Merge branch 'cpufreq/arm/linux-next' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19 #include "subpage.h"
20
21 static struct kmem_cache *btrfs_ordered_extent_cache;
22
23 static u64 entry_end(struct btrfs_ordered_extent *entry)
24 {
25         if (entry->file_offset + entry->num_bytes < entry->file_offset)
26                 return (u64)-1;
27         return entry->file_offset + entry->num_bytes;
28 }
29
30 /* returns NULL if the insertion worked, or it returns the node it did find
31  * in the tree
32  */
33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34                                    struct rb_node *node)
35 {
36         struct rb_node **p = &root->rb_node;
37         struct rb_node *parent = NULL;
38         struct btrfs_ordered_extent *entry;
39
40         while (*p) {
41                 parent = *p;
42                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43
44                 if (file_offset < entry->file_offset)
45                         p = &(*p)->rb_left;
46                 else if (file_offset >= entry_end(entry))
47                         p = &(*p)->rb_right;
48                 else
49                         return parent;
50         }
51
52         rb_link_node(node, parent, p);
53         rb_insert_color(node, root);
54         return NULL;
55 }
56
57 /*
58  * look for a given offset in the tree, and if it can't be found return the
59  * first lesser offset
60  */
61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62                                      struct rb_node **prev_ret)
63 {
64         struct rb_node *n = root->rb_node;
65         struct rb_node *prev = NULL;
66         struct rb_node *test;
67         struct btrfs_ordered_extent *entry;
68         struct btrfs_ordered_extent *prev_entry = NULL;
69
70         while (n) {
71                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72                 prev = n;
73                 prev_entry = entry;
74
75                 if (file_offset < entry->file_offset)
76                         n = n->rb_left;
77                 else if (file_offset >= entry_end(entry))
78                         n = n->rb_right;
79                 else
80                         return n;
81         }
82         if (!prev_ret)
83                 return NULL;
84
85         while (prev && file_offset >= entry_end(prev_entry)) {
86                 test = rb_next(prev);
87                 if (!test)
88                         break;
89                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90                                       rb_node);
91                 if (file_offset < entry_end(prev_entry))
92                         break;
93
94                 prev = test;
95         }
96         if (prev)
97                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98                                       rb_node);
99         while (prev && file_offset < entry_end(prev_entry)) {
100                 test = rb_prev(prev);
101                 if (!test)
102                         break;
103                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104                                       rb_node);
105                 prev = test;
106         }
107         *prev_ret = prev;
108         return NULL;
109 }
110
111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112                           u64 len)
113 {
114         if (file_offset + len <= entry->file_offset ||
115             entry->file_offset + entry->num_bytes <= file_offset)
116                 return 0;
117         return 1;
118 }
119
120 /*
121  * look find the first ordered struct that has this offset, otherwise
122  * the first one less than this offset
123  */
124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125                                           u64 file_offset)
126 {
127         struct rb_root *root = &tree->tree;
128         struct rb_node *prev = NULL;
129         struct rb_node *ret;
130         struct btrfs_ordered_extent *entry;
131
132         if (tree->last) {
133                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134                                  rb_node);
135                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136                         return tree->last;
137         }
138         ret = __tree_search(root, file_offset, &prev);
139         if (!ret)
140                 ret = prev;
141         if (ret)
142                 tree->last = ret;
143         return ret;
144 }
145
146 /*
147  * Allocate and add a new ordered_extent into the per-inode tree.
148  *
149  * The tree is given a single reference on the ordered extent that was
150  * inserted.
151  */
152 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
153                                       u64 disk_bytenr, u64 num_bytes,
154                                       u64 disk_num_bytes, int type, int dio,
155                                       int compress_type)
156 {
157         struct btrfs_root *root = inode->root;
158         struct btrfs_fs_info *fs_info = root->fs_info;
159         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
160         struct rb_node *node;
161         struct btrfs_ordered_extent *entry;
162         int ret;
163
164         if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
165                 /* For nocow write, we can release the qgroup rsv right now */
166                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
167                 if (ret < 0)
168                         return ret;
169                 ret = 0;
170         } else {
171                 /*
172                  * The ordered extent has reserved qgroup space, release now
173                  * and pass the reserved number for qgroup_record to free.
174                  */
175                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
176                 if (ret < 0)
177                         return ret;
178         }
179         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
180         if (!entry)
181                 return -ENOMEM;
182
183         entry->file_offset = file_offset;
184         entry->disk_bytenr = disk_bytenr;
185         entry->num_bytes = num_bytes;
186         entry->disk_num_bytes = disk_num_bytes;
187         entry->bytes_left = num_bytes;
188         entry->inode = igrab(&inode->vfs_inode);
189         entry->compress_type = compress_type;
190         entry->truncated_len = (u64)-1;
191         entry->qgroup_rsv = ret;
192         entry->physical = (u64)-1;
193
194         ASSERT(type == BTRFS_ORDERED_REGULAR ||
195                type == BTRFS_ORDERED_NOCOW ||
196                type == BTRFS_ORDERED_PREALLOC ||
197                type == BTRFS_ORDERED_COMPRESSED);
198         set_bit(type, &entry->flags);
199
200         percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
201                                  fs_info->delalloc_batch);
202
203         if (dio)
204                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
205
206         /* one ref for the tree */
207         refcount_set(&entry->refs, 1);
208         init_waitqueue_head(&entry->wait);
209         INIT_LIST_HEAD(&entry->list);
210         INIT_LIST_HEAD(&entry->log_list);
211         INIT_LIST_HEAD(&entry->root_extent_list);
212         INIT_LIST_HEAD(&entry->work_list);
213         init_completion(&entry->completion);
214
215         trace_btrfs_ordered_extent_add(inode, entry);
216
217         spin_lock_irq(&tree->lock);
218         node = tree_insert(&tree->tree, file_offset,
219                            &entry->rb_node);
220         if (node)
221                 btrfs_panic(fs_info, -EEXIST,
222                                 "inconsistency in ordered tree at offset %llu",
223                                 file_offset);
224         spin_unlock_irq(&tree->lock);
225
226         spin_lock(&root->ordered_extent_lock);
227         list_add_tail(&entry->root_extent_list,
228                       &root->ordered_extents);
229         root->nr_ordered_extents++;
230         if (root->nr_ordered_extents == 1) {
231                 spin_lock(&fs_info->ordered_root_lock);
232                 BUG_ON(!list_empty(&root->ordered_root));
233                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
234                 spin_unlock(&fs_info->ordered_root_lock);
235         }
236         spin_unlock(&root->ordered_extent_lock);
237
238         /*
239          * We don't need the count_max_extents here, we can assume that all of
240          * that work has been done at higher layers, so this is truly the
241          * smallest the extent is going to get.
242          */
243         spin_lock(&inode->lock);
244         btrfs_mod_outstanding_extents(inode, 1);
245         spin_unlock(&inode->lock);
246
247         return 0;
248 }
249
250 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
251                              u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
252                              int type)
253 {
254         ASSERT(type == BTRFS_ORDERED_REGULAR ||
255                type == BTRFS_ORDERED_NOCOW ||
256                type == BTRFS_ORDERED_PREALLOC);
257         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
258                                           num_bytes, disk_num_bytes, type, 0,
259                                           BTRFS_COMPRESS_NONE);
260 }
261
262 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
263                                  u64 disk_bytenr, u64 num_bytes,
264                                  u64 disk_num_bytes, int type)
265 {
266         ASSERT(type == BTRFS_ORDERED_REGULAR ||
267                type == BTRFS_ORDERED_NOCOW ||
268                type == BTRFS_ORDERED_PREALLOC);
269         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
270                                           num_bytes, disk_num_bytes, type, 1,
271                                           BTRFS_COMPRESS_NONE);
272 }
273
274 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
275                                       u64 disk_bytenr, u64 num_bytes,
276                                       u64 disk_num_bytes, int compress_type)
277 {
278         ASSERT(compress_type != BTRFS_COMPRESS_NONE);
279         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
280                                           num_bytes, disk_num_bytes,
281                                           BTRFS_ORDERED_COMPRESSED, 0,
282                                           compress_type);
283 }
284
285 /*
286  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
287  * when an ordered extent is finished.  If the list covers more than one
288  * ordered extent, it is split across multiples.
289  */
290 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
291                            struct btrfs_ordered_sum *sum)
292 {
293         struct btrfs_ordered_inode_tree *tree;
294
295         tree = &BTRFS_I(entry->inode)->ordered_tree;
296         spin_lock_irq(&tree->lock);
297         list_add_tail(&sum->list, &entry->list);
298         spin_unlock_irq(&tree->lock);
299 }
300
301 /*
302  * Mark all ordered extents io inside the specified range finished.
303  *
304  * @page:        The invovled page for the opeartion.
305  *               For uncompressed buffered IO, the page status also needs to be
306  *               updated to indicate whether the pending ordered io is finished.
307  *               Can be NULL for direct IO and compressed write.
308  *               For these cases, callers are ensured they won't execute the
309  *               endio function twice.
310  * @finish_func: The function to be executed when all the IO of an ordered
311  *               extent are finished.
312  *
313  * This function is called for endio, thus the range must have ordered
314  * extent(s) coveri it.
315  */
316 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
317                                 struct page *page, u64 file_offset,
318                                 u64 num_bytes, btrfs_func_t finish_func,
319                                 bool uptodate)
320 {
321         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
322         struct btrfs_fs_info *fs_info = inode->root->fs_info;
323         struct btrfs_workqueue *wq;
324         struct rb_node *node;
325         struct btrfs_ordered_extent *entry = NULL;
326         unsigned long flags;
327         u64 cur = file_offset;
328
329         if (btrfs_is_free_space_inode(inode))
330                 wq = fs_info->endio_freespace_worker;
331         else
332                 wq = fs_info->endio_write_workers;
333
334         if (page)
335                 ASSERT(page->mapping && page_offset(page) <= file_offset &&
336                        file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
337
338         spin_lock_irqsave(&tree->lock, flags);
339         while (cur < file_offset + num_bytes) {
340                 u64 entry_end;
341                 u64 end;
342                 u32 len;
343
344                 node = tree_search(tree, cur);
345                 /* No ordered extents at all */
346                 if (!node)
347                         break;
348
349                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
350                 entry_end = entry->file_offset + entry->num_bytes;
351                 /*
352                  * |<-- OE --->|  |
353                  *                cur
354                  * Go to next OE.
355                  */
356                 if (cur >= entry_end) {
357                         node = rb_next(node);
358                         /* No more ordered extents, exit */
359                         if (!node)
360                                 break;
361                         entry = rb_entry(node, struct btrfs_ordered_extent,
362                                          rb_node);
363
364                         /* Go to next ordered extent and continue */
365                         cur = entry->file_offset;
366                         continue;
367                 }
368                 /*
369                  * |    |<--- OE --->|
370                  * cur
371                  * Go to the start of OE.
372                  */
373                 if (cur < entry->file_offset) {
374                         cur = entry->file_offset;
375                         continue;
376                 }
377
378                 /*
379                  * Now we are definitely inside one ordered extent.
380                  *
381                  * |<--- OE --->|
382                  *      |
383                  *      cur
384                  */
385                 end = min(entry->file_offset + entry->num_bytes,
386                           file_offset + num_bytes) - 1;
387                 ASSERT(end + 1 - cur < U32_MAX);
388                 len = end + 1 - cur;
389
390                 if (page) {
391                         /*
392                          * Ordered (Private2) bit indicates whether we still
393                          * have pending io unfinished for the ordered extent.
394                          *
395                          * If there's no such bit, we need to skip to next range.
396                          */
397                         if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
398                                 cur += len;
399                                 continue;
400                         }
401                         btrfs_page_clear_ordered(fs_info, page, cur, len);
402                 }
403
404                 /* Now we're fine to update the accounting */
405                 if (unlikely(len > entry->bytes_left)) {
406                         WARN_ON(1);
407                         btrfs_crit(fs_info,
408 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
409                                    inode->root->root_key.objectid,
410                                    btrfs_ino(inode),
411                                    entry->file_offset,
412                                    entry->num_bytes,
413                                    len, entry->bytes_left);
414                         entry->bytes_left = 0;
415                 } else {
416                         entry->bytes_left -= len;
417                 }
418
419                 if (!uptodate)
420                         set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
421
422                 /*
423                  * All the IO of the ordered extent is finished, we need to queue
424                  * the finish_func to be executed.
425                  */
426                 if (entry->bytes_left == 0) {
427                         set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
428                         cond_wake_up(&entry->wait);
429                         refcount_inc(&entry->refs);
430                         spin_unlock_irqrestore(&tree->lock, flags);
431                         btrfs_init_work(&entry->work, finish_func, NULL, NULL);
432                         btrfs_queue_work(wq, &entry->work);
433                         spin_lock_irqsave(&tree->lock, flags);
434                 }
435                 cur += len;
436         }
437         spin_unlock_irqrestore(&tree->lock, flags);
438 }
439
440 /*
441  * Finish IO for one ordered extent across a given range.  The range can only
442  * contain one ordered extent.
443  *
444  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
445  *               search and use the ordered extent directly.
446  *               Will be also used to store the finished ordered extent.
447  * @file_offset: File offset for the finished IO
448  * @io_size:     Length of the finish IO range
449  * @uptodate:    If the IO finishes without problem
450  *
451  * Return true if the ordered extent is finished in the range, and update
452  * @cached.
453  * Return false otherwise.
454  *
455  * NOTE: The range can NOT cross multiple ordered extents.
456  * Thus caller should ensure the range doesn't cross ordered extents.
457  */
458 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
459                                     struct btrfs_ordered_extent **cached,
460                                     u64 file_offset, u64 io_size, int uptodate)
461 {
462         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
463         struct rb_node *node;
464         struct btrfs_ordered_extent *entry = NULL;
465         unsigned long flags;
466         bool finished = false;
467
468         spin_lock_irqsave(&tree->lock, flags);
469         if (cached && *cached) {
470                 entry = *cached;
471                 goto have_entry;
472         }
473
474         node = tree_search(tree, file_offset);
475         if (!node)
476                 goto out;
477
478         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
479 have_entry:
480         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
481                 goto out;
482
483         if (io_size > entry->bytes_left)
484                 btrfs_crit(inode->root->fs_info,
485                            "bad ordered accounting left %llu size %llu",
486                        entry->bytes_left, io_size);
487
488         entry->bytes_left -= io_size;
489         if (!uptodate)
490                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
491
492         if (entry->bytes_left == 0) {
493                 /*
494                  * Ensure only one caller can set the flag and finished_ret
495                  * accordingly
496                  */
497                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
498                 /* test_and_set_bit implies a barrier */
499                 cond_wake_up_nomb(&entry->wait);
500         }
501 out:
502         if (finished && cached && entry) {
503                 *cached = entry;
504                 refcount_inc(&entry->refs);
505         }
506         spin_unlock_irqrestore(&tree->lock, flags);
507         return finished;
508 }
509
510 /*
511  * used to drop a reference on an ordered extent.  This will free
512  * the extent if the last reference is dropped
513  */
514 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
515 {
516         struct list_head *cur;
517         struct btrfs_ordered_sum *sum;
518
519         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
520
521         if (refcount_dec_and_test(&entry->refs)) {
522                 ASSERT(list_empty(&entry->root_extent_list));
523                 ASSERT(list_empty(&entry->log_list));
524                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
525                 if (entry->inode)
526                         btrfs_add_delayed_iput(entry->inode);
527                 while (!list_empty(&entry->list)) {
528                         cur = entry->list.next;
529                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
530                         list_del(&sum->list);
531                         kvfree(sum);
532                 }
533                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
534         }
535 }
536
537 /*
538  * remove an ordered extent from the tree.  No references are dropped
539  * and waiters are woken up.
540  */
541 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
542                                  struct btrfs_ordered_extent *entry)
543 {
544         struct btrfs_ordered_inode_tree *tree;
545         struct btrfs_root *root = btrfs_inode->root;
546         struct btrfs_fs_info *fs_info = root->fs_info;
547         struct rb_node *node;
548         bool pending;
549
550         /* This is paired with btrfs_add_ordered_extent. */
551         spin_lock(&btrfs_inode->lock);
552         btrfs_mod_outstanding_extents(btrfs_inode, -1);
553         spin_unlock(&btrfs_inode->lock);
554         if (root != fs_info->tree_root)
555                 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
556                                                 false);
557
558         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
559                                  fs_info->delalloc_batch);
560
561         tree = &btrfs_inode->ordered_tree;
562         spin_lock_irq(&tree->lock);
563         node = &entry->rb_node;
564         rb_erase(node, &tree->tree);
565         RB_CLEAR_NODE(node);
566         if (tree->last == node)
567                 tree->last = NULL;
568         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
569         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
570         spin_unlock_irq(&tree->lock);
571
572         /*
573          * The current running transaction is waiting on us, we need to let it
574          * know that we're complete and wake it up.
575          */
576         if (pending) {
577                 struct btrfs_transaction *trans;
578
579                 /*
580                  * The checks for trans are just a formality, it should be set,
581                  * but if it isn't we don't want to deref/assert under the spin
582                  * lock, so be nice and check if trans is set, but ASSERT() so
583                  * if it isn't set a developer will notice.
584                  */
585                 spin_lock(&fs_info->trans_lock);
586                 trans = fs_info->running_transaction;
587                 if (trans)
588                         refcount_inc(&trans->use_count);
589                 spin_unlock(&fs_info->trans_lock);
590
591                 ASSERT(trans);
592                 if (trans) {
593                         if (atomic_dec_and_test(&trans->pending_ordered))
594                                 wake_up(&trans->pending_wait);
595                         btrfs_put_transaction(trans);
596                 }
597         }
598
599         spin_lock(&root->ordered_extent_lock);
600         list_del_init(&entry->root_extent_list);
601         root->nr_ordered_extents--;
602
603         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
604
605         if (!root->nr_ordered_extents) {
606                 spin_lock(&fs_info->ordered_root_lock);
607                 BUG_ON(list_empty(&root->ordered_root));
608                 list_del_init(&root->ordered_root);
609                 spin_unlock(&fs_info->ordered_root_lock);
610         }
611         spin_unlock(&root->ordered_extent_lock);
612         wake_up(&entry->wait);
613 }
614
615 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
616 {
617         struct btrfs_ordered_extent *ordered;
618
619         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
620         btrfs_start_ordered_extent(ordered, 1);
621         complete(&ordered->completion);
622 }
623
624 /*
625  * wait for all the ordered extents in a root.  This is done when balancing
626  * space between drives.
627  */
628 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
629                                const u64 range_start, const u64 range_len)
630 {
631         struct btrfs_fs_info *fs_info = root->fs_info;
632         LIST_HEAD(splice);
633         LIST_HEAD(skipped);
634         LIST_HEAD(works);
635         struct btrfs_ordered_extent *ordered, *next;
636         u64 count = 0;
637         const u64 range_end = range_start + range_len;
638
639         mutex_lock(&root->ordered_extent_mutex);
640         spin_lock(&root->ordered_extent_lock);
641         list_splice_init(&root->ordered_extents, &splice);
642         while (!list_empty(&splice) && nr) {
643                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
644                                            root_extent_list);
645
646                 if (range_end <= ordered->disk_bytenr ||
647                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
648                         list_move_tail(&ordered->root_extent_list, &skipped);
649                         cond_resched_lock(&root->ordered_extent_lock);
650                         continue;
651                 }
652
653                 list_move_tail(&ordered->root_extent_list,
654                                &root->ordered_extents);
655                 refcount_inc(&ordered->refs);
656                 spin_unlock(&root->ordered_extent_lock);
657
658                 btrfs_init_work(&ordered->flush_work,
659                                 btrfs_run_ordered_extent_work, NULL, NULL);
660                 list_add_tail(&ordered->work_list, &works);
661                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
662
663                 cond_resched();
664                 spin_lock(&root->ordered_extent_lock);
665                 if (nr != U64_MAX)
666                         nr--;
667                 count++;
668         }
669         list_splice_tail(&skipped, &root->ordered_extents);
670         list_splice_tail(&splice, &root->ordered_extents);
671         spin_unlock(&root->ordered_extent_lock);
672
673         list_for_each_entry_safe(ordered, next, &works, work_list) {
674                 list_del_init(&ordered->work_list);
675                 wait_for_completion(&ordered->completion);
676                 btrfs_put_ordered_extent(ordered);
677                 cond_resched();
678         }
679         mutex_unlock(&root->ordered_extent_mutex);
680
681         return count;
682 }
683
684 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
685                              const u64 range_start, const u64 range_len)
686 {
687         struct btrfs_root *root;
688         struct list_head splice;
689         u64 done;
690
691         INIT_LIST_HEAD(&splice);
692
693         mutex_lock(&fs_info->ordered_operations_mutex);
694         spin_lock(&fs_info->ordered_root_lock);
695         list_splice_init(&fs_info->ordered_roots, &splice);
696         while (!list_empty(&splice) && nr) {
697                 root = list_first_entry(&splice, struct btrfs_root,
698                                         ordered_root);
699                 root = btrfs_grab_root(root);
700                 BUG_ON(!root);
701                 list_move_tail(&root->ordered_root,
702                                &fs_info->ordered_roots);
703                 spin_unlock(&fs_info->ordered_root_lock);
704
705                 done = btrfs_wait_ordered_extents(root, nr,
706                                                   range_start, range_len);
707                 btrfs_put_root(root);
708
709                 spin_lock(&fs_info->ordered_root_lock);
710                 if (nr != U64_MAX) {
711                         nr -= done;
712                 }
713         }
714         list_splice_tail(&splice, &fs_info->ordered_roots);
715         spin_unlock(&fs_info->ordered_root_lock);
716         mutex_unlock(&fs_info->ordered_operations_mutex);
717 }
718
719 /*
720  * Used to start IO or wait for a given ordered extent to finish.
721  *
722  * If wait is one, this effectively waits on page writeback for all the pages
723  * in the extent, and it waits on the io completion code to insert
724  * metadata into the btree corresponding to the extent
725  */
726 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
727 {
728         u64 start = entry->file_offset;
729         u64 end = start + entry->num_bytes - 1;
730         struct btrfs_inode *inode = BTRFS_I(entry->inode);
731
732         trace_btrfs_ordered_extent_start(inode, entry);
733
734         /*
735          * pages in the range can be dirty, clean or writeback.  We
736          * start IO on any dirty ones so the wait doesn't stall waiting
737          * for the flusher thread to find them
738          */
739         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
740                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
741         if (wait) {
742                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
743                                                  &entry->flags));
744         }
745 }
746
747 /*
748  * Used to wait on ordered extents across a large range of bytes.
749  */
750 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
751 {
752         int ret = 0;
753         int ret_wb = 0;
754         u64 end;
755         u64 orig_end;
756         struct btrfs_ordered_extent *ordered;
757
758         if (start + len < start) {
759                 orig_end = INT_LIMIT(loff_t);
760         } else {
761                 orig_end = start + len - 1;
762                 if (orig_end > INT_LIMIT(loff_t))
763                         orig_end = INT_LIMIT(loff_t);
764         }
765
766         /* start IO across the range first to instantiate any delalloc
767          * extents
768          */
769         ret = btrfs_fdatawrite_range(inode, start, orig_end);
770         if (ret)
771                 return ret;
772
773         /*
774          * If we have a writeback error don't return immediately. Wait first
775          * for any ordered extents that haven't completed yet. This is to make
776          * sure no one can dirty the same page ranges and call writepages()
777          * before the ordered extents complete - to avoid failures (-EEXIST)
778          * when adding the new ordered extents to the ordered tree.
779          */
780         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
781
782         end = orig_end;
783         while (1) {
784                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
785                 if (!ordered)
786                         break;
787                 if (ordered->file_offset > orig_end) {
788                         btrfs_put_ordered_extent(ordered);
789                         break;
790                 }
791                 if (ordered->file_offset + ordered->num_bytes <= start) {
792                         btrfs_put_ordered_extent(ordered);
793                         break;
794                 }
795                 btrfs_start_ordered_extent(ordered, 1);
796                 end = ordered->file_offset;
797                 /*
798                  * If the ordered extent had an error save the error but don't
799                  * exit without waiting first for all other ordered extents in
800                  * the range to complete.
801                  */
802                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
803                         ret = -EIO;
804                 btrfs_put_ordered_extent(ordered);
805                 if (end == 0 || end == start)
806                         break;
807                 end--;
808         }
809         return ret_wb ? ret_wb : ret;
810 }
811
812 /*
813  * find an ordered extent corresponding to file_offset.  return NULL if
814  * nothing is found, otherwise take a reference on the extent and return it
815  */
816 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
817                                                          u64 file_offset)
818 {
819         struct btrfs_ordered_inode_tree *tree;
820         struct rb_node *node;
821         struct btrfs_ordered_extent *entry = NULL;
822         unsigned long flags;
823
824         tree = &inode->ordered_tree;
825         spin_lock_irqsave(&tree->lock, flags);
826         node = tree_search(tree, file_offset);
827         if (!node)
828                 goto out;
829
830         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
831         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
832                 entry = NULL;
833         if (entry)
834                 refcount_inc(&entry->refs);
835 out:
836         spin_unlock_irqrestore(&tree->lock, flags);
837         return entry;
838 }
839
840 /* Since the DIO code tries to lock a wide area we need to look for any ordered
841  * extents that exist in the range, rather than just the start of the range.
842  */
843 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
844                 struct btrfs_inode *inode, u64 file_offset, u64 len)
845 {
846         struct btrfs_ordered_inode_tree *tree;
847         struct rb_node *node;
848         struct btrfs_ordered_extent *entry = NULL;
849
850         tree = &inode->ordered_tree;
851         spin_lock_irq(&tree->lock);
852         node = tree_search(tree, file_offset);
853         if (!node) {
854                 node = tree_search(tree, file_offset + len);
855                 if (!node)
856                         goto out;
857         }
858
859         while (1) {
860                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
861                 if (range_overlaps(entry, file_offset, len))
862                         break;
863
864                 if (entry->file_offset >= file_offset + len) {
865                         entry = NULL;
866                         break;
867                 }
868                 entry = NULL;
869                 node = rb_next(node);
870                 if (!node)
871                         break;
872         }
873 out:
874         if (entry)
875                 refcount_inc(&entry->refs);
876         spin_unlock_irq(&tree->lock);
877         return entry;
878 }
879
880 /*
881  * Adds all ordered extents to the given list. The list ends up sorted by the
882  * file_offset of the ordered extents.
883  */
884 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
885                                            struct list_head *list)
886 {
887         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
888         struct rb_node *n;
889
890         ASSERT(inode_is_locked(&inode->vfs_inode));
891
892         spin_lock_irq(&tree->lock);
893         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
894                 struct btrfs_ordered_extent *ordered;
895
896                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
897
898                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
899                         continue;
900
901                 ASSERT(list_empty(&ordered->log_list));
902                 list_add_tail(&ordered->log_list, list);
903                 refcount_inc(&ordered->refs);
904         }
905         spin_unlock_irq(&tree->lock);
906 }
907
908 /*
909  * lookup and return any extent before 'file_offset'.  NULL is returned
910  * if none is found
911  */
912 struct btrfs_ordered_extent *
913 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
914 {
915         struct btrfs_ordered_inode_tree *tree;
916         struct rb_node *node;
917         struct btrfs_ordered_extent *entry = NULL;
918
919         tree = &inode->ordered_tree;
920         spin_lock_irq(&tree->lock);
921         node = tree_search(tree, file_offset);
922         if (!node)
923                 goto out;
924
925         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
926         refcount_inc(&entry->refs);
927 out:
928         spin_unlock_irq(&tree->lock);
929         return entry;
930 }
931
932 /*
933  * Lookup the first ordered extent that overlaps the range
934  * [@file_offset, @file_offset + @len).
935  *
936  * The difference between this and btrfs_lookup_first_ordered_extent() is
937  * that this one won't return any ordered extent that does not overlap the range.
938  * And the difference against btrfs_lookup_ordered_extent() is, this function
939  * ensures the first ordered extent gets returned.
940  */
941 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
942                         struct btrfs_inode *inode, u64 file_offset, u64 len)
943 {
944         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
945         struct rb_node *node;
946         struct rb_node *cur;
947         struct rb_node *prev;
948         struct rb_node *next;
949         struct btrfs_ordered_extent *entry = NULL;
950
951         spin_lock_irq(&tree->lock);
952         node = tree->tree.rb_node;
953         /*
954          * Here we don't want to use tree_search() which will use tree->last
955          * and screw up the search order.
956          * And __tree_search() can't return the adjacent ordered extents
957          * either, thus here we do our own search.
958          */
959         while (node) {
960                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
961
962                 if (file_offset < entry->file_offset) {
963                         node = node->rb_left;
964                 } else if (file_offset >= entry_end(entry)) {
965                         node = node->rb_right;
966                 } else {
967                         /*
968                          * Direct hit, got an ordered extent that starts at
969                          * @file_offset
970                          */
971                         goto out;
972                 }
973         }
974         if (!entry) {
975                 /* Empty tree */
976                 goto out;
977         }
978
979         cur = &entry->rb_node;
980         /* We got an entry around @file_offset, check adjacent entries */
981         if (entry->file_offset < file_offset) {
982                 prev = cur;
983                 next = rb_next(cur);
984         } else {
985                 prev = rb_prev(cur);
986                 next = cur;
987         }
988         if (prev) {
989                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
990                 if (range_overlaps(entry, file_offset, len))
991                         goto out;
992         }
993         if (next) {
994                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
995                 if (range_overlaps(entry, file_offset, len))
996                         goto out;
997         }
998         /* No ordered extent in the range */
999         entry = NULL;
1000 out:
1001         if (entry)
1002                 refcount_inc(&entry->refs);
1003         spin_unlock_irq(&tree->lock);
1004         return entry;
1005 }
1006
1007 /*
1008  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1009  * ordered extents in it are run to completion.
1010  *
1011  * @inode:        Inode whose ordered tree is to be searched
1012  * @start:        Beginning of range to flush
1013  * @end:          Last byte of range to lock
1014  * @cached_state: If passed, will return the extent state responsible for the
1015  * locked range. It's the caller's responsibility to free the cached state.
1016  *
1017  * This function always returns with the given range locked, ensuring after it's
1018  * called no order extent can be pending.
1019  */
1020 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1021                                         u64 end,
1022                                         struct extent_state **cached_state)
1023 {
1024         struct btrfs_ordered_extent *ordered;
1025         struct extent_state *cache = NULL;
1026         struct extent_state **cachedp = &cache;
1027
1028         if (cached_state)
1029                 cachedp = cached_state;
1030
1031         while (1) {
1032                 lock_extent_bits(&inode->io_tree, start, end, cachedp);
1033                 ordered = btrfs_lookup_ordered_range(inode, start,
1034                                                      end - start + 1);
1035                 if (!ordered) {
1036                         /*
1037                          * If no external cached_state has been passed then
1038                          * decrement the extra ref taken for cachedp since we
1039                          * aren't exposing it outside of this function
1040                          */
1041                         if (!cached_state)
1042                                 refcount_dec(&cache->refs);
1043                         break;
1044                 }
1045                 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1046                 btrfs_start_ordered_extent(ordered, 1);
1047                 btrfs_put_ordered_extent(ordered);
1048         }
1049 }
1050
1051 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1052                                 u64 len)
1053 {
1054         struct inode *inode = ordered->inode;
1055         u64 file_offset = ordered->file_offset + pos;
1056         u64 disk_bytenr = ordered->disk_bytenr + pos;
1057         u64 num_bytes = len;
1058         u64 disk_num_bytes = len;
1059         int type;
1060         unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
1061         int compress_type = ordered->compress_type;
1062         unsigned long weight;
1063         int ret;
1064
1065         weight = hweight_long(flags_masked);
1066         WARN_ON_ONCE(weight > 1);
1067         if (!weight)
1068                 type = 0;
1069         else
1070                 type = __ffs(flags_masked);
1071
1072         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
1073                 WARN_ON_ONCE(1);
1074                 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
1075                                 file_offset, disk_bytenr, num_bytes,
1076                                 disk_num_bytes, compress_type);
1077         } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
1078                 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
1079                                 disk_bytenr, num_bytes, disk_num_bytes, type);
1080         } else {
1081                 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
1082                                 disk_bytenr, num_bytes, disk_num_bytes, type);
1083         }
1084
1085         return ret;
1086 }
1087
1088 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1089                                 u64 post)
1090 {
1091         struct inode *inode = ordered->inode;
1092         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1093         struct rb_node *node;
1094         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1095         int ret = 0;
1096
1097         spin_lock_irq(&tree->lock);
1098         /* Remove from tree once */
1099         node = &ordered->rb_node;
1100         rb_erase(node, &tree->tree);
1101         RB_CLEAR_NODE(node);
1102         if (tree->last == node)
1103                 tree->last = NULL;
1104
1105         ordered->file_offset += pre;
1106         ordered->disk_bytenr += pre;
1107         ordered->num_bytes -= (pre + post);
1108         ordered->disk_num_bytes -= (pre + post);
1109         ordered->bytes_left -= (pre + post);
1110
1111         /* Re-insert the node */
1112         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1113         if (node)
1114                 btrfs_panic(fs_info, -EEXIST,
1115                         "zoned: inconsistency in ordered tree at offset %llu",
1116                             ordered->file_offset);
1117
1118         spin_unlock_irq(&tree->lock);
1119
1120         if (pre)
1121                 ret = clone_ordered_extent(ordered, 0, pre);
1122         if (ret == 0 && post)
1123                 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1124                                            post);
1125
1126         return ret;
1127 }
1128
1129 int __init ordered_data_init(void)
1130 {
1131         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1132                                      sizeof(struct btrfs_ordered_extent), 0,
1133                                      SLAB_MEM_SPREAD,
1134                                      NULL);
1135         if (!btrfs_ordered_extent_cache)
1136                 return -ENOMEM;
1137
1138         return 0;
1139 }
1140
1141 void __cold ordered_data_exit(void)
1142 {
1143         kmem_cache_destroy(btrfs_ordered_extent_cache);
1144 }