Merge tag 'pm-5.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-microblaze.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19
20 static struct kmem_cache *btrfs_ordered_extent_cache;
21
22 static u64 entry_end(struct btrfs_ordered_extent *entry)
23 {
24         if (entry->file_offset + entry->num_bytes < entry->file_offset)
25                 return (u64)-1;
26         return entry->file_offset + entry->num_bytes;
27 }
28
29 /* returns NULL if the insertion worked, or it returns the node it did find
30  * in the tree
31  */
32 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
33                                    struct rb_node *node)
34 {
35         struct rb_node **p = &root->rb_node;
36         struct rb_node *parent = NULL;
37         struct btrfs_ordered_extent *entry;
38
39         while (*p) {
40                 parent = *p;
41                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
42
43                 if (file_offset < entry->file_offset)
44                         p = &(*p)->rb_left;
45                 else if (file_offset >= entry_end(entry))
46                         p = &(*p)->rb_right;
47                 else
48                         return parent;
49         }
50
51         rb_link_node(node, parent, p);
52         rb_insert_color(node, root);
53         return NULL;
54 }
55
56 /*
57  * look for a given offset in the tree, and if it can't be found return the
58  * first lesser offset
59  */
60 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
61                                      struct rb_node **prev_ret)
62 {
63         struct rb_node *n = root->rb_node;
64         struct rb_node *prev = NULL;
65         struct rb_node *test;
66         struct btrfs_ordered_extent *entry;
67         struct btrfs_ordered_extent *prev_entry = NULL;
68
69         while (n) {
70                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
71                 prev = n;
72                 prev_entry = entry;
73
74                 if (file_offset < entry->file_offset)
75                         n = n->rb_left;
76                 else if (file_offset >= entry_end(entry))
77                         n = n->rb_right;
78                 else
79                         return n;
80         }
81         if (!prev_ret)
82                 return NULL;
83
84         while (prev && file_offset >= entry_end(prev_entry)) {
85                 test = rb_next(prev);
86                 if (!test)
87                         break;
88                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
89                                       rb_node);
90                 if (file_offset < entry_end(prev_entry))
91                         break;
92
93                 prev = test;
94         }
95         if (prev)
96                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
97                                       rb_node);
98         while (prev && file_offset < entry_end(prev_entry)) {
99                 test = rb_prev(prev);
100                 if (!test)
101                         break;
102                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103                                       rb_node);
104                 prev = test;
105         }
106         *prev_ret = prev;
107         return NULL;
108 }
109
110 /*
111  * helper to check if a given offset is inside a given entry
112  */
113 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
114 {
115         if (file_offset < entry->file_offset ||
116             entry->file_offset + entry->num_bytes <= file_offset)
117                 return 0;
118         return 1;
119 }
120
121 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
122                           u64 len)
123 {
124         if (file_offset + len <= entry->file_offset ||
125             entry->file_offset + entry->num_bytes <= file_offset)
126                 return 0;
127         return 1;
128 }
129
130 /*
131  * look find the first ordered struct that has this offset, otherwise
132  * the first one less than this offset
133  */
134 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
135                                           u64 file_offset)
136 {
137         struct rb_root *root = &tree->tree;
138         struct rb_node *prev = NULL;
139         struct rb_node *ret;
140         struct btrfs_ordered_extent *entry;
141
142         if (tree->last) {
143                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
144                                  rb_node);
145                 if (offset_in_entry(entry, file_offset))
146                         return tree->last;
147         }
148         ret = __tree_search(root, file_offset, &prev);
149         if (!ret)
150                 ret = prev;
151         if (ret)
152                 tree->last = ret;
153         return ret;
154 }
155
156 /*
157  * Allocate and add a new ordered_extent into the per-inode tree.
158  *
159  * The tree is given a single reference on the ordered extent that was
160  * inserted.
161  */
162 static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
163                                       u64 disk_bytenr, u64 num_bytes,
164                                       u64 disk_num_bytes, int type, int dio,
165                                       int compress_type)
166 {
167         struct btrfs_root *root = inode->root;
168         struct btrfs_fs_info *fs_info = root->fs_info;
169         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
170         struct rb_node *node;
171         struct btrfs_ordered_extent *entry;
172         int ret;
173
174         if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
175                 /* For nocow write, we can release the qgroup rsv right now */
176                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
177                 if (ret < 0)
178                         return ret;
179                 ret = 0;
180         } else {
181                 /*
182                  * The ordered extent has reserved qgroup space, release now
183                  * and pass the reserved number for qgroup_record to free.
184                  */
185                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
186                 if (ret < 0)
187                         return ret;
188         }
189         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
190         if (!entry)
191                 return -ENOMEM;
192
193         entry->file_offset = file_offset;
194         entry->disk_bytenr = disk_bytenr;
195         entry->num_bytes = num_bytes;
196         entry->disk_num_bytes = disk_num_bytes;
197         entry->bytes_left = num_bytes;
198         entry->inode = igrab(&inode->vfs_inode);
199         entry->compress_type = compress_type;
200         entry->truncated_len = (u64)-1;
201         entry->qgroup_rsv = ret;
202         entry->physical = (u64)-1;
203         entry->disk = NULL;
204         entry->partno = (u8)-1;
205
206         ASSERT(type == BTRFS_ORDERED_REGULAR ||
207                type == BTRFS_ORDERED_NOCOW ||
208                type == BTRFS_ORDERED_PREALLOC ||
209                type == BTRFS_ORDERED_COMPRESSED);
210         set_bit(type, &entry->flags);
211
212         percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
213                                  fs_info->delalloc_batch);
214
215         if (dio)
216                 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
217
218         /* one ref for the tree */
219         refcount_set(&entry->refs, 1);
220         init_waitqueue_head(&entry->wait);
221         INIT_LIST_HEAD(&entry->list);
222         INIT_LIST_HEAD(&entry->log_list);
223         INIT_LIST_HEAD(&entry->root_extent_list);
224         INIT_LIST_HEAD(&entry->work_list);
225         init_completion(&entry->completion);
226
227         trace_btrfs_ordered_extent_add(inode, entry);
228
229         spin_lock_irq(&tree->lock);
230         node = tree_insert(&tree->tree, file_offset,
231                            &entry->rb_node);
232         if (node)
233                 btrfs_panic(fs_info, -EEXIST,
234                                 "inconsistency in ordered tree at offset %llu",
235                                 file_offset);
236         spin_unlock_irq(&tree->lock);
237
238         spin_lock(&root->ordered_extent_lock);
239         list_add_tail(&entry->root_extent_list,
240                       &root->ordered_extents);
241         root->nr_ordered_extents++;
242         if (root->nr_ordered_extents == 1) {
243                 spin_lock(&fs_info->ordered_root_lock);
244                 BUG_ON(!list_empty(&root->ordered_root));
245                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
246                 spin_unlock(&fs_info->ordered_root_lock);
247         }
248         spin_unlock(&root->ordered_extent_lock);
249
250         /*
251          * We don't need the count_max_extents here, we can assume that all of
252          * that work has been done at higher layers, so this is truly the
253          * smallest the extent is going to get.
254          */
255         spin_lock(&inode->lock);
256         btrfs_mod_outstanding_extents(inode, 1);
257         spin_unlock(&inode->lock);
258
259         return 0;
260 }
261
262 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
263                              u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
264                              int type)
265 {
266         ASSERT(type == BTRFS_ORDERED_REGULAR ||
267                type == BTRFS_ORDERED_NOCOW ||
268                type == BTRFS_ORDERED_PREALLOC);
269         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
270                                           num_bytes, disk_num_bytes, type, 0,
271                                           BTRFS_COMPRESS_NONE);
272 }
273
274 int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
275                                  u64 disk_bytenr, u64 num_bytes,
276                                  u64 disk_num_bytes, int type)
277 {
278         ASSERT(type == BTRFS_ORDERED_REGULAR ||
279                type == BTRFS_ORDERED_NOCOW ||
280                type == BTRFS_ORDERED_PREALLOC);
281         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
282                                           num_bytes, disk_num_bytes, type, 1,
283                                           BTRFS_COMPRESS_NONE);
284 }
285
286 int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
287                                       u64 disk_bytenr, u64 num_bytes,
288                                       u64 disk_num_bytes, int compress_type)
289 {
290         ASSERT(compress_type != BTRFS_COMPRESS_NONE);
291         return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
292                                           num_bytes, disk_num_bytes,
293                                           BTRFS_ORDERED_COMPRESSED, 0,
294                                           compress_type);
295 }
296
297 /*
298  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
299  * when an ordered extent is finished.  If the list covers more than one
300  * ordered extent, it is split across multiples.
301  */
302 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
303                            struct btrfs_ordered_sum *sum)
304 {
305         struct btrfs_ordered_inode_tree *tree;
306
307         tree = &BTRFS_I(entry->inode)->ordered_tree;
308         spin_lock_irq(&tree->lock);
309         list_add_tail(&sum->list, &entry->list);
310         spin_unlock_irq(&tree->lock);
311 }
312
313 /*
314  * Finish IO for one ordered extent across a given range.  The range can
315  * contain several ordered extents.
316  *
317  * @found_ret:   Return the finished ordered extent
318  * @file_offset: File offset for the finished IO
319  *               Will also be updated to one byte past the range that is
320  *               recordered as finished. This allows caller to walk forward.
321  * @io_size:     Length of the finish IO range
322  * @uptodate:    If the IO finished without problem
323  *
324  * Return true if any ordered extent is finished in the range, and update
325  * @found_ret and @file_offset.
326  * Return false otherwise.
327  *
328  * NOTE: Although The range can cross multiple ordered extents, only one
329  * ordered extent will be updated during one call. The caller is responsible to
330  * iterate all ordered extents in the range.
331  */
332 bool btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
333                                    struct btrfs_ordered_extent **finished_ret,
334                                    u64 *file_offset, u64 io_size, int uptodate)
335 {
336         struct btrfs_fs_info *fs_info = inode->root->fs_info;
337         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
338         struct rb_node *node;
339         struct btrfs_ordered_extent *entry = NULL;
340         bool finished = false;
341         unsigned long flags;
342         u64 dec_end;
343         u64 dec_start;
344         u64 to_dec;
345
346         spin_lock_irqsave(&tree->lock, flags);
347         node = tree_search(tree, *file_offset);
348         if (!node)
349                 goto out;
350
351         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
352         if (!offset_in_entry(entry, *file_offset))
353                 goto out;
354
355         dec_start = max(*file_offset, entry->file_offset);
356         dec_end = min(*file_offset + io_size,
357                       entry->file_offset + entry->num_bytes);
358         *file_offset = dec_end;
359         if (dec_start > dec_end) {
360                 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
361                            dec_start, dec_end);
362         }
363         to_dec = dec_end - dec_start;
364         if (to_dec > entry->bytes_left) {
365                 btrfs_crit(fs_info,
366                            "bad ordered accounting left %llu size %llu",
367                            entry->bytes_left, to_dec);
368         }
369         entry->bytes_left -= to_dec;
370         if (!uptodate)
371                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
372
373         if (entry->bytes_left == 0) {
374                 /*
375                  * Ensure only one caller can set the flag and finished_ret
376                  * accordingly
377                  */
378                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
379                 /* test_and_set_bit implies a barrier */
380                 cond_wake_up_nomb(&entry->wait);
381         }
382 out:
383         if (finished && finished_ret && entry) {
384                 *finished_ret = entry;
385                 refcount_inc(&entry->refs);
386         }
387         spin_unlock_irqrestore(&tree->lock, flags);
388         return finished;
389 }
390
391 /*
392  * Finish IO for one ordered extent across a given range.  The range can only
393  * contain one ordered extent.
394  *
395  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
396  *               search and use the ordered extent directly.
397  *               Will be also used to store the finished ordered extent.
398  * @file_offset: File offset for the finished IO
399  * @io_size:     Length of the finish IO range
400  * @uptodate:    If the IO finishes without problem
401  *
402  * Return true if the ordered extent is finished in the range, and update
403  * @cached.
404  * Return false otherwise.
405  *
406  * NOTE: The range can NOT cross multiple ordered extents.
407  * Thus caller should ensure the range doesn't cross ordered extents.
408  */
409 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
410                                     struct btrfs_ordered_extent **cached,
411                                     u64 file_offset, u64 io_size, int uptodate)
412 {
413         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
414         struct rb_node *node;
415         struct btrfs_ordered_extent *entry = NULL;
416         unsigned long flags;
417         bool finished = false;
418
419         spin_lock_irqsave(&tree->lock, flags);
420         if (cached && *cached) {
421                 entry = *cached;
422                 goto have_entry;
423         }
424
425         node = tree_search(tree, file_offset);
426         if (!node)
427                 goto out;
428
429         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
430 have_entry:
431         if (!offset_in_entry(entry, file_offset))
432                 goto out;
433
434         if (io_size > entry->bytes_left)
435                 btrfs_crit(inode->root->fs_info,
436                            "bad ordered accounting left %llu size %llu",
437                        entry->bytes_left, io_size);
438
439         entry->bytes_left -= io_size;
440         if (!uptodate)
441                 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
442
443         if (entry->bytes_left == 0) {
444                 /*
445                  * Ensure only one caller can set the flag and finished_ret
446                  * accordingly
447                  */
448                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
449                 /* test_and_set_bit implies a barrier */
450                 cond_wake_up_nomb(&entry->wait);
451         }
452 out:
453         if (finished && cached && entry) {
454                 *cached = entry;
455                 refcount_inc(&entry->refs);
456         }
457         spin_unlock_irqrestore(&tree->lock, flags);
458         return finished;
459 }
460
461 /*
462  * used to drop a reference on an ordered extent.  This will free
463  * the extent if the last reference is dropped
464  */
465 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
466 {
467         struct list_head *cur;
468         struct btrfs_ordered_sum *sum;
469
470         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
471
472         if (refcount_dec_and_test(&entry->refs)) {
473                 ASSERT(list_empty(&entry->root_extent_list));
474                 ASSERT(list_empty(&entry->log_list));
475                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
476                 if (entry->inode)
477                         btrfs_add_delayed_iput(entry->inode);
478                 while (!list_empty(&entry->list)) {
479                         cur = entry->list.next;
480                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
481                         list_del(&sum->list);
482                         kvfree(sum);
483                 }
484                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
485         }
486 }
487
488 /*
489  * remove an ordered extent from the tree.  No references are dropped
490  * and waiters are woken up.
491  */
492 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
493                                  struct btrfs_ordered_extent *entry)
494 {
495         struct btrfs_ordered_inode_tree *tree;
496         struct btrfs_root *root = btrfs_inode->root;
497         struct btrfs_fs_info *fs_info = root->fs_info;
498         struct rb_node *node;
499         bool pending;
500
501         /* This is paired with btrfs_add_ordered_extent. */
502         spin_lock(&btrfs_inode->lock);
503         btrfs_mod_outstanding_extents(btrfs_inode, -1);
504         spin_unlock(&btrfs_inode->lock);
505         if (root != fs_info->tree_root)
506                 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
507                                                 false);
508
509         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
510                                  fs_info->delalloc_batch);
511
512         tree = &btrfs_inode->ordered_tree;
513         spin_lock_irq(&tree->lock);
514         node = &entry->rb_node;
515         rb_erase(node, &tree->tree);
516         RB_CLEAR_NODE(node);
517         if (tree->last == node)
518                 tree->last = NULL;
519         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
520         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
521         spin_unlock_irq(&tree->lock);
522
523         /*
524          * The current running transaction is waiting on us, we need to let it
525          * know that we're complete and wake it up.
526          */
527         if (pending) {
528                 struct btrfs_transaction *trans;
529
530                 /*
531                  * The checks for trans are just a formality, it should be set,
532                  * but if it isn't we don't want to deref/assert under the spin
533                  * lock, so be nice and check if trans is set, but ASSERT() so
534                  * if it isn't set a developer will notice.
535                  */
536                 spin_lock(&fs_info->trans_lock);
537                 trans = fs_info->running_transaction;
538                 if (trans)
539                         refcount_inc(&trans->use_count);
540                 spin_unlock(&fs_info->trans_lock);
541
542                 ASSERT(trans);
543                 if (trans) {
544                         if (atomic_dec_and_test(&trans->pending_ordered))
545                                 wake_up(&trans->pending_wait);
546                         btrfs_put_transaction(trans);
547                 }
548         }
549
550         spin_lock(&root->ordered_extent_lock);
551         list_del_init(&entry->root_extent_list);
552         root->nr_ordered_extents--;
553
554         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
555
556         if (!root->nr_ordered_extents) {
557                 spin_lock(&fs_info->ordered_root_lock);
558                 BUG_ON(list_empty(&root->ordered_root));
559                 list_del_init(&root->ordered_root);
560                 spin_unlock(&fs_info->ordered_root_lock);
561         }
562         spin_unlock(&root->ordered_extent_lock);
563         wake_up(&entry->wait);
564 }
565
566 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
567 {
568         struct btrfs_ordered_extent *ordered;
569
570         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
571         btrfs_start_ordered_extent(ordered, 1);
572         complete(&ordered->completion);
573 }
574
575 /*
576  * wait for all the ordered extents in a root.  This is done when balancing
577  * space between drives.
578  */
579 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
580                                const u64 range_start, const u64 range_len)
581 {
582         struct btrfs_fs_info *fs_info = root->fs_info;
583         LIST_HEAD(splice);
584         LIST_HEAD(skipped);
585         LIST_HEAD(works);
586         struct btrfs_ordered_extent *ordered, *next;
587         u64 count = 0;
588         const u64 range_end = range_start + range_len;
589
590         mutex_lock(&root->ordered_extent_mutex);
591         spin_lock(&root->ordered_extent_lock);
592         list_splice_init(&root->ordered_extents, &splice);
593         while (!list_empty(&splice) && nr) {
594                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
595                                            root_extent_list);
596
597                 if (range_end <= ordered->disk_bytenr ||
598                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
599                         list_move_tail(&ordered->root_extent_list, &skipped);
600                         cond_resched_lock(&root->ordered_extent_lock);
601                         continue;
602                 }
603
604                 list_move_tail(&ordered->root_extent_list,
605                                &root->ordered_extents);
606                 refcount_inc(&ordered->refs);
607                 spin_unlock(&root->ordered_extent_lock);
608
609                 btrfs_init_work(&ordered->flush_work,
610                                 btrfs_run_ordered_extent_work, NULL, NULL);
611                 list_add_tail(&ordered->work_list, &works);
612                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
613
614                 cond_resched();
615                 spin_lock(&root->ordered_extent_lock);
616                 if (nr != U64_MAX)
617                         nr--;
618                 count++;
619         }
620         list_splice_tail(&skipped, &root->ordered_extents);
621         list_splice_tail(&splice, &root->ordered_extents);
622         spin_unlock(&root->ordered_extent_lock);
623
624         list_for_each_entry_safe(ordered, next, &works, work_list) {
625                 list_del_init(&ordered->work_list);
626                 wait_for_completion(&ordered->completion);
627                 btrfs_put_ordered_extent(ordered);
628                 cond_resched();
629         }
630         mutex_unlock(&root->ordered_extent_mutex);
631
632         return count;
633 }
634
635 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
636                              const u64 range_start, const u64 range_len)
637 {
638         struct btrfs_root *root;
639         struct list_head splice;
640         u64 done;
641
642         INIT_LIST_HEAD(&splice);
643
644         mutex_lock(&fs_info->ordered_operations_mutex);
645         spin_lock(&fs_info->ordered_root_lock);
646         list_splice_init(&fs_info->ordered_roots, &splice);
647         while (!list_empty(&splice) && nr) {
648                 root = list_first_entry(&splice, struct btrfs_root,
649                                         ordered_root);
650                 root = btrfs_grab_root(root);
651                 BUG_ON(!root);
652                 list_move_tail(&root->ordered_root,
653                                &fs_info->ordered_roots);
654                 spin_unlock(&fs_info->ordered_root_lock);
655
656                 done = btrfs_wait_ordered_extents(root, nr,
657                                                   range_start, range_len);
658                 btrfs_put_root(root);
659
660                 spin_lock(&fs_info->ordered_root_lock);
661                 if (nr != U64_MAX) {
662                         nr -= done;
663                 }
664         }
665         list_splice_tail(&splice, &fs_info->ordered_roots);
666         spin_unlock(&fs_info->ordered_root_lock);
667         mutex_unlock(&fs_info->ordered_operations_mutex);
668 }
669
670 /*
671  * Used to start IO or wait for a given ordered extent to finish.
672  *
673  * If wait is one, this effectively waits on page writeback for all the pages
674  * in the extent, and it waits on the io completion code to insert
675  * metadata into the btree corresponding to the extent
676  */
677 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
678 {
679         u64 start = entry->file_offset;
680         u64 end = start + entry->num_bytes - 1;
681         struct btrfs_inode *inode = BTRFS_I(entry->inode);
682
683         trace_btrfs_ordered_extent_start(inode, entry);
684
685         /*
686          * pages in the range can be dirty, clean or writeback.  We
687          * start IO on any dirty ones so the wait doesn't stall waiting
688          * for the flusher thread to find them
689          */
690         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
691                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
692         if (wait) {
693                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
694                                                  &entry->flags));
695         }
696 }
697
698 /*
699  * Used to wait on ordered extents across a large range of bytes.
700  */
701 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
702 {
703         int ret = 0;
704         int ret_wb = 0;
705         u64 end;
706         u64 orig_end;
707         struct btrfs_ordered_extent *ordered;
708
709         if (start + len < start) {
710                 orig_end = INT_LIMIT(loff_t);
711         } else {
712                 orig_end = start + len - 1;
713                 if (orig_end > INT_LIMIT(loff_t))
714                         orig_end = INT_LIMIT(loff_t);
715         }
716
717         /* start IO across the range first to instantiate any delalloc
718          * extents
719          */
720         ret = btrfs_fdatawrite_range(inode, start, orig_end);
721         if (ret)
722                 return ret;
723
724         /*
725          * If we have a writeback error don't return immediately. Wait first
726          * for any ordered extents that haven't completed yet. This is to make
727          * sure no one can dirty the same page ranges and call writepages()
728          * before the ordered extents complete - to avoid failures (-EEXIST)
729          * when adding the new ordered extents to the ordered tree.
730          */
731         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
732
733         end = orig_end;
734         while (1) {
735                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
736                 if (!ordered)
737                         break;
738                 if (ordered->file_offset > orig_end) {
739                         btrfs_put_ordered_extent(ordered);
740                         break;
741                 }
742                 if (ordered->file_offset + ordered->num_bytes <= start) {
743                         btrfs_put_ordered_extent(ordered);
744                         break;
745                 }
746                 btrfs_start_ordered_extent(ordered, 1);
747                 end = ordered->file_offset;
748                 /*
749                  * If the ordered extent had an error save the error but don't
750                  * exit without waiting first for all other ordered extents in
751                  * the range to complete.
752                  */
753                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
754                         ret = -EIO;
755                 btrfs_put_ordered_extent(ordered);
756                 if (end == 0 || end == start)
757                         break;
758                 end--;
759         }
760         return ret_wb ? ret_wb : ret;
761 }
762
763 /*
764  * find an ordered extent corresponding to file_offset.  return NULL if
765  * nothing is found, otherwise take a reference on the extent and return it
766  */
767 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
768                                                          u64 file_offset)
769 {
770         struct btrfs_ordered_inode_tree *tree;
771         struct rb_node *node;
772         struct btrfs_ordered_extent *entry = NULL;
773         unsigned long flags;
774
775         tree = &inode->ordered_tree;
776         spin_lock_irqsave(&tree->lock, flags);
777         node = tree_search(tree, file_offset);
778         if (!node)
779                 goto out;
780
781         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
782         if (!offset_in_entry(entry, file_offset))
783                 entry = NULL;
784         if (entry)
785                 refcount_inc(&entry->refs);
786 out:
787         spin_unlock_irqrestore(&tree->lock, flags);
788         return entry;
789 }
790
791 /* Since the DIO code tries to lock a wide area we need to look for any ordered
792  * extents that exist in the range, rather than just the start of the range.
793  */
794 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
795                 struct btrfs_inode *inode, u64 file_offset, u64 len)
796 {
797         struct btrfs_ordered_inode_tree *tree;
798         struct rb_node *node;
799         struct btrfs_ordered_extent *entry = NULL;
800
801         tree = &inode->ordered_tree;
802         spin_lock_irq(&tree->lock);
803         node = tree_search(tree, file_offset);
804         if (!node) {
805                 node = tree_search(tree, file_offset + len);
806                 if (!node)
807                         goto out;
808         }
809
810         while (1) {
811                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
812                 if (range_overlaps(entry, file_offset, len))
813                         break;
814
815                 if (entry->file_offset >= file_offset + len) {
816                         entry = NULL;
817                         break;
818                 }
819                 entry = NULL;
820                 node = rb_next(node);
821                 if (!node)
822                         break;
823         }
824 out:
825         if (entry)
826                 refcount_inc(&entry->refs);
827         spin_unlock_irq(&tree->lock);
828         return entry;
829 }
830
831 /*
832  * Adds all ordered extents to the given list. The list ends up sorted by the
833  * file_offset of the ordered extents.
834  */
835 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
836                                            struct list_head *list)
837 {
838         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
839         struct rb_node *n;
840
841         ASSERT(inode_is_locked(&inode->vfs_inode));
842
843         spin_lock_irq(&tree->lock);
844         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
845                 struct btrfs_ordered_extent *ordered;
846
847                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
848
849                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
850                         continue;
851
852                 ASSERT(list_empty(&ordered->log_list));
853                 list_add_tail(&ordered->log_list, list);
854                 refcount_inc(&ordered->refs);
855         }
856         spin_unlock_irq(&tree->lock);
857 }
858
859 /*
860  * lookup and return any extent before 'file_offset'.  NULL is returned
861  * if none is found
862  */
863 struct btrfs_ordered_extent *
864 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
865 {
866         struct btrfs_ordered_inode_tree *tree;
867         struct rb_node *node;
868         struct btrfs_ordered_extent *entry = NULL;
869
870         tree = &inode->ordered_tree;
871         spin_lock_irq(&tree->lock);
872         node = tree_search(tree, file_offset);
873         if (!node)
874                 goto out;
875
876         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
877         refcount_inc(&entry->refs);
878 out:
879         spin_unlock_irq(&tree->lock);
880         return entry;
881 }
882
883 /*
884  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
885  * ordered extents in it are run to completion.
886  *
887  * @inode:        Inode whose ordered tree is to be searched
888  * @start:        Beginning of range to flush
889  * @end:          Last byte of range to lock
890  * @cached_state: If passed, will return the extent state responsible for the
891  * locked range. It's the caller's responsibility to free the cached state.
892  *
893  * This function always returns with the given range locked, ensuring after it's
894  * called no order extent can be pending.
895  */
896 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
897                                         u64 end,
898                                         struct extent_state **cached_state)
899 {
900         struct btrfs_ordered_extent *ordered;
901         struct extent_state *cache = NULL;
902         struct extent_state **cachedp = &cache;
903
904         if (cached_state)
905                 cachedp = cached_state;
906
907         while (1) {
908                 lock_extent_bits(&inode->io_tree, start, end, cachedp);
909                 ordered = btrfs_lookup_ordered_range(inode, start,
910                                                      end - start + 1);
911                 if (!ordered) {
912                         /*
913                          * If no external cached_state has been passed then
914                          * decrement the extra ref taken for cachedp since we
915                          * aren't exposing it outside of this function
916                          */
917                         if (!cached_state)
918                                 refcount_dec(&cache->refs);
919                         break;
920                 }
921                 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
922                 btrfs_start_ordered_extent(ordered, 1);
923                 btrfs_put_ordered_extent(ordered);
924         }
925 }
926
927 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
928                                 u64 len)
929 {
930         struct inode *inode = ordered->inode;
931         u64 file_offset = ordered->file_offset + pos;
932         u64 disk_bytenr = ordered->disk_bytenr + pos;
933         u64 num_bytes = len;
934         u64 disk_num_bytes = len;
935         int type;
936         unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
937         int compress_type = ordered->compress_type;
938         unsigned long weight;
939         int ret;
940
941         weight = hweight_long(flags_masked);
942         WARN_ON_ONCE(weight > 1);
943         if (!weight)
944                 type = 0;
945         else
946                 type = __ffs(flags_masked);
947
948         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
949                 WARN_ON_ONCE(1);
950                 ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
951                                 file_offset, disk_bytenr, num_bytes,
952                                 disk_num_bytes, compress_type);
953         } else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
954                 ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
955                                 disk_bytenr, num_bytes, disk_num_bytes, type);
956         } else {
957                 ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
958                                 disk_bytenr, num_bytes, disk_num_bytes, type);
959         }
960
961         return ret;
962 }
963
964 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
965                                 u64 post)
966 {
967         struct inode *inode = ordered->inode;
968         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
969         struct rb_node *node;
970         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
971         int ret = 0;
972
973         spin_lock_irq(&tree->lock);
974         /* Remove from tree once */
975         node = &ordered->rb_node;
976         rb_erase(node, &tree->tree);
977         RB_CLEAR_NODE(node);
978         if (tree->last == node)
979                 tree->last = NULL;
980
981         ordered->file_offset += pre;
982         ordered->disk_bytenr += pre;
983         ordered->num_bytes -= (pre + post);
984         ordered->disk_num_bytes -= (pre + post);
985         ordered->bytes_left -= (pre + post);
986
987         /* Re-insert the node */
988         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
989         if (node)
990                 btrfs_panic(fs_info, -EEXIST,
991                         "zoned: inconsistency in ordered tree at offset %llu",
992                             ordered->file_offset);
993
994         spin_unlock_irq(&tree->lock);
995
996         if (pre)
997                 ret = clone_ordered_extent(ordered, 0, pre);
998         if (post)
999                 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1000                                            post);
1001
1002         return ret;
1003 }
1004
1005 int __init ordered_data_init(void)
1006 {
1007         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1008                                      sizeof(struct btrfs_ordered_extent), 0,
1009                                      SLAB_MEM_SPREAD,
1010                                      NULL);
1011         if (!btrfs_ordered_extent_cache)
1012                 return -ENOMEM;
1013
1014         return 0;
1015 }
1016
1017 void __cold ordered_data_exit(void)
1018 {
1019         kmem_cache_destroy(btrfs_ordered_extent_cache);
1020 }