083         spin_lock(&dev->fs_info->reada_lock);
1084         clear_bit(BTRFS_DEV_STATE_NO_READA, &dev->dev_state);
1085         spin_unlock(&dev->fs_info->reada_lock);
1086 }