Merge tag 'x86-urgent-2020-07-05' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / btrfs / inode.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/buffer_head.h>
9 #include <linux/file.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/init.h>
15 #include <linux/string.h>
16 #include <linux/backing-dev.h>
17 #include <linux/writeback.h>
18 #include <linux/compat.h>
19 #include <linux/xattr.h>
20 #include <linux/posix_acl.h>
21 #include <linux/falloc.h>
22 #include <linux/slab.h>
23 #include <linux/ratelimit.h>
24 #include <linux/btrfs.h>
25 #include <linux/blkdev.h>
26 #include <linux/posix_acl_xattr.h>
27 #include <linux/uio.h>
28 #include <linux/magic.h>
29 #include <linux/iversion.h>
30 #include <linux/swap.h>
31 #include <linux/migrate.h>
32 #include <linux/sched/mm.h>
33 #include <asm/unaligned.h>
34 #include "misc.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "ordered-data.h"
41 #include "xattr.h"
42 #include "tree-log.h"
43 #include "volumes.h"
44 #include "compression.h"
45 #include "locking.h"
46 #include "free-space-cache.h"
47 #include "inode-map.h"
48 #include "props.h"
49 #include "qgroup.h"
50 #include "delalloc-space.h"
51 #include "block-group.h"
52 #include "space-info.h"
53
54 struct btrfs_iget_args {
55         u64 ino;
56         struct btrfs_root *root;
57 };
58
59 struct btrfs_dio_data {
60         u64 reserve;
61         u64 unsubmitted_oe_range_start;
62         u64 unsubmitted_oe_range_end;
63         int overwrite;
64 };
65
66 static const struct inode_operations btrfs_dir_inode_operations;
67 static const struct inode_operations btrfs_symlink_inode_operations;
68 static const struct inode_operations btrfs_special_inode_operations;
69 static const struct inode_operations btrfs_file_inode_operations;
70 static const struct address_space_operations btrfs_aops;
71 static const struct file_operations btrfs_dir_file_operations;
72 static const struct extent_io_ops btrfs_extent_io_ops;
73
74 static struct kmem_cache *btrfs_inode_cachep;
75 struct kmem_cache *btrfs_trans_handle_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78 struct kmem_cache *btrfs_free_space_bitmap_cachep;
79
80 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
81 static int btrfs_truncate(struct inode *inode, bool skip_writeback);
82 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
83 static noinline int cow_file_range(struct inode *inode,
84                                    struct page *locked_page,
85                                    u64 start, u64 end, int *page_started,
86                                    unsigned long *nr_written, int unlock);
87 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
88                                        u64 orig_start, u64 block_start,
89                                        u64 block_len, u64 orig_block_len,
90                                        u64 ram_bytes, int compress_type,
91                                        int type);
92
93 static void __endio_write_update_ordered(struct inode *inode,
94                                          const u64 offset, const u64 bytes,
95                                          const bool uptodate);
96
97 /*
98  * Cleanup all submitted ordered extents in specified range to handle errors
99  * from the btrfs_run_delalloc_range() callback.
100  *
101  * NOTE: caller must ensure that when an error happens, it can not call
102  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
103  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
104  * to be released, which we want to happen only when finishing the ordered
105  * extent (btrfs_finish_ordered_io()).
106  */
107 static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
108                                                  struct page *locked_page,
109                                                  u64 offset, u64 bytes)
110 {
111         unsigned long index = offset >> PAGE_SHIFT;
112         unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
113         u64 page_start = page_offset(locked_page);
114         u64 page_end = page_start + PAGE_SIZE - 1;
115
116         struct page *page;
117
118         while (index <= end_index) {
119                 page = find_get_page(inode->i_mapping, index);
120                 index++;
121                 if (!page)
122                         continue;
123                 ClearPagePrivate2(page);
124                 put_page(page);
125         }
126
127         /*
128          * In case this page belongs to the delalloc range being instantiated
129          * then skip it, since the first page of a range is going to be
130          * properly cleaned up by the caller of run_delalloc_range
131          */
132         if (page_start >= offset && page_end <= (offset + bytes - 1)) {
133                 offset += PAGE_SIZE;
134                 bytes -= PAGE_SIZE;
135         }
136
137         return __endio_write_update_ordered(inode, offset, bytes, false);
138 }
139
140 static int btrfs_dirty_inode(struct inode *inode);
141
142 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
143 void btrfs_test_inode_set_ops(struct inode *inode)
144 {
145         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
146 }
147 #endif
148
149 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
150                                      struct inode *inode,  struct inode *dir,
151                                      const struct qstr *qstr)
152 {
153         int err;
154
155         err = btrfs_init_acl(trans, inode, dir);
156         if (!err)
157                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
158         return err;
159 }
160
161 /*
162  * this does all the hard work for inserting an inline extent into
163  * the btree.  The caller should have done a btrfs_drop_extents so that
164  * no overlapping inline items exist in the btree
165  */
166 static int insert_inline_extent(struct btrfs_trans_handle *trans,
167                                 struct btrfs_path *path, int extent_inserted,
168                                 struct btrfs_root *root, struct inode *inode,
169                                 u64 start, size_t size, size_t compressed_size,
170                                 int compress_type,
171                                 struct page **compressed_pages)
172 {
173         struct extent_buffer *leaf;
174         struct page *page = NULL;
175         char *kaddr;
176         unsigned long ptr;
177         struct btrfs_file_extent_item *ei;
178         int ret;
179         size_t cur_size = size;
180         unsigned long offset;
181
182         ASSERT((compressed_size > 0 && compressed_pages) ||
183                (compressed_size == 0 && !compressed_pages));
184
185         if (compressed_size && compressed_pages)
186                 cur_size = compressed_size;
187
188         inode_add_bytes(inode, size);
189
190         if (!extent_inserted) {
191                 struct btrfs_key key;
192                 size_t datasize;
193
194                 key.objectid = btrfs_ino(BTRFS_I(inode));
195                 key.offset = start;
196                 key.type = BTRFS_EXTENT_DATA_KEY;
197
198                 datasize = btrfs_file_extent_calc_inline_size(cur_size);
199                 path->leave_spinning = 1;
200                 ret = btrfs_insert_empty_item(trans, root, path, &key,
201                                               datasize);
202                 if (ret)
203                         goto fail;
204         }
205         leaf = path->nodes[0];
206         ei = btrfs_item_ptr(leaf, path->slots[0],
207                             struct btrfs_file_extent_item);
208         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
209         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
210         btrfs_set_file_extent_encryption(leaf, ei, 0);
211         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
212         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
213         ptr = btrfs_file_extent_inline_start(ei);
214
215         if (compress_type != BTRFS_COMPRESS_NONE) {
216                 struct page *cpage;
217                 int i = 0;
218                 while (compressed_size > 0) {
219                         cpage = compressed_pages[i];
220                         cur_size = min_t(unsigned long, compressed_size,
221                                        PAGE_SIZE);
222
223                         kaddr = kmap_atomic(cpage);
224                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
225                         kunmap_atomic(kaddr);
226
227                         i++;
228                         ptr += cur_size;
229                         compressed_size -= cur_size;
230                 }
231                 btrfs_set_file_extent_compression(leaf, ei,
232                                                   compress_type);
233         } else {
234                 page = find_get_page(inode->i_mapping,
235                                      start >> PAGE_SHIFT);
236                 btrfs_set_file_extent_compression(leaf, ei, 0);
237                 kaddr = kmap_atomic(page);
238                 offset = offset_in_page(start);
239                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
240                 kunmap_atomic(kaddr);
241                 put_page(page);
242         }
243         btrfs_mark_buffer_dirty(leaf);
244         btrfs_release_path(path);
245
246         /*
247          * We align size to sectorsize for inline extents just for simplicity
248          * sake.
249          */
250         size = ALIGN(size, root->fs_info->sectorsize);
251         ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start, size);
252         if (ret)
253                 goto fail;
254
255         /*
256          * we're an inline extent, so nobody can
257          * extend the file past i_size without locking
258          * a page we already have locked.
259          *
260          * We must do any isize and inode updates
261          * before we unlock the pages.  Otherwise we
262          * could end up racing with unlink.
263          */
264         BTRFS_I(inode)->disk_i_size = inode->i_size;
265         ret = btrfs_update_inode(trans, root, inode);
266
267 fail:
268         return ret;
269 }
270
271
272 /*
273  * conditionally insert an inline extent into the file.  This
274  * does the checks required to make sure the data is small enough
275  * to fit as an inline extent.
276  */
277 static noinline int cow_file_range_inline(struct inode *inode, u64 start,
278                                           u64 end, size_t compressed_size,
279                                           int compress_type,
280                                           struct page **compressed_pages)
281 {
282         struct btrfs_root *root = BTRFS_I(inode)->root;
283         struct btrfs_fs_info *fs_info = root->fs_info;
284         struct btrfs_trans_handle *trans;
285         u64 isize = i_size_read(inode);
286         u64 actual_end = min(end + 1, isize);
287         u64 inline_len = actual_end - start;
288         u64 aligned_end = ALIGN(end, fs_info->sectorsize);
289         u64 data_len = inline_len;
290         int ret;
291         struct btrfs_path *path;
292         int extent_inserted = 0;
293         u32 extent_item_size;
294
295         if (compressed_size)
296                 data_len = compressed_size;
297
298         if (start > 0 ||
299             actual_end > fs_info->sectorsize ||
300             data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
301             (!compressed_size &&
302             (actual_end & (fs_info->sectorsize - 1)) == 0) ||
303             end + 1 < isize ||
304             data_len > fs_info->max_inline) {
305                 return 1;
306         }
307
308         path = btrfs_alloc_path();
309         if (!path)
310                 return -ENOMEM;
311
312         trans = btrfs_join_transaction(root);
313         if (IS_ERR(trans)) {
314                 btrfs_free_path(path);
315                 return PTR_ERR(trans);
316         }
317         trans->block_rsv = &BTRFS_I(inode)->block_rsv;
318
319         if (compressed_size && compressed_pages)
320                 extent_item_size = btrfs_file_extent_calc_inline_size(
321                    compressed_size);
322         else
323                 extent_item_size = btrfs_file_extent_calc_inline_size(
324                     inline_len);
325
326         ret = __btrfs_drop_extents(trans, root, inode, path,
327                                    start, aligned_end, NULL,
328                                    1, 1, extent_item_size, &extent_inserted);
329         if (ret) {
330                 btrfs_abort_transaction(trans, ret);
331                 goto out;
332         }
333
334         if (isize > actual_end)
335                 inline_len = min_t(u64, isize, actual_end);
336         ret = insert_inline_extent(trans, path, extent_inserted,
337                                    root, inode, start,
338                                    inline_len, compressed_size,
339                                    compress_type, compressed_pages);
340         if (ret && ret != -ENOSPC) {
341                 btrfs_abort_transaction(trans, ret);
342                 goto out;
343         } else if (ret == -ENOSPC) {
344                 ret = 1;
345                 goto out;
346         }
347
348         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
349         btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
350 out:
351         /*
352          * Don't forget to free the reserved space, as for inlined extent
353          * it won't count as data extent, free them directly here.
354          * And at reserve time, it's always aligned to page size, so
355          * just free one page here.
356          */
357         btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
358         btrfs_free_path(path);
359         btrfs_end_transaction(trans);
360         return ret;
361 }
362
363 struct async_extent {
364         u64 start;
365         u64 ram_size;
366         u64 compressed_size;
367         struct page **pages;
368         unsigned long nr_pages;
369         int compress_type;
370         struct list_head list;
371 };
372
373 struct async_chunk {
374         struct inode *inode;
375         struct page *locked_page;
376         u64 start;
377         u64 end;
378         unsigned int write_flags;
379         struct list_head extents;
380         struct cgroup_subsys_state *blkcg_css;
381         struct btrfs_work work;
382         atomic_t *pending;
383 };
384
385 struct async_cow {
386         /* Number of chunks in flight; must be first in the structure */
387         atomic_t num_chunks;
388         struct async_chunk chunks[];
389 };
390
391 static noinline int add_async_extent(struct async_chunk *cow,
392                                      u64 start, u64 ram_size,
393                                      u64 compressed_size,
394                                      struct page **pages,
395                                      unsigned long nr_pages,
396                                      int compress_type)
397 {
398         struct async_extent *async_extent;
399
400         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
401         BUG_ON(!async_extent); /* -ENOMEM */
402         async_extent->start = start;
403         async_extent->ram_size = ram_size;
404         async_extent->compressed_size = compressed_size;
405         async_extent->pages = pages;
406         async_extent->nr_pages = nr_pages;
407         async_extent->compress_type = compress_type;
408         list_add_tail(&async_extent->list, &cow->extents);
409         return 0;
410 }
411
412 /*
413  * Check if the inode has flags compatible with compression
414  */
415 static inline bool inode_can_compress(struct inode *inode)
416 {
417         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW ||
418             BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
419                 return false;
420         return true;
421 }
422
423 /*
424  * Check if the inode needs to be submitted to compression, based on mount
425  * options, defragmentation, properties or heuristics.
426  */
427 static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
428 {
429         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
430
431         if (!inode_can_compress(inode)) {
432                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
433                         KERN_ERR "BTRFS: unexpected compression for ino %llu\n",
434                         btrfs_ino(BTRFS_I(inode)));
435                 return 0;
436         }
437         /* force compress */
438         if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
439                 return 1;
440         /* defrag ioctl */
441         if (BTRFS_I(inode)->defrag_compress)
442                 return 1;
443         /* bad compression ratios */
444         if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
445                 return 0;
446         if (btrfs_test_opt(fs_info, COMPRESS) ||
447             BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
448             BTRFS_I(inode)->prop_compress)
449                 return btrfs_compress_heuristic(inode, start, end);
450         return 0;
451 }
452
453 static inline void inode_should_defrag(struct btrfs_inode *inode,
454                 u64 start, u64 end, u64 num_bytes, u64 small_write)
455 {
456         /* If this is a small write inside eof, kick off a defrag */
457         if (num_bytes < small_write &&
458             (start > 0 || end + 1 < inode->disk_i_size))
459                 btrfs_add_inode_defrag(NULL, inode);
460 }
461
462 /*
463  * we create compressed extents in two phases.  The first
464  * phase compresses a range of pages that have already been
465  * locked (both pages and state bits are locked).
466  *
467  * This is done inside an ordered work queue, and the compression
468  * is spread across many cpus.  The actual IO submission is step
469  * two, and the ordered work queue takes care of making sure that
470  * happens in the same order things were put onto the queue by
471  * writepages and friends.
472  *
473  * If this code finds it can't get good compression, it puts an
474  * entry onto the work queue to write the uncompressed bytes.  This
475  * makes sure that both compressed inodes and uncompressed inodes
476  * are written in the same order that the flusher thread sent them
477  * down.
478  */
479 static noinline int compress_file_range(struct async_chunk *async_chunk)
480 {
481         struct inode *inode = async_chunk->inode;
482         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
483         u64 blocksize = fs_info->sectorsize;
484         u64 start = async_chunk->start;
485         u64 end = async_chunk->end;
486         u64 actual_end;
487         u64 i_size;
488         int ret = 0;
489         struct page **pages = NULL;
490         unsigned long nr_pages;
491         unsigned long total_compressed = 0;
492         unsigned long total_in = 0;
493         int i;
494         int will_compress;
495         int compress_type = fs_info->compress_type;
496         int compressed_extents = 0;
497         int redirty = 0;
498
499         inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
500                         SZ_16K);
501
502         /*
503          * We need to save i_size before now because it could change in between
504          * us evaluating the size and assigning it.  This is because we lock and
505          * unlock the page in truncate and fallocate, and then modify the i_size
506          * later on.
507          *
508          * The barriers are to emulate READ_ONCE, remove that once i_size_read
509          * does that for us.
510          */
511         barrier();
512         i_size = i_size_read(inode);
513         barrier();
514         actual_end = min_t(u64, i_size, end + 1);
515 again:
516         will_compress = 0;
517         nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
518         BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
519         nr_pages = min_t(unsigned long, nr_pages,
520                         BTRFS_MAX_COMPRESSED / PAGE_SIZE);
521
522         /*
523          * we don't want to send crud past the end of i_size through
524          * compression, that's just a waste of CPU time.  So, if the
525          * end of the file is before the start of our current
526          * requested range of bytes, we bail out to the uncompressed
527          * cleanup code that can deal with all of this.
528          *
529          * It isn't really the fastest way to fix things, but this is a
530          * very uncommon corner.
531          */
532         if (actual_end <= start)
533                 goto cleanup_and_bail_uncompressed;
534
535         total_compressed = actual_end - start;
536
537         /*
538          * skip compression for a small file range(<=blocksize) that
539          * isn't an inline extent, since it doesn't save disk space at all.
540          */
541         if (total_compressed <= blocksize &&
542            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
543                 goto cleanup_and_bail_uncompressed;
544
545         total_compressed = min_t(unsigned long, total_compressed,
546                         BTRFS_MAX_UNCOMPRESSED);
547         total_in = 0;
548         ret = 0;
549
550         /*
551          * we do compression for mount -o compress and when the
552          * inode has not been flagged as nocompress.  This flag can
553          * change at any time if we discover bad compression ratios.
554          */
555         if (inode_need_compress(inode, start, end)) {
556                 WARN_ON(pages);
557                 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
558                 if (!pages) {
559                         /* just bail out to the uncompressed code */
560                         nr_pages = 0;
561                         goto cont;
562                 }
563
564                 if (BTRFS_I(inode)->defrag_compress)
565                         compress_type = BTRFS_I(inode)->defrag_compress;
566                 else if (BTRFS_I(inode)->prop_compress)
567                         compress_type = BTRFS_I(inode)->prop_compress;
568
569                 /*
570                  * we need to call clear_page_dirty_for_io on each
571                  * page in the range.  Otherwise applications with the file
572                  * mmap'd can wander in and change the page contents while
573                  * we are compressing them.
574                  *
575                  * If the compression fails for any reason, we set the pages
576                  * dirty again later on.
577                  *
578                  * Note that the remaining part is redirtied, the start pointer
579                  * has moved, the end is the original one.
580                  */
581                 if (!redirty) {
582                         extent_range_clear_dirty_for_io(inode, start, end);
583                         redirty = 1;
584                 }
585
586                 /* Compression level is applied here and only here */
587                 ret = btrfs_compress_pages(
588                         compress_type | (fs_info->compress_level << 4),
589                                            inode->i_mapping, start,
590                                            pages,
591                                            &nr_pages,
592                                            &total_in,
593                                            &total_compressed);
594
595                 if (!ret) {
596                         unsigned long offset = offset_in_page(total_compressed);
597                         struct page *page = pages[nr_pages - 1];
598                         char *kaddr;
599
600                         /* zero the tail end of the last page, we might be
601                          * sending it down to disk
602                          */
603                         if (offset) {
604                                 kaddr = kmap_atomic(page);
605                                 memset(kaddr + offset, 0,
606                                        PAGE_SIZE - offset);
607                                 kunmap_atomic(kaddr);
608                         }
609                         will_compress = 1;
610                 }
611         }
612 cont:
613         if (start == 0) {
614                 /* lets try to make an inline extent */
615                 if (ret || total_in < actual_end) {
616                         /* we didn't compress the entire range, try
617                          * to make an uncompressed inline extent.
618                          */
619                         ret = cow_file_range_inline(inode, start, end, 0,
620                                                     BTRFS_COMPRESS_NONE, NULL);
621                 } else {
622                         /* try making a compressed inline extent */
623                         ret = cow_file_range_inline(inode, start, end,
624                                                     total_compressed,
625                                                     compress_type, pages);
626                 }
627                 if (ret <= 0) {
628                         unsigned long clear_flags = EXTENT_DELALLOC |
629                                 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
630                                 EXTENT_DO_ACCOUNTING;
631                         unsigned long page_error_op;
632
633                         page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
634
635                         /*
636                          * inline extent creation worked or returned error,
637                          * we don't need to create any more async work items.
638                          * Unlock and free up our temp pages.
639                          *
640                          * We use DO_ACCOUNTING here because we need the
641                          * delalloc_release_metadata to be done _after_ we drop
642                          * our outstanding extent for clearing delalloc for this
643                          * range.
644                          */
645                         extent_clear_unlock_delalloc(inode, start, end, NULL,
646                                                      clear_flags,
647                                                      PAGE_UNLOCK |
648                                                      PAGE_CLEAR_DIRTY |
649                                                      PAGE_SET_WRITEBACK |
650                                                      page_error_op |
651                                                      PAGE_END_WRITEBACK);
652
653                         for (i = 0; i < nr_pages; i++) {
654                                 WARN_ON(pages[i]->mapping);
655                                 put_page(pages[i]);
656                         }
657                         kfree(pages);
658
659                         return 0;
660                 }
661         }
662
663         if (will_compress) {
664                 /*
665                  * we aren't doing an inline extent round the compressed size
666                  * up to a block size boundary so the allocator does sane
667                  * things
668                  */
669                 total_compressed = ALIGN(total_compressed, blocksize);
670
671                 /*
672                  * one last check to make sure the compression is really a
673                  * win, compare the page count read with the blocks on disk,
674                  * compression must free at least one sector size
675                  */
676                 total_in = ALIGN(total_in, PAGE_SIZE);
677                 if (total_compressed + blocksize <= total_in) {
678                         compressed_extents++;
679
680                         /*
681                          * The async work queues will take care of doing actual
682                          * allocation on disk for these compressed pages, and
683                          * will submit them to the elevator.
684                          */
685                         add_async_extent(async_chunk, start, total_in,
686                                         total_compressed, pages, nr_pages,
687                                         compress_type);
688
689                         if (start + total_in < end) {
690                                 start += total_in;
691                                 pages = NULL;
692                                 cond_resched();
693                                 goto again;
694                         }
695                         return compressed_extents;
696                 }
697         }
698         if (pages) {
699                 /*
700                  * the compression code ran but failed to make things smaller,
701                  * free any pages it allocated and our page pointer array
702                  */
703                 for (i = 0; i < nr_pages; i++) {
704                         WARN_ON(pages[i]->mapping);
705                         put_page(pages[i]);
706                 }
707                 kfree(pages);
708                 pages = NULL;
709                 total_compressed = 0;
710                 nr_pages = 0;
711
712                 /* flag the file so we don't compress in the future */
713                 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
714                     !(BTRFS_I(inode)->prop_compress)) {
715                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
716                 }
717         }
718 cleanup_and_bail_uncompressed:
719         /*
720          * No compression, but we still need to write the pages in the file
721          * we've been given so far.  redirty the locked page if it corresponds
722          * to our extent and set things up for the async work queue to run
723          * cow_file_range to do the normal delalloc dance.
724          */
725         if (async_chunk->locked_page &&
726             (page_offset(async_chunk->locked_page) >= start &&
727              page_offset(async_chunk->locked_page)) <= end) {
728                 __set_page_dirty_nobuffers(async_chunk->locked_page);
729                 /* unlocked later on in the async handlers */
730         }
731
732         if (redirty)
733                 extent_range_redirty_for_io(inode, start, end);
734         add_async_extent(async_chunk, start, end - start + 1, 0, NULL, 0,
735                          BTRFS_COMPRESS_NONE);
736         compressed_extents++;
737
738         return compressed_extents;
739 }
740
741 static void free_async_extent_pages(struct async_extent *async_extent)
742 {
743         int i;
744
745         if (!async_extent->pages)
746                 return;
747
748         for (i = 0; i < async_extent->nr_pages; i++) {
749                 WARN_ON(async_extent->pages[i]->mapping);
750                 put_page(async_extent->pages[i]);
751         }
752         kfree(async_extent->pages);
753         async_extent->nr_pages = 0;
754         async_extent->pages = NULL;
755 }
756
757 /*
758  * phase two of compressed writeback.  This is the ordered portion
759  * of the code, which only gets called in the order the work was
760  * queued.  We walk all the async extents created by compress_file_range
761  * and send them down to the disk.
762  */
763 static noinline void submit_compressed_extents(struct async_chunk *async_chunk)
764 {
765         struct inode *inode = async_chunk->inode;
766         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
767         struct async_extent *async_extent;
768         u64 alloc_hint = 0;
769         struct btrfs_key ins;
770         struct extent_map *em;
771         struct btrfs_root *root = BTRFS_I(inode)->root;
772         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
773         int ret = 0;
774
775 again:
776         while (!list_empty(&async_chunk->extents)) {
777                 async_extent = list_entry(async_chunk->extents.next,
778                                           struct async_extent, list);
779                 list_del(&async_extent->list);
780
781 retry:
782                 lock_extent(io_tree, async_extent->start,
783                             async_extent->start + async_extent->ram_size - 1);
784                 /* did the compression code fall back to uncompressed IO? */
785                 if (!async_extent->pages) {
786                         int page_started = 0;
787                         unsigned long nr_written = 0;
788
789                         /* allocate blocks */
790                         ret = cow_file_range(inode, async_chunk->locked_page,
791                                              async_extent->start,
792                                              async_extent->start +
793                                              async_extent->ram_size - 1,
794                                              &page_started, &nr_written, 0);
795
796                         /* JDM XXX */
797
798                         /*
799                          * if page_started, cow_file_range inserted an
800                          * inline extent and took care of all the unlocking
801                          * and IO for us.  Otherwise, we need to submit
802                          * all those pages down to the drive.
803                          */
804                         if (!page_started && !ret)
805                                 extent_write_locked_range(inode,
806                                                   async_extent->start,
807                                                   async_extent->start +
808                                                   async_extent->ram_size - 1,
809                                                   WB_SYNC_ALL);
810                         else if (ret && async_chunk->locked_page)
811                                 unlock_page(async_chunk->locked_page);
812                         kfree(async_extent);
813                         cond_resched();
814                         continue;
815                 }
816
817                 ret = btrfs_reserve_extent(root, async_extent->ram_size,
818                                            async_extent->compressed_size,
819                                            async_extent->compressed_size,
820                                            0, alloc_hint, &ins, 1, 1);
821                 if (ret) {
822                         free_async_extent_pages(async_extent);
823
824                         if (ret == -ENOSPC) {
825                                 unlock_extent(io_tree, async_extent->start,
826                                               async_extent->start +
827                                               async_extent->ram_size - 1);
828
829                                 /*
830                                  * we need to redirty the pages if we decide to
831                                  * fallback to uncompressed IO, otherwise we
832                                  * will not submit these pages down to lower
833                                  * layers.
834                                  */
835                                 extent_range_redirty_for_io(inode,
836                                                 async_extent->start,
837                                                 async_extent->start +
838                                                 async_extent->ram_size - 1);
839
840                                 goto retry;
841                         }
842                         goto out_free;
843                 }
844                 /*
845                  * here we're doing allocation and writeback of the
846                  * compressed pages
847                  */
848                 em = create_io_em(inode, async_extent->start,
849                                   async_extent->ram_size, /* len */
850                                   async_extent->start, /* orig_start */
851                                   ins.objectid, /* block_start */
852                                   ins.offset, /* block_len */
853                                   ins.offset, /* orig_block_len */
854                                   async_extent->ram_size, /* ram_bytes */
855                                   async_extent->compress_type,
856                                   BTRFS_ORDERED_COMPRESSED);
857                 if (IS_ERR(em))
858                         /* ret value is not necessary due to void function */
859                         goto out_free_reserve;
860                 free_extent_map(em);
861
862                 ret = btrfs_add_ordered_extent_compress(inode,
863                                                 async_extent->start,
864                                                 ins.objectid,
865                                                 async_extent->ram_size,
866                                                 ins.offset,
867                                                 BTRFS_ORDERED_COMPRESSED,
868                                                 async_extent->compress_type);
869                 if (ret) {
870                         btrfs_drop_extent_cache(BTRFS_I(inode),
871                                                 async_extent->start,
872                                                 async_extent->start +
873                                                 async_extent->ram_size - 1, 0);
874                         goto out_free_reserve;
875                 }
876                 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
877
878                 /*
879                  * clear dirty, set writeback and unlock the pages.
880                  */
881                 extent_clear_unlock_delalloc(inode, async_extent->start,
882                                 async_extent->start +
883                                 async_extent->ram_size - 1,
884                                 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
885                                 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
886                                 PAGE_SET_WRITEBACK);
887                 if (btrfs_submit_compressed_write(inode,
888                                     async_extent->start,
889                                     async_extent->ram_size,
890                                     ins.objectid,
891                                     ins.offset, async_extent->pages,
892                                     async_extent->nr_pages,
893                                     async_chunk->write_flags,
894                                     async_chunk->blkcg_css)) {
895                         struct page *p = async_extent->pages[0];
896                         const u64 start = async_extent->start;
897                         const u64 end = start + async_extent->ram_size - 1;
898
899                         p->mapping = inode->i_mapping;
900                         btrfs_writepage_endio_finish_ordered(p, start, end, 0);
901
902                         p->mapping = NULL;
903                         extent_clear_unlock_delalloc(inode, start, end,
904                                                      NULL, 0,
905                                                      PAGE_END_WRITEBACK |
906                                                      PAGE_SET_ERROR);
907                         free_async_extent_pages(async_extent);
908                 }
909                 alloc_hint = ins.objectid + ins.offset;
910                 kfree(async_extent);
911                 cond_resched();
912         }
913         return;
914 out_free_reserve:
915         btrfs_dec_block_group_reservations(fs_info, ins.objectid);
916         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
917 out_free:
918         extent_clear_unlock_delalloc(inode, async_extent->start,
919                                      async_extent->start +
920                                      async_extent->ram_size - 1,
921                                      NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
922                                      EXTENT_DELALLOC_NEW |
923                                      EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
924                                      PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
925                                      PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
926                                      PAGE_SET_ERROR);
927         free_async_extent_pages(async_extent);
928         kfree(async_extent);
929         goto again;
930 }
931
932 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
933                                       u64 num_bytes)
934 {
935         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
936         struct extent_map *em;
937         u64 alloc_hint = 0;
938
939         read_lock(&em_tree->lock);
940         em = search_extent_mapping(em_tree, start, num_bytes);
941         if (em) {
942                 /*
943                  * if block start isn't an actual block number then find the
944                  * first block in this inode and use that as a hint.  If that
945                  * block is also bogus then just don't worry about it.
946                  */
947                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
948                         free_extent_map(em);
949                         em = search_extent_mapping(em_tree, 0, 0);
950                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
951                                 alloc_hint = em->block_start;
952                         if (em)
953                                 free_extent_map(em);
954                 } else {
955                         alloc_hint = em->block_start;
956                         free_extent_map(em);
957                 }
958         }
959         read_unlock(&em_tree->lock);
960
961         return alloc_hint;
962 }
963
964 /*
965  * when extent_io.c finds a delayed allocation range in the file,
966  * the call backs end up in this code.  The basic idea is to
967  * allocate extents on disk for the range, and create ordered data structs
968  * in ram to track those extents.
969  *
970  * locked_page is the page that writepage had locked already.  We use
971  * it to make sure we don't do extra locks or unlocks.
972  *
973  * *page_started is set to one if we unlock locked_page and do everything
974  * required to start IO on it.  It may be clean and already done with
975  * IO when we return.
976  */
977 static noinline int cow_file_range(struct inode *inode,
978                                    struct page *locked_page,
979                                    u64 start, u64 end, int *page_started,
980                                    unsigned long *nr_written, int unlock)
981 {
982         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
983         struct btrfs_root *root = BTRFS_I(inode)->root;
984         u64 alloc_hint = 0;
985         u64 num_bytes;
986         unsigned long ram_size;
987         u64 cur_alloc_size = 0;
988         u64 min_alloc_size;
989         u64 blocksize = fs_info->sectorsize;
990         struct btrfs_key ins;
991         struct extent_map *em;
992         unsigned clear_bits;
993         unsigned long page_ops;
994         bool extent_reserved = false;
995         int ret = 0;
996
997         if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
998                 WARN_ON_ONCE(1);
999                 ret = -EINVAL;
1000                 goto out_unlock;
1001         }
1002
1003         num_bytes = ALIGN(end - start + 1, blocksize);
1004         num_bytes = max(blocksize,  num_bytes);
1005         ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy));
1006
1007         inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
1008
1009         if (start == 0) {
1010                 /* lets try to make an inline extent */
1011                 ret = cow_file_range_inline(inode, start, end, 0,
1012                                             BTRFS_COMPRESS_NONE, NULL);
1013                 if (ret == 0) {
1014                         /*
1015                          * We use DO_ACCOUNTING here because we need the
1016                          * delalloc_release_metadata to be run _after_ we drop
1017                          * our outstanding extent for clearing delalloc for this
1018                          * range.
1019                          */
1020                         extent_clear_unlock_delalloc(inode, start, end, NULL,
1021                                      EXTENT_LOCKED | EXTENT_DELALLOC |
1022                                      EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1023                                      EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1024                                      PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1025                                      PAGE_END_WRITEBACK);
1026                         *nr_written = *nr_written +
1027                              (end - start + PAGE_SIZE) / PAGE_SIZE;
1028                         *page_started = 1;
1029                         goto out;
1030                 } else if (ret < 0) {
1031                         goto out_unlock;
1032                 }
1033         }
1034
1035         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
1036         btrfs_drop_extent_cache(BTRFS_I(inode), start,
1037                         start + num_bytes - 1, 0);
1038
1039         /*
1040          * Relocation relies on the relocated extents to have exactly the same
1041          * size as the original extents. Normally writeback for relocation data
1042          * extents follows a NOCOW path because relocation preallocates the
1043          * extents. However, due to an operation such as scrub turning a block
1044          * group to RO mode, it may fallback to COW mode, so we must make sure
1045          * an extent allocated during COW has exactly the requested size and can
1046          * not be split into smaller extents, otherwise relocation breaks and
1047          * fails during the stage where it updates the bytenr of file extent
1048          * items.
1049          */
1050         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1051                 min_alloc_size = num_bytes;
1052         else
1053                 min_alloc_size = fs_info->sectorsize;
1054
1055         while (num_bytes > 0) {
1056                 cur_alloc_size = num_bytes;
1057                 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1058                                            min_alloc_size, 0, alloc_hint,
1059                                            &ins, 1, 1);
1060                 if (ret < 0)
1061                         goto out_unlock;
1062                 cur_alloc_size = ins.offset;
1063                 extent_reserved = true;
1064
1065                 ram_size = ins.offset;
1066                 em = create_io_em(inode, start, ins.offset, /* len */
1067                                   start, /* orig_start */
1068                                   ins.objectid, /* block_start */
1069                                   ins.offset, /* block_len */
1070                                   ins.offset, /* orig_block_len */
1071                                   ram_size, /* ram_bytes */
1072                                   BTRFS_COMPRESS_NONE, /* compress_type */
1073                                   BTRFS_ORDERED_REGULAR /* type */);
1074                 if (IS_ERR(em)) {
1075                         ret = PTR_ERR(em);
1076                         goto out_reserve;
1077                 }
1078                 free_extent_map(em);
1079
1080                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1081                                                ram_size, cur_alloc_size, 0);
1082                 if (ret)
1083                         goto out_drop_extent_cache;
1084
1085                 if (root->root_key.objectid ==
1086                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1087                         ret = btrfs_reloc_clone_csums(inode, start,
1088                                                       cur_alloc_size);
1089                         /*
1090                          * Only drop cache here, and process as normal.
1091                          *
1092                          * We must not allow extent_clear_unlock_delalloc()
1093                          * at out_unlock label to free meta of this ordered
1094                          * extent, as its meta should be freed by
1095                          * btrfs_finish_ordered_io().
1096                          *
1097                          * So we must continue until @start is increased to
1098                          * skip current ordered extent.
1099                          */
1100                         if (ret)
1101                                 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1102                                                 start + ram_size - 1, 0);
1103                 }
1104
1105                 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1106
1107                 /* we're not doing compressed IO, don't unlock the first
1108                  * page (which the caller expects to stay locked), don't
1109                  * clear any dirty bits and don't set any writeback bits
1110                  *
1111                  * Do set the Private2 bit so we know this page was properly
1112                  * setup for writepage
1113                  */
1114                 page_ops = unlock ? PAGE_UNLOCK : 0;
1115                 page_ops |= PAGE_SET_PRIVATE2;
1116
1117                 extent_clear_unlock_delalloc(inode, start,
1118                                              start + ram_size - 1,
1119                                              locked_page,
1120                                              EXTENT_LOCKED | EXTENT_DELALLOC,
1121                                              page_ops);
1122                 if (num_bytes < cur_alloc_size)
1123                         num_bytes = 0;
1124                 else
1125                         num_bytes -= cur_alloc_size;
1126                 alloc_hint = ins.objectid + ins.offset;
1127                 start += cur_alloc_size;
1128                 extent_reserved = false;
1129
1130                 /*
1131                  * btrfs_reloc_clone_csums() error, since start is increased
1132                  * extent_clear_unlock_delalloc() at out_unlock label won't
1133                  * free metadata of current ordered extent, we're OK to exit.
1134                  */
1135                 if (ret)
1136                         goto out_unlock;
1137         }
1138 out:
1139         return ret;
1140
1141 out_drop_extent_cache:
1142         btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
1143 out_reserve:
1144         btrfs_dec_block_group_reservations(fs_info, ins.objectid);
1145         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
1146 out_unlock:
1147         clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1148                 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
1149         page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1150                 PAGE_END_WRITEBACK;
1151         /*
1152          * If we reserved an extent for our delalloc range (or a subrange) and
1153          * failed to create the respective ordered extent, then it means that
1154          * when we reserved the extent we decremented the extent's size from
1155          * the data space_info's bytes_may_use counter and incremented the
1156          * space_info's bytes_reserved counter by the same amount. We must make
1157          * sure extent_clear_unlock_delalloc() does not try to decrement again
1158          * the data space_info's bytes_may_use counter, therefore we do not pass
1159          * it the flag EXTENT_CLEAR_DATA_RESV.
1160          */
1161         if (extent_reserved) {
1162                 extent_clear_unlock_delalloc(inode, start,
1163                                              start + cur_alloc_size - 1,
1164                                              locked_page,
1165                                              clear_bits,
1166                                              page_ops);
1167                 start += cur_alloc_size;
1168                 if (start >= end)
1169                         goto out;
1170         }
1171         extent_clear_unlock_delalloc(inode, start, end, locked_page,
1172                                      clear_bits | EXTENT_CLEAR_DATA_RESV,
1173                                      page_ops);
1174         goto out;
1175 }
1176
1177 /*
1178  * work queue call back to started compression on a file and pages
1179  */
1180 static noinline void async_cow_start(struct btrfs_work *work)
1181 {
1182         struct async_chunk *async_chunk;
1183         int compressed_extents;
1184
1185         async_chunk = container_of(work, struct async_chunk, work);
1186
1187         compressed_extents = compress_file_range(async_chunk);
1188         if (compressed_extents == 0) {
1189                 btrfs_add_delayed_iput(async_chunk->inode);
1190                 async_chunk->inode = NULL;
1191         }
1192 }
1193
1194 /*
1195  * work queue call back to submit previously compressed pages
1196  */
1197 static noinline void async_cow_submit(struct btrfs_work *work)
1198 {
1199         struct async_chunk *async_chunk = container_of(work, struct async_chunk,
1200                                                      work);
1201         struct btrfs_fs_info *fs_info = btrfs_work_owner(work);
1202         unsigned long nr_pages;
1203
1204         nr_pages = (async_chunk->end - async_chunk->start + PAGE_SIZE) >>
1205                 PAGE_SHIFT;
1206
1207         /* atomic_sub_return implies a barrier */
1208         if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
1209             5 * SZ_1M)
1210                 cond_wake_up_nomb(&fs_info->async_submit_wait);
1211
1212         /*
1213          * ->inode could be NULL if async_chunk_start has failed to compress,
1214          * in which case we don't have anything to submit, yet we need to
1215          * always adjust ->async_delalloc_pages as its paired with the init
1216          * happening in cow_file_range_async
1217          */
1218         if (async_chunk->inode)
1219                 submit_compressed_extents(async_chunk);
1220 }
1221
1222 static noinline void async_cow_free(struct btrfs_work *work)
1223 {
1224         struct async_chunk *async_chunk;
1225
1226         async_chunk = container_of(work, struct async_chunk, work);
1227         if (async_chunk->inode)
1228                 btrfs_add_delayed_iput(async_chunk->inode);
1229         if (async_chunk->blkcg_css)
1230                 css_put(async_chunk->blkcg_css);
1231         /*
1232          * Since the pointer to 'pending' is at the beginning of the array of
1233          * async_chunk's, freeing it ensures the whole array has been freed.
1234          */
1235         if (atomic_dec_and_test(async_chunk->pending))
1236                 kvfree(async_chunk->pending);
1237 }
1238
1239 static int cow_file_range_async(struct inode *inode,
1240                                 struct writeback_control *wbc,
1241                                 struct page *locked_page,
1242                                 u64 start, u64 end, int *page_started,
1243                                 unsigned long *nr_written)
1244 {
1245         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1246         struct cgroup_subsys_state *blkcg_css = wbc_blkcg_css(wbc);
1247         struct async_cow *ctx;
1248         struct async_chunk *async_chunk;
1249         unsigned long nr_pages;
1250         u64 cur_end;
1251         u64 num_chunks = DIV_ROUND_UP(end - start, SZ_512K);
1252         int i;
1253         bool should_compress;
1254         unsigned nofs_flag;
1255         const unsigned int write_flags = wbc_to_write_flags(wbc);
1256
1257         unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1258
1259         if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1260             !btrfs_test_opt(fs_info, FORCE_COMPRESS)) {
1261                 num_chunks = 1;
1262                 should_compress = false;
1263         } else {
1264                 should_compress = true;
1265         }
1266
1267         nofs_flag = memalloc_nofs_save();
1268         ctx = kvmalloc(struct_size(ctx, chunks, num_chunks), GFP_KERNEL);
1269         memalloc_nofs_restore(nofs_flag);
1270
1271         if (!ctx) {
1272                 unsigned clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC |
1273                         EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
1274                         EXTENT_DO_ACCOUNTING;
1275                 unsigned long page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1276                         PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
1277                         PAGE_SET_ERROR;
1278
1279                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1280                                              clear_bits, page_ops);
1281                 return -ENOMEM;
1282         }
1283
1284         async_chunk = ctx->chunks;
1285         atomic_set(&ctx->num_chunks, num_chunks);
1286
1287         for (i = 0; i < num_chunks; i++) {
1288                 if (should_compress)
1289                         cur_end = min(end, start + SZ_512K - 1);
1290                 else
1291                         cur_end = end;
1292
1293                 /*
1294                  * igrab is called higher up in the call chain, take only the
1295                  * lightweight reference for the callback lifetime
1296                  */
1297                 ihold(inode);
1298                 async_chunk[i].pending = &ctx->num_chunks;
1299                 async_chunk[i].inode = inode;
1300                 async_chunk[i].start = start;
1301                 async_chunk[i].end = cur_end;
1302                 async_chunk[i].write_flags = write_flags;
1303                 INIT_LIST_HEAD(&async_chunk[i].extents);
1304
1305                 /*
1306                  * The locked_page comes all the way from writepage and its
1307                  * the original page we were actually given.  As we spread
1308                  * this large delalloc region across multiple async_chunk
1309                  * structs, only the first struct needs a pointer to locked_page
1310                  *
1311                  * This way we don't need racey decisions about who is supposed
1312                  * to unlock it.
1313                  */
1314                 if (locked_page) {
1315                         /*
1316                          * Depending on the compressibility, the pages might or
1317                          * might not go through async.  We want all of them to
1318                          * be accounted against wbc once.  Let's do it here
1319                          * before the paths diverge.  wbc accounting is used
1320                          * only for foreign writeback detection and doesn't
1321                          * need full accuracy.  Just account the whole thing
1322                          * against the first page.
1323                          */
1324                         wbc_account_cgroup_owner(wbc, locked_page,
1325                                                  cur_end - start);
1326                         async_chunk[i].locked_page = locked_page;
1327                         locked_page = NULL;
1328                 } else {
1329                         async_chunk[i].locked_page = NULL;
1330                 }
1331
1332                 if (blkcg_css != blkcg_root_css) {
1333                         css_get(blkcg_css);
1334                         async_chunk[i].blkcg_css = blkcg_css;
1335                 } else {
1336                         async_chunk[i].blkcg_css = NULL;
1337                 }
1338
1339                 btrfs_init_work(&async_chunk[i].work, async_cow_start,
1340                                 async_cow_submit, async_cow_free);
1341
1342                 nr_pages = DIV_ROUND_UP(cur_end - start, PAGE_SIZE);
1343                 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
1344
1345                 btrfs_queue_work(fs_info->delalloc_workers, &async_chunk[i].work);
1346
1347                 *nr_written += nr_pages;
1348                 start = cur_end + 1;
1349         }
1350         *page_started = 1;
1351         return 0;
1352 }
1353
1354 static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
1355                                         u64 bytenr, u64 num_bytes)
1356 {
1357         int ret;
1358         struct btrfs_ordered_sum *sums;
1359         LIST_HEAD(list);
1360
1361         ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
1362                                        bytenr + num_bytes - 1, &list, 0);
1363         if (ret == 0 && list_empty(&list))
1364                 return 0;
1365
1366         while (!list_empty(&list)) {
1367                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1368                 list_del(&sums->list);
1369                 kfree(sums);
1370         }
1371         if (ret < 0)
1372                 return ret;
1373         return 1;
1374 }
1375
1376 static int fallback_to_cow(struct inode *inode, struct page *locked_page,
1377                            const u64 start, const u64 end,
1378                            int *page_started, unsigned long *nr_written)
1379 {
1380         const bool is_space_ino = btrfs_is_free_space_inode(BTRFS_I(inode));
1381         const bool is_reloc_ino = (BTRFS_I(inode)->root->root_key.objectid ==
1382                                    BTRFS_DATA_RELOC_TREE_OBJECTID);
1383         const u64 range_bytes = end + 1 - start;
1384         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1385         u64 range_start = start;
1386         u64 count;
1387
1388         /*
1389          * If EXTENT_NORESERVE is set it means that when the buffered write was
1390          * made we had not enough available data space and therefore we did not
1391          * reserve data space for it, since we though we could do NOCOW for the
1392          * respective file range (either there is prealloc extent or the inode
1393          * has the NOCOW bit set).
1394          *
1395          * However when we need to fallback to COW mode (because for example the
1396          * block group for the corresponding extent was turned to RO mode by a
1397          * scrub or relocation) we need to do the following:
1398          *
1399          * 1) We increment the bytes_may_use counter of the data space info.
1400          *    If COW succeeds, it allocates a new data extent and after doing
1401          *    that it decrements the space info's bytes_may_use counter and
1402          *    increments its bytes_reserved counter by the same amount (we do
1403          *    this at btrfs_add_reserved_bytes()). So we need to increment the
1404          *    bytes_may_use counter to compensate (when space is reserved at
1405          *    buffered write time, the bytes_may_use counter is incremented);
1406          *
1407          * 2) We clear the EXTENT_NORESERVE bit from the range. We do this so
1408          *    that if the COW path fails for any reason, it decrements (through
1409          *    extent_clear_unlock_delalloc()) the bytes_may_use counter of the
1410          *    data space info, which we incremented in the step above.
1411          *
1412          * If we need to fallback to cow and the inode corresponds to a free
1413          * space cache inode or an inode of the data relocation tree, we must
1414          * also increment bytes_may_use of the data space_info for the same
1415          * reason. Space caches and relocated data extents always get a prealloc
1416          * extent for them, however scrub or balance may have set the block
1417          * group that contains that extent to RO mode and therefore force COW
1418          * when starting writeback.
1419          */
1420         count = count_range_bits(io_tree, &range_start, end, range_bytes,
1421                                  EXTENT_NORESERVE, 0);
1422         if (count > 0 || is_space_ino || is_reloc_ino) {
1423                 u64 bytes = count;
1424                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1425                 struct btrfs_space_info *sinfo = fs_info->data_sinfo;
1426
1427                 if (is_space_ino || is_reloc_ino)
1428                         bytes = range_bytes;
1429
1430                 spin_lock(&sinfo->lock);
1431                 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, bytes);
1432                 spin_unlock(&sinfo->lock);
1433
1434                 if (count > 0)
1435                         clear_extent_bit(io_tree, start, end, EXTENT_NORESERVE,
1436                                          0, 0, NULL);
1437         }
1438
1439         return cow_file_range(inode, locked_page, start, end, page_started,
1440                               nr_written, 1);
1441 }
1442
1443 /*
1444  * when nowcow writeback call back.  This checks for snapshots or COW copies
1445  * of the extents that exist in the file, and COWs the file as required.
1446  *
1447  * If no cow copies or snapshots exist, we write directly to the existing
1448  * blocks on disk
1449  */
1450 static noinline int run_delalloc_nocow(struct inode *inode,
1451                                        struct page *locked_page,
1452                                        const u64 start, const u64 end,
1453                                        int *page_started, int force,
1454                                        unsigned long *nr_written)
1455 {
1456         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1457         struct btrfs_root *root = BTRFS_I(inode)->root;
1458         struct btrfs_path *path;
1459         u64 cow_start = (u64)-1;
1460         u64 cur_offset = start;
1461         int ret;
1462         bool check_prev = true;
1463         const bool freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
1464         u64 ino = btrfs_ino(BTRFS_I(inode));
1465         bool nocow = false;
1466         u64 disk_bytenr = 0;
1467
1468         path = btrfs_alloc_path();
1469         if (!path) {
1470                 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1471                                              EXTENT_LOCKED | EXTENT_DELALLOC |
1472                                              EXTENT_DO_ACCOUNTING |
1473                                              EXTENT_DEFRAG, PAGE_UNLOCK |
1474                                              PAGE_CLEAR_DIRTY |
1475                                              PAGE_SET_WRITEBACK |
1476                                              PAGE_END_WRITEBACK);
1477                 return -ENOMEM;
1478         }
1479
1480         while (1) {
1481                 struct btrfs_key found_key;
1482                 struct btrfs_file_extent_item *fi;
1483                 struct extent_buffer *leaf;
1484                 u64 extent_end;
1485                 u64 extent_offset;
1486                 u64 num_bytes = 0;
1487                 u64 disk_num_bytes;
1488                 u64 ram_bytes;
1489                 int extent_type;
1490
1491                 nocow = false;
1492
1493                 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
1494                                                cur_offset, 0);
1495                 if (ret < 0)
1496                         goto error;
1497
1498                 /*
1499                  * If there is no extent for our range when doing the initial
1500                  * search, then go back to the previous slot as it will be the
1501                  * one containing the search offset
1502                  */
1503                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1504                         leaf = path->nodes[0];
1505                         btrfs_item_key_to_cpu(leaf, &found_key,
1506                                               path->slots[0] - 1);
1507                         if (found_key.objectid == ino &&
1508                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1509                                 path->slots[0]--;
1510                 }
1511                 check_prev = false;
1512 next_slot:
1513                 /* Go to next leaf if we have exhausted the current one */
1514                 leaf = path->nodes[0];
1515                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1516                         ret = btrfs_next_leaf(root, path);
1517                         if (ret < 0) {
1518                                 if (cow_start != (u64)-1)
1519                                         cur_offset = cow_start;
1520                                 goto error;
1521                         }
1522                         if (ret > 0)
1523                                 break;
1524                         leaf = path->nodes[0];
1525                 }
1526
1527                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1528
1529                 /* Didn't find anything for our INO */
1530                 if (found_key.objectid > ino)
1531                         break;
1532                 /*
1533                  * Keep searching until we find an EXTENT_ITEM or there are no
1534                  * more extents for this inode
1535                  */
1536                 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1537                     found_key.type < BTRFS_EXTENT_DATA_KEY) {
1538                         path->slots[0]++;
1539                         goto next_slot;
1540                 }
1541
1542                 /* Found key is not EXTENT_DATA_KEY or starts after req range */
1543                 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1544                     found_key.offset > end)
1545                         break;
1546
1547                 /*
1548                  * If the found extent starts after requested offset, then
1549                  * adjust extent_end to be right before this extent begins
1550                  */
1551                 if (found_key.offset > cur_offset) {
1552                         extent_end = found_key.offset;
1553                         extent_type = 0;
1554                         goto out_check;
1555                 }
1556
1557                 /*
1558                  * Found extent which begins before our range and potentially
1559                  * intersect it
1560                  */
1561                 fi = btrfs_item_ptr(leaf, path->slots[0],
1562                                     struct btrfs_file_extent_item);
1563                 extent_type = btrfs_file_extent_type(leaf, fi);
1564
1565                 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1566                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1567                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1568                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1569                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1570                         extent_end = found_key.offset +
1571                                 btrfs_file_extent_num_bytes(leaf, fi);
1572                         disk_num_bytes =
1573                                 btrfs_file_extent_disk_num_bytes(leaf, fi);
1574                         /*
1575                          * If the extent we got ends before our current offset,
1576                          * skip to the next extent.
1577                          */
1578                         if (extent_end <= cur_offset) {
1579                                 path->slots[0]++;
1580                                 goto next_slot;
1581                         }
1582                         /* Skip holes */
1583                         if (disk_bytenr == 0)
1584                                 goto out_check;
1585                         /* Skip compressed/encrypted/encoded extents */
1586                         if (btrfs_file_extent_compression(leaf, fi) ||
1587                             btrfs_file_extent_encryption(leaf, fi) ||
1588                             btrfs_file_extent_other_encoding(leaf, fi))
1589                                 goto out_check;
1590                         /*
1591                          * If extent is created before the last volume's snapshot
1592                          * this implies the extent is shared, hence we can't do
1593                          * nocow. This is the same check as in
1594                          * btrfs_cross_ref_exist but without calling
1595                          * btrfs_search_slot.
1596                          */
1597                         if (!freespace_inode &&
1598                             btrfs_file_extent_generation(leaf, fi) <=
1599                             btrfs_root_last_snapshot(&root->root_item))
1600                                 goto out_check;
1601                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1602                                 goto out_check;
1603                         /* If extent is RO, we must COW it */
1604                         if (btrfs_extent_readonly(fs_info, disk_bytenr))
1605                                 goto out_check;
1606                         ret = btrfs_cross_ref_exist(root, ino,
1607                                                     found_key.offset -
1608                                                     extent_offset, disk_bytenr);
1609                         if (ret) {
1610                                 /*
1611                                  * ret could be -EIO if the above fails to read
1612                                  * metadata.
1613                                  */
1614                                 if (ret < 0) {
1615                                         if (cow_start != (u64)-1)
1616                                                 cur_offset = cow_start;
1617                                         goto error;
1618                                 }
1619
1620                                 WARN_ON_ONCE(freespace_inode);
1621                                 goto out_check;
1622                         }
1623                         disk_bytenr += extent_offset;
1624                         disk_bytenr += cur_offset - found_key.offset;
1625                         num_bytes = min(end + 1, extent_end) - cur_offset;
1626                         /*
1627                          * If there are pending snapshots for this root, we
1628                          * fall into common COW way
1629                          */
1630                         if (!freespace_inode && atomic_read(&root->snapshot_force_cow))
1631                                 goto out_check;
1632                         /*
1633                          * force cow if csum exists in the range.
1634                          * this ensure that csum for a given extent are
1635                          * either valid or do not exist.
1636                          */
1637                         ret = csum_exist_in_range(fs_info, disk_bytenr,
1638                                                   num_bytes);
1639                         if (ret) {
1640                                 /*
1641                                  * ret could be -EIO if the above fails to read
1642                                  * metadata.
1643                                  */
1644                                 if (ret < 0) {
1645                                         if (cow_start != (u64)-1)
1646                                                 cur_offset = cow_start;
1647                                         goto error;
1648                                 }
1649                                 WARN_ON_ONCE(freespace_inode);
1650                                 goto out_check;
1651                         }
1652                         if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr))
1653                                 goto out_check;
1654                         nocow = true;
1655                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1656                         extent_end = found_key.offset + ram_bytes;
1657                         extent_end = ALIGN(extent_end, fs_info->sectorsize);
1658                         /* Skip extents outside of our requested range */
1659                         if (extent_end <= start) {
1660                                 path->slots[0]++;
1661                                 goto next_slot;
1662                         }
1663                 } else {
1664                         /* If this triggers then we have a memory corruption */
1665                         BUG();
1666                 }
1667 out_check:
1668                 /*
1669                  * If nocow is false then record the beginning of the range
1670                  * that needs to be COWed
1671                  */
1672                 if (!nocow) {
1673                         if (cow_start == (u64)-1)
1674                                 cow_start = cur_offset;
1675                         cur_offset = extent_end;
1676                         if (cur_offset > end)
1677                                 break;
1678                         path->slots[0]++;
1679                         goto next_slot;
1680                 }
1681
1682                 btrfs_release_path(path);
1683
1684                 /*
1685                  * COW range from cow_start to found_key.offset - 1. As the key
1686                  * will contain the beginning of the first extent that can be
1687                  * NOCOW, following one which needs to be COW'ed
1688                  */
1689                 if (cow_start != (u64)-1) {
1690                         ret = fallback_to_cow(inode, locked_page, cow_start,
1691                                               found_key.offset - 1,
1692                                               page_started, nr_written);
1693                         if (ret) {
1694                                 if (nocow)
1695                                         btrfs_dec_nocow_writers(fs_info,
1696                                                                 disk_bytenr);
1697                                 goto error;
1698                         }
1699                         cow_start = (u64)-1;
1700                 }
1701
1702                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1703                         u64 orig_start = found_key.offset - extent_offset;
1704                         struct extent_map *em;
1705
1706                         em = create_io_em(inode, cur_offset, num_bytes,
1707                                           orig_start,
1708                                           disk_bytenr, /* block_start */
1709                                           num_bytes, /* block_len */
1710                                           disk_num_bytes, /* orig_block_len */
1711                                           ram_bytes, BTRFS_COMPRESS_NONE,
1712                                           BTRFS_ORDERED_PREALLOC);
1713                         if (IS_ERR(em)) {
1714                                 if (nocow)
1715                                         btrfs_dec_nocow_writers(fs_info,
1716                                                                 disk_bytenr);
1717                                 ret = PTR_ERR(em);
1718                                 goto error;
1719                         }
1720                         free_extent_map(em);
1721                         ret = btrfs_add_ordered_extent(inode, cur_offset,
1722                                                        disk_bytenr, num_bytes,
1723                                                        num_bytes,
1724                                                        BTRFS_ORDERED_PREALLOC);
1725                         if (ret) {
1726                                 btrfs_drop_extent_cache(BTRFS_I(inode),
1727                                                         cur_offset,
1728                                                         cur_offset + num_bytes - 1,
1729                                                         0);
1730                                 goto error;
1731                         }
1732                 } else {
1733                         ret = btrfs_add_ordered_extent(inode, cur_offset,
1734                                                        disk_bytenr, num_bytes,
1735                                                        num_bytes,
1736                                                        BTRFS_ORDERED_NOCOW);
1737                         if (ret)
1738                                 goto error;
1739                 }
1740
1741                 if (nocow)
1742                         btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1743                 nocow = false;
1744
1745                 if (root->root_key.objectid ==
1746                     BTRFS_DATA_RELOC_TREE_OBJECTID)
1747                         /*
1748                          * Error handled later, as we must prevent
1749                          * extent_clear_unlock_delalloc() in error handler
1750                          * from freeing metadata of created ordered extent.
1751                          */
1752                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1753                                                       num_bytes);
1754
1755                 extent_clear_unlock_delalloc(inode, cur_offset,
1756                                              cur_offset + num_bytes - 1,
1757                                              locked_page, EXTENT_LOCKED |
1758                                              EXTENT_DELALLOC |
1759                                              EXTENT_CLEAR_DATA_RESV,
1760                                              PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1761
1762                 cur_offset = extent_end;
1763
1764                 /*
1765                  * btrfs_reloc_clone_csums() error, now we're OK to call error
1766                  * handler, as metadata for created ordered extent will only
1767                  * be freed by btrfs_finish_ordered_io().
1768                  */
1769                 if (ret)
1770                         goto error;
1771                 if (cur_offset > end)
1772                         break;
1773         }
1774         btrfs_release_path(path);
1775
1776         if (cur_offset <= end && cow_start == (u64)-1)
1777                 cow_start = cur_offset;
1778
1779         if (cow_start != (u64)-1) {
1780                 cur_offset = end;
1781                 ret = fallback_to_cow(inode, locked_page, cow_start, end,
1782                                       page_started, nr_written);
1783                 if (ret)
1784                         goto error;
1785         }
1786
1787 error:
1788         if (nocow)
1789                 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
1790
1791         if (ret && cur_offset < end)
1792                 extent_clear_unlock_delalloc(inode, cur_offset, end,
1793                                              locked_page, EXTENT_LOCKED |
1794                                              EXTENT_DELALLOC | EXTENT_DEFRAG |
1795                                              EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1796                                              PAGE_CLEAR_DIRTY |
1797                                              PAGE_SET_WRITEBACK |
1798                                              PAGE_END_WRITEBACK);
1799         btrfs_free_path(path);
1800         return ret;
1801 }
1802
1803 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1804 {
1805
1806         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1807             !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1808                 return 0;
1809
1810         /*
1811          * @defrag_bytes is a hint value, no spinlock held here,
1812          * if is not zero, it means the file is defragging.
1813          * Force cow if given extent needs to be defragged.
1814          */
1815         if (BTRFS_I(inode)->defrag_bytes &&
1816             test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1817                            EXTENT_DEFRAG, 0, NULL))
1818                 return 1;
1819
1820         return 0;
1821 }
1822
1823 /*
1824  * Function to process delayed allocation (create CoW) for ranges which are
1825  * being touched for the first time.
1826  */
1827 int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
1828                 u64 start, u64 end, int *page_started, unsigned long *nr_written,
1829                 struct writeback_control *wbc)
1830 {
1831         int ret;
1832         int force_cow = need_force_cow(inode, start, end);
1833
1834         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1835                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1836                                          page_started, 1, nr_written);
1837         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1838                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1839                                          page_started, 0, nr_written);
1840         } else if (!inode_can_compress(inode) ||
1841                    !inode_need_compress(inode, start, end)) {
1842                 ret = cow_file_range(inode, locked_page, start, end,
1843                                       page_started, nr_written, 1);
1844         } else {
1845                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1846                         &BTRFS_I(inode)->runtime_flags);
1847                 ret = cow_file_range_async(inode, wbc, locked_page, start, end,
1848                                            page_started, nr_written);
1849         }
1850         if (ret)
1851                 btrfs_cleanup_ordered_extents(inode, locked_page, start,
1852                                               end - start + 1);
1853         return ret;
1854 }
1855
1856 void btrfs_split_delalloc_extent(struct inode *inode,
1857                                  struct extent_state *orig, u64 split)
1858 {
1859         u64 size;
1860
1861         /* not delalloc, ignore it */
1862         if (!(orig->state & EXTENT_DELALLOC))
1863                 return;
1864
1865         size = orig->end - orig->start + 1;
1866         if (size > BTRFS_MAX_EXTENT_SIZE) {
1867                 u32 num_extents;
1868                 u64 new_size;
1869
1870                 /*
1871                  * See the explanation in btrfs_merge_delalloc_extent, the same
1872                  * applies here, just in reverse.
1873                  */
1874                 new_size = orig->end - split + 1;
1875                 num_extents = count_max_extents(new_size);
1876                 new_size = split - orig->start;
1877                 num_extents += count_max_extents(new_size);
1878                 if (count_max_extents(size) >= num_extents)
1879                         return;
1880         }
1881
1882         spin_lock(&BTRFS_I(inode)->lock);
1883         btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1884         spin_unlock(&BTRFS_I(inode)->lock);
1885 }
1886
1887 /*
1888  * Handle merged delayed allocation extents so we can keep track of new extents
1889  * that are just merged onto old extents, such as when we are doing sequential
1890  * writes, so we can properly account for the metadata space we'll need.
1891  */
1892 void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
1893                                  struct extent_state *other)
1894 {
1895         u64 new_size, old_size;
1896         u32 num_extents;
1897
1898         /* not delalloc, ignore it */
1899         if (!(other->state & EXTENT_DELALLOC))
1900                 return;
1901
1902         if (new->start > other->start)
1903                 new_size = new->end - other->start + 1;
1904         else
1905                 new_size = other->end - new->start + 1;
1906
1907         /* we're not bigger than the max, unreserve the space and go */
1908         if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1909                 spin_lock(&BTRFS_I(inode)->lock);
1910                 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1911                 spin_unlock(&BTRFS_I(inode)->lock);
1912                 return;
1913         }
1914
1915         /*
1916          * We have to add up either side to figure out how many extents were
1917          * accounted for before we merged into one big extent.  If the number of
1918          * extents we accounted for is <= the amount we need for the new range
1919          * then we can return, otherwise drop.  Think of it like this
1920          *
1921          * [ 4k][MAX_SIZE]
1922          *
1923          * So we've grown the extent by a MAX_SIZE extent, this would mean we
1924          * need 2 outstanding extents, on one side we have 1 and the other side
1925          * we have 1 so they are == and we can return.  But in this case
1926          *
1927          * [MAX_SIZE+4k][MAX_SIZE+4k]
1928          *
1929          * Each range on their own accounts for 2 extents, but merged together
1930          * they are only 3 extents worth of accounting, so we need to drop in
1931          * this case.
1932          */
1933         old_size = other->end - other->start + 1;
1934         num_extents = count_max_extents(old_size);
1935         old_size = new->end - new->start + 1;
1936         num_extents += count_max_extents(old_size);
1937         if (count_max_extents(new_size) >= num_extents)
1938                 return;
1939
1940         spin_lock(&BTRFS_I(inode)->lock);
1941         btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
1942         spin_unlock(&BTRFS_I(inode)->lock);
1943 }
1944
1945 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1946                                       struct inode *inode)
1947 {
1948         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1949
1950         spin_lock(&root->delalloc_lock);
1951         if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1952                 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1953                               &root->delalloc_inodes);
1954                 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1955                         &BTRFS_I(inode)->runtime_flags);
1956                 root->nr_delalloc_inodes++;
1957                 if (root->nr_delalloc_inodes == 1) {
1958                         spin_lock(&fs_info->delalloc_root_lock);
1959                         BUG_ON(!list_empty(&root->delalloc_root));
1960                         list_add_tail(&root->delalloc_root,
1961                                       &fs_info->delalloc_roots);
1962                         spin_unlock(&fs_info->delalloc_root_lock);
1963                 }
1964         }
1965         spin_unlock(&root->delalloc_lock);
1966 }
1967
1968
1969 void __btrfs_del_delalloc_inode(struct btrfs_root *root,
1970                                 struct btrfs_inode *inode)
1971 {
1972         struct btrfs_fs_info *fs_info = root->fs_info;
1973
1974         if (!list_empty(&inode->delalloc_inodes)) {
1975                 list_del_init(&inode->delalloc_inodes);
1976                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1977                           &inode->runtime_flags);
1978                 root->nr_delalloc_inodes--;
1979                 if (!root->nr_delalloc_inodes) {
1980                         ASSERT(list_empty(&root->delalloc_inodes));
1981                         spin_lock(&fs_info->delalloc_root_lock);
1982                         BUG_ON(list_empty(&root->delalloc_root));
1983                         list_del_init(&root->delalloc_root);
1984                         spin_unlock(&fs_info->delalloc_root_lock);
1985                 }
1986         }
1987 }
1988
1989 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1990                                      struct btrfs_inode *inode)
1991 {
1992         spin_lock(&root->delalloc_lock);
1993         __btrfs_del_delalloc_inode(root, inode);
1994         spin_unlock(&root->delalloc_lock);
1995 }
1996
1997 /*
1998  * Properly track delayed allocation bytes in the inode and to maintain the
1999  * list of inodes that have pending delalloc work to be done.
2000  */
2001 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2002                                unsigned *bits)
2003 {
2004         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2005
2006         if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
2007                 WARN_ON(1);
2008         /*
2009          * set_bit and clear bit hooks normally require _irqsave/restore
2010          * but in this case, we are only testing for the DELALLOC
2011          * bit, which is only set or cleared with irqs on
2012          */
2013         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2014                 struct btrfs_root *root = BTRFS_I(inode)->root;
2015                 u64 len = state->end + 1 - state->start;
2016                 u32 num_extents = count_max_extents(len);
2017                 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
2018
2019                 spin_lock(&BTRFS_I(inode)->lock);
2020                 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
2021                 spin_unlock(&BTRFS_I(inode)->lock);
2022
2023                 /* For sanity tests */
2024                 if (btrfs_is_testing(fs_info))
2025                         return;
2026
2027                 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
2028                                          fs_info->delalloc_batch);
2029                 spin_lock(&BTRFS_I(inode)->lock);
2030                 BTRFS_I(inode)->delalloc_bytes += len;
2031                 if (*bits & EXTENT_DEFRAG)
2032                         BTRFS_I(inode)->defrag_bytes += len;
2033                 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2034                                          &BTRFS_I(inode)->runtime_flags))
2035                         btrfs_add_delalloc_inodes(root, inode);
2036                 spin_unlock(&BTRFS_I(inode)->lock);
2037         }
2038
2039         if (!(state->state & EXTENT_DELALLOC_NEW) &&
2040             (*bits & EXTENT_DELALLOC_NEW)) {
2041                 spin_lock(&BTRFS_I(inode)->lock);
2042                 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
2043                         state->start;
2044                 spin_unlock(&BTRFS_I(inode)->lock);
2045         }
2046 }
2047
2048 /*
2049  * Once a range is no longer delalloc this function ensures that proper
2050  * accounting happens.
2051  */
2052 void btrfs_clear_delalloc_extent(struct inode *vfs_inode,
2053                                  struct extent_state *state, unsigned *bits)
2054 {
2055         struct btrfs_inode *inode = BTRFS_I(vfs_inode);
2056         struct btrfs_fs_info *fs_info = btrfs_sb(vfs_inode->i_sb);
2057         u64 len = state->end + 1 - state->start;
2058         u32 num_extents = count_max_extents(len);
2059
2060         if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
2061                 spin_lock(&inode->lock);
2062                 inode->defrag_bytes -= len;
2063                 spin_unlock(&inode->lock);
2064         }
2065
2066         /*
2067          * set_bit and clear bit hooks normally require _irqsave/restore
2068          * but in this case, we are only testing for the DELALLOC
2069          * bit, which is only set or cleared with irqs on
2070          */
2071         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
2072                 struct btrfs_root *root = inode->root;
2073                 bool do_list = !btrfs_is_free_space_inode(inode);
2074
2075                 spin_lock(&inode->lock);
2076                 btrfs_mod_outstanding_extents(inode, -num_extents);
2077                 spin_unlock(&inode->lock);
2078
2079                 /*
2080                  * We don't reserve metadata space for space cache inodes so we
2081                  * don't need to call delalloc_release_metadata if there is an
2082                  * error.
2083                  */
2084                 if (*bits & EXTENT_CLEAR_META_RESV &&
2085                     root != fs_info->tree_root)
2086                         btrfs_delalloc_release_metadata(inode, len, false);
2087
2088                 /* For sanity tests. */
2089                 if (btrfs_is_testing(fs_info))
2090                         return;
2091
2092                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
2093                     do_list && !(state->state & EXTENT_NORESERVE) &&
2094                     (*bits & EXTENT_CLEAR_DATA_RESV))
2095                         btrfs_free_reserved_data_space_noquota(
2096                                         &inode->vfs_inode,
2097                                         state->start, len);
2098
2099                 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
2100                                          fs_info->delalloc_batch);
2101                 spin_lock(&inode->lock);
2102                 inode->delalloc_bytes -= len;
2103                 if (do_list && inode->delalloc_bytes == 0 &&
2104                     test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
2105                                         &inode->runtime_flags))
2106                         btrfs_del_delalloc_inode(root, inode);
2107                 spin_unlock(&inode->lock);
2108         }
2109
2110         if ((state->state & EXTENT_DELALLOC_NEW) &&
2111             (*bits & EXTENT_DELALLOC_NEW)) {
2112                 spin_lock(&inode->lock);
2113                 ASSERT(inode->new_delalloc_bytes >= len);
2114                 inode->new_delalloc_bytes -= len;
2115                 spin_unlock(&inode->lock);
2116         }
2117 }
2118
2119 /*
2120  * btrfs_bio_fits_in_stripe - Checks whether the size of the given bio will fit
2121  * in a chunk's stripe. This function ensures that bios do not span a
2122  * stripe/chunk
2123  *
2124  * @page - The page we are about to add to the bio
2125  * @size - size we want to add to the bio
2126  * @bio - bio we want to ensure is smaller than a stripe
2127  * @bio_flags - flags of the bio
2128  *
2129  * return 1 if page cannot be added to the bio
2130  * return 0 if page can be added to the bio
2131  * return error otherwise
2132  */
2133 int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2134                              unsigned long bio_flags)
2135 {
2136         struct inode *inode = page->mapping->host;
2137         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2138         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
2139         u64 length = 0;
2140         u64 map_length;
2141         int ret;
2142         struct btrfs_io_geometry geom;
2143
2144         if (bio_flags & EXTENT_BIO_COMPRESSED)
2145                 return 0;
2146
2147         length = bio->bi_iter.bi_size;
2148         map_length = length;
2149         ret = btrfs_get_io_geometry(fs_info, btrfs_op(bio), logical, map_length,
2150                                     &geom);
2151         if (ret < 0)
2152                 return ret;
2153
2154         if (geom.len < length + size)
2155                 return 1;
2156         return 0;
2157 }
2158
2159 /*
2160  * in order to insert checksums into the metadata in large chunks,
2161  * we wait until bio submission time.   All the pages in the bio are
2162  * checksummed and sums are attached onto the ordered extent record.
2163  *
2164  * At IO completion time the cums attached on the ordered extent record
2165  * are inserted into the btree
2166  */
2167 static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio,
2168                                     u64 bio_offset)
2169 {
2170         struct inode *inode = private_data;
2171         blk_status_t ret = 0;
2172
2173         ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2174         BUG_ON(ret); /* -ENOMEM */
2175         return 0;
2176 }
2177
2178 /*
2179  * extent_io.c submission hook. This does the right thing for csum calculation
2180  * on write, or reading the csums from the tree before a read.
2181  *
2182  * Rules about async/sync submit,
2183  * a) read:                             sync submit
2184  *
2185  * b) write without checksum:           sync submit
2186  *
2187  * c) write with checksum:
2188  *    c-1) if bio is issued by fsync:   sync submit
2189  *         (sync_writers != 0)
2190  *
2191  *    c-2) if root is reloc root:       sync submit
2192  *         (only in case of buffered IO)
2193  *
2194  *    c-3) otherwise:                   async submit
2195  */
2196 static blk_status_t btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
2197                                           int mirror_num,
2198                                           unsigned long bio_flags)
2199
2200 {
2201         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2202         struct btrfs_root *root = BTRFS_I(inode)->root;
2203         enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
2204         blk_status_t ret = 0;
2205         int skip_sum;
2206         int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
2207
2208         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
2209
2210         if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2211                 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
2212
2213         if (bio_op(bio) != REQ_OP_WRITE) {
2214                 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
2215                 if (ret)
2216                         goto out;
2217
2218                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
2219                         ret = btrfs_submit_compressed_read(inode, bio,
2220                                                            mirror_num,
2221                                                            bio_flags);
2222                         goto out;
2223                 } else if (!skip_sum) {
2224                         ret = btrfs_lookup_bio_sums(inode, bio, (u64)-1, NULL);
2225                         if (ret)
2226                                 goto out;
2227                 }
2228                 goto mapit;
2229         } else if (async && !skip_sum) {
2230                 /* csum items have already been cloned */
2231                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2232                         goto mapit;
2233                 /* we're doing a write, do the async checksumming */
2234                 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
2235                                           0, inode, btrfs_submit_bio_start);
2236                 goto out;
2237         } else if (!skip_sum) {
2238                 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
2239                 if (ret)
2240                         goto out;
2241         }
2242
2243 mapit:
2244         ret = btrfs_map_bio(fs_info, bio, mirror_num);
2245
2246 out:
2247         if (ret) {
2248                 bio->bi_status = ret;
2249                 bio_endio(bio);
2250         }
2251         return ret;
2252 }
2253
2254 /*
2255  * given a list of ordered sums record them in the inode.  This happens
2256  * at IO completion time based on sums calculated at bio submission time.
2257  */
2258 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
2259                              struct inode *inode, struct list_head *list)
2260 {
2261         struct btrfs_ordered_sum *sum;
2262         int ret;
2263
2264         list_for_each_entry(sum, list, list) {
2265                 trans->adding_csums = true;
2266                 ret = btrfs_csum_file_blocks(trans,
2267                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
2268                 trans->adding_csums = false;
2269                 if (ret)
2270                         return ret;
2271         }
2272         return 0;
2273 }
2274
2275 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2276                               unsigned int extra_bits,
2277                               struct extent_state **cached_state)
2278 {
2279         WARN_ON(PAGE_ALIGNED(end));
2280         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2281                                    extra_bits, cached_state);
2282 }
2283
2284 /* see btrfs_writepage_start_hook for details on why this is required */
2285 struct btrfs_writepage_fixup {
2286         struct page *page;
2287         struct inode *inode;
2288         struct btrfs_work work;
2289 };
2290
2291 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2292 {
2293         struct btrfs_writepage_fixup *fixup;
2294         struct btrfs_ordered_extent *ordered;
2295         struct extent_state *cached_state = NULL;
2296         struct extent_changeset *data_reserved = NULL;
2297         struct page *page;
2298         struct inode *inode;
2299         u64 page_start;
2300         u64 page_end;
2301         int ret = 0;
2302         bool free_delalloc_space = true;
2303
2304         fixup = container_of(work, struct btrfs_writepage_fixup, work);
2305         page = fixup->page;
2306         inode = fixup->inode;
2307         page_start = page_offset(page);
2308         page_end = page_offset(page) + PAGE_SIZE - 1;
2309
2310         /*
2311          * This is similar to page_mkwrite, we need to reserve the space before
2312          * we take the page lock.
2313          */
2314         ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
2315                                            PAGE_SIZE);
2316 again:
2317         lock_page(page);
2318
2319         /*
2320          * Before we queued this fixup, we took a reference on the page.
2321          * page->mapping may go NULL, but it shouldn't be moved to a different
2322          * address space.
2323          */
2324         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2325                 /*
2326                  * Unfortunately this is a little tricky, either
2327                  *
2328                  * 1) We got here and our page had already been dealt with and
2329                  *    we reserved our space, thus ret == 0, so we need to just
2330                  *    drop our space reservation and bail.  This can happen the
2331                  *    first time we come into the fixup worker, or could happen
2332                  *    while waiting for the ordered extent.
2333                  * 2) Our page was already dealt with, but we happened to get an
2334                  *    ENOSPC above from the btrfs_delalloc_reserve_space.  In
2335                  *    this case we obviously don't have anything to release, but
2336                  *    because the page was already dealt with we don't want to
2337                  *    mark the page with an error, so make sure we're resetting
2338                  *    ret to 0.  This is why we have this check _before_ the ret
2339                  *    check, because we do not want to have a surprise ENOSPC
2340                  *    when the page was already properly dealt with.
2341                  */
2342                 if (!ret) {
2343                         btrfs_delalloc_release_extents(BTRFS_I(inode),
2344                                                        PAGE_SIZE);
2345                         btrfs_delalloc_release_space(inode, data_reserved,
2346                                                      page_start, PAGE_SIZE,
2347                                                      true);
2348                 }
2349                 ret = 0;
2350                 goto out_page;
2351         }
2352
2353         /*
2354          * We can't mess with the page state unless it is locked, so now that
2355          * it is locked bail if we failed to make our space reservation.
2356          */
2357         if (ret)
2358                 goto out_page;
2359
2360         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2361                          &cached_state);
2362
2363         /* already ordered? We're done */
2364         if (PagePrivate2(page))
2365                 goto out_reserved;
2366
2367         ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
2368                                         PAGE_SIZE);
2369         if (ordered) {
2370                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2371                                      page_end, &cached_state);
2372                 unlock_page(page);
2373                 btrfs_start_ordered_extent(inode, ordered, 1);
2374                 btrfs_put_ordered_extent(ordered);
2375                 goto again;
2376         }
2377
2378         ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2379                                         &cached_state);
2380         if (ret)
2381                 goto out_reserved;
2382
2383         /*
2384          * Everything went as planned, we're now the owner of a dirty page with
2385          * delayed allocation bits set and space reserved for our COW
2386          * destination.
2387          *
2388          * The page was dirty when we started, nothing should have cleaned it.
2389          */
2390         BUG_ON(!PageDirty(page));
2391         free_delalloc_space = false;
2392 out_reserved:
2393         btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2394         if (free_delalloc_space)
2395                 btrfs_delalloc_release_space(inode, data_reserved, page_start,
2396                                              PAGE_SIZE, true);
2397         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2398                              &cached_state);
2399 out_page:
2400         if (ret) {
2401                 /*
2402                  * We hit ENOSPC or other errors.  Update the mapping and page
2403                  * to reflect the errors and clean the page.
2404                  */
2405                 mapping_set_error(page->mapping, ret);
2406                 end_extent_writepage(page, ret, page_start, page_end);
2407                 clear_page_dirty_for_io(page);
2408                 SetPageError(page);
2409         }
2410         ClearPageChecked(page);
2411         unlock_page(page);
2412         put_page(page);
2413         kfree(fixup);
2414         extent_changeset_free(data_reserved);
2415         /*
2416          * As a precaution, do a delayed iput in case it would be the last iput
2417          * that could need flushing space. Recursing back to fixup worker would
2418          * deadlock.
2419          */
2420         btrfs_add_delayed_iput(inode);
2421 }
2422
2423 /*
2424  * There are a few paths in the higher layers of the kernel that directly
2425  * set the page dirty bit without asking the filesystem if it is a
2426  * good idea.  This causes problems because we want to make sure COW
2427  * properly happens and the data=ordered rules are followed.
2428  *
2429  * In our case any range that doesn't have the ORDERED bit set
2430  * hasn't been properly setup for IO.  We kick off an async process
2431  * to fix it up.  The async helper will wait for ordered extents, set
2432  * the delalloc bit and make it safe to write the page.
2433  */
2434 int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end)
2435 {
2436         struct inode *inode = page->mapping->host;
2437         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2438         struct btrfs_writepage_fixup *fixup;
2439
2440         /* this page is properly in the ordered list */
2441         if (TestClearPagePrivate2(page))
2442                 return 0;
2443
2444         /*
2445          * PageChecked is set below when we create a fixup worker for this page,
2446          * don't try to create another one if we're already PageChecked()
2447          *
2448          * The extent_io writepage code will redirty the page if we send back
2449          * EAGAIN.
2450          */
2451         if (PageChecked(page))
2452                 return -EAGAIN;
2453
2454         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2455         if (!fixup)
2456                 return -EAGAIN;
2457
2458         /*
2459          * We are already holding a reference to this inode from
2460          * write_cache_pages.  We need to hold it because the space reservation
2461          * takes place outside of the page lock, and we can't trust
2462          * page->mapping outside of the page lock.
2463          */
2464         ihold(inode);
2465         SetPageChecked(page);
2466         get_page(page);
2467         btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
2468         fixup->page = page;
2469         fixup->inode = inode;
2470         btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
2471
2472         return -EAGAIN;
2473 }
2474
2475 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2476                                        struct inode *inode, u64 file_pos,
2477                                        u64 disk_bytenr, u64 disk_num_bytes,
2478                                        u64 num_bytes, u64 ram_bytes,
2479                                        u8 compression, u8 encryption,
2480                                        u16 other_encoding, int extent_type)
2481 {
2482         struct btrfs_root *root = BTRFS_I(inode)->root;
2483         struct btrfs_file_extent_item *fi;
2484         struct btrfs_path *path;
2485         struct extent_buffer *leaf;
2486         struct btrfs_key ins;
2487         u64 qg_released;
2488         int extent_inserted = 0;
2489         int ret;
2490
2491         path = btrfs_alloc_path();
2492         if (!path)
2493                 return -ENOMEM;
2494
2495         /*
2496          * we may be replacing one extent in the tree with another.
2497          * The new extent is pinned in the extent map, and we don't want
2498          * to drop it from the cache until it is completely in the btree.
2499          *
2500          * So, tell btrfs_drop_extents to leave this extent in the cache.
2501          * the caller is expected to unpin it and allow it to be merged
2502          * with the others.
2503          */
2504         ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2505                                    file_pos + num_bytes, NULL, 0,
2506                                    1, sizeof(*fi), &extent_inserted);
2507         if (ret)
2508                 goto out;
2509
2510         if (!extent_inserted) {
2511                 ins.objectid = btrfs_ino(BTRFS_I(inode));
2512                 ins.offset = file_pos;
2513                 ins.type = BTRFS_EXTENT_DATA_KEY;
2514
2515                 path->leave_spinning = 1;
2516                 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2517                                               sizeof(*fi));
2518                 if (ret)
2519                         goto out;
2520         }
2521         leaf = path->nodes[0];
2522         fi = btrfs_item_ptr(leaf, path->slots[0],
2523                             struct btrfs_file_extent_item);
2524         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2525         btrfs_set_file_extent_type(leaf, fi, extent_type);
2526         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2527         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2528         btrfs_set_file_extent_offset(leaf, fi, 0);
2529         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2530         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2531         btrfs_set_file_extent_compression(leaf, fi, compression);
2532         btrfs_set_file_extent_encryption(leaf, fi, encryption);
2533         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2534
2535         btrfs_mark_buffer_dirty(leaf);
2536         btrfs_release_path(path);
2537
2538         inode_add_bytes(inode, num_bytes);
2539
2540         ins.objectid = disk_bytenr;
2541         ins.offset = disk_num_bytes;
2542         ins.type = BTRFS_EXTENT_ITEM_KEY;
2543
2544         ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), file_pos,
2545                                                 ram_bytes);
2546         if (ret)
2547                 goto out;
2548
2549         /*
2550          * Release the reserved range from inode dirty range map, as it is
2551          * already moved into delayed_ref_head
2552          */
2553         ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2554         if (ret < 0)
2555                 goto out;
2556         qg_released = ret;
2557         ret = btrfs_alloc_reserved_file_extent(trans, root,
2558                                                btrfs_ino(BTRFS_I(inode)),
2559                                                file_pos, qg_released, &ins);
2560 out:
2561         btrfs_free_path(path);
2562
2563         return ret;
2564 }
2565
2566 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
2567                                          u64 start, u64 len)
2568 {
2569         struct btrfs_block_group *cache;
2570
2571         cache = btrfs_lookup_block_group(fs_info, start);
2572         ASSERT(cache);
2573
2574         spin_lock(&cache->lock);
2575         cache->delalloc_bytes -= len;
2576         spin_unlock(&cache->lock);
2577
2578         btrfs_put_block_group(cache);
2579 }
2580
2581 /* as ordered data IO finishes, this gets called so we can finish
2582  * an ordered extent if the range of bytes in the file it covers are
2583  * fully written.
2584  */
2585 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2586 {
2587         struct inode *inode = ordered_extent->inode;
2588         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2589         struct btrfs_root *root = BTRFS_I(inode)->root;
2590         struct btrfs_trans_handle *trans = NULL;
2591         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2592         struct extent_state *cached_state = NULL;
2593         u64 start, end;
2594         int compress_type = 0;
2595         int ret = 0;
2596         u64 logical_len = ordered_extent->num_bytes;
2597         bool freespace_inode;
2598         bool truncated = false;
2599         bool range_locked = false;
2600         bool clear_new_delalloc_bytes = false;
2601         bool clear_reserved_extent = true;
2602         unsigned int clear_bits;
2603
2604         start = ordered_extent->file_offset;
2605         end = start + ordered_extent->num_bytes - 1;
2606
2607         if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2608             !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2609             !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2610                 clear_new_delalloc_bytes = true;
2611
2612         freespace_inode = btrfs_is_free_space_inode(BTRFS_I(inode));
2613
2614         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2615                 ret = -EIO;
2616                 goto out;
2617         }
2618
2619         btrfs_free_io_failure_record(BTRFS_I(inode), start, end);
2620
2621         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2622                 truncated = true;
2623                 logical_len = ordered_extent->truncated_len;
2624                 /* Truncated the entire extent, don't bother adding */
2625                 if (!logical_len)
2626                         goto out;
2627         }
2628
2629         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2630                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2631
2632                 /*
2633                  * For mwrite(mmap + memset to write) case, we still reserve
2634                  * space for NOCOW range.
2635                  * As NOCOW won't cause a new delayed ref, just free the space
2636                  */
2637                 btrfs_qgroup_free_data(inode, NULL, start,
2638                                        ordered_extent->num_bytes);
2639                 btrfs_inode_safe_disk_i_size_write(inode, 0);
2640                 if (freespace_inode)
2641                         trans = btrfs_join_transaction_spacecache(root);
2642                 else
2643                         trans = btrfs_join_transaction(root);
2644                 if (IS_ERR(trans)) {
2645                         ret = PTR_ERR(trans);
2646                         trans = NULL;
2647                         goto out;
2648                 }
2649                 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2650                 ret = btrfs_update_inode_fallback(trans, root, inode);
2651                 if (ret) /* -ENOMEM or corruption */
2652                         btrfs_abort_transaction(trans, ret);
2653                 goto out;
2654         }
2655
2656         range_locked = true;
2657         lock_extent_bits(io_tree, start, end, &cached_state);
2658
2659         if (freespace_inode)
2660                 trans = btrfs_join_transaction_spacecache(root);
2661         else
2662                 trans = btrfs_join_transaction(root);
2663         if (IS_ERR(trans)) {
2664                 ret = PTR_ERR(trans);
2665                 trans = NULL;
2666                 goto out;
2667         }
2668
2669         trans->block_rsv = &BTRFS_I(inode)->block_rsv;
2670
2671         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2672                 compress_type = ordered_extent->compress_type;
2673         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2674                 BUG_ON(compress_type);
2675                 btrfs_qgroup_free_data(inode, NULL, start,
2676                                        ordered_extent->num_bytes);
2677                 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
2678                                                 ordered_extent->file_offset,
2679                                                 ordered_extent->file_offset +
2680                                                 logical_len);
2681         } else {
2682                 BUG_ON(root == fs_info->tree_root);
2683                 ret = insert_reserved_file_extent(trans, inode, start,
2684                                                 ordered_extent->disk_bytenr,
2685                                                 ordered_extent->disk_num_bytes,
2686                                                 logical_len, logical_len,
2687                                                 compress_type, 0, 0,
2688                                                 BTRFS_FILE_EXTENT_REG);
2689                 if (!ret) {
2690                         clear_reserved_extent = false;
2691                         btrfs_release_delalloc_bytes(fs_info,
2692                                                 ordered_extent->disk_bytenr,
2693                                                 ordered_extent->disk_num_bytes);
2694                 }
2695         }
2696         unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2697                            ordered_extent->file_offset,
2698                            ordered_extent->num_bytes, trans->transid);
2699         if (ret < 0) {
2700                 btrfs_abort_transaction(trans, ret);
2701                 goto out;
2702         }
2703
2704         ret = add_pending_csums(trans, inode, &ordered_extent->list);
2705         if (ret) {
2706                 btrfs_abort_transaction(trans, ret);
2707                 goto out;
2708         }
2709
2710         btrfs_inode_safe_disk_i_size_write(inode, 0);
2711         ret = btrfs_update_inode_fallback(trans, root, inode);
2712         if (ret) { /* -ENOMEM or corruption */
2713                 btrfs_abort_transaction(trans, ret);
2714                 goto out;
2715         }
2716         ret = 0;
2717 out:
2718         clear_bits = EXTENT_DEFRAG;
2719         if (range_locked)
2720                 clear_bits |= EXTENT_LOCKED;
2721         if (clear_new_delalloc_bytes)
2722                 clear_bits |= EXTENT_DELALLOC_NEW;
2723         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits,
2724                          (clear_bits & EXTENT_LOCKED) ? 1 : 0, 0,
2725                          &cached_state);
2726
2727         if (trans)
2728                 btrfs_end_transaction(trans);
2729
2730         if (ret || truncated) {
2731                 u64 unwritten_start = start;
2732
2733                 if (truncated)
2734                         unwritten_start += logical_len;
2735                 clear_extent_uptodate(io_tree, unwritten_start, end, NULL);
2736
2737                 /* Drop the cache for the part of the extent we didn't write. */
2738                 btrfs_drop_extent_cache(BTRFS_I(inode), unwritten_start, end, 0);
2739
2740                 /*
2741                  * If the ordered extent had an IOERR or something else went
2742                  * wrong we need to return the space for this ordered extent
2743                  * back to the allocator.  We only free the extent in the
2744                  * truncated case if we didn't write out the extent at all.
2745                  *
2746                  * If we made it past insert_reserved_file_extent before we
2747                  * errored out then we don't need to do this as the accounting
2748                  * has already been done.
2749                  */
2750                 if ((ret || !logical_len) &&
2751                     clear_reserved_extent &&
2752                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2753                     !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2754                         /*
2755                          * Discard the range before returning it back to the
2756                          * free space pool
2757                          */
2758                         if (ret && btrfs_test_opt(fs_info, DISCARD_SYNC))
2759                                 btrfs_discard_extent(fs_info,
2760                                                 ordered_extent->disk_bytenr,
2761                                                 ordered_extent->disk_num_bytes,
2762                                                 NULL);
2763                         btrfs_free_reserved_extent(fs_info,
2764                                         ordered_extent->disk_bytenr,
2765                                         ordered_extent->disk_num_bytes, 1);
2766                 }
2767         }
2768
2769         /*
2770          * This needs to be done to make sure anybody waiting knows we are done
2771          * updating everything for this ordered extent.
2772          */
2773         btrfs_remove_ordered_extent(inode, ordered_extent);
2774
2775         /* once for us */
2776         btrfs_put_ordered_extent(ordered_extent);
2777         /* once for the tree */
2778         btrfs_put_ordered_extent(ordered_extent);
2779
2780         return ret;
2781 }
2782
2783 static void finish_ordered_fn(struct btrfs_work *work)
2784 {
2785         struct btrfs_ordered_extent *ordered_extent;
2786         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2787         btrfs_finish_ordered_io(ordered_extent);
2788 }
2789
2790 void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2791                                           u64 end, int uptodate)
2792 {
2793         struct inode *inode = page->mapping->host;
2794         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2795         struct btrfs_ordered_extent *ordered_extent = NULL;
2796         struct btrfs_workqueue *wq;
2797
2798         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2799
2800         ClearPagePrivate2(page);
2801         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2802                                             end - start + 1, uptodate))
2803                 return;
2804
2805         if (btrfs_is_free_space_inode(BTRFS_I(inode)))
2806                 wq = fs_info->endio_freespace_worker;
2807         else
2808                 wq = fs_info->endio_write_workers;
2809
2810         btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2811         btrfs_queue_work(wq, &ordered_extent->work);
2812 }
2813
2814 static int check_data_csum(struct inode *inode, struct btrfs_io_bio *io_bio,
2815                            int icsum, struct page *page, int pgoff, u64 start,
2816                            size_t len)
2817 {
2818         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2819         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2820         char *kaddr;
2821         u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2822         u8 *csum_expected;
2823         u8 csum[BTRFS_CSUM_SIZE];
2824
2825         csum_expected = ((u8 *)io_bio->csum) + icsum * csum_size;
2826
2827         kaddr = kmap_atomic(page);
2828         shash->tfm = fs_info->csum_shash;
2829
2830         crypto_shash_digest(shash, kaddr + pgoff, len, csum);
2831
2832         if (memcmp(csum, csum_expected, csum_size))
2833                 goto zeroit;
2834
2835         kunmap_atomic(kaddr);
2836         return 0;
2837 zeroit:
2838         btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
2839                                     io_bio->mirror_num);
2840         memset(kaddr + pgoff, 1, len);
2841         flush_dcache_page(page);
2842         kunmap_atomic(kaddr);
2843         return -EIO;
2844 }
2845
2846 /*
2847  * when reads are done, we need to check csums to verify the data is correct
2848  * if there's a match, we allow the bio to finish.  If not, the code in
2849  * extent_io.c will try to find good copies for us.
2850  */
2851 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2852                                       u64 phy_offset, struct page *page,
2853                                       u64 start, u64 end, int mirror)
2854 {
2855         size_t offset = start - page_offset(page);
2856         struct inode *inode = page->mapping->host;
2857         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2858         struct btrfs_root *root = BTRFS_I(inode)->root;
2859
2860         if (PageChecked(page)) {
2861                 ClearPageChecked(page);
2862                 return 0;
2863         }
2864
2865         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2866                 return 0;
2867
2868         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2869             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2870                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
2871                 return 0;
2872         }
2873
2874         phy_offset >>= inode->i_sb->s_blocksize_bits;
2875         return check_data_csum(inode, io_bio, phy_offset, page, offset, start,
2876                                (size_t)(end - start + 1));
2877 }
2878
2879 /*
2880  * btrfs_add_delayed_iput - perform a delayed iput on @inode
2881  *
2882  * @inode: The inode we want to perform iput on
2883  *
2884  * This function uses the generic vfs_inode::i_count to track whether we should
2885  * just decrement it (in case it's > 1) or if this is the last iput then link
2886  * the inode to the delayed iput machinery. Delayed iputs are processed at
2887  * transaction commit time/superblock commit/cleaner kthread.
2888  */
2889 void btrfs_add_delayed_iput(struct inode *inode)
2890 {
2891         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2892         struct btrfs_inode *binode = BTRFS_I(inode);
2893
2894         if (atomic_add_unless(&inode->i_count, -1, 1))
2895                 return;
2896
2897         atomic_inc(&fs_info->nr_delayed_iputs);
2898         spin_lock(&fs_info->delayed_iput_lock);
2899         ASSERT(list_empty(&binode->delayed_iput));
2900         list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
2901         spin_unlock(&fs_info->delayed_iput_lock);
2902         if (!test_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags))
2903                 wake_up_process(fs_info->cleaner_kthread);
2904 }
2905
2906 static void run_delayed_iput_locked(struct btrfs_fs_info *fs_info,
2907                                     struct btrfs_inode *inode)
2908 {
2909         list_del_init(&inode->delayed_iput);
2910         spin_unlock(&fs_info->delayed_iput_lock);
2911         iput(&inode->vfs_inode);
2912         if (atomic_dec_and_test(&fs_info->nr_delayed_iputs))
2913                 wake_up(&fs_info->delayed_iputs_wait);
2914         spin_lock(&fs_info->delayed_iput_lock);
2915 }
2916
2917 static void btrfs_run_delayed_iput(struct btrfs_fs_info *fs_info,
2918                                    struct btrfs_inode *inode)
2919 {
2920         if (!list_empty(&inode->delayed_iput)) {
2921                 spin_lock(&fs_info->delayed_iput_lock);
2922                 if (!list_empty(&inode->delayed_iput))
2923                         run_delayed_iput_locked(fs_info, inode);
2924                 spin_unlock(&fs_info->delayed_iput_lock);
2925         }
2926 }
2927
2928 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
2929 {
2930
2931         spin_lock(&fs_info->delayed_iput_lock);
2932         while (!list_empty(&fs_info->delayed_iputs)) {
2933                 struct btrfs_inode *inode;
2934
2935                 inode = list_first_entry(&fs_info->delayed_iputs,
2936                                 struct btrfs_inode, delayed_iput);
2937                 run_delayed_iput_locked(fs_info, inode);
2938         }
2939         spin_unlock(&fs_info->delayed_iput_lock);
2940 }
2941
2942 /**
2943  * btrfs_wait_on_delayed_iputs - wait on the delayed iputs to be done running
2944  * @fs_info - the fs_info for this fs
2945  * @return - EINTR if we were killed, 0 if nothing's pending
2946  *
2947  * This will wait on any delayed iputs that are currently running with KILLABLE
2948  * set.  Once they are all done running we will return, unless we are killed in
2949  * which case we return EINTR. This helps in user operations like fallocate etc
2950  * that might get blocked on the iputs.
2951  */
2952 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info)
2953 {
2954         int ret = wait_event_killable(fs_info->delayed_iputs_wait,
2955                         atomic_read(&fs_info->nr_delayed_iputs) == 0);
2956         if (ret)
2957                 return -EINTR;
2958         return 0;
2959 }
2960
2961 /*
2962  * This creates an orphan entry for the given inode in case something goes wrong
2963  * in the middle of an unlink.
2964  */
2965 int btrfs_orphan_add(struct btrfs_trans_handle *trans,
2966                      struct btrfs_inode *inode)
2967 {
2968         int ret;
2969
2970         ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode));
2971         if (ret && ret != -EEXIST) {
2972                 btrfs_abort_transaction(trans, ret);
2973                 return ret;
2974         }
2975
2976         return 0;
2977 }
2978
2979 /*
2980  * We have done the delete so we can go ahead and remove the orphan item for
2981  * this particular inode.
2982  */
2983 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
2984                             struct btrfs_inode *inode)
2985 {
2986         return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode));
2987 }
2988
2989 /*
2990  * this cleans up any orphans that may be left on the list from the last use
2991  * of this root.
2992  */
2993 int btrfs_orphan_cleanup(struct btrfs_root *root)
2994 {
2995         struct btrfs_fs_info *fs_info = root->fs_info;
2996         struct btrfs_path *path;
2997         struct extent_buffer *leaf;
2998         struct btrfs_key key, found_key;
2999         struct btrfs_trans_handle *trans;
3000         struct inode *inode;
3001         u64 last_objectid = 0;
3002         int ret = 0, nr_unlink = 0;
3003
3004         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3005                 return 0;
3006
3007         path = btrfs_alloc_path();
3008         if (!path) {
3009                 ret = -ENOMEM;
3010                 goto out;
3011         }
3012         path->reada = READA_BACK;
3013
3014         key.objectid = BTRFS_ORPHAN_OBJECTID;
3015         key.type = BTRFS_ORPHAN_ITEM_KEY;
3016         key.offset = (u64)-1;
3017
3018         while (1) {
3019                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3020                 if (ret < 0)
3021                         goto out;
3022
3023                 /*
3024                  * if ret == 0 means we found what we were searching for, which
3025                  * is weird, but possible, so only screw with path if we didn't
3026                  * find the key and see if we have stuff that matches
3027                  */
3028                 if (ret > 0) {
3029                         ret = 0;
3030                         if (path->slots[0] == 0)
3031                                 break;
3032                         path->slots[0]--;
3033                 }
3034
3035                 /* pull out the item */
3036                 leaf = path->nodes[0];
3037                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3038
3039                 /* make sure the item matches what we want */
3040                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3041                         break;
3042                 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3043                         break;
3044
3045                 /* release the path since we're done with it */
3046                 btrfs_release_path(path);
3047
3048                 /*
3049                  * this is where we are basically btrfs_lookup, without the
3050                  * crossing root thing.  we store the inode number in the
3051                  * offset of the orphan item.
3052                  */
3053
3054                 if (found_key.offset == last_objectid) {
3055                         btrfs_err(fs_info,
3056                                   "Error removing orphan entry, stopping orphan cleanup");
3057                         ret = -EINVAL;
3058                         goto out;
3059                 }
3060
3061                 last_objectid = found_key.offset;
3062
3063                 found_key.objectid = found_key.offset;
3064                 found_key.type = BTRFS_INODE_ITEM_KEY;
3065                 found_key.offset = 0;
3066                 inode = btrfs_iget(fs_info->sb, last_objectid, root);
3067                 ret = PTR_ERR_OR_ZERO(inode);
3068                 if (ret && ret != -ENOENT)
3069                         goto out;
3070
3071                 if (ret == -ENOENT && root == fs_info->tree_root) {
3072                         struct btrfs_root *dead_root;
3073                         struct btrfs_fs_info *fs_info = root->fs_info;
3074                         int is_dead_root = 0;
3075
3076                         /*
3077                          * this is an orphan in the tree root. Currently these
3078                          * could come from 2 sources:
3079                          *  a) a snapshot deletion in progress
3080                          *  b) a free space cache inode
3081                          * We need to distinguish those two, as the snapshot
3082                          * orphan must not get deleted.
3083                          * find_dead_roots already ran before us, so if this
3084                          * is a snapshot deletion, we should find the root
3085                          * in the fs_roots radix tree.
3086                          */
3087
3088                         spin_lock(&fs_info->fs_roots_radix_lock);
3089                         dead_root = radix_tree_lookup(&fs_info->fs_roots_radix,
3090                                                          (unsigned long)found_key.objectid);
3091                         if (dead_root && btrfs_root_refs(&dead_root->root_item) == 0)
3092                                 is_dead_root = 1;
3093                         spin_unlock(&fs_info->fs_roots_radix_lock);
3094
3095                         if (is_dead_root) {
3096                                 /* prevent this orphan from being found again */
3097                                 key.offset = found_key.objectid - 1;
3098                                 continue;
3099                         }
3100
3101                 }
3102
3103                 /*
3104                  * If we have an inode with links, there are a couple of
3105                  * possibilities. Old kernels (before v3.12) used to create an
3106                  * orphan item for truncate indicating that there were possibly
3107                  * extent items past i_size that needed to be deleted. In v3.12,
3108                  * truncate was changed to update i_size in sync with the extent
3109                  * items, but the (useless) orphan item was still created. Since
3110                  * v4.18, we don't create the orphan item for truncate at all.
3111                  *
3112                  * So, this item could mean that we need to do a truncate, but
3113                  * only if this filesystem was last used on a pre-v3.12 kernel
3114                  * and was not cleanly unmounted. The odds of that are quite
3115                  * slim, and it's a pain to do the truncate now, so just delete
3116                  * the orphan item.
3117                  *
3118                  * It's also possible that this orphan item was supposed to be
3119                  * deleted but wasn't. The inode number may have been reused,
3120                  * but either way, we can delete the orphan item.
3121                  */
3122                 if (ret == -ENOENT || inode->i_nlink) {
3123                         if (!ret)
3124                                 iput(inode);
3125                         trans = btrfs_start_transaction(root, 1);
3126                         if (IS_ERR(trans)) {
3127                                 ret = PTR_ERR(trans);
3128                                 goto out;
3129                         }
3130                         btrfs_debug(fs_info, "auto deleting %Lu",
3131                                     found_key.objectid);
3132                         ret = btrfs_del_orphan_item(trans, root,
3133                                                     found_key.objectid);
3134                         btrfs_end_transaction(trans);
3135                         if (ret)
3136                                 goto out;
3137                         continue;
3138                 }
3139
3140                 nr_unlink++;
3141
3142                 /* this will do delete_inode and everything for us */
3143                 iput(inode);
3144         }
3145         /* release the path since we're done with it */
3146         btrfs_release_path(path);
3147
3148         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3149
3150         if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3151                 trans = btrfs_join_transaction(root);
3152                 if (!IS_ERR(trans))
3153                         btrfs_end_transaction(trans);
3154         }
3155
3156         if (nr_unlink)
3157                 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
3158
3159 out:
3160         if (ret)
3161                 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
3162         btrfs_free_path(path);
3163         return ret;
3164 }
3165
3166 /*
3167  * very simple check to peek ahead in the leaf looking for xattrs.  If we
3168  * don't find any xattrs, we know there can't be any acls.
3169  *
3170  * slot is the slot the inode is in, objectid is the objectid of the inode
3171  */
3172 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3173                                           int slot, u64 objectid,
3174                                           int *first_xattr_slot)
3175 {
3176         u32 nritems = btrfs_header_nritems(leaf);
3177         struct btrfs_key found_key;
3178         static u64 xattr_access = 0;
3179         static u64 xattr_default = 0;
3180         int scanned = 0;
3181
3182         if (!xattr_access) {
3183                 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3184                                         strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3185                 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3186                                         strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3187         }
3188
3189         slot++;
3190         *first_xattr_slot = -1;
3191         while (slot < nritems) {
3192                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3193
3194                 /* we found a different objectid, there must not be acls */
3195                 if (found_key.objectid != objectid)
3196                         return 0;
3197
3198                 /* we found an xattr, assume we've got an acl */
3199                 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3200                         if (*first_xattr_slot == -1)
3201                                 *first_xattr_slot = slot;
3202                         if (found_key.offset == xattr_access ||
3203                             found_key.offset == xattr_default)
3204                                 return 1;
3205                 }
3206
3207                 /*
3208                  * we found a key greater than an xattr key, there can't
3209                  * be any acls later on
3210                  */
3211                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3212                         return 0;
3213
3214                 slot++;
3215                 scanned++;
3216
3217                 /*
3218                  * it goes inode, inode backrefs, xattrs, extents,
3219                  * so if there are a ton of hard links to an inode there can
3220                  * be a lot of backrefs.  Don't waste time searching too hard,
3221                  * this is just an optimization
3222                  */
3223                 if (scanned >= 8)
3224                         break;
3225         }
3226         /* we hit the end of the leaf before we found an xattr or
3227          * something larger than an xattr.  We have to assume the inode
3228          * has acls
3229          */
3230         if (*first_xattr_slot == -1)
3231                 *first_xattr_slot = slot;
3232         return 1;
3233 }
3234
3235 /*
3236  * read an inode from the btree into the in-memory inode
3237  */
3238 static int btrfs_read_locked_inode(struct inode *inode,
3239                                    struct btrfs_path *in_path)
3240 {
3241         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3242         struct btrfs_path *path = in_path;
3243         struct extent_buffer *leaf;
3244         struct btrfs_inode_item *inode_item;
3245         struct btrfs_root *root = BTRFS_I(inode)->root;
3246         struct btrfs_key location;
3247         unsigned long ptr;
3248         int maybe_acls;
3249         u32 rdev;
3250         int ret;
3251         bool filled = false;
3252         int first_xattr_slot;
3253
3254         ret = btrfs_fill_inode(inode, &rdev);
3255         if (!ret)
3256                 filled = true;
3257
3258         if (!path) {
3259                 path = btrfs_alloc_path();
3260                 if (!path)
3261                         return -ENOMEM;
3262         }
3263
3264         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3265
3266         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3267         if (ret) {
3268                 if (path != in_path)
3269                         btrfs_free_path(path);
3270                 return ret;
3271         }
3272
3273         leaf = path->nodes[0];
3274
3275         if (filled)
3276                 goto cache_index;
3277
3278         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3279                                     struct btrfs_inode_item);
3280         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3281         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3282         i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3283         i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3284         btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
3285         btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
3286                         round_up(i_size_read(inode), fs_info->sectorsize));
3287
3288         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3289         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3290
3291         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3292         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3293
3294         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3295         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3296
3297         BTRFS_I(inode)->i_otime.tv_sec =
3298                 btrfs_timespec_sec(leaf, &inode_item->otime);
3299         BTRFS_I(inode)->i_otime.tv_nsec =
3300                 btrfs_timespec_nsec(leaf, &inode_item->otime);
3301
3302         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3303         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3304         BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3305
3306         inode_set_iversion_queried(inode,
3307                                    btrfs_inode_sequence(leaf, inode_item));
3308         inode->i_generation = BTRFS_I(inode)->generation;
3309         inode->i_rdev = 0;
3310         rdev = btrfs_inode_rdev(leaf, inode_item);
3311
3312         BTRFS_I(inode)->index_cnt = (u64)-1;
3313         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3314
3315 cache_index:
3316         /*
3317          * If we were modified in the current generation and evicted from memory
3318          * and then re-read we need to do a full sync since we don't have any
3319          * idea about which extents were modified before we were evicted from
3320          * cache.
3321          *
3322          * This is required for both inode re-read from disk and delayed inode
3323          * in delayed_nodes_tree.
3324          */
3325         if (BTRFS_I(inode)->last_trans == fs_info->generation)
3326                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3327                         &BTRFS_I(inode)->runtime_flags);
3328
3329         /*
3330          * We don't persist the id of the transaction where an unlink operation
3331          * against the inode was last made. So here we assume the inode might
3332          * have been evicted, and therefore the exact value of last_unlink_trans
3333          * lost, and set it to last_trans to avoid metadata inconsistencies
3334          * between the inode and its parent if the inode is fsync'ed and the log
3335          * replayed. For example, in the scenario:
3336          *
3337          * touch mydir/foo
3338          * ln mydir/foo mydir/bar
3339          * sync
3340          * unlink mydir/bar
3341          * echo 2 > /proc/sys/vm/drop_caches   # evicts inode
3342          * xfs_io -c fsync mydir/foo
3343          * <power failure>
3344          * mount fs, triggers fsync log replay
3345          *
3346          * We must make sure that when we fsync our inode foo we also log its
3347          * parent inode, otherwise after log replay the parent still has the
3348          * dentry with the "bar" name but our inode foo has a link count of 1
3349          * and doesn't have an inode ref with the name "bar" anymore.
3350          *
3351          * Setting last_unlink_trans to last_trans is a pessimistic approach,
3352          * but it guarantees correctness at the expense of occasional full
3353          * transaction commits on fsync if our inode is a directory, or if our
3354          * inode is not a directory, logging its parent unnecessarily.
3355          */
3356         BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3357
3358         path->slots[0]++;
3359         if (inode->i_nlink != 1 ||
3360             path->slots[0] >= btrfs_header_nritems(leaf))
3361                 goto cache_acl;
3362
3363         btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3364         if (location.objectid != btrfs_ino(BTRFS_I(inode)))
3365                 goto cache_acl;
3366
3367         ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3368         if (location.type == BTRFS_INODE_REF_KEY) {
3369                 struct btrfs_inode_ref *ref;
3370
3371                 ref = (struct btrfs_inode_ref *)ptr;
3372                 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3373         } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3374                 struct btrfs_inode_extref *extref;
3375
3376                 extref = (struct btrfs_inode_extref *)ptr;
3377                 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3378                                                                      extref);
3379         }
3380 cache_acl:
3381         /*
3382          * try to precache a NULL acl entry for files that don't have
3383          * any xattrs or acls
3384          */
3385         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3386                         btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
3387         if (first_xattr_slot != -1) {
3388                 path->slots[0] = first_xattr_slot;
3389                 ret = btrfs_load_inode_props(inode, path);
3390                 if (ret)
3391                         btrfs_err(fs_info,
3392                                   "error loading props for ino %llu (root %llu): %d",
3393                                   btrfs_ino(BTRFS_I(inode)),
3394                                   root->root_key.objectid, ret);
3395         }
3396         if (path != in_path)
3397                 btrfs_free_path(path);
3398
3399         if (!maybe_acls)
3400                 cache_no_acl(inode);
3401
3402         switch (inode->i_mode & S_IFMT) {
3403         case S_IFREG:
3404                 inode->i_mapping->a_ops = &btrfs_aops;
3405                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3406                 inode->i_fop = &btrfs_file_operations;
3407                 inode->i_op = &btrfs_file_inode_operations;
3408                 break;
3409         case S_IFDIR:
3410                 inode->i_fop = &btrfs_dir_file_operations;
3411                 inode->i_op = &btrfs_dir_inode_operations;
3412                 break;
3413         case S_IFLNK:
3414                 inode->i_op = &btrfs_symlink_inode_operations;
3415                 inode_nohighmem(inode);
3416                 inode->i_mapping->a_ops = &btrfs_aops;
3417                 break;
3418         default:
3419                 inode->i_op = &btrfs_special_inode_operations;
3420                 init_special_inode(inode, inode->i_mode, rdev);
3421                 break;
3422         }
3423
3424         btrfs_sync_inode_flags_to_i_flags(inode);
3425         return 0;
3426 }
3427
3428 /*
3429  * given a leaf and an inode, copy the inode fields into the leaf
3430  */
3431 static void fill_inode_item(struct btrfs_trans_handle *trans,
3432                             struct extent_buffer *leaf,
3433                             struct btrfs_inode_item *item,
3434                             struct inode *inode)
3435 {
3436         struct btrfs_map_token token;
3437
3438         btrfs_init_map_token(&token, leaf);
3439
3440         btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
3441         btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
3442         btrfs_set_token_inode_size(&token, item, BTRFS_I(inode)->disk_i_size);
3443         btrfs_set_token_inode_mode(&token, item, inode->i_mode);
3444         btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
3445
3446         btrfs_set_token_timespec_sec(&token, &item->atime,
3447                                      inode->i_atime.tv_sec);
3448         btrfs_set_token_timespec_nsec(&token, &item->atime,
3449                                       inode->i_atime.tv_nsec);
3450
3451         btrfs_set_token_timespec_sec(&token, &item->mtime,
3452                                      inode->i_mtime.tv_sec);
3453         btrfs_set_token_timespec_nsec(&token, &item->mtime,
3454                                       inode->i_mtime.tv_nsec);
3455
3456         btrfs_set_token_timespec_sec(&token, &item->ctime,
3457                                      inode->i_ctime.tv_sec);
3458         btrfs_set_token_timespec_nsec(&token, &item->ctime,
3459                                       inode->i_ctime.tv_nsec);
3460
3461         btrfs_set_token_timespec_sec(&token, &item->otime,
3462                                      BTRFS_I(inode)->i_otime.tv_sec);
3463         btrfs_set_token_timespec_nsec(&token, &item->otime,
3464                                       BTRFS_I(inode)->i_otime.tv_nsec);
3465
3466         btrfs_set_token_inode_nbytes(&token, item, inode_get_bytes(inode));
3467         btrfs_set_token_inode_generation(&token, item,
3468                                          BTRFS_I(inode)->generation);
3469         btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
3470         btrfs_set_token_inode_transid(&token, item, trans->transid);
3471         btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
3472         btrfs_set_token_inode_flags(&token, item, BTRFS_I(inode)->flags);
3473         btrfs_set_token_inode_block_group(&token, item, 0);
3474 }
3475
3476 /*
3477  * copy everything in the in-memory inode into the btree.
3478  */
3479 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3480                                 struct btrfs_root *root, struct inode *inode)
3481 {
3482         struct btrfs_inode_item *inode_item;
3483         struct btrfs_path *path;
3484         struct extent_buffer *leaf;
3485         int ret;
3486
3487         path = btrfs_alloc_path();
3488         if (!path)
3489                 return -ENOMEM;
3490
3491         path->leave_spinning = 1;
3492         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3493                                  1);
3494         if (ret) {
3495                 if (ret > 0)
3496                         ret = -ENOENT;
3497                 goto failed;
3498         }
3499
3500         leaf = path->nodes[0];
3501         inode_item = btrfs_item_ptr(leaf, path->slots[0],
3502                                     struct btrfs_inode_item);
3503
3504         fill_inode_item(trans, leaf, inode_item, inode);
3505         btrfs_mark_buffer_dirty(leaf);
3506         btrfs_set_inode_last_trans(trans, inode);
3507         ret = 0;
3508 failed:
3509         btrfs_free_path(path);
3510         return ret;
3511 }
3512
3513 /*
3514  * copy everything in the in-memory inode into the btree.
3515  */
3516 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3517                                 struct btrfs_root *root, struct inode *inode)
3518 {
3519         struct btrfs_fs_info *fs_info = root->fs_info;
3520         int ret;
3521
3522         /*
3523          * If the inode is a free space inode, we can deadlock during commit
3524          * if we put it into the delayed code.
3525          *
3526          * The data relocation inode should also be directly updated
3527          * without delay
3528          */
3529         if (!btrfs_is_free_space_inode(BTRFS_I(inode))
3530             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3531             && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
3532                 btrfs_update_root_times(trans, root);
3533
3534                 ret = btrfs_delayed_update_inode(trans, root, inode);
3535                 if (!ret)
3536                         btrfs_set_inode_last_trans(trans, inode);
3537                 return ret;
3538         }
3539
3540         return btrfs_update_inode_item(trans, root, inode);
3541 }
3542
3543 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3544                                          struct btrfs_root *root,
3545                                          struct inode *inode)
3546 {
3547         int ret;
3548
3549         ret = btrfs_update_inode(trans, root, inode);
3550         if (ret == -ENOSPC)
3551                 return btrfs_update_inode_item(trans, root, inode);
3552         return ret;
3553 }
3554
3555 /*
3556  * unlink helper that gets used here in inode.c and in the tree logging
3557  * recovery code.  It remove a link in a directory with a given name, and
3558  * also drops the back refs in the inode to the directory
3559  */
3560 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3561                                 struct btrfs_root *root,
3562                                 struct btrfs_inode *dir,
3563                                 struct btrfs_inode *inode,
3564                                 const char *name, int name_len)
3565 {
3566         struct btrfs_fs_info *fs_info = root->fs_info;
3567         struct btrfs_path *path;
3568         int ret = 0;
3569         struct btrfs_dir_item *di;
3570         u64 index;
3571         u64 ino = btrfs_ino(inode);
3572         u64 dir_ino = btrfs_ino(dir);
3573
3574         path = btrfs_alloc_path();
3575         if (!path) {
3576                 ret = -ENOMEM;
3577                 goto out;
3578         }
3579
3580         path->leave_spinning = 1;
3581         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3582                                     name, name_len, -1);
3583         if (IS_ERR_OR_NULL(di)) {
3584                 ret = di ? PTR_ERR(di) : -ENOENT;
3585                 goto err;
3586         }
3587         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3588         if (ret)
3589                 goto err;
3590         btrfs_release_path(path);
3591
3592         /*
3593          * If we don't have dir index, we have to get it by looking up
3594          * the inode ref, since we get the inode ref, remove it directly,
3595          * it is unnecessary to do delayed deletion.
3596          *
3597          * But if we have dir index, needn't search inode ref to get it.
3598          * Since the inode ref is close to the inode item, it is better
3599          * that we delay to delete it, and just do this deletion when
3600          * we update the inode item.
3601          */
3602         if (inode->dir_index) {
3603                 ret = btrfs_delayed_delete_inode_ref(inode);
3604                 if (!ret) {
3605                         index = inode->dir_index;
3606                         goto skip_backref;
3607                 }
3608         }
3609
3610         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3611                                   dir_ino, &index);
3612         if (ret) {
3613                 btrfs_info(fs_info,
3614                         "failed to delete reference to %.*s, inode %llu parent %llu",
3615                         name_len, name, ino, dir_ino);
3616                 btrfs_abort_transaction(trans, ret);
3617                 goto err;
3618         }
3619 skip_backref:
3620         ret = btrfs_delete_delayed_dir_index(trans, dir, index);
3621         if (ret) {
3622                 btrfs_abort_transaction(trans, ret);
3623                 goto err;
3624         }
3625
3626         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
3627                         dir_ino);
3628         if (ret != 0 && ret != -ENOENT) {
3629                 btrfs_abort_transaction(trans, ret);
3630                 goto err;
3631         }
3632
3633         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
3634                         index);
3635         if (ret == -ENOENT)
3636                 ret = 0;
3637         else if (ret)
3638                 btrfs_abort_transaction(trans, ret);
3639
3640         /*
3641          * If we have a pending delayed iput we could end up with the final iput
3642          * being run in btrfs-cleaner context.  If we have enough of these built
3643          * up we can end up burning a lot of time in btrfs-cleaner without any
3644          * way to throttle the unlinks.  Since we're currently holding a ref on
3645          * the inode we can run the delayed iput here without any issues as the
3646          * final iput won't be done until after we drop the ref we're currently
3647          * holding.
3648          */
3649         btrfs_run_delayed_iput(fs_info, inode);
3650 err:
3651         btrfs_free_path(path);
3652         if (ret)
3653                 goto out;
3654
3655         btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
3656         inode_inc_iversion(&inode->vfs_inode);
3657         inode_inc_iversion(&dir->vfs_inode);
3658         inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
3659                 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
3660         ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
3661 out:
3662         return ret;
3663 }
3664
3665 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3666                        struct btrfs_root *root,
3667                        struct btrfs_inode *dir, struct btrfs_inode *inode,
3668                        const char *name, int name_len)
3669 {
3670         int ret;
3671         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3672         if (!ret) {
3673                 drop_nlink(&inode->vfs_inode);
3674                 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
3675         }
3676         return ret;
3677 }
3678
3679 /*
3680  * helper to start transaction for unlink and rmdir.
3681  *
3682  * unlink and rmdir are special in btrfs, they do not always free space, so
3683  * if we cannot make our reservations the normal way try and see if there is
3684  * plenty of slack room in the global reserve to migrate, otherwise we cannot
3685  * allow the unlink to occur.
3686  */
3687 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3688 {
3689         struct btrfs_root *root = BTRFS_I(dir)->root;
3690
3691         /*
3692          * 1 for the possible orphan item
3693          * 1 for the dir item
3694          * 1 for the dir index
3695          * 1 for the inode ref
3696          * 1 for the inode
3697          */
3698         return btrfs_start_transaction_fallback_global_rsv(root, 5);
3699 }
3700
3701 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3702 {
3703         struct btrfs_root *root = BTRFS_I(dir)->root;
3704         struct btrfs_trans_handle *trans;
3705         struct inode *inode = d_inode(dentry);
3706         int ret;
3707
3708         trans = __unlink_start_trans(dir);
3709         if (IS_ERR(trans))
3710                 return PTR_ERR(trans);
3711
3712         btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
3713                         0);
3714
3715         ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
3716                         BTRFS_I(d_inode(dentry)), dentry->d_name.name,
3717                         dentry->d_name.len);
3718         if (ret)
3719                 goto out;
3720
3721         if (inode->i_nlink == 0) {
3722                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3723                 if (ret)
3724                         goto out;
3725         }
3726
3727 out:
3728         btrfs_end_transaction(trans);
3729         btrfs_btree_balance_dirty(root->fs_info);
3730         return ret;
3731 }
3732
3733 static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3734                                struct inode *dir, struct dentry *dentry)
3735 {
3736         struct btrfs_root *root = BTRFS_I(dir)->root;
3737         struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
3738         struct btrfs_path *path;
3739         struct extent_buffer *leaf;
3740         struct btrfs_dir_item *di;
3741         struct btrfs_key key;
3742         const char *name = dentry->d_name.name;
3743         int name_len = dentry->d_name.len;
3744         u64 index;
3745         int ret;
3746         u64 objectid;
3747         u64 dir_ino = btrfs_ino(BTRFS_I(dir));
3748
3749         if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) {
3750                 objectid = inode->root->root_key.objectid;
3751         } else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3752                 objectid = inode->location.objectid;
3753         } else {
3754                 WARN_ON(1);
3755                 return -EINVAL;
3756         }
3757
3758         path = btrfs_alloc_path();
3759         if (!path)
3760                 return -ENOMEM;
3761
3762         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3763                                    name, name_len, -1);
3764         if (IS_ERR_OR_NULL(di)) {
3765                 ret = di ? PTR_ERR(di) : -ENOENT;
3766                 goto out;
3767         }
3768
3769         leaf = path->nodes[0];
3770         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3771         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3772         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3773         if (ret) {
3774                 btrfs_abort_transaction(trans, ret);
3775                 goto out;
3776         }
3777         btrfs_release_path(path);
3778
3779         /*
3780          * This is a placeholder inode for a subvolume we didn't have a
3781          * reference to at the time of the snapshot creation.  In the meantime
3782          * we could have renamed the real subvol link into our snapshot, so
3783          * depending on btrfs_del_root_ref to return -ENOENT here is incorret.
3784          * Instead simply lookup the dir_index_item for this entry so we can
3785          * remove it.  Otherwise we know we have a ref to the root and we can
3786          * call btrfs_del_root_ref, and it _shouldn't_ fail.
3787          */
3788         if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) {
3789                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3790                                                  name, name_len);
3791                 if (IS_ERR_OR_NULL(di)) {
3792                         if (!di)
3793                                 ret = -ENOENT;
3794                         else
3795                                 ret = PTR_ERR(di);
3796                         btrfs_abort_transaction(trans, ret);
3797                         goto out;
3798                 }
3799
3800                 leaf = path->nodes[0];
3801                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3802                 index = key.offset;
3803                 btrfs_release_path(path);
3804         } else {
3805                 ret = btrfs_del_root_ref(trans, objectid,
3806                                          root->root_key.objectid, dir_ino,
3807                                          &index, name, name_len);
3808                 if (ret) {
3809                         btrfs_abort_transaction(trans, ret);
3810                         goto out;
3811                 }
3812         }
3813
3814         ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index);
3815         if (ret) {
3816                 btrfs_abort_transaction(trans, ret);
3817                 goto out;
3818         }
3819
3820         btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
3821         inode_inc_iversion(dir);
3822         dir->i_mtime = dir->i_ctime = current_time(dir);
3823         ret = btrfs_update_inode_fallback(trans, root, dir);
3824         if (ret)
3825                 btrfs_abort_transaction(trans, ret);
3826 out:
3827         btrfs_free_path(path);
3828         return ret;
3829 }
3830
3831 /*
3832  * Helper to check if the subvolume references other subvolumes or if it's
3833  * default.
3834  */
3835 static noinline int may_destroy_subvol(struct btrfs_root *root)
3836 {
3837         struct btrfs_fs_info *fs_info = root->fs_info;
3838         struct btrfs_path *path;
3839         struct btrfs_dir_item *di;
3840         struct btrfs_key key;
3841         u64 dir_id;
3842         int ret;
3843
3844         path = btrfs_alloc_path();
3845         if (!path)
3846                 return -ENOMEM;
3847
3848         /* Make sure this root isn't set as the default subvol */
3849         dir_id = btrfs_super_root_dir(fs_info->super_copy);
3850         di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
3851                                    dir_id, "default", 7, 0);
3852         if (di && !IS_ERR(di)) {
3853                 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
3854                 if (key.objectid == root->root_key.objectid) {
3855                         ret = -EPERM;
3856                         btrfs_err(fs_info,
3857                                   "deleting default subvolume %llu is not allowed",
3858                                   key.objectid);
3859                         goto out;
3860                 }
3861                 btrfs_release_path(path);
3862         }
3863
3864         key.objectid = root->root_key.objectid;
3865         key.type = BTRFS_ROOT_REF_KEY;
3866         key.offset = (u64)-1;
3867
3868         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3869         if (ret < 0)
3870                 goto out;
3871         BUG_ON(ret == 0);
3872
3873         ret = 0;
3874         if (path->slots[0] > 0) {
3875                 path->slots[0]--;
3876                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3877                 if (key.objectid == root->root_key.objectid &&
3878                     key.type == BTRFS_ROOT_REF_KEY)
3879                         ret = -ENOTEMPTY;
3880         }
3881 out:
3882         btrfs_free_path(path);
3883         return ret;
3884 }
3885
3886 /* Delete all dentries for inodes belonging to the root */
3887 static void btrfs_prune_dentries(struct btrfs_root *root)
3888 {
3889         struct btrfs_fs_info *fs_info = root->fs_info;
3890         struct rb_node *node;
3891         struct rb_node *prev;
3892         struct btrfs_inode *entry;
3893         struct inode *inode;
3894         u64 objectid = 0;
3895
3896         if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3897                 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3898
3899         spin_lock(&root->inode_lock);
3900 again:
3901         node = root->inode_tree.rb_node;
3902         prev = NULL;
3903         while (node) {
3904                 prev = node;
3905                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3906
3907                 if (objectid < btrfs_ino(entry))
3908                         node = node->rb_left;
3909                 else if (objectid > btrfs_ino(entry))
3910                         node = node->rb_right;
3911                 else
3912                         break;
3913         }
3914         if (!node) {
3915                 while (prev) {
3916                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
3917                         if (objectid <= btrfs_ino(entry)) {
3918                                 node = prev;
3919                                 break;
3920                         }
3921                         prev = rb_next(prev);
3922                 }
3923         }
3924         while (node) {
3925                 entry = rb_entry(node, struct btrfs_inode, rb_node);
3926                 objectid = btrfs_ino(entry) + 1;
3927                 inode = igrab(&entry->vfs_inode);
3928                 if (inode) {
3929                         spin_unlock(&root->inode_lock);
3930                         if (atomic_read(&inode->i_count) > 1)
3931                                 d_prune_aliases(inode);
3932                         /*
3933                          * btrfs_drop_inode will have it removed from the inode
3934                          * cache when its usage count hits zero.
3935                          */
3936                         iput(inode);
3937                         cond_resched();
3938                         spin_lock(&root->inode_lock);
3939                         goto again;
3940                 }
3941
3942                 if (cond_resched_lock(&root->inode_lock))
3943                         goto again;
3944
3945                 node = rb_next(node);
3946         }
3947         spin_unlock(&root->inode_lock);
3948 }
3949
3950 int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry)
3951 {
3952         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
3953         struct btrfs_root *root = BTRFS_I(dir)->root;
3954         struct inode *inode = d_inode(dentry);
3955         struct btrfs_root *dest = BTRFS_I(inode)->root;
3956         struct btrfs_trans_handle *trans;
3957         struct btrfs_block_rsv block_rsv;
3958         u64 root_flags;
3959         int ret;
3960         int err;
3961
3962         /*
3963          * Don't allow to delete a subvolume with send in progress. This is
3964          * inside the inode lock so the error handling that has to drop the bit
3965          * again is not run concurrently.
3966          */
3967         spin_lock(&dest->root_item_lock);
3968         if (dest->send_in_progress) {
3969                 spin_unlock(&dest->root_item_lock);
3970                 btrfs_warn(fs_info,
3971                            "attempt to delete subvolume %llu during send",
3972                            dest->root_key.objectid);
3973                 return -EPERM;
3974         }
3975         root_flags = btrfs_root_flags(&dest->root_item);
3976         btrfs_set_root_flags(&dest->root_item,
3977                              root_flags | BTRFS_ROOT_SUBVOL_DEAD);
3978         spin_unlock(&dest->root_item_lock);
3979
3980         down_write(&fs_info->subvol_sem);
3981
3982         err = may_destroy_subvol(dest);
3983         if (err)
3984                 goto out_up_write;
3985
3986         btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
3987         /*
3988          * One for dir inode,
3989          * two for dir entries,
3990          * two for root ref/backref.
3991          */
3992         err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true);
3993         if (err)
3994                 goto out_up_write;
3995
3996         trans = btrfs_start_transaction(root, 0);
3997         if (IS_ERR(trans)) {
3998                 err = PTR_ERR(trans);
3999                 goto out_release;
4000         }
4001         trans->block_rsv = &block_rsv;
4002         trans->bytes_reserved = block_rsv.size;
4003
4004         btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
4005
4006         ret = btrfs_unlink_subvol(trans, dir, dentry);
4007         if (ret) {
4008                 err = ret;
4009                 btrfs_abort_transaction(trans, ret);
4010                 goto out_end_trans;
4011         }
4012
4013         btrfs_record_root_in_trans(trans, dest);
4014
4015         memset(&dest->root_item.drop_progress, 0,
4016                 sizeof(dest->root_item.drop_progress));
4017         dest->root_item.drop_level = 0;
4018         btrfs_set_root_refs(&dest->root_item, 0);
4019
4020         if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
4021                 ret = btrfs_insert_orphan_item(trans,
4022                                         fs_info->tree_root,
4023                                         dest->root_key.objectid);
4024                 if (ret) {
4025                         btrfs_abort_transaction(trans, ret);
4026                         err = ret;
4027                         goto out_end_trans;
4028                 }
4029         }
4030
4031         ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid,
4032                                   BTRFS_UUID_KEY_SUBVOL,
4033                                   dest->root_key.objectid);
4034         if (ret && ret != -ENOENT) {
4035                 btrfs_abort_transaction(trans, ret);
4036                 err = ret;
4037                 goto out_end_trans;
4038         }
4039         if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
4040                 ret = btrfs_uuid_tree_remove(trans,
4041                                           dest->root_item.received_uuid,
4042                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4043                                           dest->root_key.objectid);
4044                 if (ret && ret != -ENOENT) {
4045                         btrfs_abort_transaction(trans, ret);
4046                         err = ret;
4047                         goto out_end_trans;
4048                 }
4049         }
4050
4051 out_end_trans:
4052         trans->block_rsv = NULL;
4053         trans->bytes_reserved = 0;
4054         ret = btrfs_end_transaction(trans);
4055         if (ret && !err)
4056                 err = ret;
4057         inode->i_flags |= S_DEAD;
4058 out_release:
4059         btrfs_subvolume_release_metadata(fs_info, &block_rsv);
4060 out_up_write:
4061         up_write(&fs_info->subvol_sem);
4062         if (err) {
4063                 spin_lock(&dest->root_item_lock);
4064                 root_flags = btrfs_root_flags(&dest->root_item);
4065                 btrfs_set_root_flags(&dest->root_item,
4066                                 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
4067                 spin_unlock(&dest->root_item_lock);
4068         } else {
4069                 d_invalidate(dentry);
4070                 btrfs_prune_dentries(dest);
4071                 ASSERT(dest->send_in_progress == 0);
4072
4073                 /* the last ref */
4074                 if (dest->ino_cache_inode) {
4075                         iput(dest->ino_cache_inode);
4076                         dest->ino_cache_inode = NULL;
4077                 }
4078         }
4079
4080         return err;
4081 }
4082
4083 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4084 {
4085         struct inode *inode = d_inode(dentry);
4086         int err = 0;
4087         struct btrfs_root *root = BTRFS_I(dir)->root;
4088         struct btrfs_trans_handle *trans;
4089         u64 last_unlink_trans;
4090
4091         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4092                 return -ENOTEMPTY;
4093         if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
4094                 return btrfs_delete_subvolume(dir, dentry);
4095
4096         trans = __unlink_start_trans(dir);
4097         if (IS_ERR(trans))
4098                 return PTR_ERR(trans);
4099
4100         if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4101                 err = btrfs_unlink_subvol(trans, dir, dentry);
4102                 goto out;
4103         }
4104
4105         err = btrfs_orphan_add(trans, BTRFS_I(inode));
4106         if (err)
4107                 goto out;
4108
4109         last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4110
4111         /* now the directory is empty */
4112         err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4113                         BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4114                         dentry->d_name.len);
4115         if (!err) {
4116                 btrfs_i_size_write(BTRFS_I(inode), 0);
4117                 /*
4118                  * Propagate the last_unlink_trans value of the deleted dir to
4119                  * its parent directory. This is to prevent an unrecoverable
4120                  * log tree in the case we do something like this:
4121                  * 1) create dir foo
4122                  * 2) create snapshot under dir foo
4123                  * 3) delete the snapshot
4124                  * 4) rmdir foo
4125                  * 5) mkdir foo
4126                  * 6) fsync foo or some file inside foo
4127                  */
4128                 if (last_unlink_trans >= trans->transid)
4129                         BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4130         }
4131 out:
4132         btrfs_end_transaction(trans);
4133         btrfs_btree_balance_dirty(root->fs_info);
4134
4135         return err;
4136 }
4137
4138 /*
4139  * Return this if we need to call truncate_block for the last bit of the
4140  * truncate.
4141  */
4142 #define NEED_TRUNCATE_BLOCK 1
4143
4144 /*
4145  * this can truncate away extent items, csum items and directory items.
4146  * It starts at a high offset and removes keys until it can't find
4147  * any higher than new_size
4148  *
4149  * csum items that cross the new i_size are truncated to the new size
4150  * as well.
4151  *
4152  * min_type is the minimum key type to truncate down to.  If set to 0, this
4153  * will kill all the items on this inode, including the INODE_ITEM_KEY.
4154  */
4155 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4156                                struct btrfs_root *root,
4157                                struct inode *inode,
4158                                u64 new_size, u32 min_type)
4159 {
4160         struct btrfs_fs_info *fs_info = root->fs_info;
4161         struct btrfs_path *path;
4162         struct extent_buffer *leaf;
4163         struct btrfs_file_extent_item *fi;
4164         struct btrfs_key key;
4165         struct btrfs_key found_key;
4166         u64 extent_start = 0;
4167         u64 extent_num_bytes = 0;
4168         u64 extent_offset = 0;
4169         u64 item_end = 0;
4170         u64 last_size = new_size;
4171         u32 found_type = (u8)-1;
4172         int found_extent;
4173         int del_item;
4174         int pending_del_nr = 0;
4175         int pending_del_slot = 0;
4176         int extent_type = -1;
4177         int ret;
4178         u64 ino = btrfs_ino(BTRFS_I(inode));
4179         u64 bytes_deleted = 0;
4180         bool be_nice = false;
4181         bool should_throttle = false;
4182         const u64 lock_start = ALIGN_DOWN(new_size, fs_info->sectorsize);
4183         struct extent_state *cached_state = NULL;
4184
4185         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4186
4187         /*
4188          * For non-free space inodes and non-shareable roots, we want to back
4189          * off from time to time.  This means all inodes in subvolume roots,
4190          * reloc roots, and data reloc roots.
4191          */
4192         if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
4193             test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4194                 be_nice = true;
4195
4196         path = btrfs_alloc_path();
4197         if (!path)
4198                 return -ENOMEM;
4199         path->reada = READA_BACK;
4200
4201         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4202                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, (u64)-1,
4203                                  &cached_state);
4204
4205                 /*
4206                  * We want to drop from the next block forward in case this
4207                  * new size is not block aligned since we will be keeping the
4208                  * last block of the extent just the way it is.
4209                  */
4210                 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
4211                                         fs_info->sectorsize),
4212                                         (u64)-1, 0);
4213         }
4214
4215         /*
4216          * This function is also used to drop the items in the log tree before
4217          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4218          * it is used to drop the logged items. So we shouldn't kill the delayed
4219          * items.
4220          */
4221         if (min_type == 0 && root == BTRFS_I(inode)->root)
4222                 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
4223
4224         key.objectid = ino;
4225         key.offset = (u64)-1;
4226         key.type = (u8)-1;
4227
4228 search_again:
4229         /*
4230          * with a 16K leaf size and 128MB extents, you can actually queue
4231          * up a huge file in a single leaf.  Most of the time that
4232          * bytes_deleted is > 0, it will be huge by the time we get here
4233          */
4234         if (be_nice && bytes_deleted > SZ_32M &&
4235             btrfs_should_end_transaction(trans)) {
4236                 ret = -EAGAIN;
4237                 goto out;
4238         }
4239
4240         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4241         if (ret < 0)
4242                 goto out;
4243
4244         if (ret > 0) {
4245                 ret = 0;
4246                 /* there are no items in the tree for us to truncate, we're
4247                  * done
4248                  */
4249                 if (path->slots[0] == 0)
4250                         goto out;
4251                 path->slots[0]--;
4252         }
4253
4254         while (1) {
4255                 u64 clear_start = 0, clear_len = 0;
4256
4257                 fi = NULL;
4258                 leaf = path->nodes[0];
4259                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4260                 found_type = found_key.type;
4261
4262                 if (found_key.objectid != ino)
4263                         break;
4264
4265                 if (found_type < min_type)
4266                         break;
4267
4268                 item_end = found_key.offset;
4269                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4270                         fi = btrfs_item_ptr(leaf, path->slots[0],
4271                                             struct btrfs_file_extent_item);
4272                         extent_type = btrfs_file_extent_type(leaf, fi);
4273                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4274                                 item_end +=
4275                                     btrfs_file_extent_num_bytes(leaf, fi);
4276
4277                                 trace_btrfs_truncate_show_fi_regular(
4278                                         BTRFS_I(inode), leaf, fi,
4279                                         found_key.offset);
4280                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4281                                 item_end += btrfs_file_extent_ram_bytes(leaf,
4282                                                                         fi);
4283
4284                                 trace_btrfs_truncate_show_fi_inline(
4285                                         BTRFS_I(inode), leaf, fi, path->slots[0],
4286                                         found_key.offset);
4287                         }
4288                         item_end--;
4289                 }
4290                 if (found_type > min_type) {
4291                         del_item = 1;
4292                 } else {
4293                         if (item_end < new_size)
4294                                 break;
4295                         if (found_key.offset >= new_size)
4296                                 del_item = 1;
4297                         else
4298                                 del_item = 0;
4299                 }
4300                 found_extent = 0;
4301                 /* FIXME, shrink the extent if the ref count is only 1 */
4302                 if (found_type != BTRFS_EXTENT_DATA_KEY)
4303                         goto delete;
4304
4305                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4306                         u64 num_dec;
4307
4308                         clear_start = found_key.offset;
4309                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4310                         if (!del_item) {
4311                                 u64 orig_num_bytes =
4312                                         btrfs_file_extent_num_bytes(leaf, fi);
4313                                 extent_num_bytes = ALIGN(new_size -
4314                                                 found_key.offset,
4315                                                 fs_info->sectorsize);
4316                                 clear_start = ALIGN(new_size, fs_info->sectorsize);
4317                                 btrfs_set_file_extent_num_bytes(leaf, fi,
4318                                                          extent_num_bytes);
4319                                 num_dec = (orig_num_bytes -
4320                                            extent_num_bytes);
4321                                 if (test_bit(BTRFS_ROOT_SHAREABLE,
4322                                              &root->state) &&
4323                                     extent_start != 0)
4324                                         inode_sub_bytes(inode, num_dec);
4325                                 btrfs_mark_buffer_dirty(leaf);
4326                         } else {
4327                                 extent_num_bytes =
4328                                         btrfs_file_extent_disk_num_bytes(leaf,
4329                                                                          fi);
4330                                 extent_offset = found_key.offset -
4331                                         btrfs_file_extent_offset(leaf, fi);
4332
4333                                 /* FIXME blocksize != 4096 */
4334                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4335                                 if (extent_start != 0) {
4336                                         found_extent = 1;
4337                                         if (test_bit(BTRFS_ROOT_SHAREABLE,
4338                                                      &root->state))
4339                                                 inode_sub_bytes(inode, num_dec);
4340                                 }
4341                         }
4342                         clear_len = num_dec;
4343                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4344                         /*
4345                          * we can't truncate inline items that have had
4346                          * special encodings
4347                          */
4348                         if (!del_item &&
4349                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
4350                             btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4351                             btrfs_file_extent_compression(leaf, fi) == 0) {
4352                                 u32 size = (u32)(new_size - found_key.offset);
4353
4354                                 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4355                                 size = btrfs_file_extent_calc_inline_size(size);
4356                                 btrfs_truncate_item(path, size, 1);
4357                         } else if (!del_item) {
4358                                 /*
4359                                  * We have to bail so the last_size is set to
4360                                  * just before this extent.
4361                                  */
4362                                 ret = NEED_TRUNCATE_BLOCK;
4363                                 break;
4364                         } else {
4365                                 /*
4366                                  * Inline extents are special, we just treat
4367                                  * them as a full sector worth in the file
4368                                  * extent tree just for simplicity sake.
4369                                  */
4370                                 clear_len = fs_info->sectorsize;
4371                         }
4372
4373                         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
4374                                 inode_sub_bytes(inode, item_end + 1 - new_size);
4375                 }
4376 delete:
4377                 /*
4378                  * We use btrfs_truncate_inode_items() to clean up log trees for
4379                  * multiple fsyncs, and in this case we don't want to clear the
4380                  * file extent range because it's just the log.
4381                  */
4382                 if (root == BTRFS_I(inode)->root) {
4383                         ret = btrfs_inode_clear_file_extent_range(BTRFS_I(inode),
4384                                                   clear_start, clear_len);
4385                         if (ret) {
4386                                 btrfs_abort_transaction(trans, ret);
4387                                 break;
4388                         }
4389                 }
4390
4391                 if (del_item)
4392                         last_size = found_key.offset;
4393                 else
4394                         last_size = new_size;
4395                 if (del_item) {
4396                         if (!pending_del_nr) {
4397                                 /* no pending yet, add ourselves */
4398                                 pending_del_slot = path->slots[0];
4399                                 pending_del_nr = 1;
4400                         } else if (pending_del_nr &&
4401                                    path->slots[0] + 1 == pending_del_slot) {
4402                                 /* hop on the pending chunk */
4403                                 pending_del_nr++;
4404                                 pending_del_slot = path->slots[0];
4405                         } else {
4406                                 BUG();
4407                         }
4408                 } else {
4409                         break;
4410                 }
4411                 should_throttle = false;
4412
4413                 if (found_extent &&
4414                     root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4415                         struct btrfs_ref ref = { 0 };
4416
4417                         bytes_deleted += extent_num_bytes;
4418
4419                         btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF,
4420                                         extent_start, extent_num_bytes, 0);
4421                         ref.real_root = root->root_key.objectid;
4422                         btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
4423                                         ino, extent_offset);
4424                         ret = btrfs_free_extent(trans, &ref);
4425                         if (ret) {
4426                                 btrfs_abort_transaction(trans, ret);
4427                                 break;
4428                         }
4429                         if (be_nice) {
4430                                 if (btrfs_should_throttle_delayed_refs(trans))
4431                                         should_throttle = true;
4432                         }
4433                 }
4434
4435                 if (found_type == BTRFS_INODE_ITEM_KEY)
4436                         break;
4437
4438                 if (path->slots[0] == 0 ||
4439                     path->slots[0] != pending_del_slot ||
4440                     should_throttle) {
4441                         if (pending_del_nr) {
4442                                 ret = btrfs_del_items(trans, root, path,
4443                                                 pending_del_slot,
4444                                                 pending_del_nr);
4445                                 if (ret) {
4446                                         btrfs_abort_transaction(trans, ret);
4447                                         break;
4448                                 }
4449                                 pending_del_nr = 0;
4450                         }
4451                         btrfs_release_path(path);
4452
4453                         /*
4454                          * We can generate a lot of delayed refs, so we need to
4455                          * throttle every once and a while and make sure we're
4456                          * adding enough space to keep up with the work we are
4457                          * generating.  Since we hold a transaction here we
4458                          * can't flush, and we don't want to FLUSH_LIMIT because
4459                          * we could have generated too many delayed refs to
4460                          * actually allocate, so just bail if we're short and
4461                          * let the normal reservation dance happen higher up.
4462                          */
4463                         if (should_throttle) {
4464                                 ret = btrfs_delayed_refs_rsv_refill(fs_info,
4465                                                         BTRFS_RESERVE_NO_FLUSH);
4466                                 if (ret) {
4467                                         ret = -EAGAIN;
4468                                         break;
4469                                 }
4470                         }
4471                         goto search_again;
4472                 } else {
4473                         path->slots[0]--;
4474                 }
4475         }
4476 out:
4477         if (ret >= 0 && pending_del_nr) {
4478                 int err;
4479
4480                 err = btrfs_del_items(trans, root, path, pending_del_slot,
4481                                       pending_del_nr);
4482                 if (err) {
4483                         btrfs_abort_transaction(trans, err);
4484                         ret = err;
4485                 }
4486         }
4487         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4488                 ASSERT(last_size >= new_size);
4489                 if (!ret && last_size > new_size)
4490                         last_size = new_size;
4491                 btrfs_inode_safe_disk_i_size_write(inode, last_size);
4492                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start,
4493                                      (u64)-1, &cached_state);
4494         }
4495
4496         btrfs_free_path(path);
4497         return ret;
4498 }
4499
4500 /*
4501  * btrfs_truncate_block - read, zero a chunk and write a block
4502  * @inode - inode that we're zeroing
4503  * @from - the offset to start zeroing
4504  * @len - the length to zero, 0 to zero the entire range respective to the
4505  *      offset
4506  * @front - zero up to the offset instead of from the offset on
4507  *
4508  * This will find the block for the "from" offset and cow the block and zero the
4509  * part we want to zero.  This is used with truncate and hole punching.
4510  */
4511 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4512                         int front)
4513 {
4514         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4515         struct address_space *mapping = inode->i_mapping;
4516         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4517         struct btrfs_ordered_extent *ordered;
4518         struct extent_state *cached_state = NULL;
4519         struct extent_changeset *data_reserved = NULL;
4520         char *kaddr;
4521         u32 blocksize = fs_info->sectorsize;
4522         pgoff_t index = from >> PAGE_SHIFT;
4523         unsigned offset = from & (blocksize - 1);
4524         struct page *page;
4525         gfp_t mask = btrfs_alloc_write_mask(mapping);
4526         int ret = 0;
4527         u64 block_start;
4528         u64 block_end;
4529
4530         if (IS_ALIGNED(offset, blocksize) &&
4531             (!len || IS_ALIGNED(len, blocksize)))
4532                 goto out;
4533
4534         block_start = round_down(from, blocksize);
4535         block_end = block_start + blocksize - 1;
4536
4537         ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
4538                                            block_start, blocksize);
4539         if (ret)
4540                 goto out;
4541
4542 again:
4543         page = find_or_create_page(mapping, index, mask);
4544         if (!page) {
4545                 btrfs_delalloc_release_space(inode, data_reserved,
4546                                              block_start, blocksize, true);
4547                 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4548                 ret = -ENOMEM;
4549                 goto out;
4550         }
4551
4552         if (!PageUptodate(page)) {
4553                 ret = btrfs_readpage(NULL, page);
4554                 lock_page(page);
4555                 if (page->mapping != mapping) {
4556                         unlock_page(page);
4557                         put_page(page);
4558                         goto again;
4559                 }
4560                 if (!PageUptodate(page)) {
4561                         ret = -EIO;
4562                         goto out_unlock;
4563                 }
4564         }
4565         wait_on_page_writeback(page);
4566
4567         lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4568         set_page_extent_mapped(page);
4569
4570         ordered = btrfs_lookup_ordered_extent(inode, block_start);
4571         if (ordered) {
4572                 unlock_extent_cached(io_tree, block_start, block_end,
4573                                      &cached_state);
4574                 unlock_page(page);
4575                 put_page(page);
4576                 btrfs_start_ordered_extent(inode, ordered, 1);
4577                 btrfs_put_ordered_extent(ordered);
4578                 goto again;
4579         }
4580
4581         clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4582                          EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4583                          0, 0, &cached_state);
4584
4585         ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0,
4586                                         &cached_state);
4587         if (ret) {
4588                 unlock_extent_cached(io_tree, block_start, block_end,
4589                                      &cached_state);
4590                 goto out_unlock;
4591         }
4592
4593         if (offset != blocksize) {
4594                 if (!len)
4595                         len = blocksize - offset;
4596                 kaddr = kmap(page);
4597                 if (front)
4598                         memset(kaddr + (block_start - page_offset(page)),
4599                                 0, offset);
4600                 else
4601                         memset(kaddr + (block_start - page_offset(page)) +  offset,
4602                                 0, len);
4603                 flush_dcache_page(page);
4604                 kunmap(page);
4605         }
4606         ClearPageChecked(page);
4607         set_page_dirty(page);
4608         unlock_extent_cached(io_tree, block_start, block_end, &cached_state);
4609
4610 out_unlock:
4611         if (ret)
4612                 btrfs_delalloc_release_space(inode, data_reserved, block_start,
4613                                              blocksize, true);
4614         btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
4615         unlock_page(page);
4616         put_page(page);
4617 out:
4618         extent_changeset_free(data_reserved);
4619         return ret;
4620 }
4621
4622 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4623                              u64 offset, u64 len)
4624 {
4625         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4626         struct btrfs_trans_handle *trans;
4627         int ret;
4628
4629         /*
4630          * Still need to make sure the inode looks like it's been updated so
4631          * that any holes get logged if we fsync.
4632          */
4633         if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4634                 BTRFS_I(inode)->last_trans = fs_info->generation;
4635                 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4636                 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4637                 return 0;
4638         }
4639
4640         /*
4641          * 1 - for the one we're dropping
4642          * 1 - for the one we're adding
4643          * 1 - for updating the inode.
4644          */
4645         trans = btrfs_start_transaction(root, 3);
4646         if (IS_ERR(trans))
4647                 return PTR_ERR(trans);
4648
4649         ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4650         if (ret) {
4651                 btrfs_abort_transaction(trans, ret);
4652                 btrfs_end_transaction(trans);
4653                 return ret;
4654         }
4655
4656         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4657                         offset, 0, 0, len, 0, len, 0, 0, 0);
4658         if (ret)
4659                 btrfs_abort_transaction(trans, ret);
4660         else
4661                 btrfs_update_inode(trans, root, inode);
4662         btrfs_end_transaction(trans);
4663         return ret;
4664 }
4665
4666 /*
4667  * This function puts in dummy file extents for the area we're creating a hole
4668  * for.  So if we are truncating this file to a larger size we need to insert
4669  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4670  * the range between oldsize and size
4671  */
4672 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4673 {
4674         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4675         struct btrfs_root *root = BTRFS_I(inode)->root;
4676         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4677         struct extent_map *em = NULL;
4678         struct extent_state *cached_state = NULL;
4679         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4680         u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4681         u64 block_end = ALIGN(size, fs_info->sectorsize);
4682         u64 last_byte;
4683         u64 cur_offset;
4684         u64 hole_size;
4685         int err = 0;
4686
4687         /*
4688          * If our size started in the middle of a block we need to zero out the
4689          * rest of the block before we expand the i_size, otherwise we could
4690          * expose stale data.
4691          */
4692         err = btrfs_truncate_block(inode, oldsize, 0, 0);
4693         if (err)
4694                 return err;
4695
4696         if (size <= hole_start)
4697                 return 0;
4698
4699         btrfs_lock_and_flush_ordered_range(BTRFS_I(inode), hole_start,
4700                                            block_end - 1, &cached_state);
4701         cur_offset = hole_start;
4702         while (1) {
4703                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
4704                                       block_end - cur_offset);
4705                 if (IS_ERR(em)) {
4706                         err = PTR_ERR(em);
4707                         em = NULL;
4708                         break;
4709                 }
4710                 last_byte = min(extent_map_end(em), block_end);
4711                 last_byte = ALIGN(last_byte, fs_info->sectorsize);
4712                 hole_size = last_byte - cur_offset;
4713
4714                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4715                         struct extent_map *hole_em;
4716
4717                         err = maybe_insert_hole(root, inode, cur_offset,
4718                                                 hole_size);
4719                         if (err)
4720                                 break;
4721
4722                         err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4723                                                         cur_offset, hole_size);
4724                         if (err)
4725                                 break;
4726
4727                         btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
4728                                                 cur_offset + hole_size - 1, 0);
4729                         hole_em = alloc_extent_map();
4730                         if (!hole_em) {
4731                                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4732                                         &BTRFS_I(inode)->runtime_flags);
4733                                 goto next;
4734                         }
4735                         hole_em->start = cur_offset;
4736                         hole_em->len = hole_size;
4737                         hole_em->orig_start = cur_offset;
4738
4739                         hole_em->block_start = EXTENT_MAP_HOLE;
4740                         hole_em->block_len = 0;
4741                         hole_em->orig_block_len = 0;
4742                         hole_em->ram_bytes = hole_size;
4743                         hole_em->compress_type = BTRFS_COMPRESS_NONE;
4744                         hole_em->generation = fs_info->generation;
4745
4746                         while (1) {
4747                                 write_lock(&em_tree->lock);
4748                                 err = add_extent_mapping(em_tree, hole_em, 1);
4749                                 write_unlock(&em_tree->lock);
4750                                 if (err != -EEXIST)
4751                                         break;
4752                                 btrfs_drop_extent_cache(BTRFS_I(inode),
4753                                                         cur_offset,
4754                                                         cur_offset +
4755                                                         hole_size - 1, 0);
4756                         }
4757                         free_extent_map(hole_em);
4758                 } else {
4759                         err = btrfs_inode_set_file_extent_range(BTRFS_I(inode),
4760                                                         cur_offset, hole_size);
4761                         if (err)
4762                                 break;
4763                 }
4764 next:
4765                 free_extent_map(em);
4766                 em = NULL;
4767                 cur_offset = last_byte;
4768                 if (cur_offset >= block_end)
4769                         break;
4770         }
4771         free_extent_map(em);
4772         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state);
4773         return err;
4774 }
4775
4776 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4777 {
4778         struct btrfs_root *root = BTRFS_I(inode)->root;
4779         struct btrfs_trans_handle *trans;
4780         loff_t oldsize = i_size_read(inode);
4781         loff_t newsize = attr->ia_size;
4782         int mask = attr->ia_valid;
4783         int ret;
4784
4785         /*
4786          * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4787          * special case where we need to update the times despite not having
4788          * these flags set.  For all other operations the VFS set these flags
4789          * explicitly if it wants a timestamp update.
4790          */
4791         if (newsize != oldsize) {
4792                 inode_inc_iversion(inode);
4793                 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4794                         inode->i_ctime = inode->i_mtime =
4795                                 current_time(inode);
4796         }
4797
4798         if (newsize > oldsize) {
4799                 /*
4800                  * Don't do an expanding truncate while snapshotting is ongoing.
4801                  * This is to ensure the snapshot captures a fully consistent
4802                  * state of this file - if the snapshot captures this expanding
4803                  * truncation, it must capture all writes that happened before
4804                  * this truncation.
4805                  */
4806                 btrfs_drew_write_lock(&root->snapshot_lock);
4807                 ret = btrfs_cont_expand(inode, oldsize, newsize);
4808                 if (ret) {
4809                         btrfs_drew_write_unlock(&root->snapshot_lock);
4810                         return ret;
4811                 }
4812
4813                 trans = btrfs_start_transaction(root, 1);
4814                 if (IS_ERR(trans)) {
4815                         btrfs_drew_write_unlock(&root->snapshot_lock);
4816                         return PTR_ERR(trans);
4817                 }
4818
4819                 i_size_write(inode, newsize);
4820                 btrfs_inode_safe_disk_i_size_write(inode, 0);
4821                 pagecache_isize_extended(inode, oldsize, newsize);
4822                 ret = btrfs_update_inode(trans, root, inode);
4823                 btrfs_drew_write_unlock(&root->snapshot_lock);
4824                 btrfs_end_transaction(trans);
4825         } else {
4826
4827                 /*
4828                  * We're truncating a file that used to have good data down to
4829                  * zero. Make sure it gets into the ordered flush list so that
4830                  * any new writes get down to disk quickly.
4831                  */
4832                 if (newsize == 0)
4833                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4834                                 &BTRFS_I(inode)->runtime_flags);
4835
4836                 truncate_setsize(inode, newsize);
4837
4838                 /* Disable nonlocked read DIO to avoid the endless truncate */
4839                 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
4840                 inode_dio_wait(inode);
4841                 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
4842
4843                 ret = btrfs_truncate(inode, newsize == oldsize);
4844                 if (ret && inode->i_nlink) {
4845                         int err;
4846
4847                         /*
4848                          * Truncate failed, so fix up the in-memory size. We
4849                          * adjusted disk_i_size down as we removed extents, so
4850                          * wait for disk_i_size to be stable and then update the
4851                          * in-memory size to match.
4852                          */
4853                         err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
4854                         if (err)
4855                                 return err;
4856                         i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4857                 }
4858         }
4859
4860         return ret;
4861 }
4862
4863 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4864 {
4865         struct inode *inode = d_inode(dentry);
4866         struct btrfs_root *root = BTRFS_I(inode)->root;
4867         int err;
4868
4869         if (btrfs_root_readonly(root))
4870                 return -EROFS;
4871
4872         err = setattr_prepare(dentry, attr);
4873         if (err)
4874                 return err;
4875
4876         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4877                 err = btrfs_setsize(inode, attr);
4878                 if (err)
4879                         return err;
4880         }
4881
4882         if (attr->ia_valid) {
4883                 setattr_copy(inode, attr);
4884                 inode_inc_iversion(inode);
4885                 err = btrfs_dirty_inode(inode);
4886
4887                 if (!err && attr->ia_valid & ATTR_MODE)
4888                         err = posix_acl_chmod(inode, inode->i_mode);
4889         }
4890
4891         return err;
4892 }
4893
4894 /*
4895  * While truncating the inode pages during eviction, we get the VFS calling
4896  * btrfs_invalidatepage() against each page of the inode. This is slow because
4897  * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4898  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4899  * extent_state structures over and over, wasting lots of time.
4900  *
4901  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4902  * those expensive operations on a per page basis and do only the ordered io
4903  * finishing, while we release here the extent_map and extent_state structures,
4904  * without the excessive merging and splitting.
4905  */
4906 static void evict_inode_truncate_pages(struct inode *inode)
4907 {
4908         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4909         struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4910         struct rb_node *node;
4911
4912         ASSERT(inode->i_state & I_FREEING);
4913         truncate_inode_pages_final(&inode->i_data);
4914
4915         write_lock(&map_tree->lock);
4916         while (!RB_EMPTY_ROOT(&map_tree->map.rb_root)) {
4917                 struct extent_map *em;
4918
4919                 node = rb_first_cached(&map_tree->map);
4920                 em = rb_entry(node, struct extent_map, rb_node);
4921                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4922                 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4923                 remove_extent_mapping(map_tree, em);
4924                 free_extent_map(em);
4925                 if (need_resched()) {
4926                         write_unlock(&map_tree->lock);
4927                         cond_resched();
4928                         write_lock(&map_tree->lock);
4929                 }
4930         }
4931         write_unlock(&map_tree->lock);
4932
4933         /*
4934          * Keep looping until we have no more ranges in the io tree.
4935          * We can have ongoing bios started by readahead that have
4936          * their endio callback (extent_io.c:end_bio_extent_readpage)
4937          * still in progress (unlocked the pages in the bio but did not yet
4938          * unlocked the ranges in the io tree). Therefore this means some
4939          * ranges can still be locked and eviction started because before
4940          * submitting those bios, which are executed by a separate task (work
4941          * queue kthread), inode references (inode->i_count) were not taken
4942          * (which would be dropped in the end io callback of each bio).
4943          * Therefore here we effectively end up waiting for those bios and
4944          * anyone else holding locked ranges without having bumped the inode's
4945          * reference count - if we don't do it, when they access the inode's
4946          * io_tree to unlock a range it may be too late, leading to an
4947          * use-after-free issue.
4948          */
4949         spin_lock(&io_tree->lock);
4950         while (!RB_EMPTY_ROOT(&io_tree->state)) {
4951                 struct extent_state *state;
4952                 struct extent_state *cached_state = NULL;
4953                 u64 start;
4954                 u64 end;
4955                 unsigned state_flags;
4956
4957                 node = rb_first(&io_tree->state);
4958                 state = rb_entry(node, struct extent_state, rb_node);
4959                 start = state->start;
4960                 end = state->end;
4961                 state_flags = state->state;
4962                 spin_unlock(&io_tree->lock);
4963
4964                 lock_extent_bits(io_tree, start, end, &cached_state);
4965
4966                 /*
4967                  * If still has DELALLOC flag, the extent didn't reach disk,
4968                  * and its reserved space won't be freed by delayed_ref.
4969                  * So we need to free its reserved space here.
4970                  * (Refer to comment in btrfs_invalidatepage, case 2)
4971                  *
4972                  * Note, end is the bytenr of last byte, so we need + 1 here.
4973                  */
4974                 if (state_flags & EXTENT_DELALLOC)
4975                         btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
4976
4977                 clear_extent_bit(io_tree, start, end,
4978                                  EXTENT_LOCKED | EXTENT_DELALLOC |
4979                                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
4980                                  &cached_state);
4981
4982                 cond_resched();
4983                 spin_lock(&io_tree->lock);
4984         }
4985         spin_unlock(&io_tree->lock);
4986 }
4987
4988 static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root,
4989                                                         struct btrfs_block_rsv *rsv)
4990 {
4991         struct btrfs_fs_info *fs_info = root->fs_info;
4992         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4993         struct btrfs_trans_handle *trans;
4994         u64 delayed_refs_extra = btrfs_calc_insert_metadata_size(fs_info, 1);
4995         int ret;
4996
4997         /*
4998          * Eviction should be taking place at some place safe because of our
4999          * delayed iputs.  However the normal flushing code will run delayed
5000          * iputs, so we cannot use FLUSH_ALL otherwise we'll deadlock.
5001          *
5002          * We reserve the delayed_refs_extra here again because we can't use
5003          * btrfs_start_transaction(root, 0) for the same deadlocky reason as
5004          * above.  We reserve our extra bit here because we generate a ton of
5005          * delayed refs activity by truncating.
5006          *
5007          * If we cannot make our reservation we'll attempt to steal from the
5008          * global reserve, because we really want to be able to free up space.
5009          */
5010         ret = btrfs_block_rsv_refill(root, rsv, rsv->size + delayed_refs_extra,
5011                                      BTRFS_RESERVE_FLUSH_EVICT);
5012         if (ret) {
5013                 /*
5014                  * Try to steal from the global reserve if there is space for
5015                  * it.
5016                  */
5017                 if (btrfs_check_space_for_delayed_refs(fs_info) ||
5018                     btrfs_block_rsv_migrate(global_rsv, rsv, rsv->size, 0)) {
5019                         btrfs_warn(fs_info,
5020                                    "could not allocate space for delete; will truncate on mount");
5021                         return ERR_PTR(-ENOSPC);
5022                 }
5023                 delayed_refs_extra = 0;
5024         }
5025
5026         trans = btrfs_join_transaction(root);
5027         if (IS_ERR(trans))
5028                 return trans;
5029
5030         if (delayed_refs_extra) {
5031                 trans->block_rsv = &fs_info->trans_block_rsv;
5032                 trans->bytes_reserved = delayed_refs_extra;
5033                 btrfs_block_rsv_migrate(rsv, trans->block_rsv,
5034                                         delayed_refs_extra, 1);
5035         }
5036         return trans;
5037 }
5038
5039 void btrfs_evict_inode(struct inode *inode)
5040 {
5041         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5042         struct btrfs_trans_handle *trans;
5043         struct btrfs_root *root = BTRFS_I(inode)->root;
5044         struct btrfs_block_rsv *rsv;
5045         int ret;
5046
5047         trace_btrfs_inode_evict(inode);
5048
5049         if (!root) {
5050                 clear_inode(inode);
5051                 return;
5052         }
5053
5054         evict_inode_truncate_pages(inode);
5055
5056         if (inode->i_nlink &&
5057             ((btrfs_root_refs(&root->root_item) != 0 &&
5058               root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5059              btrfs_is_free_space_inode(BTRFS_I(inode))))
5060                 goto no_delete;
5061
5062         if (is_bad_inode(inode))
5063                 goto no_delete;
5064
5065         btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
5066
5067         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
5068                 goto no_delete;
5069
5070         if (inode->i_nlink > 0) {
5071                 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5072                        root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5073                 goto no_delete;
5074         }
5075
5076         ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
5077         if (ret)
5078                 goto no_delete;
5079
5080         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
5081         if (!rsv)
5082                 goto no_delete;
5083         rsv->size = btrfs_calc_metadata_size(fs_info, 1);
5084         rsv->failfast = 1;
5085
5086         btrfs_i_size_write(BTRFS_I(inode), 0);
5087
5088         while (1) {
5089                 trans = evict_refill_and_join(root, rsv);
5090                 if (IS_ERR(trans))
5091                         goto free_rsv;
5092
5093                 trans->block_rsv = rsv;
5094
5095                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5096                 trans->block_rsv = &fs_info->trans_block_rsv;
5097                 btrfs_end_transaction(trans);
5098                 btrfs_btree_balance_dirty(fs_info);
5099                 if (ret && ret != -ENOSPC && ret != -EAGAIN)
5100                         goto free_rsv;
5101                 else if (!ret)
5102                         break;
5103         }
5104
5105         /*
5106          * Errors here aren't a big deal, it just means we leave orphan items in
5107          * the tree. They will be cleaned up on the next mount. If the inode
5108          * number gets reused, cleanup deletes the orphan item without doing
5109          * anything, and unlink reuses the existing orphan item.
5110          *
5111          * If it turns out that we are dropping too many of these, we might want
5112          * to add a mechanism for retrying these after a commit.
5113          */
5114         trans = evict_refill_and_join(root, rsv);
5115         if (!IS_ERR(trans)) {
5116                 trans->block_rsv = rsv;
5117                 btrfs_orphan_del(trans, BTRFS_I(inode));
5118                 trans->block_rsv = &fs_info->trans_block_rsv;
5119                 btrfs_end_transaction(trans);
5120         }
5121
5122         if (!(root == fs_info->tree_root ||
5123               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5124                 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
5125
5126 free_rsv:
5127         btrfs_free_block_rsv(fs_info, rsv);
5128 no_delete:
5129         /*
5130          * If we didn't successfully delete, the orphan item will still be in
5131          * the tree and we'll retry on the next mount. Again, we might also want
5132          * to retry these periodically in the future.
5133          */
5134         btrfs_remove_delayed_node(BTRFS_I(inode));
5135         clear_inode(inode);
5136 }
5137
5138 /*
5139  * Return the key found in the dir entry in the location pointer, fill @type
5140  * with BTRFS_FT_*, and return 0.
5141  *
5142  * If no dir entries were found, returns -ENOENT.
5143  * If found a corrupted location in dir entry, returns -EUCLEAN.
5144  */
5145 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5146                                struct btrfs_key *location, u8 *type)
5147 {
5148         const char *name = dentry->d_name.name;
5149         int namelen = dentry->d_name.len;
5150         struct btrfs_dir_item *di;
5151         struct btrfs_path *path;
5152         struct btrfs_root *root = BTRFS_I(dir)->root;
5153         int ret = 0;
5154
5155         path = btrfs_alloc_path();
5156         if (!path)
5157                 return -ENOMEM;
5158
5159         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5160                         name, namelen, 0);
5161         if (IS_ERR_OR_NULL(di)) {
5162                 ret = di ? PTR_ERR(di) : -ENOENT;
5163                 goto out;
5164         }
5165
5166         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5167         if (location->type != BTRFS_INODE_ITEM_KEY &&
5168             location->type != BTRFS_ROOT_ITEM_KEY) {
5169                 ret = -EUCLEAN;
5170                 btrfs_warn(root->fs_info,
5171 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5172                            __func__, name, btrfs_ino(BTRFS_I(dir)),
5173                            location->objectid, location->type, location->offset);
5174         }
5175         if (!ret)
5176                 *type = btrfs_dir_type(path->nodes[0], di);
5177 out:
5178         btrfs_free_path(path);
5179         return ret;
5180 }
5181
5182 /*
5183  * when we hit a tree root in a directory, the btrfs part of the inode
5184  * needs to be changed to reflect the root directory of the tree root.  This
5185  * is kind of like crossing a mount point.
5186  */
5187 static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
5188                                     struct inode *dir,
5189                                     struct dentry *dentry,
5190                                     struct btrfs_key *location,
5191                                     struct btrfs_root **sub_root)
5192 {
5193         struct btrfs_path *path;
5194         struct btrfs_root *new_root;
5195         struct btrfs_root_ref *ref;
5196         struct extent_buffer *leaf;
5197         struct btrfs_key key;
5198         int ret;
5199         int err = 0;
5200
5201         path = btrfs_alloc_path();
5202         if (!path) {
5203                 err = -ENOMEM;
5204                 goto out;
5205         }
5206
5207         err = -ENOENT;
5208         key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5209         key.type = BTRFS_ROOT_REF_KEY;
5210         key.offset = location->objectid;
5211
5212         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
5213         if (ret) {
5214                 if (ret < 0)
5215                         err = ret;
5216                 goto out;
5217         }
5218
5219         leaf = path->nodes[0];
5220         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5221         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
5222             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5223                 goto out;
5224
5225         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5226                                    (unsigned long)(ref + 1),
5227                                    dentry->d_name.len);
5228         if (ret)
5229                 goto out;
5230
5231         btrfs_release_path(path);
5232
5233         new_root = btrfs_get_fs_root(fs_info, location->objectid, true);
5234         if (IS_ERR(new_root)) {
5235                 err = PTR_ERR(new_root);
5236                 goto out;
5237         }
5238
5239         *sub_root = new_root;
5240         location->objectid = btrfs_root_dirid(&new_root->root_item);
5241         location->type = BTRFS_INODE_ITEM_KEY;
5242         location->offset = 0;
5243         err = 0;
5244 out:
5245         btrfs_free_path(path);
5246         return err;
5247 }
5248
5249 static void inode_tree_add(struct inode *inode)
5250 {
5251         struct btrfs_root *root = BTRFS_I(inode)->root;
5252         struct btrfs_inode *entry;
5253         struct rb_node **p;
5254         struct rb_node *parent;
5255         struct rb_node *new = &BTRFS_I(inode)->rb_node;
5256         u64 ino = btrfs_ino(BTRFS_I(inode));
5257
5258         if (inode_unhashed(inode))
5259                 return;
5260         parent = NULL;
5261         spin_lock(&root->inode_lock);
5262         p = &root->inode_tree.rb_node;
5263         while (*p) {
5264                 parent = *p;
5265                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5266
5267                 if (ino < btrfs_ino(entry))
5268                         p = &parent->rb_left;
5269                 else if (ino > btrfs_ino(entry))
5270                         p = &parent->rb_right;
5271                 else {
5272                         WARN_ON(!(entry->vfs_inode.i_state &
5273                                   (I_WILL_FREE | I_FREEING)));
5274                         rb_replace_node(parent, new, &root->inode_tree);
5275                         RB_CLEAR_NODE(parent);
5276                         spin_unlock(&root->inode_lock);
5277                         return;
5278                 }
5279         }
5280         rb_link_node(new, parent, p);
5281         rb_insert_color(new, &root->inode_tree);
5282         spin_unlock(&root->inode_lock);
5283 }
5284
5285 static void inode_tree_del(struct inode *inode)
5286 {
5287         struct btrfs_root *root = BTRFS_I(inode)->root;
5288         int empty = 0;
5289
5290         spin_lock(&root->inode_lock);
5291         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5292                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5293                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5294                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5295         }
5296         spin_unlock(&root->inode_lock);
5297
5298         if (empty && btrfs_root_refs(&root->root_item) == 0) {
5299                 spin_lock(&root->inode_lock);
5300                 empty = RB_EMPTY_ROOT(&root->inode_tree);
5301                 spin_unlock(&root->inode_lock);
5302                 if (empty)
5303                         btrfs_add_dead_root(root);
5304         }
5305 }
5306
5307
5308 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5309 {
5310         struct btrfs_iget_args *args = p;
5311
5312         inode->i_ino = args->ino;
5313         BTRFS_I(inode)->location.objectid = args->ino;
5314         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
5315         BTRFS_I(inode)->location.offset = 0;
5316         BTRFS_I(inode)->root = btrfs_grab_root(args->root);
5317         BUG_ON(args->root && !BTRFS_I(inode)->root);
5318         return 0;
5319 }
5320
5321 static int btrfs_find_actor(struct inode *inode, void *opaque)
5322 {
5323         struct btrfs_iget_args *args = opaque;
5324
5325         return args->ino == BTRFS_I(inode)->location.objectid &&
5326                 args->root == BTRFS_I(inode)->root;
5327 }
5328
5329 static struct inode *btrfs_iget_locked(struct super_block *s, u64 ino,
5330                                        struct btrfs_root *root)
5331 {
5332         struct inode *inode;
5333         struct btrfs_iget_args args;
5334         unsigned long hashval = btrfs_inode_hash(ino, root);
5335
5336         args.ino = ino;
5337         args.root = root;
5338
5339         inode = iget5_locked(s, hashval, btrfs_find_actor,
5340                              btrfs_init_locked_inode,
5341                              (void *)&args);
5342         return inode;
5343 }
5344
5345 /*
5346  * Get an inode object given its inode number and corresponding root.
5347  * Path can be preallocated to prevent recursing back to iget through
5348  * allocator. NULL is also valid but may require an additional allocation
5349  * later.
5350  */
5351 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
5352                               struct btrfs_root *root, struct btrfs_path *path)
5353 {
5354         struct inode *inode;
5355
5356         inode = btrfs_iget_locked(s, ino, root);
5357         if (!inode)
5358                 return ERR_PTR(-ENOMEM);
5359
5360         if (inode->i_state & I_NEW) {
5361                 int ret;
5362
5363                 ret = btrfs_read_locked_inode(inode, path);
5364                 if (!ret) {
5365                         inode_tree_add(inode);
5366                         unlock_new_inode(inode);
5367                 } else {
5368                         iget_failed(inode);
5369                         /*
5370                          * ret > 0 can come from btrfs_search_slot called by
5371                          * btrfs_read_locked_inode, this means the inode item
5372                          * was not found.
5373                          */
5374                         if (ret > 0)
5375                                 ret = -ENOENT;
5376                         inode = ERR_PTR(ret);
5377                 }
5378         }
5379
5380         return inode;
5381 }
5382
5383 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root)
5384 {
5385         return btrfs_iget_path(s, ino, root, NULL);
5386 }
5387
5388 static struct inode *new_simple_dir(struct super_block *s,
5389                                     struct btrfs_key *key,
5390                                     struct btrfs_root *root)
5391 {
5392         struct inode *inode = new_inode(s);
5393
5394         if (!inode)
5395                 return ERR_PTR(-ENOMEM);
5396
5397         BTRFS_I(inode)->root = btrfs_grab_root(root);
5398         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5399         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5400
5401         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5402         /*
5403          * We only need lookup, the rest is read-only and there's no inode
5404          * associated with the dentry
5405          */
5406         inode->i_op = &simple_dir_inode_operations;
5407         inode->i_opflags &= ~IOP_XATTR;
5408         inode->i_fop = &simple_dir_operations;
5409         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5410         inode->i_mtime = current_time(inode);
5411         inode->i_atime = inode->i_mtime;
5412         inode->i_ctime = inode->i_mtime;
5413         BTRFS_I(inode)->i_otime = inode->i_mtime;
5414
5415         return inode;
5416 }
5417
5418 static inline u8 btrfs_inode_type(struct inode *inode)
5419 {
5420         /*
5421          * Compile-time asserts that generic FT_* types still match
5422          * BTRFS_FT_* types
5423          */
5424         BUILD_BUG_ON(BTRFS_FT_UNKNOWN != FT_UNKNOWN);
5425         BUILD_BUG_ON(BTRFS_FT_REG_FILE != FT_REG_FILE);
5426         BUILD_BUG_ON(BTRFS_FT_DIR != FT_DIR);
5427         BUILD_BUG_ON(BTRFS_FT_CHRDEV != FT_CHRDEV);
5428         BUILD_BUG_ON(BTRFS_FT_BLKDEV != FT_BLKDEV);
5429         BUILD_BUG_ON(BTRFS_FT_FIFO != FT_FIFO);
5430         BUILD_BUG_ON(BTRFS_FT_SOCK != FT_SOCK);
5431         BUILD_BUG_ON(BTRFS_FT_SYMLINK != FT_SYMLINK);
5432
5433         return fs_umode_to_ftype(inode->i_mode);
5434 }
5435
5436 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5437 {
5438         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
5439         struct inode *inode;
5440         struct btrfs_root *root = BTRFS_I(dir)->root;
5441         struct btrfs_root *sub_root = root;
5442         struct btrfs_key location;
5443         u8 di_type = 0;
5444         int ret = 0;
5445
5446         if (dentry->d_name.len > BTRFS_NAME_LEN)
5447                 return ERR_PTR(-ENAMETOOLONG);
5448
5449         ret = btrfs_inode_by_name(dir, dentry, &location, &di_type);
5450         if (ret < 0)
5451                 return ERR_PTR(ret);
5452
5453         if (location.type == BTRFS_INODE_ITEM_KEY) {
5454                 inode = btrfs_iget(dir->i_sb, location.objectid, root);
5455                 if (IS_ERR(inode))
5456                         return inode;
5457
5458                 /* Do extra check against inode mode with di_type */
5459                 if (btrfs_inode_type(inode) != di_type) {
5460                         btrfs_crit(fs_info,
5461 "inode mode mismatch with dir: inode mode=0%o btrfs type=%u dir type=%u",
5462                                   inode->i_mode, btrfs_inode_type(inode),
5463                                   di_type);
5464                         iput(inode);
5465                         return ERR_PTR(-EUCLEAN);
5466                 }
5467                 return inode;
5468         }
5469
5470         ret = fixup_tree_root_location(fs_info, dir, dentry,
5471                                        &location, &sub_root);
5472         if (ret < 0) {
5473                 if (ret != -ENOENT)
5474                         inode = ERR_PTR(ret);
5475                 else
5476                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
5477         } else {
5478                 inode = btrfs_iget(dir->i_sb, location.objectid, sub_root);
5479         }
5480         if (root != sub_root)
5481                 btrfs_put_root(sub_root);
5482
5483         if (!IS_ERR(inode) && root != sub_root) {
5484                 down_read(&fs_info->cleanup_work_sem);
5485                 if (!sb_rdonly(inode->i_sb))
5486                         ret = btrfs_orphan_cleanup(sub_root);
5487                 up_read(&fs_info->cleanup_work_sem);
5488                 if (ret) {
5489                         iput(inode);
5490                         inode = ERR_PTR(ret);
5491                 }
5492         }
5493
5494         return inode;
5495 }
5496
5497 static int btrfs_dentry_delete(const struct dentry *dentry)
5498 {
5499         struct btrfs_root *root;
5500         struct inode *inode = d_inode(dentry);
5501
5502         if (!inode && !IS_ROOT(dentry))
5503                 inode = d_inode(dentry->d_parent);
5504
5505         if (inode) {
5506                 root = BTRFS_I(inode)->root;
5507                 if (btrfs_root_refs(&root->root_item) == 0)
5508                         return 1;
5509
5510                 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5511                         return 1;
5512         }
5513         return 0;
5514 }
5515
5516 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5517                                    unsigned int flags)
5518 {
5519         struct inode *inode = btrfs_lookup_dentry(dir, dentry);
5520
5521         if (inode == ERR_PTR(-ENOENT))
5522                 inode = NULL;
5523         return d_splice_alias(inode, dentry);
5524 }
5525
5526 /*
5527  * All this infrastructure exists because dir_emit can fault, and we are holding
5528  * the tree lock when doing readdir.  For now just allocate a buffer and copy
5529  * our information into that, and then dir_emit from the buffer.  This is
5530  * similar to what NFS does, only we don't keep the buffer around in pagecache
5531  * because I'm afraid I'll mess that up.  Long term we need to make filldir do
5532  * copy_to_user_inatomic so we don't have to worry about page faulting under the
5533  * tree lock.
5534  */
5535 static int btrfs_opendir(struct inode *inode, struct file *file)
5536 {
5537         struct btrfs_file_private *private;
5538
5539         private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5540         if (!private)
5541                 return -ENOMEM;
5542         private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5543         if (!private->filldir_buf) {
5544                 kfree(private);
5545                 return -ENOMEM;
5546         }
5547         file->private_data = private;
5548         return 0;
5549 }
5550
5551 struct dir_entry {
5552         u64 ino;
5553         u64 offset;
5554         unsigned type;
5555         int name_len;
5556 };
5557
5558 static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5559 {
5560         while (entries--) {
5561                 struct dir_entry *entry = addr;
5562                 char *name = (char *)(entry + 1);
5563
5564                 ctx->pos = get_unaligned(&entry->offset);
5565                 if (!dir_emit(ctx, name, get_unaligned(&entry->name_len),
5566                                          get_unaligned(&entry->ino),
5567                                          get_unaligned(&entry->type)))
5568                         return 1;
5569                 addr += sizeof(struct dir_entry) +
5570                         get_unaligned(&entry->name_len);
5571                 ctx->pos++;
5572         }
5573         return 0;
5574 }
5575
5576 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5577 {
5578         struct inode *inode = file_inode(file);
5579         struct btrfs_root *root = BTRFS_I(inode)->root;
5580         struct btrfs_file_private *private = file->private_data;
5581         struct btrfs_dir_item *di;
5582         struct btrfs_key key;
5583         struct btrfs_key found_key;
5584         struct btrfs_path *path;
5585         void *addr;
5586         struct list_head ins_list;
5587         struct list_head del_list;
5588         int ret;
5589         struct extent_buffer *leaf;
5590         int slot;
5591         char *name_ptr;
5592         int name_len;
5593         int entries = 0;
5594         int total_len = 0;
5595         bool put = false;
5596         struct btrfs_key location;
5597
5598         if (!dir_emit_dots(file, ctx))
5599                 return 0;
5600
5601         path = btrfs_alloc_path();
5602         if (!path)
5603                 return -ENOMEM;
5604
5605         addr = private->filldir_buf;
5606         path->reada = READA_FORWARD;
5607
5608         INIT_LIST_HEAD(&ins_list);
5609         INIT_LIST_HEAD(&del_list);
5610         put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
5611
5612 again:
5613         key.type = BTRFS_DIR_INDEX_KEY;
5614         key.offset = ctx->pos;
5615         key.objectid = btrfs_ino(BTRFS_I(inode));
5616
5617         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5618         if (ret < 0)
5619                 goto err;
5620
5621         while (1) {
5622                 struct dir_entry *entry;
5623
5624                 leaf = path->nodes[0];
5625                 slot = path->slots[0];
5626                 if (slot >= btrfs_header_nritems(leaf)) {
5627                         ret = btrfs_next_leaf(root, path);
5628                         if (ret < 0)
5629                                 goto err;
5630                         else if (ret > 0)
5631                                 break;
5632                         continue;
5633                 }
5634
5635                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5636
5637                 if (found_key.objectid != key.objectid)
5638                         break;
5639                 if (found_key.type != BTRFS_DIR_INDEX_KEY)
5640                         break;
5641                 if (found_key.offset < ctx->pos)
5642                         goto next;
5643                 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
5644                         goto next;
5645                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5646                 name_len = btrfs_dir_name_len(leaf, di);
5647                 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5648                     PAGE_SIZE) {
5649                         btrfs_release_path(path);
5650                         ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5651                         if (ret)
5652                                 goto nopos;
5653                         addr = private->filldir_buf;
5654                         entries = 0;
5655                         total_len = 0;
5656                         goto again;
5657                 }
5658
5659                 entry = addr;
5660                 put_unaligned(name_len, &entry->name_len);
5661                 name_ptr = (char *)(entry + 1);
5662                 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5663                                    name_len);
5664                 put_unaligned(fs_ftype_to_dtype(btrfs_dir_type(leaf, di)),
5665                                 &entry->type);
5666                 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5667                 put_unaligned(location.objectid, &entry->ino);
5668                 put_unaligned(found_key.offset, &entry->offset);
5669                 entries++;
5670                 addr += sizeof(struct dir_entry) + name_len;
5671                 total_len += sizeof(struct dir_entry) + name_len;
5672 next:
5673                 path->slots[0]++;
5674         }
5675         btrfs_release_path(path);
5676
5677         ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5678         if (ret)
5679                 goto nopos;
5680
5681         ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5682         if (ret)
5683                 goto nopos;
5684
5685         /*
5686          * Stop new entries from being returned after we return the last
5687          * entry.
5688          *
5689          * New directory entries are assigned a strictly increasing
5690          * offset.  This means that new entries created during readdir
5691          * are *guaranteed* to be seen in the future by that readdir.
5692          * This has broken buggy programs which operate on names as
5693          * they're returned by readdir.  Until we re-use freed offsets
5694          * we have this hack to stop new entries from being returned
5695          * under the assumption that they'll never reach this huge
5696          * offset.
5697          *
5698          * This is being careful not to overflow 32bit loff_t unless the
5699          * last entry requires it because doing so has broken 32bit apps
5700          * in the past.
5701          */
5702         if (ctx->pos >= INT_MAX)
5703                 ctx->pos = LLONG_MAX;
5704         else
5705                 ctx->pos = INT_MAX;
5706 nopos:
5707         ret = 0;
5708 err:
5709         if (put)
5710                 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5711         btrfs_free_path(path);
5712         return ret;
5713 }
5714
5715 /*
5716  * This is somewhat expensive, updating the tree every time the
5717  * inode changes.  But, it is most likely to find the inode in cache.
5718  * FIXME, needs more benchmarking...there are no reasons other than performance
5719  * to keep or drop this code.
5720  */
5721 static int btrfs_dirty_inode(struct inode *inode)
5722 {
5723         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5724         struct btrfs_root *root = BTRFS_I(inode)->root;
5725         struct btrfs_trans_handle *trans;
5726         int ret;
5727
5728         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5729                 return 0;
5730
5731         trans = btrfs_join_transaction(root);
5732         if (IS_ERR(trans))
5733                 return PTR_ERR(trans);
5734
5735         ret = btrfs_update_inode(trans, root, inode);
5736         if (ret && ret == -ENOSPC) {
5737                 /* whoops, lets try again with the full transaction */
5738                 btrfs_end_transaction(trans);
5739                 trans = btrfs_start_transaction(root, 1);
5740                 if (IS_ERR(trans))
5741                         return PTR_ERR(trans);
5742
5743                 ret = btrfs_update_inode(trans, root, inode);
5744         }
5745         btrfs_end_transaction(trans);
5746         if (BTRFS_I(inode)->delayed_node)
5747                 btrfs_balance_delayed_items(fs_info);
5748
5749         return ret;
5750 }
5751
5752 /*
5753  * This is a copy of file_update_time.  We need this so we can return error on
5754  * ENOSPC for updating the inode in the case of file write and mmap writes.
5755  */
5756 static int btrfs_update_time(struct inode *inode, struct timespec64 *now,
5757                              int flags)
5758 {
5759         struct btrfs_root *root = BTRFS_I(inode)->root;
5760         bool dirty = flags & ~S_VERSION;
5761
5762         if (btrfs_root_readonly(root))
5763                 return -EROFS;
5764
5765         if (flags & S_VERSION)
5766                 dirty |= inode_maybe_inc_iversion(inode, dirty);
5767         if (flags & S_CTIME)
5768                 inode->i_ctime = *now;
5769         if (flags & S_MTIME)
5770                 inode->i_mtime = *now;
5771         if (flags & S_ATIME)
5772                 inode->i_atime = *now;
5773         return dirty ? btrfs_dirty_inode(inode) : 0;
5774 }
5775
5776 /*
5777  * find the highest existing sequence number in a directory
5778  * and then set the in-memory index_cnt variable to reflect
5779  * free sequence numbers
5780  */
5781 static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
5782 {
5783         struct btrfs_root *root = inode->root;
5784         struct btrfs_key key, found_key;
5785         struct btrfs_path *path;
5786         struct extent_buffer *leaf;
5787         int ret;
5788
5789         key.objectid = btrfs_ino(inode);
5790         key.type = BTRFS_DIR_INDEX_KEY;
5791         key.offset = (u64)-1;
5792
5793         path = btrfs_alloc_path();
5794         if (!path)
5795                 return -ENOMEM;
5796
5797         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5798         if (ret < 0)
5799                 goto out;
5800         /* FIXME: we should be able to handle this */
5801         if (ret == 0)
5802                 goto out;
5803         ret = 0;
5804
5805         /*
5806          * MAGIC NUMBER EXPLANATION:
5807          * since we search a directory based on f_pos we have to start at 2
5808          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5809          * else has to start at 2
5810          */
5811         if (path->slots[0] == 0) {
5812                 inode->index_cnt = 2;
5813                 goto out;
5814         }
5815
5816         path->slots[0]--;
5817
5818         leaf = path->nodes[0];
5819         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5820
5821         if (found_key.objectid != btrfs_ino(inode) ||
5822             found_key.type != BTRFS_DIR_INDEX_KEY) {
5823                 inode->index_cnt = 2;
5824                 goto out;
5825         }
5826
5827         inode->index_cnt = found_key.offset + 1;
5828 out:
5829         btrfs_free_path(path);
5830         return ret;
5831 }
5832
5833 /*
5834  * helper to find a free sequence number in a given directory.  This current
5835  * code is very simple, later versions will do smarter things in the btree
5836  */
5837 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
5838 {
5839         int ret = 0;
5840
5841         if (dir->index_cnt == (u64)-1) {
5842                 ret = btrfs_inode_delayed_dir_index_count(dir);
5843                 if (ret) {
5844                         ret = btrfs_set_inode_index_count(dir);
5845                         if (ret)
5846                                 return ret;
5847                 }
5848         }
5849
5850         *index = dir->index_cnt;
5851         dir->index_cnt++;
5852
5853         return ret;
5854 }
5855
5856 static int btrfs_insert_inode_locked(struct inode *inode)
5857 {
5858         struct btrfs_iget_args args;
5859
5860         args.ino = BTRFS_I(inode)->location.objectid;
5861         args.root = BTRFS_I(inode)->root;
5862
5863         return insert_inode_locked4(inode,
5864                    btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5865                    btrfs_find_actor, &args);
5866 }
5867
5868 /*
5869  * Inherit flags from the parent inode.
5870  *
5871  * Currently only the compression flags and the cow flags are inherited.
5872  */
5873 static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
5874 {
5875         unsigned int flags;
5876
5877         if (!dir)
5878                 return;
5879
5880         flags = BTRFS_I(dir)->flags;
5881
5882         if (flags & BTRFS_INODE_NOCOMPRESS) {
5883                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
5884                 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
5885         } else if (flags & BTRFS_INODE_COMPRESS) {
5886                 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
5887                 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
5888         }
5889
5890         if (flags & BTRFS_INODE_NODATACOW) {
5891                 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
5892                 if (S_ISREG(inode->i_mode))
5893                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5894         }
5895
5896         btrfs_sync_inode_flags_to_i_flags(inode);
5897 }
5898
5899 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5900                                      struct btrfs_root *root,
5901                                      struct inode *dir,
5902                                      const char *name, int name_len,
5903                                      u64 ref_objectid, u64 objectid,
5904                                      umode_t mode, u64 *index)
5905 {
5906         struct btrfs_fs_info *fs_info = root->fs_info;
5907         struct inode *inode;
5908         struct btrfs_inode_item *inode_item;
5909         struct btrfs_key *location;
5910         struct btrfs_path *path;
5911         struct btrfs_inode_ref *ref;
5912         struct btrfs_key key[2];
5913         u32 sizes[2];
5914         int nitems = name ? 2 : 1;
5915         unsigned long ptr;
5916         unsigned int nofs_flag;
5917         int ret;
5918
5919         path = btrfs_alloc_path();
5920         if (!path)
5921                 return ERR_PTR(-ENOMEM);
5922
5923         nofs_flag = memalloc_nofs_save();
5924         inode = new_inode(fs_info->sb);
5925         memalloc_nofs_restore(nofs_flag);
5926         if (!inode) {
5927                 btrfs_free_path(path);
5928                 return ERR_PTR(-ENOMEM);
5929         }
5930
5931         /*
5932          * O_TMPFILE, set link count to 0, so that after this point,
5933          * we fill in an inode item with the correct link count.
5934          */
5935         if (!name)
5936                 set_nlink(inode, 0);
5937
5938         /*
5939          * we have to initialize this early, so we can reclaim the inode
5940          * number if we fail afterwards in this function.
5941          */
5942         inode->i_ino = objectid;
5943
5944         if (dir && name) {
5945                 trace_btrfs_inode_request(dir);
5946
5947                 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
5948                 if (ret) {
5949                         btrfs_free_path(path);
5950                         iput(inode);
5951                         return ERR_PTR(ret);
5952                 }
5953         } else if (dir) {
5954                 *index = 0;
5955         }
5956         /*
5957          * index_cnt is ignored for everything but a dir,
5958          * btrfs_set_inode_index_count has an explanation for the magic
5959          * number
5960          */
5961         BTRFS_I(inode)->index_cnt = 2;
5962         BTRFS_I(inode)->dir_index = *index;
5963         BTRFS_I(inode)->root = btrfs_grab_root(root);
5964         BTRFS_I(inode)->generation = trans->transid;
5965         inode->i_generation = BTRFS_I(inode)->generation;
5966
5967         /*
5968          * We could have gotten an inode number from somebody who was fsynced
5969          * and then removed in this same transaction, so let's just set full
5970          * sync since it will be a full sync anyway and this will blow away the
5971          * old info in the log.
5972          */
5973         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5974
5975         key[0].objectid = objectid;
5976         key[0].type = BTRFS_INODE_ITEM_KEY;
5977         key[0].offset = 0;
5978
5979         sizes[0] = sizeof(struct btrfs_inode_item);
5980
5981         if (name) {
5982                 /*
5983                  * Start new inodes with an inode_ref. This is slightly more
5984                  * efficient for small numbers of hard links since they will
5985                  * be packed into one item. Extended refs will kick in if we
5986                  * add more hard links than can fit in the ref item.
5987                  */
5988                 key[1].objectid = objectid;
5989                 key[1].type = BTRFS_INODE_REF_KEY;
5990                 key[1].offset = ref_objectid;
5991
5992                 sizes[1] = name_len + sizeof(*ref);
5993         }
5994
5995         location = &BTRFS_I(inode)->location;
5996         location->objectid = objectid;
5997         location->offset = 0;
5998         location->type = BTRFS_INODE_ITEM_KEY;
5999
6000         ret = btrfs_insert_inode_locked(inode);
6001         if (ret < 0) {
6002                 iput(inode);
6003                 goto fail;
6004         }
6005
6006         path->leave_spinning = 1;
6007         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6008         if (ret != 0)
6009                 goto fail_unlock;
6010
6011         inode_init_owner(inode, dir, mode);
6012         inode_set_bytes(inode, 0);
6013
6014         inode->i_mtime = current_time(inode);
6015         inode->i_atime = inode->i_mtime;
6016         inode->i_ctime = inode->i_mtime;
6017         BTRFS_I(inode)->i_otime = inode->i_mtime;
6018
6019         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6020                                   struct btrfs_inode_item);
6021         memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
6022                              sizeof(*inode_item));
6023         fill_inode_item(trans, path->nodes[0], inode_item, inode);
6024
6025         if (name) {
6026                 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6027                                      struct btrfs_inode_ref);
6028                 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6029                 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6030                 ptr = (unsigned long)(ref + 1);
6031                 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6032         }
6033
6034         btrfs_mark_buffer_dirty(path->nodes[0]);
6035         btrfs_free_path(path);
6036
6037         btrfs_inherit_iflags(inode, dir);
6038
6039         if (S_ISREG(mode)) {
6040                 if (btrfs_test_opt(fs_info, NODATASUM))
6041                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6042                 if (btrfs_test_opt(fs_info, NODATACOW))
6043                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6044                                 BTRFS_INODE_NODATASUM;
6045         }
6046
6047         inode_tree_add(inode);
6048
6049         trace_btrfs_inode_new(inode);
6050         btrfs_set_inode_last_trans(trans, inode);
6051
6052         btrfs_update_root_times(trans, root);
6053
6054         ret = btrfs_inode_inherit_props(trans, inode, dir);
6055         if (ret)
6056                 btrfs_err(fs_info,
6057                           "error inheriting props for ino %llu (root %llu): %d",
6058                         btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
6059
6060         return inode;
6061
6062 fail_unlock:
6063         discard_new_inode(inode);
6064 fail:
6065         if (dir && name)
6066                 BTRFS_I(dir)->index_cnt--;
6067         btrfs_free_path(path);
6068         return ERR_PTR(ret);
6069 }
6070
6071 /*
6072  * utility function to add 'inode' into 'parent_inode' with
6073  * a give name and a given sequence number.
6074  * if 'add_backref' is true, also insert a backref from the
6075  * inode to the parent directory.
6076  */
6077 int btrfs_add_link(struct btrfs_trans_handle *trans,
6078                    struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
6079                    const char *name, int name_len, int add_backref, u64 index)
6080 {
6081         int ret = 0;
6082         struct btrfs_key key;
6083         struct btrfs_root *root = parent_inode->root;
6084         u64 ino = btrfs_ino(inode);
6085         u64 parent_ino = btrfs_ino(parent_inode);
6086
6087         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6088                 memcpy(&key, &inode->root->root_key, sizeof(key));
6089         } else {
6090                 key.objectid = ino;
6091                 key.type = BTRFS_INODE_ITEM_KEY;
6092                 key.offset = 0;
6093         }
6094
6095         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6096                 ret = btrfs_add_root_ref(trans, key.objectid,
6097                                          root->root_key.objectid, parent_ino,
6098                                          index, name, name_len);
6099         } else if (add_backref) {
6100                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6101                                              parent_ino, index);
6102         }
6103
6104         /* Nothing to clean up yet */
6105         if (ret)
6106                 return ret;
6107
6108         ret = btrfs_insert_dir_item(trans, name, name_len, parent_inode, &key,
6109                                     btrfs_inode_type(&inode->vfs_inode), index);
6110         if (ret == -EEXIST || ret == -EOVERFLOW)
6111                 goto fail_dir_item;
6112         else if (ret) {
6113                 btrfs_abort_transaction(trans, ret);
6114                 return ret;
6115         }
6116
6117         btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
6118                            name_len * 2);
6119         inode_inc_iversion(&parent_inode->vfs_inode);
6120         /*
6121          * If we are replaying a log tree, we do not want to update the mtime
6122          * and ctime of the parent directory with the current time, since the
6123          * log replay procedure is responsible for setting them to their correct
6124          * values (the ones it had when the fsync was done).
6125          */
6126         if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
6127                 struct timespec64 now = current_time(&parent_inode->vfs_inode);
6128
6129                 parent_inode->vfs_inode.i_mtime = now;
6130                 parent_inode->vfs_inode.i_ctime = now;
6131         }
6132         ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
6133         if (ret)
6134                 btrfs_abort_transaction(trans, ret);
6135         return ret;
6136
6137 fail_dir_item:
6138         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6139                 u64 local_index;
6140                 int err;
6141                 err = btrfs_del_root_ref(trans, key.objectid,
6142                                          root->root_key.objectid, parent_ino,
6143                                          &local_index, name, name_len);
6144                 if (err)
6145                         btrfs_abort_transaction(trans, err);
6146         } else if (add_backref) {
6147                 u64 local_index;
6148                 int err;
6149
6150                 err = btrfs_del_inode_ref(trans, root, name, name_len,
6151                                           ino, parent_ino, &local_index);
6152                 if (err)
6153                         btrfs_abort_transaction(trans, err);
6154         }
6155
6156         /* Return the original error code */
6157         return ret;
6158 }
6159
6160 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6161                             struct btrfs_inode *dir, struct dentry *dentry,
6162                             struct btrfs_inode *inode, int backref, u64 index)
6163 {
6164         int err = btrfs_add_link(trans, dir, inode,
6165                                  dentry->d_name.name, dentry->d_name.len,
6166                                  backref, index);
6167         if (err > 0)
6168                 err = -EEXIST;
6169         return err;
6170 }
6171
6172 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6173                         umode_t mode, dev_t rdev)
6174 {
6175         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6176         struct btrfs_trans_handle *trans;
6177         struct btrfs_root *root = BTRFS_I(dir)->root;
6178         struct inode *inode = NULL;
6179         int err;
6180         u64 objectid;
6181         u64 index = 0;
6182
6183         /*
6184          * 2 for inode item and ref
6185          * 2 for dir items
6186          * 1 for xattr if selinux is on
6187          */
6188         trans = btrfs_start_transaction(root, 5);
6189         if (IS_ERR(trans))
6190                 return PTR_ERR(trans);
6191
6192         err = btrfs_find_free_ino(root, &objectid);
6193         if (err)
6194                 goto out_unlock;
6195
6196         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6197                         dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6198                         mode, &index);
6199         if (IS_ERR(inode)) {
6200                 err = PTR_ERR(inode);
6201                 inode = NULL;
6202                 goto out_unlock;
6203         }
6204
6205         /*
6206         * If the active LSM wants to access the inode during
6207         * d_instantiate it needs these. Smack checks to see
6208         * if the filesystem supports xattrs by looking at the
6209         * ops vector.
6210         */
6211         inode->i_op = &btrfs_special_inode_operations;
6212         init_special_inode(inode, inode->i_mode, rdev);
6213
6214         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6215         if (err)
6216                 goto out_unlock;
6217
6218         err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6219                         0, index);
6220         if (err)
6221                 goto out_unlock;
6222
6223         btrfs_update_inode(trans, root, inode);
6224         d_instantiate_new(dentry, inode);
6225
6226 out_unlock:
6227         btrfs_end_transaction(trans);
6228         btrfs_btree_balance_dirty(fs_info);
6229         if (err && inode) {
6230                 inode_dec_link_count(inode);
6231                 discard_new_inode(inode);
6232         }
6233         return err;
6234 }
6235
6236 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6237                         umode_t mode, bool excl)
6238 {
6239         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6240         struct btrfs_trans_handle *trans;
6241         struct btrfs_root *root = BTRFS_I(dir)->root;
6242         struct inode *inode = NULL;
6243         int err;
6244         u64 objectid;
6245         u64 index = 0;
6246
6247         /*
6248          * 2 for inode item and ref
6249          * 2 for dir items
6250          * 1 for xattr if selinux is on
6251          */
6252         trans = btrfs_start_transaction(root, 5);
6253         if (IS_ERR(trans))
6254                 return PTR_ERR(trans);
6255
6256         err = btrfs_find_free_ino(root, &objectid);
6257         if (err)
6258                 goto out_unlock;
6259
6260         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6261                         dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6262                         mode, &index);
6263         if (IS_ERR(inode)) {
6264                 err = PTR_ERR(inode);
6265                 inode = NULL;
6266                 goto out_unlock;
6267         }
6268         /*
6269         * If the active LSM wants to access the inode during
6270         * d_instantiate it needs these. Smack checks to see
6271         * if the filesystem supports xattrs by looking at the
6272         * ops vector.
6273         */
6274         inode->i_fop = &btrfs_file_operations;
6275         inode->i_op = &btrfs_file_inode_operations;
6276         inode->i_mapping->a_ops = &btrfs_aops;
6277
6278         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6279         if (err)
6280                 goto out_unlock;
6281
6282         err = btrfs_update_inode(trans, root, inode);
6283         if (err)
6284                 goto out_unlock;
6285
6286         err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6287                         0, index);
6288         if (err)
6289                 goto out_unlock;
6290
6291         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6292         d_instantiate_new(dentry, inode);
6293
6294 out_unlock:
6295         btrfs_end_transaction(trans);
6296         if (err && inode) {
6297                 inode_dec_link_count(inode);
6298                 discard_new_inode(inode);
6299         }
6300         btrfs_btree_balance_dirty(fs_info);
6301         return err;
6302 }
6303
6304 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6305                       struct dentry *dentry)
6306 {
6307         struct btrfs_trans_handle *trans = NULL;
6308         struct btrfs_root *root = BTRFS_I(dir)->root;
6309         struct inode *inode = d_inode(old_dentry);
6310         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6311         u64 index;
6312         int err;
6313         int drop_inode = 0;
6314
6315         /* do not allow sys_link's with other subvols of the same device */
6316         if (root->root_key.objectid != BTRFS_I(inode)->root->root_key.objectid)
6317                 return -EXDEV;
6318
6319         if (inode->i_nlink >= BTRFS_LINK_MAX)
6320                 return -EMLINK;
6321
6322         err = btrfs_set_inode_index(BTRFS_I(dir), &index);
6323         if (err)
6324                 goto fail;
6325
6326         /*
6327          * 2 items for inode and inode ref
6328          * 2 items for dir items
6329          * 1 item for parent inode
6330          * 1 item for orphan item deletion if O_TMPFILE
6331          */
6332         trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6);
6333         if (IS_ERR(trans)) {
6334                 err = PTR_ERR(trans);
6335                 trans = NULL;
6336                 goto fail;
6337         }
6338
6339         /* There are several dir indexes for this inode, clear the cache. */
6340         BTRFS_I(inode)->dir_index = 0ULL;
6341         inc_nlink(inode);
6342         inode_inc_iversion(inode);
6343         inode->i_ctime = current_time(inode);
6344         ihold(inode);
6345         set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6346
6347         err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6348                         1, index);
6349
6350         if (err) {
6351                 drop_inode = 1;
6352         } else {
6353                 struct dentry *parent = dentry->d_parent;
6354                 int ret;
6355
6356                 err = btrfs_update_inode(trans, root, inode);
6357                 if (err)
6358                         goto fail;
6359                 if (inode->i_nlink == 1) {
6360                         /*
6361                          * If new hard link count is 1, it's a file created
6362                          * with open(2) O_TMPFILE flag.
6363                          */
6364                         err = btrfs_orphan_del(trans, BTRFS_I(inode));
6365                         if (err)
6366                                 goto fail;
6367                 }
6368                 d_instantiate(dentry, inode);
6369                 ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent,
6370                                          true, NULL);
6371                 if (ret == BTRFS_NEED_TRANS_COMMIT) {
6372                         err = btrfs_commit_transaction(trans);
6373                         trans = NULL;
6374                 }
6375         }
6376
6377 fail:
6378         if (trans)
6379                 btrfs_end_transaction(trans);
6380         if (drop_inode) {
6381                 inode_dec_link_count(inode);
6382                 iput(inode);
6383         }
6384         btrfs_btree_balance_dirty(fs_info);
6385         return err;
6386 }
6387
6388 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6389 {
6390         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
6391         struct inode *inode = NULL;
6392         struct btrfs_trans_handle *trans;
6393         struct btrfs_root *root = BTRFS_I(dir)->root;
6394         int err = 0;
6395         u64 objectid = 0;
6396         u64 index = 0;
6397
6398         /*
6399          * 2 items for inode and ref
6400          * 2 items for dir items
6401          * 1 for xattr if selinux is on
6402          */
6403         trans = btrfs_start_transaction(root, 5);
6404         if (IS_ERR(trans))
6405                 return PTR_ERR(trans);
6406
6407         err = btrfs_find_free_ino(root, &objectid);
6408         if (err)
6409                 goto out_fail;
6410
6411         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6412                         dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6413                         S_IFDIR | mode, &index);
6414         if (IS_ERR(inode)) {
6415                 err = PTR_ERR(inode);
6416                 inode = NULL;
6417                 goto out_fail;
6418         }
6419
6420         /* these must be set before we unlock the inode */
6421         inode->i_op = &btrfs_dir_inode_operations;
6422         inode->i_fop = &btrfs_dir_file_operations;
6423
6424         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6425         if (err)
6426                 goto out_fail;
6427
6428         btrfs_i_size_write(BTRFS_I(inode), 0);
6429         err = btrfs_update_inode(trans, root, inode);
6430         if (err)
6431                 goto out_fail;
6432
6433         err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6434                         dentry->d_name.name,
6435                         dentry->d_name.len, 0, index);
6436         if (err)
6437                 goto out_fail;
6438
6439         d_instantiate_new(dentry, inode);
6440
6441 out_fail:
6442         btrfs_end_transaction(trans);
6443         if (err && inode) {
6444                 inode_dec_link_count(inode);
6445                 discard_new_inode(inode);
6446         }
6447         btrfs_btree_balance_dirty(fs_info);
6448         return err;
6449 }
6450
6451 static noinline int uncompress_inline(struct btrfs_path *path,
6452                                       struct page *page,
6453                                       size_t pg_offset, u64 extent_offset,
6454                                       struct btrfs_file_extent_item *item)
6455 {
6456         int ret;
6457         struct extent_buffer *leaf = path->nodes[0];
6458         char *tmp;
6459         size_t max_size;
6460         unsigned long inline_size;
6461         unsigned long ptr;
6462         int compress_type;
6463
6464         WARN_ON(pg_offset != 0);
6465         compress_type = btrfs_file_extent_compression(leaf, item);
6466         max_size = btrfs_file_extent_ram_bytes(leaf, item);
6467         inline_size = btrfs_file_extent_inline_item_len(leaf,
6468                                         btrfs_item_nr(path->slots[0]));
6469         tmp = kmalloc(inline_size, GFP_NOFS);
6470         if (!tmp)
6471                 return -ENOMEM;
6472         ptr = btrfs_file_extent_inline_start(item);
6473
6474         read_extent_buffer(leaf, tmp, ptr, inline_size);
6475
6476         max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6477         ret = btrfs_decompress(compress_type, tmp, page,
6478                                extent_offset, inline_size, max_size);
6479
6480         /*
6481          * decompression code contains a memset to fill in any space between the end
6482          * of the uncompressed data and the end of max_size in case the decompressed
6483          * data ends up shorter than ram_bytes.  That doesn't cover the hole between
6484          * the end of an inline extent and the beginning of the next block, so we
6485          * cover that region here.
6486          */
6487
6488         if (max_size + pg_offset < PAGE_SIZE) {
6489                 char *map = kmap(page);
6490                 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6491                 kunmap(page);
6492         }
6493         kfree(tmp);
6494         return ret;
6495 }
6496
6497 /**
6498  * btrfs_get_extent - Lookup the first extent overlapping a range in a file.
6499  * @inode:      file to search in
6500  * @page:       page to read extent data into if the extent is inline
6501  * @pg_offset:  offset into @page to copy to
6502  * @start:      file offset
6503  * @len:        length of range starting at @start
6504  *
6505  * This returns the first &struct extent_map which overlaps with the given
6506  * range, reading it from the B-tree and caching it if necessary. Note that
6507  * there may be more extents which overlap the given range after the returned
6508  * extent_map.
6509  *
6510  * If @page is not NULL and the extent is inline, this also reads the extent
6511  * data directly into the page and marks the extent up to date in the io_tree.
6512  *
6513  * Return: ERR_PTR on error, non-NULL extent_map on success.
6514  */
6515 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6516                                     struct page *page, size_t pg_offset,
6517                                     u64 start, u64 len)
6518 {
6519         struct btrfs_fs_info *fs_info = inode->root->fs_info;
6520         int ret;
6521         int err = 0;
6522         u64 extent_start = 0;
6523         u64 extent_end = 0;
6524         u64 objectid = btrfs_ino(inode);
6525         int extent_type = -1;
6526         struct btrfs_path *path = NULL;
6527         struct btrfs_root *root = inode->root;
6528         struct btrfs_file_extent_item *item;
6529         struct extent_buffer *leaf;
6530         struct btrfs_key found_key;
6531         struct extent_map *em = NULL;
6532         struct extent_map_tree *em_tree = &inode->extent_tree;
6533         struct extent_io_tree *io_tree = &inode->io_tree;
6534
6535         read_lock(&em_tree->lock);
6536         em = lookup_extent_mapping(em_tree, start, len);
6537         read_unlock(&em_tree->lock);
6538
6539         if (em) {
6540                 if (em->start > start || em->start + em->len <= start)
6541                         free_extent_map(em);
6542                 else if (em->block_start == EXTENT_MAP_INLINE && page)
6543                         free_extent_map(em);
6544                 else
6545                         goto out;
6546         }
6547         em = alloc_extent_map();
6548         if (!em) {
6549                 err = -ENOMEM;
6550                 goto out;
6551         }
6552         em->start = EXTENT_MAP_HOLE;
6553         em->orig_start = EXTENT_MAP_HOLE;
6554         em->len = (u64)-1;
6555         em->block_len = (u64)-1;
6556
6557         path = btrfs_alloc_path();
6558         if (!path) {
6559                 err = -ENOMEM;
6560                 goto out;
6561         }
6562
6563         /* Chances are we'll be called again, so go ahead and do readahead */
6564         path->reada = READA_FORWARD;
6565
6566         /*
6567          * Unless we're going to uncompress the inline extent, no sleep would
6568          * happen.
6569          */
6570         path->leave_spinning = 1;
6571
6572         ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0);
6573         if (ret < 0) {
6574                 err = ret;
6575                 goto out;
6576         } else if (ret > 0) {
6577                 if (path->slots[0] == 0)
6578                         goto not_found;
6579                 path->slots[0]--;
6580         }
6581
6582         leaf = path->nodes[0];
6583         item = btrfs_item_ptr(leaf, path->slots[0],
6584                               struct btrfs_file_extent_item);
6585         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6586         if (found_key.objectid != objectid ||
6587             found_key.type != BTRFS_EXTENT_DATA_KEY) {
6588                 /*
6589                  * If we backup past the first extent we want to move forward
6590                  * and see if there is an extent in front of us, otherwise we'll
6591                  * say there is a hole for our whole search range which can
6592                  * cause problems.
6593                  */
6594                 extent_end = start;
6595                 goto next;
6596         }
6597
6598         extent_type = btrfs_file_extent_type(leaf, item);
6599         extent_start = found_key.offset;
6600         extent_end = btrfs_file_extent_end(path);
6601         if (extent_type == BTRFS_FILE_EXTENT_REG ||
6602             extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6603                 /* Only regular file could have regular/prealloc extent */
6604                 if (!S_ISREG(inode->vfs_inode.i_mode)) {
6605                         ret = -EUCLEAN;
6606                         btrfs_crit(fs_info,
6607                 "regular/prealloc extent found for non-regular inode %llu",
6608                                    btrfs_ino(inode));
6609                         goto out;
6610                 }
6611                 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
6612                                                        extent_start);
6613         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6614                 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
6615                                                       path->slots[0],
6616                                                       extent_start);
6617         }
6618 next:
6619         if (start >= extent_end) {
6620                 path->slots[0]++;
6621                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6622                         ret = btrfs_next_leaf(root, path);
6623                         if (ret < 0) {
6624                                 err = ret;
6625                                 goto out;
6626                         } else if (ret > 0) {
6627                                 goto not_found;
6628                         }
6629                         leaf = path->nodes[0];
6630                 }
6631                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6632                 if (found_key.objectid != objectid ||
6633                     found_key.type != BTRFS_EXTENT_DATA_KEY)
6634                         goto not_found;
6635                 if (start + len <= found_key.offset)
6636                         goto not_found;
6637                 if (start > found_key.offset)
6638                         goto next;
6639
6640                 /* New extent overlaps with existing one */
6641                 em->start = start;
6642                 em->orig_start = start;
6643                 em->len = found_key.offset - start;
6644                 em->block_start = EXTENT_MAP_HOLE;
6645                 goto insert;
6646         }
6647
6648         btrfs_extent_item_to_extent_map(inode, path, item, !page, em);
6649
6650         if (extent_type == BTRFS_FILE_EXTENT_REG ||
6651             extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6652                 goto insert;
6653         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
6654                 unsigned long ptr;
6655                 char *map;
6656                 size_t size;
6657                 size_t extent_offset;
6658                 size_t copy_size;
6659
6660                 if (!page)
6661                         goto out;
6662
6663                 size = btrfs_file_extent_ram_bytes(leaf, item);
6664                 extent_offset = page_offset(page) + pg_offset - extent_start;
6665                 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6666                                   size - extent_offset);
6667                 em->start = extent_start + extent_offset;
6668                 em->len = ALIGN(copy_size, fs_info->sectorsize);
6669                 em->orig_block_len = em->len;
6670                 em->orig_start = em->start;
6671                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6672
6673                 btrfs_set_path_blocking(path);
6674                 if (!PageUptodate(page)) {
6675                         if (btrfs_file_extent_compression(leaf, item) !=
6676                             BTRFS_COMPRESS_NONE) {
6677                                 ret = uncompress_inline(path, page, pg_offset,
6678                                                         extent_offset, item);
6679                                 if (ret) {
6680                                         err = ret;
6681                                         goto out;
6682                                 }
6683                         } else {
6684                                 map = kmap(page);
6685                                 read_extent_buffer(leaf, map + pg_offset, ptr,
6686                                                    copy_size);
6687                                 if (pg_offset + copy_size < PAGE_SIZE) {
6688                                         memset(map + pg_offset + copy_size, 0,
6689                                                PAGE_SIZE - pg_offset -
6690                                                copy_size);
6691                                 }
6692                                 kunmap(page);
6693                         }
6694                         flush_dcache_page(page);
6695                 }
6696                 set_extent_uptodate(io_tree, em->start,
6697                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
6698                 goto insert;
6699         }
6700 not_found:
6701         em->start = start;
6702         em->orig_start = start;
6703         em->len = len;
6704         em->block_start = EXTENT_MAP_HOLE;
6705 insert:
6706         btrfs_release_path(path);
6707         if (em->start > start || extent_map_end(em) <= start) {
6708                 btrfs_err(fs_info,
6709                           "bad extent! em: [%llu %llu] passed [%llu %llu]",
6710                           em->start, em->len, start, len);
6711                 err = -EIO;
6712                 goto out;
6713         }
6714
6715         err = 0;
6716         write_lock(&em_tree->lock);
6717         err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len);
6718         write_unlock(&em_tree->lock);
6719 out:
6720         btrfs_free_path(path);
6721
6722         trace_btrfs_get_extent(root, inode, em);
6723
6724         if (err) {
6725                 free_extent_map(em);
6726                 return ERR_PTR(err);
6727         }
6728         BUG_ON(!em); /* Error is always set */
6729         return em;
6730 }
6731
6732 struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
6733                                            u64 start, u64 len)
6734 {
6735         struct extent_map *em;
6736         struct extent_map *hole_em = NULL;
6737         u64 delalloc_start = start;
6738         u64 end;
6739         u64 delalloc_len;
6740         u64 delalloc_end;
6741         int err = 0;
6742
6743         em = btrfs_get_extent(inode, NULL, 0, start, len);
6744         if (IS_ERR(em))
6745                 return em;
6746         /*
6747          * If our em maps to:
6748          * - a hole or
6749          * - a pre-alloc extent,
6750          * there might actually be delalloc bytes behind it.
6751          */
6752         if (em->block_start != EXTENT_MAP_HOLE &&
6753             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6754                 return em;
6755         else
6756                 hole_em = em;
6757
6758         /* check to see if we've wrapped (len == -1 or similar) */
6759         end = start + len;
6760         if (end < start)
6761                 end = (u64)-1;
6762         else
6763                 end -= 1;
6764
6765         em = NULL;
6766
6767         /* ok, we didn't find anything, lets look for delalloc */
6768         delalloc_len = count_range_bits(&inode->io_tree, &delalloc_start,
6769                                  end, len, EXTENT_DELALLOC, 1);
6770         delalloc_end = delalloc_start + delalloc_len;
6771         if (delalloc_end < delalloc_start)
6772                 delalloc_end = (u64)-1;
6773
6774         /*
6775          * We didn't find anything useful, return the original results from
6776          * get_extent()
6777          */
6778         if (delalloc_start > end || delalloc_end <= start) {
6779                 em = hole_em;
6780                 hole_em = NULL;
6781                 goto out;
6782         }
6783
6784         /*
6785          * Adjust the delalloc_start to make sure it doesn't go backwards from
6786          * the start they passed in
6787          */
6788         delalloc_start = max(start, delalloc_start);
6789         delalloc_len = delalloc_end - delalloc_start;
6790
6791         if (delalloc_len > 0) {
6792                 u64 hole_start;
6793                 u64 hole_len;
6794                 const u64 hole_end = extent_map_end(hole_em);
6795
6796                 em = alloc_extent_map();
6797                 if (!em) {
6798                         err = -ENOMEM;
6799                         goto out;
6800                 }
6801
6802                 ASSERT(hole_em);
6803                 /*
6804                  * When btrfs_get_extent can't find anything it returns one
6805                  * huge hole
6806                  *
6807                  * Make sure what it found really fits our range, and adjust to
6808                  * make sure it is based on the start from the caller
6809                  */
6810                 if (hole_end <= start || hole_em->start > end) {
6811                        free_extent_map(hole_em);
6812                        hole_em = NULL;
6813                 } else {
6814                        hole_start = max(hole_em->start, start);
6815                        hole_len = hole_end - hole_start;
6816                 }
6817
6818                 if (hole_em && delalloc_start > hole_start) {
6819                         /*
6820                          * Our hole starts before our delalloc, so we have to
6821                          * return just the parts of the hole that go until the
6822                          * delalloc starts
6823                          */
6824                         em->len = min(hole_len, delalloc_start - hole_start);
6825                         em->start = hole_start;
6826                         em->orig_start = hole_start;
6827                         /*
6828                          * Don't adjust block start at all, it is fixed at
6829                          * EXTENT_MAP_HOLE
6830                          */
6831                         em->block_start = hole_em->block_start;
6832                         em->block_len = hole_len;
6833                         if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6834                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6835                 } else {
6836                         /*
6837                          * Hole is out of passed range or it starts after
6838                          * delalloc range
6839                          */
6840                         em->start = delalloc_start;
6841                         em->len = delalloc_len;
6842                         em->orig_start = delalloc_start;
6843                         em->block_start = EXTENT_MAP_DELALLOC;
6844                         em->block_len = delalloc_len;
6845                 }
6846         } else {
6847                 return hole_em;
6848         }
6849 out:
6850
6851         free_extent_map(hole_em);
6852         if (err) {
6853                 free_extent_map(em);
6854                 return ERR_PTR(err);
6855         }
6856         return em;
6857 }
6858
6859 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
6860                                                   const u64 start,
6861                                                   const u64 len,
6862                                                   const u64 orig_start,
6863                                                   const u64 block_start,
6864                                                   const u64 block_len,
6865                                                   const u64 orig_block_len,
6866                                                   const u64 ram_bytes,
6867                                                   const int type)
6868 {
6869         struct extent_map *em = NULL;
6870         int ret;
6871
6872         if (type != BTRFS_ORDERED_NOCOW) {
6873                 em = create_io_em(inode, start, len, orig_start,
6874                                   block_start, block_len, orig_block_len,
6875                                   ram_bytes,
6876                                   BTRFS_COMPRESS_NONE, /* compress_type */
6877                                   type);
6878                 if (IS_ERR(em))
6879                         goto out;
6880         }
6881         ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
6882                                            len, block_len, type);
6883         if (ret) {
6884                 if (em) {
6885                         free_extent_map(em);
6886                         btrfs_drop_extent_cache(BTRFS_I(inode), start,
6887                                                 start + len - 1, 0);
6888                 }
6889                 em = ERR_PTR(ret);
6890         }
6891  out:
6892
6893         return em;
6894 }
6895
6896 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6897                                                   u64 start, u64 len)
6898 {
6899         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6900         struct btrfs_root *root = BTRFS_I(inode)->root;
6901         struct extent_map *em;
6902         struct btrfs_key ins;
6903         u64 alloc_hint;
6904         int ret;
6905
6906         alloc_hint = get_extent_allocation_hint(inode, start, len);
6907         ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
6908                                    0, alloc_hint, &ins, 1, 1);
6909         if (ret)
6910                 return ERR_PTR(ret);
6911
6912         em = btrfs_create_dio_extent(inode, start, ins.offset, start,
6913                                      ins.objectid, ins.offset, ins.offset,
6914                                      ins.offset, BTRFS_ORDERED_REGULAR);
6915         btrfs_dec_block_group_reservations(fs_info, ins.objectid);
6916         if (IS_ERR(em))
6917                 btrfs_free_reserved_extent(fs_info, ins.objectid,
6918                                            ins.offset, 1);
6919
6920         return em;
6921 }
6922
6923 /*
6924  * returns 1 when the nocow is safe, < 1 on error, 0 if the
6925  * block must be cow'd
6926  */
6927 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6928                               u64 *orig_start, u64 *orig_block_len,
6929                               u64 *ram_bytes)
6930 {
6931         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
6932         struct btrfs_path *path;
6933         int ret;
6934         struct extent_buffer *leaf;
6935         struct btrfs_root *root = BTRFS_I(inode)->root;
6936         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6937         struct btrfs_file_extent_item *fi;
6938         struct btrfs_key key;
6939         u64 disk_bytenr;
6940         u64 backref_offset;
6941         u64 extent_end;
6942         u64 num_bytes;
6943         int slot;
6944         int found_type;
6945         bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6946
6947         path = btrfs_alloc_path();
6948         if (!path)
6949                 return -ENOMEM;
6950
6951         ret = btrfs_lookup_file_extent(NULL, root, path,
6952                         btrfs_ino(BTRFS_I(inode)), offset, 0);
6953         if (ret < 0)
6954                 goto out;
6955
6956         slot = path->slots[0];
6957         if (ret == 1) {
6958                 if (slot == 0) {
6959                         /* can't find the item, must cow */
6960                         ret = 0;
6961                         goto out;
6962                 }
6963                 slot--;
6964         }
6965         ret = 0;
6966         leaf = path->nodes[0];
6967         btrfs_item_key_to_cpu(leaf, &key, slot);
6968         if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
6969             key.type != BTRFS_EXTENT_DATA_KEY) {
6970                 /* not our file or wrong item type, must cow */
6971                 goto out;
6972         }
6973
6974         if (key.offset > offset) {
6975                 /* Wrong offset, must cow */
6976                 goto out;
6977         }
6978
6979         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6980         found_type = btrfs_file_extent_type(leaf, fi);
6981         if (found_type != BTRFS_FILE_EXTENT_REG &&
6982             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6983                 /* not a regular extent, must cow */
6984                 goto out;
6985         }
6986
6987         if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6988                 goto out;
6989
6990         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6991         if (extent_end <= offset)
6992                 goto out;
6993
6994         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6995         if (disk_bytenr == 0)
6996                 goto out;
6997
6998         if (btrfs_file_extent_compression(leaf, fi) ||
6999             btrfs_file_extent_encryption(leaf, fi) ||
7000             btrfs_file_extent_other_encoding(leaf, fi))
7001                 goto out;
7002
7003         /*
7004          * Do the same check as in btrfs_cross_ref_exist but without the
7005          * unnecessary search.
7006          */
7007         if (btrfs_file_extent_generation(leaf, fi) <=
7008             btrfs_root_last_snapshot(&root->root_item))
7009                 goto out;
7010
7011         backref_offset = btrfs_file_extent_offset(leaf, fi);
7012
7013         if (orig_start) {
7014                 *orig_start = key.offset - backref_offset;
7015                 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7016                 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7017         }
7018
7019         if (btrfs_extent_readonly(fs_info, disk_bytenr))
7020                 goto out;
7021
7022         num_bytes = min(offset + *len, extent_end) - offset;
7023         if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7024                 u64 range_end;
7025
7026                 range_end = round_up(offset + num_bytes,
7027                                      root->fs_info->sectorsize) - 1;
7028                 ret = test_range_bit(io_tree, offset, range_end,
7029                                      EXTENT_DELALLOC, 0, NULL);
7030                 if (ret) {
7031                         ret = -EAGAIN;
7032                         goto out;
7033                 }
7034         }
7035
7036         btrfs_release_path(path);
7037
7038         /*
7039          * look for other files referencing this extent, if we
7040          * find any we must cow
7041          */
7042
7043         ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
7044                                     key.offset - backref_offset, disk_bytenr);
7045         if (ret) {
7046                 ret = 0;
7047                 goto out;
7048         }
7049
7050         /*
7051          * adjust disk_bytenr and num_bytes to cover just the bytes
7052          * in this extent we are about to write.  If there
7053          * are any csums in that range we have to cow in order
7054          * to keep the csums correct
7055          */
7056         disk_bytenr += backref_offset;
7057         disk_bytenr += offset - key.offset;
7058         if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7059                 goto out;
7060         /*
7061          * all of the above have passed, it is safe to overwrite this extent
7062          * without cow
7063          */
7064         *len = num_bytes;
7065         ret = 1;
7066 out:
7067         btrfs_free_path(path);
7068         return ret;
7069 }
7070
7071 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7072                               struct extent_state **cached_state, int writing)
7073 {
7074         struct btrfs_ordered_extent *ordered;
7075         int ret = 0;
7076
7077         while (1) {
7078                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7079                                  cached_state);
7080                 /*
7081                  * We're concerned with the entire range that we're going to be
7082                  * doing DIO to, so we need to make sure there's no ordered
7083                  * extents in this range.
7084                  */
7085                 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
7086                                                      lockend - lockstart + 1);
7087
7088                 /*
7089                  * We need to make sure there are no buffered pages in this
7090                  * range either, we could have raced between the invalidate in
7091                  * generic_file_direct_write and locking the extent.  The
7092                  * invalidate needs to happen so that reads after a write do not
7093                  * get stale data.
7094                  */
7095                 if (!ordered &&
7096                     (!writing || !filemap_range_has_page(inode->i_mapping,
7097                                                          lockstart, lockend)))
7098                         break;
7099
7100                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7101                                      cached_state);
7102
7103                 if (ordered) {
7104                         /*
7105                          * If we are doing a DIO read and the ordered extent we
7106                          * found is for a buffered write, we can not wait for it
7107                          * to complete and retry, because if we do so we can
7108                          * deadlock with concurrent buffered writes on page
7109                          * locks. This happens only if our DIO read covers more
7110                          * than one extent map, if at this point has already
7111                          * created an ordered extent for a previous extent map
7112                          * and locked its range in the inode's io tree, and a
7113                          * concurrent write against that previous extent map's
7114                          * range and this range started (we unlock the ranges
7115                          * in the io tree only when the bios complete and
7116                          * buffered writes always lock pages before attempting
7117                          * to lock range in the io tree).
7118                          */
7119                         if (writing ||
7120                             test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7121                                 btrfs_start_ordered_extent(inode, ordered, 1);
7122                         else
7123                                 ret = -ENOTBLK;
7124                         btrfs_put_ordered_extent(ordered);
7125                 } else {
7126                         /*
7127                          * We could trigger writeback for this range (and wait
7128                          * for it to complete) and then invalidate the pages for
7129                          * this range (through invalidate_inode_pages2_range()),
7130                          * but that can lead us to a deadlock with a concurrent
7131                          * call to readahead (a buffered read or a defrag call
7132                          * triggered a readahead) on a page lock due to an
7133                          * ordered dio extent we created before but did not have
7134                          * yet a corresponding bio submitted (whence it can not
7135                          * complete), which makes readahead wait for that
7136                          * ordered extent to complete while holding a lock on
7137                          * that page.
7138                          */
7139                         ret = -ENOTBLK;
7140                 }
7141
7142                 if (ret)
7143                         break;
7144
7145                 cond_resched();
7146         }
7147
7148         return ret;
7149 }
7150
7151 /* The callers of this must take lock_extent() */
7152 static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7153                                        u64 orig_start, u64 block_start,
7154                                        u64 block_len, u64 orig_block_len,
7155                                        u64 ram_bytes, int compress_type,
7156                                        int type)
7157 {
7158         struct extent_map_tree *em_tree;
7159         struct extent_map *em;
7160         int ret;
7161
7162         ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7163                type == BTRFS_ORDERED_COMPRESSED ||
7164                type == BTRFS_ORDERED_NOCOW ||
7165                type == BTRFS_ORDERED_REGULAR);
7166
7167         em_tree = &BTRFS_I(inode)->extent_tree;
7168         em = alloc_extent_map();
7169         if (!em)
7170                 return ERR_PTR(-ENOMEM);
7171
7172         em->start = start;
7173         em->orig_start = orig_start;
7174         em->len = len;
7175         em->block_len = block_len;
7176         em->block_start = block_start;
7177         em->orig_block_len = orig_block_len;
7178         em->ram_bytes = ram_bytes;
7179         em->generation = -1;
7180         set_bit(EXTENT_FLAG_PINNED, &em->flags);
7181         if (type == BTRFS_ORDERED_PREALLOC) {
7182                 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7183         } else if (type == BTRFS_ORDERED_COMPRESSED) {
7184                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7185                 em->compress_type = compress_type;
7186         }
7187
7188         do {
7189                 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
7190                                 em->start + em->len - 1, 0);
7191                 write_lock(&em_tree->lock);
7192                 ret = add_extent_mapping(em_tree, em, 1);
7193                 write_unlock(&em_tree->lock);
7194                 /*
7195                  * The caller has taken lock_extent(), who could race with us
7196                  * to add em?
7197                  */
7198         } while (ret == -EEXIST);
7199
7200         if (ret) {
7201                 free_extent_map(em);
7202                 return ERR_PTR(ret);
7203         }
7204
7205         /* em got 2 refs now, callers needs to do free_extent_map once. */
7206         return em;
7207 }
7208
7209
7210 static int btrfs_get_blocks_direct_read(struct extent_map *em,
7211                                         struct buffer_head *bh_result,
7212                                         struct inode *inode,
7213                                         u64 start, u64 len)
7214 {
7215         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7216
7217         if (em->block_start == EXTENT_MAP_HOLE ||
7218                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7219                 return -ENOENT;
7220
7221         len = min(len, em->len - (start - em->start));
7222
7223         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7224                 inode->i_blkbits;
7225         bh_result->b_size = len;
7226         bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7227         set_buffer_mapped(bh_result);
7228
7229         return 0;
7230 }
7231
7232 static int btrfs_get_blocks_direct_write(struct extent_map **map,
7233                                          struct buffer_head *bh_result,
7234                                          struct inode *inode,
7235                                          struct btrfs_dio_data *dio_data,
7236                                          u64 start, u64 len)
7237 {
7238         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7239         struct extent_map *em = *map;
7240         int ret = 0;
7241
7242         /*
7243          * We don't allocate a new extent in the following cases
7244          *
7245          * 1) The inode is marked as NODATACOW. In this case we'll just use the
7246          * existing extent.
7247          * 2) The extent is marked as PREALLOC. We're good to go here and can
7248          * just use the extent.
7249          *
7250          */
7251         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7252             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7253              em->block_start != EXTENT_MAP_HOLE)) {
7254                 int type;
7255                 u64 block_start, orig_start, orig_block_len, ram_bytes;
7256
7257                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7258                         type = BTRFS_ORDERED_PREALLOC;
7259                 else
7260                         type = BTRFS_ORDERED_NOCOW;
7261                 len = min(len, em->len - (start - em->start));
7262                 block_start = em->block_start + (start - em->start);
7263
7264                 if (can_nocow_extent(inode, start, &len, &orig_start,
7265                                      &orig_block_len, &ram_bytes) == 1 &&
7266                     btrfs_inc_nocow_writers(fs_info, block_start)) {
7267                         struct extent_map *em2;
7268
7269                         em2 = btrfs_create_dio_extent(inode, start, len,
7270                                                       orig_start, block_start,
7271                                                       len, orig_block_len,
7272                                                       ram_bytes, type);
7273                         btrfs_dec_nocow_writers(fs_info, block_start);
7274                         if (type == BTRFS_ORDERED_PREALLOC) {
7275                                 free_extent_map(em);
7276                                 *map = em = em2;
7277                         }
7278
7279                         if (em2 && IS_ERR(em2)) {
7280                                 ret = PTR_ERR(em2);
7281                                 goto out;
7282                         }
7283                         /*
7284                          * For inode marked NODATACOW or extent marked PREALLOC,
7285                          * use the existing or preallocated extent, so does not
7286                          * need to adjust btrfs_space_info's bytes_may_use.
7287                          */
7288                         btrfs_free_reserved_data_space_noquota(inode, start,
7289                                                                len);
7290                         goto skip_cow;
7291                 }
7292         }
7293
7294         /* this will cow the extent */
7295         len = bh_result->b_size;
7296         free_extent_map(em);
7297         *map = em = btrfs_new_extent_direct(inode, start, len);
7298         if (IS_ERR(em)) {
7299                 ret = PTR_ERR(em);
7300                 goto out;
7301         }
7302
7303         len = min(len, em->len - (start - em->start));
7304
7305 skip_cow:
7306         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7307                 inode->i_blkbits;
7308         bh_result->b_size = len;
7309         bh_result->b_bdev = fs_info->fs_devices->latest_bdev;
7310         set_buffer_mapped(bh_result);
7311
7312         if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7313                 set_buffer_new(bh_result);
7314
7315         /*
7316          * Need to update the i_size under the extent lock so buffered
7317          * readers will get the updated i_size when we unlock.
7318          */
7319         if (!dio_data->overwrite && start + len > i_size_read(inode))
7320                 i_size_write(inode, start + len);
7321
7322         WARN_ON(dio_data->reserve < len);
7323         dio_data->reserve -= len;
7324         dio_data->unsubmitted_oe_range_end = start + len;
7325         current->journal_info = dio_data;
7326 out:
7327         return ret;
7328 }
7329
7330 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7331                                    struct buffer_head *bh_result, int create)
7332 {
7333         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7334         struct extent_map *em;
7335         struct extent_state *cached_state = NULL;
7336         struct btrfs_dio_data *dio_data = NULL;
7337         u64 start = iblock << inode->i_blkbits;
7338         u64 lockstart, lockend;
7339         u64 len = bh_result->b_size;
7340         int ret = 0;
7341
7342         if (!create)
7343                 len = min_t(u64, len, fs_info->sectorsize);
7344
7345         lockstart = start;
7346         lockend = start + len - 1;
7347
7348         if (current->journal_info) {
7349                 /*
7350                  * Need to pull our outstanding extents and set journal_info to NULL so
7351                  * that anything that needs to check if there's a transaction doesn't get
7352                  * confused.
7353                  */
7354                 dio_data = current->journal_info;
7355                 current->journal_info = NULL;
7356         }
7357
7358         /*
7359          * If this errors out it's because we couldn't invalidate pagecache for
7360          * this range and we need to fallback to buffered.
7361          */
7362         if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7363                                create)) {
7364                 ret = -ENOTBLK;
7365                 goto err;
7366         }
7367
7368         em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
7369         if (IS_ERR(em)) {
7370                 ret = PTR_ERR(em);
7371                 goto unlock_err;
7372         }
7373
7374         /*
7375          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7376          * io.  INLINE is special, and we could probably kludge it in here, but
7377          * it's still buffered so for safety lets just fall back to the generic
7378          * buffered path.
7379          *
7380          * For COMPRESSED we _have_ to read the entire extent in so we can
7381          * decompress it, so there will be buffering required no matter what we
7382          * do, so go ahead and fallback to buffered.
7383          *
7384          * We return -ENOTBLK because that's what makes DIO go ahead and go back
7385          * to buffered IO.  Don't blame me, this is the price we pay for using
7386          * the generic code.
7387          */
7388         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7389             em->block_start == EXTENT_MAP_INLINE) {
7390                 free_extent_map(em);
7391                 ret = -ENOTBLK;
7392                 goto unlock_err;
7393         }
7394
7395         if (create) {
7396                 ret = btrfs_get_blocks_direct_write(&em, bh_result, inode,
7397                                                     dio_data, start, len);
7398                 if (ret < 0)
7399                         goto unlock_err;
7400
7401                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
7402                                      lockend, &cached_state);
7403         } else {
7404                 ret = btrfs_get_blocks_direct_read(em, bh_result, inode,
7405                                                    start, len);
7406                 /* Can be negative only if we read from a hole */
7407                 if (ret < 0) {
7408                         ret = 0;
7409                         free_extent_map(em);
7410                         goto unlock_err;
7411                 }
7412                 /*
7413                  * We need to unlock only the end area that we aren't using.
7414                  * The rest is going to be unlocked by the endio routine.
7415                  */
7416                 lockstart = start + bh_result->b_size;
7417                 if (lockstart < lockend) {
7418                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
7419                                              lockstart, lockend, &cached_state);
7420                 } else {
7421                         free_extent_state(cached_state);
7422                 }
7423         }
7424
7425         free_extent_map(em);
7426
7427         return 0;
7428
7429 unlock_err:
7430         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7431                              &cached_state);
7432 err:
7433         if (dio_data)
7434                 current->journal_info = dio_data;
7435         return ret;
7436 }
7437
7438 static void btrfs_dio_private_put(struct btrfs_dio_private *dip)
7439 {
7440         /*
7441          * This implies a barrier so that stores to dio_bio->bi_status before
7442          * this and loads of dio_bio->bi_status after this are fully ordered.
7443          */
7444         if (!refcount_dec_and_test(&dip->refs))
7445                 return;
7446
7447         if (bio_op(dip->dio_bio) == REQ_OP_WRITE) {
7448                 __endio_write_update_ordered(dip->inode, dip->logical_offset,
7449                                              dip->bytes,
7450                                              !dip->dio_bio->bi_status);
7451         } else {
7452                 unlock_extent(&BTRFS_I(dip->inode)->io_tree,
7453                               dip->logical_offset,
7454                               dip->logical_offset + dip->bytes - 1);
7455         }
7456
7457         dio_end_io(dip->dio_bio);
7458         kfree(dip);
7459 }
7460
7461 static blk_status_t submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7462                                           int mirror_num,
7463                                           unsigned long bio_flags)
7464 {
7465         struct btrfs_dio_private *dip = bio->bi_private;
7466         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7467         blk_status_t ret;
7468
7469         BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7470
7471         ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7472         if (ret)
7473                 return ret;
7474
7475         refcount_inc(&dip->refs);
7476         ret = btrfs_map_bio(fs_info, bio, mirror_num);
7477         if (ret)
7478                 refcount_dec(&dip->refs);
7479         return ret;
7480 }
7481
7482 static blk_status_t btrfs_check_read_dio_bio(struct inode *inode,
7483                                              struct btrfs_io_bio *io_bio,
7484                                              const bool uptodate)
7485 {
7486         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
7487         const u32 sectorsize = fs_info->sectorsize;
7488         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
7489         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7490         const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7491         struct bio_vec bvec;
7492         struct bvec_iter iter;
7493         u64 start = io_bio->logical;
7494         int icsum = 0;
7495         blk_status_t err = BLK_STS_OK;
7496
7497         __bio_for_each_segment(bvec, &io_bio->bio, iter, io_bio->iter) {
7498                 unsigned int i, nr_sectors, pgoff;
7499
7500                 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
7501                 pgoff = bvec.bv_offset;
7502                 for (i = 0; i < nr_sectors; i++) {
7503                         ASSERT(pgoff < PAGE_SIZE);
7504                         if (uptodate &&
7505                             (!csum || !check_data_csum(inode, io_bio, icsum,
7506                                                        bvec.bv_page, pgoff,
7507                                                        start, sectorsize))) {
7508                                 clean_io_failure(fs_info, failure_tree, io_tree,
7509                                                  start, bvec.bv_page,
7510                                                  btrfs_ino(BTRFS_I(inode)),
7511                                                  pgoff);
7512                         } else {
7513                                 blk_status_t status;
7514
7515                                 status = btrfs_submit_read_repair(inode,
7516                                                         &io_bio->bio,
7517                                                         start - io_bio->logical,
7518                                                         bvec.bv_page, pgoff,
7519                                                         start,
7520                                                         start + sectorsize - 1,
7521                                                         io_bio->mirror_num,
7522                                                         submit_dio_repair_bio);
7523                                 if (status)
7524                                         err = status;
7525                         }
7526                         start += sectorsize;
7527                         icsum++;
7528                         pgoff += sectorsize;
7529                 }
7530         }
7531         return err;
7532 }
7533
7534 static void __endio_write_update_ordered(struct inode *inode,
7535                                          const u64 offset, const u64 bytes,
7536                                          const bool uptodate)
7537 {
7538         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7539         struct btrfs_ordered_extent *ordered = NULL;
7540         struct btrfs_workqueue *wq;
7541         u64 ordered_offset = offset;
7542         u64 ordered_bytes = bytes;
7543         u64 last_offset;
7544
7545         if (btrfs_is_free_space_inode(BTRFS_I(inode)))
7546                 wq = fs_info->endio_freespace_worker;
7547         else
7548                 wq = fs_info->endio_write_workers;
7549
7550         while (ordered_offset < offset + bytes) {
7551                 last_offset = ordered_offset;
7552                 if (btrfs_dec_test_first_ordered_pending(inode, &ordered,
7553                                                            &ordered_offset,
7554                                                            ordered_bytes,
7555                                                            uptodate)) {
7556                         btrfs_init_work(&ordered->work, finish_ordered_fn, NULL,
7557                                         NULL);
7558                         btrfs_queue_work(wq, &ordered->work);
7559                 }
7560                 /*
7561                  * If btrfs_dec_test_ordered_pending does not find any ordered
7562                  * extent in the range, we can exit.
7563                  */
7564                 if (ordered_offset == last_offset)
7565                         return;
7566                 /*
7567                  * Our bio might span multiple ordered extents. In this case
7568                  * we keep going until we have accounted the whole dio.
7569                  */
7570                 if (ordered_offset < offset + bytes) {
7571                         ordered_bytes = offset + bytes - ordered_offset;
7572                         ordered = NULL;
7573                 }
7574         }
7575 }
7576
7577 static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data,
7578                                     struct bio *bio, u64 offset)
7579 {
7580         struct inode *inode = private_data;
7581         blk_status_t ret;
7582         ret = btrfs_csum_one_bio(inode, bio, offset, 1);
7583         BUG_ON(ret); /* -ENOMEM */
7584         return 0;
7585 }
7586
7587 static void btrfs_end_dio_bio(struct bio *bio)
7588 {
7589         struct btrfs_dio_private *dip = bio->bi_private;
7590         blk_status_t err = bio->bi_status;
7591
7592         if (err)
7593                 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7594                            "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
7595                            btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
7596                            bio->bi_opf,
7597                            (unsigned long long)bio->bi_iter.bi_sector,
7598                            bio->bi_iter.bi_size, err);
7599
7600         if (bio_op(bio) == REQ_OP_READ) {
7601                 err = btrfs_check_read_dio_bio(dip->inode, btrfs_io_bio(bio),
7602                                                !err);
7603         }
7604
7605         if (err)
7606                 dip->dio_bio->bi_status = err;
7607
7608         bio_put(bio);
7609         btrfs_dio_private_put(dip);
7610 }
7611
7612 static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio,
7613                 struct inode *inode, u64 file_offset, int async_submit)
7614 {
7615         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7616         struct btrfs_dio_private *dip = bio->bi_private;
7617         bool write = bio_op(bio) == REQ_OP_WRITE;
7618         blk_status_t ret;
7619
7620         /* Check btrfs_submit_bio_hook() for rules about async submit. */
7621         if (async_submit)
7622                 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7623
7624         if (!write) {
7625                 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
7626                 if (ret)
7627                         goto err;
7628         }
7629
7630         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
7631                 goto map;
7632
7633         if (write && async_submit) {
7634                 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
7635                                           file_offset, inode,
7636                                           btrfs_submit_bio_start_direct_io);
7637                 goto err;
7638         } else if (write) {
7639                 /*
7640                  * If we aren't doing async submit, calculate the csum of the
7641                  * bio now.
7642                  */
7643                 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
7644                 if (ret)
7645                         goto err;
7646         } else {
7647                 u64 csum_offset;
7648
7649                 csum_offset = file_offset - dip->logical_offset;
7650                 csum_offset >>= inode->i_sb->s_blocksize_bits;
7651                 csum_offset *= btrfs_super_csum_size(fs_info->super_copy);
7652                 btrfs_io_bio(bio)->csum = dip->csums + csum_offset;
7653         }
7654 map:
7655         ret = btrfs_map_bio(fs_info, bio, 0);
7656 err:
7657         return ret;
7658 }
7659
7660 /*
7661  * If this succeeds, the btrfs_dio_private is responsible for cleaning up locked
7662  * or ordered extents whether or not we submit any bios.
7663  */
7664 static struct btrfs_dio_private *btrfs_create_dio_private(struct bio *dio_bio,
7665                                                           struct inode *inode,
7666                                                           loff_t file_offset)
7667 {
7668         const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7669         const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7670         size_t dip_size;
7671         struct btrfs_dio_private *dip;
7672
7673         dip_size = sizeof(*dip);
7674         if (!write && csum) {
7675                 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7676                 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
7677                 size_t nblocks;
7678
7679                 nblocks = dio_bio->bi_iter.bi_size >> inode->i_sb->s_blocksize_bits;
7680                 dip_size += csum_size * nblocks;
7681         }
7682
7683         dip = kzalloc(dip_size, GFP_NOFS);
7684         if (!dip)
7685                 return NULL;
7686
7687         dip->inode = inode;
7688         dip->logical_offset = file_offset;
7689         dip->bytes = dio_bio->bi_iter.bi_size;
7690         dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7691         dip->dio_bio = dio_bio;
7692         refcount_set(&dip->refs, 1);
7693
7694         if (write) {
7695                 struct btrfs_dio_data *dio_data = current->journal_info;
7696
7697                 /*
7698                  * Setting range start and end to the same value means that
7699                  * no cleanup will happen in btrfs_direct_IO
7700                  */
7701                 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
7702                         dip->bytes;
7703                 dio_data->unsubmitted_oe_range_start =
7704                         dio_data->unsubmitted_oe_range_end;
7705         }
7706         return dip;
7707 }
7708
7709 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
7710                                 loff_t file_offset)
7711 {
7712         const bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
7713         const bool csum = !(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM);
7714         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7715         const bool raid56 = (btrfs_data_alloc_profile(fs_info) &
7716                              BTRFS_BLOCK_GROUP_RAID56_MASK);
7717         struct btrfs_dio_private *dip;
7718         struct bio *bio;
7719         u64 start_sector;
7720         int async_submit = 0;
7721         u64 submit_len;
7722         int clone_offset = 0;
7723         int clone_len;
7724         int ret;
7725         blk_status_t status;
7726         struct btrfs_io_geometry geom;
7727
7728         dip = btrfs_create_dio_private(dio_bio, inode, file_offset);
7729         if (!dip) {
7730                 if (!write) {
7731                         unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
7732                                 file_offset + dio_bio->bi_iter.bi_size - 1);
7733                 }
7734                 dio_bio->bi_status = BLK_STS_RESOURCE;
7735                 dio_end_io(dio_bio);
7736                 return;
7737         }
7738
7739         if (!write && csum) {
7740                 /*
7741                  * Load the csums up front to reduce csum tree searches and
7742                  * contention when submitting bios.
7743                  */
7744                 status = btrfs_lookup_bio_sums(inode, dio_bio, file_offset,
7745                                                dip->csums);
7746                 if (status != BLK_STS_OK)
7747                         goto out_err;
7748         }
7749
7750         start_sector = dio_bio->bi_iter.bi_sector;
7751         submit_len = dio_bio->bi_iter.bi_size;
7752
7753         do {
7754                 ret = btrfs_get_io_geometry(fs_info, btrfs_op(dio_bio),
7755                                             start_sector << 9, submit_len,
7756                                             &geom);
7757                 if (ret) {
7758                         status = errno_to_blk_status(ret);
7759                         goto out_err;
7760                 }
7761                 ASSERT(geom.len <= INT_MAX);
7762
7763                 clone_len = min_t(int, submit_len, geom.len);
7764
7765                 /*
7766                  * This will never fail as it's passing GPF_NOFS and
7767                  * the allocation is backed by btrfs_bioset.
7768                  */
7769                 bio = btrfs_bio_clone_partial(dio_bio, clone_offset, clone_len);
7770                 bio->bi_private = dip;
7771                 bio->bi_end_io = btrfs_end_dio_bio;
7772                 btrfs_io_bio(bio)->logical = file_offset;
7773
7774                 ASSERT(submit_len >= clone_len);
7775                 submit_len -= clone_len;
7776
7777                 /*
7778                  * Increase the count before we submit the bio so we know
7779                  * the end IO handler won't happen before we increase the
7780                  * count. Otherwise, the dip might get freed before we're
7781                  * done setting it up.
7782                  *
7783                  * We transfer the initial reference to the last bio, so we
7784                  * don't need to increment the reference count for the last one.
7785                  */
7786                 if (submit_len > 0) {
7787                         refcount_inc(&dip->refs);
7788                         /*
7789                          * If we are submitting more than one bio, submit them
7790                          * all asynchronously. The exception is RAID 5 or 6, as
7791                          * asynchronous checksums make it difficult to collect
7792                          * full stripe writes.
7793                          */
7794                         if (!raid56)
7795                                 async_submit = 1;
7796                 }
7797
7798                 status = btrfs_submit_dio_bio(bio, inode, file_offset,
7799                                                 async_submit);
7800                 if (status) {
7801                         bio_put(bio);
7802                         if (submit_len > 0)
7803                                 refcount_dec(&dip->refs);
7804                         goto out_err;
7805                 }
7806
7807                 clone_offset += clone_len;
7808                 start_sector += clone_len >> 9;
7809                 file_offset += clone_len;
7810         } while (submit_len > 0);
7811         return;
7812
7813 out_err:
7814         dip->dio_bio->bi_status = status;
7815         btrfs_dio_private_put(dip);
7816 }
7817
7818 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
7819                                const struct iov_iter *iter, loff_t offset)
7820 {
7821         int seg;
7822         int i;
7823         unsigned int blocksize_mask = fs_info->sectorsize - 1;
7824         ssize_t retval = -EINVAL;
7825
7826         if (offset & blocksize_mask)
7827                 goto out;
7828
7829         if (iov_iter_alignment(iter) & blocksize_mask)
7830                 goto out;
7831
7832         /* If this is a write we don't need to check anymore */
7833         if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
7834                 return 0;
7835         /*
7836          * Check to make sure we don't have duplicate iov_base's in this
7837          * iovec, if so return EINVAL, otherwise we'll get csum errors
7838          * when reading back.
7839          */
7840         for (seg = 0; seg < iter->nr_segs; seg++) {
7841                 for (i = seg + 1; i < iter->nr_segs; i++) {
7842                         if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7843                                 goto out;
7844                 }
7845         }
7846         retval = 0;
7847 out:
7848         return retval;
7849 }
7850
7851 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
7852 {
7853         struct file *file = iocb->ki_filp;
7854         struct inode *inode = file->f_mapping->host;
7855         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7856         struct btrfs_dio_data dio_data = { 0 };
7857         struct extent_changeset *data_reserved = NULL;
7858         loff_t offset = iocb->ki_pos;
7859         size_t count = 0;
7860         int flags = 0;
7861         bool wakeup = true;
7862         bool relock = false;
7863         ssize_t ret;
7864
7865         if (check_direct_IO(fs_info, iter, offset))
7866                 return 0;
7867
7868         inode_dio_begin(inode);
7869
7870         /*
7871          * The generic stuff only does filemap_write_and_wait_range, which
7872          * isn't enough if we've written compressed pages to this area, so
7873          * we need to flush the dirty pages again to make absolutely sure
7874          * that any outstanding dirty pages are on disk.
7875          */
7876         count = iov_iter_count(iter);
7877         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7878                      &BTRFS_I(inode)->runtime_flags))
7879                 filemap_fdatawrite_range(inode->i_mapping, offset,
7880                                          offset + count - 1);
7881
7882         if (iov_iter_rw(iter) == WRITE) {
7883                 /*
7884                  * If the write DIO is beyond the EOF, we need update
7885                  * the isize, but it is protected by i_mutex. So we can
7886                  * not unlock the i_mutex at this case.
7887                  */
7888                 if (offset + count <= inode->i_size) {
7889                         dio_data.overwrite = 1;
7890                         inode_unlock(inode);
7891                         relock = true;
7892                 }
7893                 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
7894                                                    offset, count);
7895                 if (ret)
7896                         goto out;
7897
7898                 /*
7899                  * We need to know how many extents we reserved so that we can
7900                  * do the accounting properly if we go over the number we
7901                  * originally calculated.  Abuse current->journal_info for this.
7902                  */
7903                 dio_data.reserve = round_up(count,
7904                                             fs_info->sectorsize);
7905                 dio_data.unsubmitted_oe_range_start = (u64)offset;
7906                 dio_data.unsubmitted_oe_range_end = (u64)offset;
7907                 current->journal_info = &dio_data;
7908                 down_read(&BTRFS_I(inode)->dio_sem);
7909         } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7910                                      &BTRFS_I(inode)->runtime_flags)) {
7911                 inode_dio_end(inode);
7912                 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7913                 wakeup = false;
7914         }
7915
7916         ret = __blockdev_direct_IO(iocb, inode,
7917                                    fs_info->fs_devices->latest_bdev,
7918                                    iter, btrfs_get_blocks_direct, NULL,
7919                                    btrfs_submit_direct, flags);
7920         if (iov_iter_rw(iter) == WRITE) {
7921                 up_read(&BTRFS_I(inode)->dio_sem);
7922                 current->journal_info = NULL;
7923                 if (ret < 0 && ret != -EIOCBQUEUED) {
7924                         if (dio_data.reserve)
7925                                 btrfs_delalloc_release_space(inode, data_reserved,
7926                                         offset, dio_data.reserve, true);
7927                         /*
7928                          * On error we might have left some ordered extents
7929                          * without submitting corresponding bios for them, so
7930                          * cleanup them up to avoid other tasks getting them
7931                          * and waiting for them to complete forever.
7932                          */
7933                         if (dio_data.unsubmitted_oe_range_start <
7934                             dio_data.unsubmitted_oe_range_end)
7935                                 __endio_write_update_ordered(inode,
7936                                         dio_data.unsubmitted_oe_range_start,
7937                                         dio_data.unsubmitted_oe_range_end -
7938                                         dio_data.unsubmitted_oe_range_start,
7939                                         false);
7940                 } else if (ret >= 0 && (size_t)ret < count)
7941                         btrfs_delalloc_release_space(inode, data_reserved,
7942                                         offset, count - (size_t)ret, true);
7943                 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
7944         }
7945 out:
7946         if (wakeup)
7947                 inode_dio_end(inode);
7948         if (relock)
7949                 inode_lock(inode);
7950
7951         extent_changeset_free(data_reserved);
7952         return ret;
7953 }
7954
7955 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7956                 __u64 start, __u64 len)
7957 {
7958         int     ret;
7959
7960         ret = fiemap_prep(inode, fieinfo, start, &len, 0);
7961         if (ret)
7962                 return ret;
7963
7964         return extent_fiemap(inode, fieinfo, start, len);
7965 }
7966
7967 int btrfs_readpage(struct file *file, struct page *page)
7968 {
7969         return extent_read_full_page(page, btrfs_get_extent, 0);
7970 }
7971
7972 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7973 {
7974         struct inode *inode = page->mapping->host;
7975         int ret;
7976
7977         if (current->flags & PF_MEMALLOC) {
7978                 redirty_page_for_writepage(wbc, page);
7979                 unlock_page(page);
7980                 return 0;
7981         }
7982
7983         /*
7984          * If we are under memory pressure we will call this directly from the
7985          * VM, we need to make sure we have the inode referenced for the ordered
7986          * extent.  If not just return like we didn't do anything.
7987          */
7988         if (!igrab(inode)) {
7989                 redirty_page_for_writepage(wbc, page);
7990                 return AOP_WRITEPAGE_ACTIVATE;
7991         }
7992         ret = extent_write_full_page(page, wbc);
7993         btrfs_add_delayed_iput(inode);
7994         return ret;
7995 }
7996
7997 static int btrfs_writepages(struct address_space *mapping,
7998                             struct writeback_control *wbc)
7999 {
8000         return extent_writepages(mapping, wbc);
8001 }
8002
8003 static void btrfs_readahead(struct readahead_control *rac)
8004 {
8005         extent_readahead(rac);
8006 }
8007
8008 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8009 {
8010         int ret = try_release_extent_mapping(page, gfp_flags);
8011         if (ret == 1)
8012                 detach_page_private(page);
8013         return ret;
8014 }
8015
8016 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8017 {
8018         if (PageWriteback(page) || PageDirty(page))
8019                 return 0;
8020         return __btrfs_releasepage(page, gfp_flags);
8021 }
8022
8023 #ifdef CONFIG_MIGRATION
8024 static int btrfs_migratepage(struct address_space *mapping,
8025                              struct page *newpage, struct page *page,
8026                              enum migrate_mode mode)
8027 {
8028         int ret;
8029
8030         ret = migrate_page_move_mapping(mapping, newpage, page, 0);
8031         if (ret != MIGRATEPAGE_SUCCESS)
8032                 return ret;
8033
8034         if (page_has_private(page))
8035                 attach_page_private(newpage, detach_page_private(page));
8036
8037         if (PagePrivate2(page)) {
8038                 ClearPagePrivate2(page);
8039                 SetPagePrivate2(newpage);
8040         }
8041
8042         if (mode != MIGRATE_SYNC_NO_COPY)
8043                 migrate_page_copy(newpage, page);
8044         else
8045                 migrate_page_states(newpage, page);
8046         return MIGRATEPAGE_SUCCESS;
8047 }
8048 #endif
8049
8050 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8051                                  unsigned int length)
8052 {
8053         struct inode *inode = page->mapping->host;
8054         struct extent_io_tree *tree;
8055         struct btrfs_ordered_extent *ordered;
8056         struct extent_state *cached_state = NULL;
8057         u64 page_start = page_offset(page);
8058         u64 page_end = page_start + PAGE_SIZE - 1;
8059         u64 start;
8060         u64 end;
8061         int inode_evicting = inode->i_state & I_FREEING;
8062
8063         /*
8064          * we have the page locked, so new writeback can't start,
8065          * and the dirty bit won't be cleared while we are here.
8066          *
8067          * Wait for IO on this page so that we can safely clear
8068          * the PagePrivate2 bit and do ordered accounting
8069          */
8070         wait_on_page_writeback(page);
8071
8072         tree = &BTRFS_I(inode)->io_tree;
8073         if (offset) {
8074                 btrfs_releasepage(page, GFP_NOFS);
8075                 return;
8076         }
8077
8078         if (!inode_evicting)
8079                 lock_extent_bits(tree, page_start, page_end, &cached_state);
8080 again:
8081         start = page_start;
8082         ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
8083                                         page_end - start + 1);
8084         if (ordered) {
8085                 end = min(page_end,
8086                           ordered->file_offset + ordered->num_bytes - 1);
8087                 /*
8088                  * IO on this page will never be started, so we need
8089                  * to account for any ordered extents now
8090                  */
8091                 if (!inode_evicting)
8092                         clear_extent_bit(tree, start, end,
8093                                          EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8094                                          EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8095                                          EXTENT_DEFRAG, 1, 0, &cached_state);
8096                 /*
8097                  * whoever cleared the private bit is responsible
8098                  * for the finish_ordered_io
8099                  */
8100                 if (TestClearPagePrivate2(page)) {
8101                         struct btrfs_ordered_inode_tree *tree;
8102                         u64 new_len;
8103
8104                         tree = &BTRFS_I(inode)->ordered_tree;
8105
8106                         spin_lock_irq(&tree->lock);
8107                         set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8108                         new_len = start - ordered->file_offset;
8109                         if (new_len < ordered->truncated_len)
8110                                 ordered->truncated_len = new_len;
8111                         spin_unlock_irq(&tree->lock);
8112
8113                         if (btrfs_dec_test_ordered_pending(inode, &ordered,
8114                                                            start,
8115                                                            end - start + 1, 1))
8116                                 btrfs_finish_ordered_io(ordered);
8117                 }
8118                 btrfs_put_ordered_extent(ordered);
8119                 if (!inode_evicting) {
8120                         cached_state = NULL;
8121                         lock_extent_bits(tree, start, end,
8122                                          &cached_state);
8123                 }
8124
8125                 start = end + 1;
8126                 if (start < page_end)
8127                         goto again;
8128         }
8129
8130         /*
8131          * Qgroup reserved space handler
8132          * Page here will be either
8133          * 1) Already written to disk
8134          *    In this case, its reserved space is released from data rsv map
8135          *    and will be freed by delayed_ref handler finally.
8136          *    So even we call qgroup_free_data(), it won't decrease reserved
8137          *    space.
8138          * 2) Not written to disk
8139          *    This means the reserved space should be freed here. However,
8140          *    if a truncate invalidates the page (by clearing PageDirty)
8141          *    and the page is accounted for while allocating extent
8142          *    in btrfs_check_data_free_space() we let delayed_ref to
8143          *    free the entire extent.
8144          */
8145         if (PageDirty(page))
8146                 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
8147         if (!inode_evicting) {
8148                 clear_extent_bit(tree, page_start, page_end, EXTENT_LOCKED |
8149                                  EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
8150                                  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
8151                                  &cached_state);
8152
8153                 __btrfs_releasepage(page, GFP_NOFS);
8154         }
8155
8156         ClearPageChecked(page);
8157         detach_page_private(page);
8158 }
8159
8160 /*
8161  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8162  * called from a page fault handler when a page is first dirtied. Hence we must
8163  * be careful to check for EOF conditions here. We set the page up correctly
8164  * for a written page which means we get ENOSPC checking when writing into
8165  * holes and correct delalloc and unwritten extent mapping on filesystems that
8166  * support these features.
8167  *
8168  * We are not allowed to take the i_mutex here so we have to play games to
8169  * protect against truncate races as the page could now be beyond EOF.  Because
8170  * truncate_setsize() writes the inode size before removing pages, once we have
8171  * the page lock we can determine safely if the page is beyond EOF. If it is not
8172  * beyond EOF, then the page is guaranteed safe against truncation until we
8173  * unlock the page.
8174  */
8175 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
8176 {
8177         struct page *page = vmf->page;
8178         struct inode *inode = file_inode(vmf->vma->vm_file);
8179         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8180         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8181         struct btrfs_ordered_extent *ordered;
8182         struct extent_state *cached_state = NULL;
8183         struct extent_changeset *data_reserved = NULL;
8184         char *kaddr;
8185         unsigned long zero_start;
8186         loff_t size;
8187         vm_fault_t ret;
8188         int ret2;
8189         int reserved = 0;
8190         u64 reserved_space;
8191         u64 page_start;
8192         u64 page_end;
8193         u64 end;
8194
8195         reserved_space = PAGE_SIZE;
8196
8197         sb_start_pagefault(inode->i_sb);
8198         page_start = page_offset(page);
8199         page_end = page_start + PAGE_SIZE - 1;
8200         end = page_end;
8201
8202         /*
8203          * Reserving delalloc space after obtaining the page lock can lead to
8204          * deadlock. For example, if a dirty page is locked by this function
8205          * and the call to btrfs_delalloc_reserve_space() ends up triggering
8206          * dirty page write out, then the btrfs_writepage() function could
8207          * end up waiting indefinitely to get a lock on the page currently
8208          * being processed by btrfs_page_mkwrite() function.
8209          */
8210         ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
8211                                            reserved_space);
8212         if (!ret2) {
8213                 ret2 = file_update_time(vmf->vma->vm_file);
8214                 reserved = 1;
8215         }
8216         if (ret2) {
8217                 ret = vmf_error(ret2);
8218                 if (reserved)
8219                         goto out;
8220                 goto out_noreserve;
8221         }
8222
8223         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8224 again:
8225         lock_page(page);
8226         size = i_size_read(inode);
8227
8228         if ((page->mapping != inode->i_mapping) ||
8229             (page_start >= size)) {
8230                 /* page got truncated out from underneath us */
8231                 goto out_unlock;
8232         }
8233         wait_on_page_writeback(page);
8234
8235         lock_extent_bits(io_tree, page_start, page_end, &cached_state);
8236         set_page_extent_mapped(page);
8237
8238         /*
8239          * we can't set the delalloc bits if there are pending ordered
8240          * extents.  Drop our locks and wait for them to finish
8241          */
8242         ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
8243                         PAGE_SIZE);
8244         if (ordered) {
8245                 unlock_extent_cached(io_tree, page_start, page_end,
8246                                      &cached_state);
8247                 unlock_page(page);
8248                 btrfs_start_ordered_extent(inode, ordered, 1);
8249                 btrfs_put_ordered_extent(ordered);
8250                 goto again;
8251         }
8252
8253         if (page->index == ((size - 1) >> PAGE_SHIFT)) {
8254                 reserved_space = round_up(size - page_start,
8255                                           fs_info->sectorsize);
8256                 if (reserved_space < PAGE_SIZE) {
8257                         end = page_start + reserved_space - 1;
8258                         btrfs_delalloc_release_space(inode, data_reserved,
8259                                         page_start, PAGE_SIZE - reserved_space,
8260                                         true);
8261                 }
8262         }
8263
8264         /*
8265          * page_mkwrite gets called when the page is firstly dirtied after it's
8266          * faulted in, but write(2) could also dirty a page and set delalloc
8267          * bits, thus in this case for space account reason, we still need to
8268          * clear any delalloc bits within this page range since we have to
8269          * reserve data&meta space before lock_page() (see above comments).
8270          */
8271         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
8272                           EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8273                           EXTENT_DEFRAG, 0, 0, &cached_state);
8274
8275         ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0,
8276                                         &cached_state);
8277         if (ret2) {
8278                 unlock_extent_cached(io_tree, page_start, page_end,
8279                                      &cached_state);
8280                 ret = VM_FAULT_SIGBUS;
8281                 goto out_unlock;
8282         }
8283
8284         /* page is wholly or partially inside EOF */
8285         if (page_start + PAGE_SIZE > size)
8286                 zero_start = offset_in_page(size);
8287         else
8288                 zero_start = PAGE_SIZE;
8289
8290         if (zero_start != PAGE_SIZE) {
8291                 kaddr = kmap(page);
8292                 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
8293                 flush_dcache_page(page);
8294                 kunmap(page);
8295         }
8296         ClearPageChecked(page);
8297         set_page_dirty(page);
8298         SetPageUptodate(page);
8299
8300         BTRFS_I(inode)->last_trans = fs_info->generation;
8301         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8302         BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8303
8304         unlock_extent_cached(io_tree, page_start, page_end, &cached_state);
8305
8306         btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8307         sb_end_pagefault(inode->i_sb);
8308         extent_changeset_free(data_reserved);
8309         return VM_FAULT_LOCKED;
8310
8311 out_unlock:
8312         unlock_page(page);
8313 out:
8314         btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
8315         btrfs_delalloc_release_space(inode, data_reserved, page_start,
8316                                      reserved_space, (ret != 0));
8317 out_noreserve:
8318         sb_end_pagefault(inode->i_sb);
8319         extent_changeset_free(data_reserved);
8320         return ret;
8321 }
8322
8323 static int btrfs_truncate(struct inode *inode, bool skip_writeback)
8324 {
8325         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8326         struct btrfs_root *root = BTRFS_I(inode)->root;
8327         struct btrfs_block_rsv *rsv;
8328         int ret;
8329         struct btrfs_trans_handle *trans;
8330         u64 mask = fs_info->sectorsize - 1;
8331         u64 min_size = btrfs_calc_metadata_size(fs_info, 1);
8332
8333         if (!skip_writeback) {
8334                 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8335                                                (u64)-1);
8336                 if (ret)
8337                         return ret;
8338         }
8339
8340         /*
8341          * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of
8342          * things going on here:
8343          *
8344          * 1) We need to reserve space to update our inode.
8345          *
8346          * 2) We need to have something to cache all the space that is going to
8347          * be free'd up by the truncate operation, but also have some slack
8348          * space reserved in case it uses space during the truncate (thank you
8349          * very much snapshotting).
8350          *
8351          * And we need these to be separate.  The fact is we can use a lot of
8352          * space doing the truncate, and we have no earthly idea how much space
8353          * we will use, so we need the truncate reservation to be separate so it
8354          * doesn't end up using space reserved for updating the inode.  We also
8355          * need to be able to stop the transaction and start a new one, which
8356          * means we need to be able to update the inode several times, and we
8357          * have no idea of knowing how many times that will be, so we can't just
8358          * reserve 1 item for the entirety of the operation, so that has to be
8359          * done separately as well.
8360          *
8361          * So that leaves us with
8362          *
8363          * 1) rsv - for the truncate reservation, which we will steal from the
8364          * transaction reservation.
8365          * 2) fs_info->trans_block_rsv - this will have 1 items worth left for
8366          * updating the inode.
8367          */
8368         rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
8369         if (!rsv)
8370                 return -ENOMEM;
8371         rsv->size = min_size;
8372         rsv->failfast = 1;
8373
8374         /*
8375          * 1 for the truncate slack space
8376          * 1 for updating the inode.
8377          */
8378         trans = btrfs_start_transaction(root, 2);
8379         if (IS_ERR(trans)) {
8380                 ret = PTR_ERR(trans);
8381                 goto out;
8382         }
8383
8384         /* Migrate the slack space for the truncate to our reserve */
8385         ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
8386                                       min_size, false);
8387         BUG_ON(ret);
8388
8389         /*
8390          * So if we truncate and then write and fsync we normally would just
8391          * write the extents that changed, which is a problem if we need to
8392          * first truncate that entire inode.  So set this flag so we write out
8393          * all of the extents in the inode to the sync log so we're completely
8394          * safe.
8395          */
8396         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8397         trans->block_rsv = rsv;
8398
8399         while (1) {
8400                 ret = btrfs_truncate_inode_items(trans, root, inode,
8401                                                  inode->i_size,
8402                                                  BTRFS_EXTENT_DATA_KEY);
8403                 trans->block_rsv = &fs_info->trans_block_rsv;
8404                 if (ret != -ENOSPC && ret != -EAGAIN)
8405                         break;
8406
8407                 ret = btrfs_update_inode(trans, root, inode);
8408                 if (ret)
8409                         break;
8410
8411                 btrfs_end_transaction(trans);
8412                 btrfs_btree_balance_dirty(fs_info);
8413
8414                 trans = btrfs_start_transaction(root, 2);
8415                 if (IS_ERR(trans)) {
8416                         ret = PTR_ERR(trans);
8417                         trans = NULL;
8418                         break;
8419                 }
8420
8421                 btrfs_block_rsv_release(fs_info, rsv, -1, NULL);
8422                 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
8423                                               rsv, min_size, false);
8424                 BUG_ON(ret);    /* shouldn't happen */
8425                 trans->block_rsv = rsv;
8426         }
8427
8428         /*
8429          * We can't call btrfs_truncate_block inside a trans handle as we could
8430          * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
8431          * we've truncated everything except the last little bit, and can do
8432          * btrfs_truncate_block and then update the disk_i_size.
8433          */
8434         if (ret == NEED_TRUNCATE_BLOCK) {
8435                 btrfs_end_transaction(trans);
8436                 btrfs_btree_balance_dirty(fs_info);
8437
8438                 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
8439                 if (ret)
8440                         goto out;
8441                 trans = btrfs_start_transaction(root, 1);
8442                 if (IS_ERR(trans)) {
8443                         ret = PTR_ERR(trans);
8444                         goto out;
8445                 }
8446                 btrfs_inode_safe_disk_i_size_write(inode, 0);
8447         }
8448
8449         if (trans) {
8450                 int ret2;
8451
8452                 trans->block_rsv = &fs_info->trans_block_rsv;
8453                 ret2 = btrfs_update_inode(trans, root, inode);
8454                 if (ret2 && !ret)
8455                         ret = ret2;
8456
8457                 ret2 = btrfs_end_transaction(trans);
8458                 if (ret2 && !ret)
8459                         ret = ret2;
8460                 btrfs_btree_balance_dirty(fs_info);
8461         }
8462 out:
8463         btrfs_free_block_rsv(fs_info, rsv);
8464
8465         return ret;
8466 }
8467
8468 /*
8469  * create a new subvolume directory/inode (helper for the ioctl).
8470  */
8471 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8472                              struct btrfs_root *new_root,
8473                              struct btrfs_root *parent_root,
8474                              u64 new_dirid)
8475 {
8476         struct inode *inode;
8477         int err;
8478         u64 index = 0;
8479
8480         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8481                                 new_dirid, new_dirid,
8482                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
8483                                 &index);
8484         if (IS_ERR(inode))
8485                 return PTR_ERR(inode);
8486         inode->i_op = &btrfs_dir_inode_operations;
8487         inode->i_fop = &btrfs_dir_file_operations;
8488
8489         set_nlink(inode, 1);
8490         btrfs_i_size_write(BTRFS_I(inode), 0);
8491         unlock_new_inode(inode);
8492
8493         err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8494         if (err)
8495                 btrfs_err(new_root->fs_info,
8496                           "error inheriting subvolume %llu properties: %d",
8497                           new_root->root_key.objectid, err);
8498
8499         err = btrfs_update_inode(trans, new_root, inode);
8500
8501         iput(inode);
8502         return err;
8503 }
8504
8505 struct inode *btrfs_alloc_inode(struct super_block *sb)
8506 {
8507         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
8508         struct btrfs_inode *ei;
8509         struct inode *inode;
8510
8511         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL);
8512         if (!ei)
8513                 return NULL;
8514
8515         ei->root = NULL;
8516         ei->generation = 0;
8517         ei->last_trans = 0;
8518         ei->last_sub_trans = 0;
8519         ei->logged_trans = 0;
8520         ei->delalloc_bytes = 0;
8521         ei->new_delalloc_bytes = 0;
8522         ei->defrag_bytes = 0;
8523         ei->disk_i_size = 0;
8524         ei->flags = 0;
8525         ei->csum_bytes = 0;
8526         ei->index_cnt = (u64)-1;
8527         ei->dir_index = 0;
8528         ei->last_unlink_trans = 0;
8529         ei->last_log_commit = 0;
8530
8531         spin_lock_init(&ei->lock);
8532         ei->outstanding_extents = 0;
8533         if (sb->s_magic != BTRFS_TEST_MAGIC)
8534                 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
8535                                               BTRFS_BLOCK_RSV_DELALLOC);
8536         ei->runtime_flags = 0;
8537         ei->prop_compress = BTRFS_COMPRESS_NONE;
8538         ei->defrag_compress = BTRFS_COMPRESS_NONE;
8539
8540         ei->delayed_node = NULL;
8541
8542         ei->i_otime.tv_sec = 0;
8543         ei->i_otime.tv_nsec = 0;
8544
8545         inode = &ei->vfs_inode;
8546         extent_map_tree_init(&ei->extent_tree);
8547         extent_io_tree_init(fs_info, &ei->io_tree, IO_TREE_INODE_IO, inode);
8548         extent_io_tree_init(fs_info, &ei->io_failure_tree,
8549                             IO_TREE_INODE_IO_FAILURE, inode);
8550         extent_io_tree_init(fs_info, &ei->file_extent_tree,
8551                             IO_TREE_INODE_FILE_EXTENT, inode);
8552         ei->io_tree.track_uptodate = true;
8553         ei->io_failure_tree.track_uptodate = true;
8554         atomic_set(&ei->sync_writers, 0);
8555         mutex_init(&ei->log_mutex);
8556         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8557         INIT_LIST_HEAD(&ei->delalloc_inodes);
8558         INIT_LIST_HEAD(&ei->delayed_iput);
8559         RB_CLEAR_NODE(&ei->rb_node);
8560         init_rwsem(&ei->dio_sem);
8561
8562         return inode;
8563 }
8564
8565 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8566 void btrfs_test_destroy_inode(struct inode *inode)
8567 {
8568         btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8569         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8570 }
8571 #endif
8572
8573 void btrfs_free_inode(struct inode *inode)
8574 {
8575         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8576 }
8577
8578 void btrfs_destroy_inode(struct inode *inode)
8579 {
8580         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8581         struct btrfs_ordered_extent *ordered;
8582         struct btrfs_root *root = BTRFS_I(inode)->root;
8583
8584         WARN_ON(!hlist_empty(&inode->i_dentry));
8585         WARN_ON(inode->i_data.nrpages);
8586         WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
8587         WARN_ON(BTRFS_I(inode)->block_rsv.size);
8588         WARN_ON(BTRFS_I(inode)->outstanding_extents);
8589         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8590         WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
8591         WARN_ON(BTRFS_I(inode)->csum_bytes);
8592         WARN_ON(BTRFS_I(inode)->defrag_bytes);
8593
8594         /*
8595          * This can happen where we create an inode, but somebody else also
8596          * created the same inode and we need to destroy the one we already
8597          * created.
8598          */
8599         if (!root)
8600                 return;
8601
8602         while (1) {
8603                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8604                 if (!ordered)
8605                         break;
8606                 else {
8607                         btrfs_err(fs_info,
8608                                   "found ordered extent %llu %llu on inode cleanup",
8609                                   ordered->file_offset, ordered->num_bytes);
8610                         btrfs_remove_ordered_extent(inode, ordered);
8611                         btrfs_put_ordered_extent(ordered);
8612                         btrfs_put_ordered_extent(ordered);
8613                 }
8614         }
8615         btrfs_qgroup_check_reserved_leak(inode);
8616         inode_tree_del(inode);
8617         btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
8618         btrfs_inode_clear_file_extent_range(BTRFS_I(inode), 0, (u64)-1);
8619         btrfs_put_root(BTRFS_I(inode)->root);
8620 }
8621
8622 int btrfs_drop_inode(struct inode *inode)
8623 {
8624         struct btrfs_root *root = BTRFS_I(inode)->root;
8625
8626         if (root == NULL)
8627                 return 1;
8628
8629         /* the snap/subvol tree is on deleting */
8630         if (btrfs_root_refs(&root->root_item) == 0)
8631                 return 1;
8632         else
8633                 return generic_drop_inode(inode);
8634 }
8635
8636 static void init_once(void *foo)
8637 {
8638         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8639
8640         inode_init_once(&ei->vfs_inode);
8641 }
8642
8643 void __cold btrfs_destroy_cachep(void)
8644 {
8645         /*
8646          * Make sure all delayed rcu free inodes are flushed before we
8647          * destroy cache.
8648          */
8649         rcu_barrier();
8650         kmem_cache_destroy(btrfs_inode_cachep);
8651         kmem_cache_destroy(btrfs_trans_handle_cachep);
8652         kmem_cache_destroy(btrfs_path_cachep);
8653         kmem_cache_destroy(btrfs_free_space_cachep);
8654         kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
8655 }
8656
8657 int __init btrfs_init_cachep(void)
8658 {
8659         btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8660                         sizeof(struct btrfs_inode), 0,
8661                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
8662                         init_once);
8663         if (!btrfs_inode_cachep)
8664                 goto fail;
8665
8666         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8667                         sizeof(struct btrfs_trans_handle), 0,
8668                         SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
8669         if (!btrfs_trans_handle_cachep)
8670                 goto fail;
8671
8672         btrfs_path_cachep = kmem_cache_create("btrfs_path",
8673                         sizeof(struct btrfs_path), 0,
8674                         SLAB_MEM_SPREAD, NULL);
8675         if (!btrfs_path_cachep)
8676                 goto fail;
8677
8678         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8679                         sizeof(struct btrfs_free_space), 0,
8680                         SLAB_MEM_SPREAD, NULL);
8681         if (!btrfs_free_space_cachep)
8682                 goto fail;
8683
8684         btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
8685                                                         PAGE_SIZE, PAGE_SIZE,
8686                                                         SLAB_RED_ZONE, NULL);
8687         if (!btrfs_free_space_bitmap_cachep)
8688                 goto fail;
8689
8690         return 0;
8691 fail:
8692         btrfs_destroy_cachep();
8693         return -ENOMEM;
8694 }
8695
8696 static int btrfs_getattr(const struct path *path, struct kstat *stat,
8697                          u32 request_mask, unsigned int flags)
8698 {
8699         u64 delalloc_bytes;
8700         struct inode *inode = d_inode(path->dentry);
8701         u32 blocksize = inode->i_sb->s_blocksize;
8702         u32 bi_flags = BTRFS_I(inode)->flags;
8703
8704         stat->result_mask |= STATX_BTIME;
8705         stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
8706         stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
8707         if (bi_flags & BTRFS_INODE_APPEND)
8708                 stat->attributes |= STATX_ATTR_APPEND;
8709         if (bi_flags & BTRFS_INODE_COMPRESS)
8710                 stat->attributes |= STATX_ATTR_COMPRESSED;
8711         if (bi_flags & BTRFS_INODE_IMMUTABLE)
8712                 stat->attributes |= STATX_ATTR_IMMUTABLE;
8713         if (bi_flags & BTRFS_INODE_NODUMP)
8714                 stat->attributes |= STATX_ATTR_NODUMP;
8715
8716         stat->attributes_mask |= (STATX_ATTR_APPEND |
8717                                   STATX_ATTR_COMPRESSED |
8718                                   STATX_ATTR_IMMUTABLE |
8719                                   STATX_ATTR_NODUMP);
8720
8721         generic_fillattr(inode, stat);
8722         stat->dev = BTRFS_I(inode)->root->anon_dev;
8723
8724         spin_lock(&BTRFS_I(inode)->lock);
8725         delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
8726         spin_unlock(&BTRFS_I(inode)->lock);
8727         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8728                         ALIGN(delalloc_bytes, blocksize)) >> 9;
8729         return 0;
8730 }
8731
8732 static int btrfs_rename_exchange(struct inode *old_dir,
8733                               struct dentry *old_dentry,
8734                               struct inode *new_dir,
8735                               struct dentry *new_dentry)
8736 {
8737         struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
8738         struct btrfs_trans_handle *trans;
8739         struct btrfs_root *root = BTRFS_I(old_dir)->root;
8740         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8741         struct inode *new_inode = new_dentry->d_inode;
8742         struct inode *old_inode = old_dentry->d_inode;
8743         struct timespec64 ctime = current_time(old_inode);
8744         struct dentry *parent;
8745         u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
8746         u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
8747         u64 old_idx = 0;
8748         u64 new_idx = 0;
8749         int ret;
8750         bool root_log_pinned = false;
8751         bool dest_log_pinned = false;
8752         struct btrfs_log_ctx ctx_root;
8753         struct btrfs_log_ctx ctx_dest;
8754         bool sync_log_root = false;
8755         bool sync_log_dest = false;
8756         bool commit_transaction = false;
8757
8758         /* we only allow rename subvolume link between subvolumes */
8759         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8760                 return -EXDEV;
8761
8762         btrfs_init_log_ctx(&ctx_root, old_inode);
8763         btrfs_init_log_ctx(&ctx_dest, new_inode);
8764
8765         /* close the race window with snapshot create/destroy ioctl */
8766         if (old_ino == BTRFS_FIRST_FREE_OBJECTID ||
8767             new_ino == BTRFS_FIRST_FREE_OBJECTID)
8768                 down_read(&fs_info->subvol_sem);
8769
8770         /*
8771          * We want to reserve the absolute worst case amount of items.  So if
8772          * both inodes are subvols and we need to unlink them then that would
8773          * require 4 item modifications, but if they are both normal inodes it
8774          * would require 5 item modifications, so we'll assume their normal
8775          * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items
8776          * should cover the worst case number of items we'll modify.
8777          */
8778         trans = btrfs_start_transaction(root, 12);
8779         if (IS_ERR(trans)) {
8780                 ret = PTR_ERR(trans);
8781                 goto out_notrans;
8782         }
8783
8784         if (dest != root)
8785                 btrfs_record_root_in_trans(trans, dest);
8786
8787         /*
8788          * We need to find a free sequence number both in the source and
8789          * in the destination directory for the exchange.
8790          */
8791         ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
8792         if (ret)
8793                 goto out_fail;
8794         ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
8795         if (ret)
8796                 goto out_fail;
8797
8798         BTRFS_I(old_inode)->dir_index = 0ULL;
8799         BTRFS_I(new_inode)->dir_index = 0ULL;
8800
8801         /* Reference for the source. */
8802         if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8803                 /* force full log commit if subvolume involved. */
8804                 btrfs_set_log_full_commit(trans);
8805         } else {
8806                 btrfs_pin_log_trans(root);
8807                 root_log_pinned = true;
8808                 ret = btrfs_insert_inode_ref(trans, dest,
8809                                              new_dentry->d_name.name,
8810                                              new_dentry->d_name.len,
8811                                              old_ino,
8812                                              btrfs_ino(BTRFS_I(new_dir)),
8813                                              old_idx);
8814                 if (ret)
8815                         goto out_fail;
8816         }
8817
8818         /* And now for the dest. */
8819         if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8820                 /* force full log commit if subvolume involved. */
8821                 btrfs_set_log_full_commit(trans);
8822         } else {
8823                 btrfs_pin_log_trans(dest);
8824                 dest_log_pinned = true;
8825                 ret = btrfs_insert_inode_ref(trans, root,
8826                                              old_dentry->d_name.name,
8827                                              old_dentry->d_name.len,
8828                                              new_ino,
8829                                              btrfs_ino(BTRFS_I(old_dir)),
8830                                              new_idx);
8831                 if (ret)
8832                         goto out_fail;
8833         }
8834
8835         /* Update inode version and ctime/mtime. */
8836         inode_inc_iversion(old_dir);
8837         inode_inc_iversion(new_dir);
8838         inode_inc_iversion(old_inode);
8839         inode_inc_iversion(new_inode);
8840         old_dir->i_ctime = old_dir->i_mtime = ctime;
8841         new_dir->i_ctime = new_dir->i_mtime = ctime;
8842         old_inode->i_ctime = ctime;
8843         new_inode->i_ctime = ctime;
8844
8845         if (old_dentry->d_parent != new_dentry->d_parent) {
8846                 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
8847                                 BTRFS_I(old_inode), 1);
8848                 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
8849                                 BTRFS_I(new_inode), 1);
8850         }
8851
8852         /* src is a subvolume */
8853         if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
8854                 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
8855         } else { /* src is an inode */
8856                 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
8857                                            BTRFS_I(old_dentry->d_inode),
8858                                            old_dentry->d_name.name,
8859                                            old_dentry->d_name.len);
8860                 if (!ret)
8861                         ret = btrfs_update_inode(trans, root, old_inode);
8862         }
8863         if (ret) {
8864                 btrfs_abort_transaction(trans, ret);
8865                 goto out_fail;
8866         }
8867
8868         /* dest is a subvolume */
8869         if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
8870                 ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
8871         } else { /* dest is an inode */
8872                 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
8873                                            BTRFS_I(new_dentry->d_inode),
8874                                            new_dentry->d_name.name,
8875                                            new_dentry->d_name.len);
8876                 if (!ret)
8877                         ret = btrfs_update_inode(trans, dest, new_inode);
8878         }
8879         if (ret) {
8880                 btrfs_abort_transaction(trans, ret);
8881                 goto out_fail;
8882         }
8883
8884         ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
8885                              new_dentry->d_name.name,
8886                              new_dentry->d_name.len, 0, old_idx);
8887         if (ret) {
8888                 btrfs_abort_transaction(trans, ret);
8889                 goto out_fail;
8890         }
8891
8892         ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
8893                              old_dentry->d_name.name,
8894                              old_dentry->d_name.len, 0, new_idx);
8895         if (ret) {
8896                 btrfs_abort_transaction(trans, ret);
8897                 goto out_fail;
8898         }
8899
8900         if (old_inode->i_nlink == 1)
8901                 BTRFS_I(old_inode)->dir_index = old_idx;
8902         if (new_inode->i_nlink == 1)
8903                 BTRFS_I(new_inode)->dir_index = new_idx;
8904
8905         if (root_log_pinned) {
8906                 parent = new_dentry->d_parent;
8907                 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
8908                                          BTRFS_I(old_dir), parent,
8909                                          false, &ctx_root);
8910                 if (ret == BTRFS_NEED_LOG_SYNC)
8911                         sync_log_root = true;
8912                 else if (ret == BTRFS_NEED_TRANS_COMMIT)
8913                         commit_transaction = true;
8914                 ret = 0;
8915                 btrfs_end_log_trans(root);
8916                 root_log_pinned = false;
8917         }
8918         if (dest_log_pinned) {
8919                 if (!commit_transaction) {
8920                         parent = old_dentry->d_parent;
8921                         ret = btrfs_log_new_name(trans, BTRFS_I(new_inode),
8922                                                  BTRFS_I(new_dir), parent,
8923                                                  false, &ctx_dest);
8924                         if (ret == BTRFS_NEED_LOG_SYNC)
8925                                 sync_log_dest = true;
8926                         else if (ret == BTRFS_NEED_TRANS_COMMIT)
8927                                 commit_transaction = true;
8928                         ret = 0;
8929                 }
8930                 btrfs_end_log_trans(dest);
8931                 dest_log_pinned = false;
8932         }
8933 out_fail:
8934         /*
8935          * If we have pinned a log and an error happened, we unpin tasks
8936          * trying to sync the log and force them to fallback to a transaction
8937          * commit if the log currently contains any of the inodes involved in
8938          * this rename operation (to ensure we do not persist a log with an
8939          * inconsistent state for any of these inodes or leading to any
8940          * inconsistencies when replayed). If the transaction was aborted, the
8941          * abortion reason is propagated to userspace when attempting to commit
8942          * the transaction. If the log does not contain any of these inodes, we
8943          * allow the tasks to sync it.
8944          */
8945         if (ret && (root_log_pinned || dest_log_pinned)) {
8946                 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
8947                     btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
8948                     btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
8949                     (new_inode &&
8950                      btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
8951                         btrfs_set_log_full_commit(trans);
8952
8953                 if (root_log_pinned) {
8954                         btrfs_end_log_trans(root);
8955                         root_log_pinned = false;
8956                 }
8957                 if (dest_log_pinned) {
8958                         btrfs_end_log_trans(dest);
8959                         dest_log_pinned = false;
8960                 }
8961         }
8962         if (!ret && sync_log_root && !commit_transaction) {
8963                 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root,
8964                                      &ctx_root);
8965                 if (ret)
8966                         commit_transaction = true;
8967         }
8968         if (!ret && sync_log_dest && !commit_transaction) {
8969                 ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root,
8970                                      &ctx_dest);
8971                 if (ret)
8972                         commit_transaction = true;
8973         }
8974         if (commit_transaction) {
8975                 /*
8976                  * We may have set commit_transaction when logging the new name
8977                  * in the destination root, in which case we left the source
8978                  * root context in the list of log contextes. So make sure we
8979                  * remove it to avoid invalid memory accesses, since the context
8980                  * was allocated in our stack frame.
8981                  */
8982                 if (sync_log_root) {
8983                         mutex_lock(&root->log_mutex);
8984                         list_del_init(&ctx_root.list);
8985                         mutex_unlock(&root->log_mutex);
8986                 }
8987                 ret = btrfs_commit_transaction(trans);
8988         } else {
8989                 int ret2;
8990
8991                 ret2 = btrfs_end_transaction(trans);
8992                 ret = ret ? ret : ret2;
8993         }
8994 out_notrans:
8995         if (new_ino == BTRFS_FIRST_FREE_OBJECTID ||
8996             old_ino == BTRFS_FIRST_FREE_OBJECTID)
8997                 up_read(&fs_info->subvol_sem);
8998
8999         ASSERT(list_empty(&ctx_root.list));
9000         ASSERT(list_empty(&ctx_dest.list));
9001
9002         return ret;
9003 }
9004
9005 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9006                                      struct btrfs_root *root,
9007                                      struct inode *dir,
9008                                      struct dentry *dentry)
9009 {
9010         int ret;
9011         struct inode *inode;
9012         u64 objectid;
9013         u64 index;
9014
9015         ret = btrfs_find_free_ino(root, &objectid);
9016         if (ret)
9017                 return ret;
9018
9019         inode = btrfs_new_inode(trans, root, dir,
9020                                 dentry->d_name.name,
9021                                 dentry->d_name.len,
9022                                 btrfs_ino(BTRFS_I(dir)),
9023                                 objectid,
9024                                 S_IFCHR | WHITEOUT_MODE,
9025                                 &index);
9026
9027         if (IS_ERR(inode)) {
9028                 ret = PTR_ERR(inode);
9029                 return ret;
9030         }
9031
9032         inode->i_op = &btrfs_special_inode_operations;
9033         init_special_inode(inode, inode->i_mode,
9034                 WHITEOUT_DEV);
9035
9036         ret = btrfs_init_inode_security(trans, inode, dir,
9037                                 &dentry->d_name);
9038         if (ret)
9039                 goto out;
9040
9041         ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9042                                 BTRFS_I(inode), 0, index);
9043         if (ret)
9044                 goto out;
9045
9046         ret = btrfs_update_inode(trans, root, inode);
9047 out:
9048         unlock_new_inode(inode);
9049         if (ret)
9050                 inode_dec_link_count(inode);
9051         iput(inode);
9052
9053         return ret;
9054 }
9055
9056 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9057                            struct inode *new_dir, struct dentry *new_dentry,
9058                            unsigned int flags)
9059 {
9060         struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
9061         struct btrfs_trans_handle *trans;
9062         unsigned int trans_num_items;
9063         struct btrfs_root *root = BTRFS_I(old_dir)->root;
9064         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9065         struct inode *new_inode = d_inode(new_dentry);
9066         struct inode *old_inode = d_inode(old_dentry);
9067         u64 index = 0;
9068         int ret;
9069         u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9070         bool log_pinned = false;
9071         struct btrfs_log_ctx ctx;
9072         bool sync_log = false;
9073         bool commit_transaction = false;
9074
9075         if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9076                 return -EPERM;
9077
9078         /* we only allow rename subvolume link between subvolumes */
9079         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9080                 return -EXDEV;
9081
9082         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9083             (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
9084                 return -ENOTEMPTY;
9085
9086         if (S_ISDIR(old_inode->i_mode) && new_inode &&
9087             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9088                 return -ENOTEMPTY;
9089
9090
9091         /* check for collisions, even if the  name isn't there */
9092         ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9093                              new_dentry->d_name.name,
9094                              new_dentry->d_name.len);
9095
9096         if (ret) {
9097                 if (ret == -EEXIST) {
9098                         /* we shouldn't get
9099                          * eexist without a new_inode */
9100                         if (WARN_ON(!new_inode)) {
9101                                 return ret;
9102                         }
9103                 } else {
9104                         /* maybe -EOVERFLOW */
9105                         return ret;
9106                 }
9107         }
9108         ret = 0;
9109
9110         /*
9111          * we're using rename to replace one file with another.  Start IO on it
9112          * now so  we don't add too much work to the end of the transaction
9113          */
9114         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9115                 filemap_flush(old_inode->i_mapping);
9116
9117         /* close the racy window with snapshot create/destroy ioctl */
9118         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9119                 down_read(&fs_info->subvol_sem);
9120         /*
9121          * We want to reserve the absolute worst case amount of items.  So if
9122          * both inodes are subvols and we need to unlink them then that would
9123          * require 4 item modifications, but if they are both normal inodes it
9124          * would require 5 item modifications, so we'll assume they are normal
9125          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9126          * should cover the worst case number of items we'll modify.
9127          * If our rename has the whiteout flag, we need more 5 units for the
9128          * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9129          * when selinux is enabled).
9130          */
9131         trans_num_items = 11;
9132         if (flags & RENAME_WHITEOUT)
9133                 trans_num_items += 5;
9134         trans = btrfs_start_transaction(root, trans_num_items);
9135         if (IS_ERR(trans)) {
9136                 ret = PTR_ERR(trans);
9137                 goto out_notrans;
9138         }
9139
9140         if (dest != root)
9141                 btrfs_record_root_in_trans(trans, dest);
9142
9143         ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
9144         if (ret)
9145                 goto out_fail;
9146
9147         BTRFS_I(old_inode)->dir_index = 0ULL;
9148         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9149                 /* force full log commit if subvolume involved. */
9150                 btrfs_set_log_full_commit(trans);
9151         } else {
9152                 btrfs_pin_log_trans(root);
9153                 log_pinned = true;
9154                 ret = btrfs_insert_inode_ref(trans, dest,
9155                                              new_dentry->d_name.name,
9156                                              new_dentry->d_name.len,
9157                                              old_ino,
9158                                              btrfs_ino(BTRFS_I(new_dir)), index);
9159                 if (ret)
9160                         goto out_fail;
9161         }
9162
9163         inode_inc_iversion(old_dir);
9164         inode_inc_iversion(new_dir);
9165         inode_inc_iversion(old_inode);
9166         old_dir->i_ctime = old_dir->i_mtime =
9167         new_dir->i_ctime = new_dir->i_mtime =
9168         old_inode->i_ctime = current_time(old_dir);
9169
9170         if (old_dentry->d_parent != new_dentry->d_parent)
9171                 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9172                                 BTRFS_I(old_inode), 1);
9173
9174         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9175                 ret = btrfs_unlink_subvol(trans, old_dir, old_dentry);
9176         } else {
9177                 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9178                                         BTRFS_I(d_inode(old_dentry)),
9179                                         old_dentry->d_name.name,
9180                                         old_dentry->d_name.len);
9181                 if (!ret)
9182                         ret = btrfs_update_inode(trans, root, old_inode);
9183         }
9184         if (ret) {
9185                 btrfs_abort_transaction(trans, ret);
9186                 goto out_fail;
9187         }
9188
9189         if (new_inode) {
9190                 inode_inc_iversion(new_inode);
9191                 new_inode->i_ctime = current_time(new_inode);
9192                 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
9193                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9194                         ret = btrfs_unlink_subvol(trans, new_dir, new_dentry);
9195                         BUG_ON(new_inode->i_nlink == 0);
9196                 } else {
9197                         ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9198                                                  BTRFS_I(d_inode(new_dentry)),
9199                                                  new_dentry->d_name.name,
9200                                                  new_dentry->d_name.len);
9201                 }
9202                 if (!ret && new_inode->i_nlink == 0)
9203                         ret = btrfs_orphan_add(trans,
9204                                         BTRFS_I(d_inode(new_dentry)));
9205                 if (ret) {
9206                         btrfs_abort_transaction(trans, ret);
9207                         goto out_fail;
9208                 }
9209         }
9210
9211         ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
9212                              new_dentry->d_name.name,
9213                              new_dentry->d_name.len, 0, index);
9214         if (ret) {
9215                 btrfs_abort_transaction(trans, ret);
9216                 goto out_fail;
9217         }
9218
9219         if (old_inode->i_nlink == 1)
9220                 BTRFS_I(old_inode)->dir_index = index;
9221
9222         if (log_pinned) {
9223                 struct dentry *parent = new_dentry->d_parent;
9224
9225                 btrfs_init_log_ctx(&ctx, old_inode);
9226                 ret = btrfs_log_new_name(trans, BTRFS_I(old_inode),
9227                                          BTRFS_I(old_dir), parent,
9228                                          false, &ctx);
9229                 if (ret == BTRFS_NEED_LOG_SYNC)
9230                         sync_log = true;
9231                 else if (ret == BTRFS_NEED_TRANS_COMMIT)
9232                         commit_transaction = true;
9233                 ret = 0;
9234                 btrfs_end_log_trans(root);
9235                 log_pinned = false;
9236         }
9237
9238         if (flags & RENAME_WHITEOUT) {
9239                 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9240                                                 old_dentry);
9241
9242                 if (ret) {
9243                         btrfs_abort_transaction(trans, ret);
9244                         goto out_fail;
9245                 }
9246         }
9247 out_fail:
9248         /*
9249          * If we have pinned the log and an error happened, we unpin tasks
9250          * trying to sync the log and force them to fallback to a transaction
9251          * commit if the log currently contains any of the inodes involved in
9252          * this rename operation (to ensure we do not persist a log with an
9253          * inconsistent state for any of these inodes or leading to any
9254          * inconsistencies when replayed). If the transaction was aborted, the
9255          * abortion reason is propagated to userspace when attempting to commit
9256          * the transaction. If the log does not contain any of these inodes, we
9257          * allow the tasks to sync it.
9258          */
9259         if (ret && log_pinned) {
9260                 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9261                     btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9262                     btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
9263                     (new_inode &&
9264                      btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
9265                         btrfs_set_log_full_commit(trans);
9266
9267                 btrfs_end_log_trans(root);
9268                 log_pinned = false;
9269         }
9270         if (!ret && sync_log) {
9271                 ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx);
9272                 if (ret)
9273                         commit_transaction = true;
9274         } else if (sync_log) {
9275                 mutex_lock(&root->log_mutex);
9276                 list_del(&ctx.list);
9277                 mutex_unlock(&root->log_mutex);
9278         }
9279         if (commit_transaction) {
9280                 ret = btrfs_commit_transaction(trans);
9281         } else {
9282                 int ret2;
9283
9284                 ret2 = btrfs_end_transaction(trans);
9285                 ret = ret ? ret : ret2;
9286         }
9287 out_notrans:
9288         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9289                 up_read(&fs_info->subvol_sem);
9290
9291         return ret;
9292 }
9293
9294 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9295                          struct inode *new_dir, struct dentry *new_dentry,
9296                          unsigned int flags)
9297 {
9298         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9299                 return -EINVAL;
9300
9301         if (flags & RENAME_EXCHANGE)
9302                 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
9303                                           new_dentry);
9304
9305         return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
9306 }
9307
9308 struct btrfs_delalloc_work {
9309         struct inode *inode;
9310         struct completion completion;
9311         struct list_head list;
9312         struct btrfs_work work;
9313 };
9314
9315 static void btrfs_run_delalloc_work(struct btrfs_work *work)
9316 {
9317         struct btrfs_delalloc_work *delalloc_work;
9318         struct inode *inode;
9319
9320         delalloc_work = container_of(work, struct btrfs_delalloc_work,
9321                                      work);
9322         inode = delalloc_work->inode;
9323         filemap_flush(inode->i_mapping);
9324         if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9325                                 &BTRFS_I(inode)->runtime_flags))
9326                 filemap_flush(inode->i_mapping);
9327
9328         iput(inode);
9329         complete(&delalloc_work->completion);
9330 }
9331
9332 static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode)
9333 {
9334         struct btrfs_delalloc_work *work;
9335
9336         work = kmalloc(sizeof(*work), GFP_NOFS);
9337         if (!work)
9338                 return NULL;
9339
9340         init_completion(&work->completion);
9341         INIT_LIST_HEAD(&work->list);
9342         work->inode = inode;
9343         btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
9344
9345         return work;
9346 }
9347
9348 /*
9349  * some fairly slow code that needs optimization. This walks the list
9350  * of all the inodes with pending delalloc and forces them to disk.
9351  */
9352 static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot)
9353 {
9354         struct btrfs_inode *binode;
9355         struct inode *inode;
9356         struct btrfs_delalloc_work *work, *next;
9357         struct list_head works;
9358         struct list_head splice;
9359         int ret = 0;
9360
9361         INIT_LIST_HEAD(&works);
9362         INIT_LIST_HEAD(&splice);
9363
9364         mutex_lock(&root->delalloc_mutex);
9365         spin_lock(&root->delalloc_lock);
9366         list_splice_init(&root->delalloc_inodes, &splice);
9367         while (!list_empty(&splice)) {
9368                 binode = list_entry(splice.next, struct btrfs_inode,
9369                                     delalloc_inodes);
9370
9371                 list_move_tail(&binode->delalloc_inodes,
9372                                &root->delalloc_inodes);
9373                 inode = igrab(&binode->vfs_inode);
9374                 if (!inode) {
9375                         cond_resched_lock(&root->delalloc_lock);
9376                         continue;
9377                 }
9378                 spin_unlock(&root->delalloc_lock);
9379
9380                 if (snapshot)
9381                         set_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
9382                                 &binode->runtime_flags);
9383                 work = btrfs_alloc_delalloc_work(inode);
9384                 if (!work) {
9385                         iput(inode);
9386                         ret = -ENOMEM;
9387                         goto out;
9388                 }
9389                 list_add_tail(&work->list, &works);
9390                 btrfs_queue_work(root->fs_info->flush_workers,
9391                                  &work->work);
9392                 ret++;
9393                 if (nr != -1 && ret >= nr)
9394                         goto out;
9395                 cond_resched();
9396                 spin_lock(&root->delalloc_lock);
9397         }
9398         spin_unlock(&root->delalloc_lock);
9399
9400 out:
9401         list_for_each_entry_safe(work, next, &works, list) {
9402                 list_del_init(&work->list);
9403                 wait_for_completion(&work->completion);
9404                 kfree(work);
9405         }
9406
9407         if (!list_empty(&splice)) {
9408                 spin_lock(&root->delalloc_lock);
9409                 list_splice_tail(&splice, &root->delalloc_inodes);
9410                 spin_unlock(&root->delalloc_lock);
9411         }
9412         mutex_unlock(&root->delalloc_mutex);
9413         return ret;
9414 }
9415
9416 int btrfs_start_delalloc_snapshot(struct btrfs_root *root)
9417 {
9418         struct btrfs_fs_info *fs_info = root->fs_info;
9419         int ret;
9420
9421         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9422                 return -EROFS;
9423
9424         ret = start_delalloc_inodes(root, -1, true);
9425         if (ret > 0)
9426                 ret = 0;
9427         return ret;
9428 }
9429
9430 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr)
9431 {
9432         struct btrfs_root *root;
9433         struct list_head splice;
9434         int ret;
9435
9436         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9437                 return -EROFS;
9438
9439         INIT_LIST_HEAD(&splice);
9440
9441         mutex_lock(&fs_info->delalloc_root_mutex);
9442         spin_lock(&fs_info->delalloc_root_lock);
9443         list_splice_init(&fs_info->delalloc_roots, &splice);
9444         while (!list_empty(&splice) && nr) {
9445                 root = list_first_entry(&splice, struct btrfs_root,
9446                                         delalloc_root);
9447                 root = btrfs_grab_root(root);
9448                 BUG_ON(!root);
9449                 list_move_tail(&root->delalloc_root,
9450                                &fs_info->delalloc_roots);
9451                 spin_unlock(&fs_info->delalloc_root_lock);
9452
9453                 ret = start_delalloc_inodes(root, nr, false);
9454                 btrfs_put_root(root);
9455                 if (ret < 0)
9456                         goto out;
9457
9458                 if (nr != -1) {
9459                         nr -= ret;
9460                         WARN_ON(nr < 0);
9461                 }
9462                 spin_lock(&fs_info->delalloc_root_lock);
9463         }
9464         spin_unlock(&fs_info->delalloc_root_lock);
9465
9466         ret = 0;
9467 out:
9468         if (!list_empty(&splice)) {
9469                 spin_lock(&fs_info->delalloc_root_lock);
9470                 list_splice_tail(&splice, &fs_info->delalloc_roots);
9471                 spin_unlock(&fs_info->delalloc_root_lock);
9472         }
9473         mutex_unlock(&fs_info->delalloc_root_mutex);
9474         return ret;
9475 }
9476
9477 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9478                          const char *symname)
9479 {
9480         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9481         struct btrfs_trans_handle *trans;
9482         struct btrfs_root *root = BTRFS_I(dir)->root;
9483         struct btrfs_path *path;
9484         struct btrfs_key key;
9485         struct inode *inode = NULL;
9486         int err;
9487         u64 objectid;
9488         u64 index = 0;
9489         int name_len;
9490         int datasize;
9491         unsigned long ptr;
9492         struct btrfs_file_extent_item *ei;
9493         struct extent_buffer *leaf;
9494
9495         name_len = strlen(symname);
9496         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
9497                 return -ENAMETOOLONG;
9498
9499         /*
9500          * 2 items for inode item and ref
9501          * 2 items for dir items
9502          * 1 item for updating parent inode item
9503          * 1 item for the inline extent item
9504          * 1 item for xattr if selinux is on
9505          */
9506         trans = btrfs_start_transaction(root, 7);
9507         if (IS_ERR(trans))
9508                 return PTR_ERR(trans);
9509
9510         err = btrfs_find_free_ino(root, &objectid);
9511         if (err)
9512                 goto out_unlock;
9513
9514         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9515                                 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
9516                                 objectid, S_IFLNK|S_IRWXUGO, &index);
9517         if (IS_ERR(inode)) {
9518                 err = PTR_ERR(inode);
9519                 inode = NULL;
9520                 goto out_unlock;
9521         }
9522
9523         /*
9524         * If the active LSM wants to access the inode during
9525         * d_instantiate it needs these. Smack checks to see
9526         * if the filesystem supports xattrs by looking at the
9527         * ops vector.
9528         */
9529         inode->i_fop = &btrfs_file_operations;
9530         inode->i_op = &btrfs_file_inode_operations;
9531         inode->i_mapping->a_ops = &btrfs_aops;
9532         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9533
9534         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9535         if (err)
9536                 goto out_unlock;
9537
9538         path = btrfs_alloc_path();
9539         if (!path) {
9540                 err = -ENOMEM;
9541                 goto out_unlock;
9542         }
9543         key.objectid = btrfs_ino(BTRFS_I(inode));
9544         key.offset = 0;
9545         key.type = BTRFS_EXTENT_DATA_KEY;
9546         datasize = btrfs_file_extent_calc_inline_size(name_len);
9547         err = btrfs_insert_empty_item(trans, root, path, &key,
9548                                       datasize);
9549         if (err) {
9550                 btrfs_free_path(path);
9551                 goto out_unlock;
9552         }
9553         leaf = path->nodes[0];
9554         ei = btrfs_item_ptr(leaf, path->slots[0],
9555                             struct btrfs_file_extent_item);
9556         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9557         btrfs_set_file_extent_type(leaf, ei,
9558                                    BTRFS_FILE_EXTENT_INLINE);
9559         btrfs_set_file_extent_encryption(leaf, ei, 0);
9560         btrfs_set_file_extent_compression(leaf, ei, 0);
9561         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9562         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9563
9564         ptr = btrfs_file_extent_inline_start(ei);
9565         write_extent_buffer(leaf, symname, ptr, name_len);
9566         btrfs_mark_buffer_dirty(leaf);
9567         btrfs_free_path(path);
9568
9569         inode->i_op = &btrfs_symlink_inode_operations;
9570         inode_nohighmem(inode);
9571         inode_set_bytes(inode, name_len);
9572         btrfs_i_size_write(BTRFS_I(inode), name_len);
9573         err = btrfs_update_inode(trans, root, inode);
9574         /*
9575          * Last step, add directory indexes for our symlink inode. This is the
9576          * last step to avoid extra cleanup of these indexes if an error happens
9577          * elsewhere above.
9578          */
9579         if (!err)
9580                 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9581                                 BTRFS_I(inode), 0, index);
9582         if (err)
9583                 goto out_unlock;
9584
9585         d_instantiate_new(dentry, inode);
9586
9587 out_unlock:
9588         btrfs_end_transaction(trans);
9589         if (err && inode) {
9590                 inode_dec_link_count(inode);
9591                 discard_new_inode(inode);
9592         }
9593         btrfs_btree_balance_dirty(fs_info);
9594         return err;
9595 }
9596
9597 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9598                                        u64 start, u64 num_bytes, u64 min_size,
9599                                        loff_t actual_len, u64 *alloc_hint,
9600                                        struct btrfs_trans_handle *trans)
9601 {
9602         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9603         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9604         struct extent_map *em;
9605         struct btrfs_root *root = BTRFS_I(inode)->root;
9606         struct btrfs_key ins;
9607         u64 cur_offset = start;
9608         u64 clear_offset = start;
9609         u64 i_size;
9610         u64 cur_bytes;
9611         u64 last_alloc = (u64)-1;
9612         int ret = 0;
9613         bool own_trans = true;
9614         u64 end = start + num_bytes - 1;
9615
9616         if (trans)
9617                 own_trans = false;
9618         while (num_bytes > 0) {
9619                 if (own_trans) {
9620                         trans = btrfs_start_transaction(root, 3);
9621                         if (IS_ERR(trans)) {
9622                                 ret = PTR_ERR(trans);
9623                                 break;
9624                         }
9625                 }
9626
9627                 cur_bytes = min_t(u64, num_bytes, SZ_256M);
9628                 cur_bytes = max(cur_bytes, min_size);
9629                 /*
9630                  * If we are severely fragmented we could end up with really
9631                  * small allocations, so if the allocator is returning small
9632                  * chunks lets make its job easier by only searching for those
9633                  * sized chunks.
9634                  */
9635                 cur_bytes = min(cur_bytes, last_alloc);
9636                 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
9637                                 min_size, 0, *alloc_hint, &ins, 1, 0);
9638                 if (ret) {
9639                         if (own_trans)
9640                                 btrfs_end_transaction(trans);
9641                         break;
9642                 }
9643
9644                 /*
9645                  * We've reserved this space, and thus converted it from
9646                  * ->bytes_may_use to ->bytes_reserved.  Any error that happens
9647                  * from here on out we will only need to clear our reservation
9648                  * for the remaining unreserved area, so advance our
9649                  * clear_offset by our extent size.
9650                  */
9651                 clear_offset += ins.offset;
9652                 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9653
9654                 last_alloc = ins.offset;
9655                 ret = insert_reserved_file_extent(trans, inode,
9656                                                   cur_offset, ins.objectid,
9657                                                   ins.offset, ins.offset,
9658                                                   ins.offset, 0, 0, 0,
9659                                                   BTRFS_FILE_EXTENT_PREALLOC);
9660                 if (ret) {
9661                         btrfs_free_reserved_extent(fs_info, ins.objectid,
9662                                                    ins.offset, 0);
9663                         btrfs_abort_transaction(trans, ret);
9664                         if (own_trans)
9665                                 btrfs_end_transaction(trans);
9666                         break;
9667                 }
9668
9669                 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9670                                         cur_offset + ins.offset -1, 0);
9671
9672                 em = alloc_extent_map();
9673                 if (!em) {
9674                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9675                                 &BTRFS_I(inode)->runtime_flags);
9676                         goto next;
9677                 }
9678
9679                 em->start = cur_offset;
9680                 em->orig_start = cur_offset;
9681                 em->len = ins.offset;
9682                 em->block_start = ins.objectid;
9683                 em->block_len = ins.offset;
9684                 em->orig_block_len = ins.offset;
9685                 em->ram_bytes = ins.offset;
9686                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9687                 em->generation = trans->transid;
9688
9689                 while (1) {
9690                         write_lock(&em_tree->lock);
9691                         ret = add_extent_mapping(em_tree, em, 1);
9692                         write_unlock(&em_tree->lock);
9693                         if (ret != -EEXIST)
9694                                 break;
9695                         btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
9696                                                 cur_offset + ins.offset - 1,
9697                                                 0);
9698                 }
9699                 free_extent_map(em);
9700 next:
9701                 num_bytes -= ins.offset;
9702                 cur_offset += ins.offset;
9703                 *alloc_hint = ins.objectid + ins.offset;
9704
9705                 inode_inc_iversion(inode);
9706                 inode->i_ctime = current_time(inode);
9707                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9708                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9709                     (actual_len > inode->i_size) &&
9710                     (cur_offset > inode->i_size)) {
9711                         if (cur_offset > actual_len)
9712                                 i_size = actual_len;
9713                         else
9714                                 i_size = cur_offset;
9715                         i_size_write(inode, i_size);
9716                         btrfs_inode_safe_disk_i_size_write(inode, 0);
9717                 }
9718
9719                 ret = btrfs_update_inode(trans, root, inode);
9720
9721                 if (ret) {
9722                         btrfs_abort_transaction(trans, ret);
9723                         if (own_trans)
9724                                 btrfs_end_transaction(trans);
9725                         break;
9726                 }
9727
9728                 if (own_trans)
9729                         btrfs_end_transaction(trans);
9730         }
9731         if (clear_offset < end)
9732                 btrfs_free_reserved_data_space(inode, NULL, clear_offset,
9733                         end - clear_offset + 1);
9734         return ret;
9735 }
9736
9737 int btrfs_prealloc_file_range(struct inode *inode, int mode,
9738                               u64 start, u64 num_bytes, u64 min_size,
9739                               loff_t actual_len, u64 *alloc_hint)
9740 {
9741         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9742                                            min_size, actual_len, alloc_hint,
9743                                            NULL);
9744 }
9745
9746 int btrfs_prealloc_file_range_trans(struct inode *inode,
9747                                     struct btrfs_trans_handle *trans, int mode,
9748                                     u64 start, u64 num_bytes, u64 min_size,
9749                                     loff_t actual_len, u64 *alloc_hint)
9750 {
9751         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9752                                            min_size, actual_len, alloc_hint, trans);
9753 }
9754
9755 static int btrfs_set_page_dirty(struct page *page)
9756 {
9757         return __set_page_dirty_nobuffers(page);
9758 }
9759
9760 static int btrfs_permission(struct inode *inode, int mask)
9761 {
9762         struct btrfs_root *root = BTRFS_I(inode)->root;
9763         umode_t mode = inode->i_mode;
9764
9765         if (mask & MAY_WRITE &&
9766             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9767                 if (btrfs_root_readonly(root))
9768                         return -EROFS;
9769                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9770                         return -EACCES;
9771         }
9772         return generic_permission(inode, mask);
9773 }
9774
9775 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9776 {
9777         struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
9778         struct btrfs_trans_handle *trans;
9779         struct btrfs_root *root = BTRFS_I(dir)->root;
9780         struct inode *inode = NULL;
9781         u64 objectid;
9782         u64 index;
9783         int ret = 0;
9784
9785         /*
9786          * 5 units required for adding orphan entry
9787          */
9788         trans = btrfs_start_transaction(root, 5);
9789         if (IS_ERR(trans))
9790                 return PTR_ERR(trans);
9791
9792         ret = btrfs_find_free_ino(root, &objectid);
9793         if (ret)
9794                 goto out;
9795
9796         inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9797                         btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
9798         if (IS_ERR(inode)) {
9799                 ret = PTR_ERR(inode);
9800                 inode = NULL;
9801                 goto out;
9802         }
9803
9804         inode->i_fop = &btrfs_file_operations;
9805         inode->i_op = &btrfs_file_inode_operations;
9806
9807         inode->i_mapping->a_ops = &btrfs_aops;
9808         BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9809
9810         ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9811         if (ret)
9812                 goto out;
9813
9814         ret = btrfs_update_inode(trans, root, inode);
9815         if (ret)
9816                 goto out;
9817         ret = btrfs_orphan_add(trans, BTRFS_I(inode));
9818         if (ret)
9819                 goto out;
9820
9821         /*
9822          * We set number of links to 0 in btrfs_new_inode(), and here we set
9823          * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9824          * through:
9825          *
9826          *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9827          */
9828         set_nlink(inode, 1);
9829         d_tmpfile(dentry, inode);
9830         unlock_new_inode(inode);
9831         mark_inode_dirty(inode);
9832 out:
9833         btrfs_end_transaction(trans);
9834         if (ret && inode)
9835                 discard_new_inode(inode);
9836         btrfs_btree_balance_dirty(fs_info);
9837         return ret;
9838 }
9839
9840 void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
9841 {
9842         struct inode *inode = tree->private_data;
9843         unsigned long index = start >> PAGE_SHIFT;
9844         unsigned long end_index = end >> PAGE_SHIFT;
9845         struct page *page;
9846
9847         while (index <= end_index) {
9848                 page = find_get_page(inode->i_mapping, index);
9849                 ASSERT(page); /* Pages should be in the extent_io_tree */
9850                 set_page_writeback(page);
9851                 put_page(page);
9852                 index++;
9853         }
9854 }
9855
9856 #ifdef CONFIG_SWAP
9857 /*
9858  * Add an entry indicating a block group or device which is pinned by a
9859  * swapfile. Returns 0 on success, 1 if there is already an entry for it, or a
9860  * negative errno on failure.
9861  */
9862 static int btrfs_add_swapfile_pin(struct inode *inode, void *ptr,
9863                                   bool is_block_group)
9864 {
9865         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9866         struct btrfs_swapfile_pin *sp, *entry;
9867         struct rb_node **p;
9868         struct rb_node *parent = NULL;
9869
9870         sp = kmalloc(sizeof(*sp), GFP_NOFS);
9871         if (!sp)
9872                 return -ENOMEM;
9873         sp->ptr = ptr;
9874         sp->inode = inode;
9875         sp->is_block_group = is_block_group;
9876
9877         spin_lock(&fs_info->swapfile_pins_lock);
9878         p = &fs_info->swapfile_pins.rb_node;
9879         while (*p) {
9880                 parent = *p;
9881                 entry = rb_entry(parent, struct btrfs_swapfile_pin, node);
9882                 if (sp->ptr < entry->ptr ||
9883                     (sp->ptr == entry->ptr && sp->inode < entry->inode)) {
9884                         p = &(*p)->rb_left;
9885                 } else if (sp->ptr > entry->ptr ||
9886                            (sp->ptr == entry->ptr && sp->inode > entry->inode)) {
9887                         p = &(*p)->rb_right;
9888                 } else {
9889                         spin_unlock(&fs_info->swapfile_pins_lock);
9890                         kfree(sp);
9891                         return 1;
9892                 }
9893         }
9894         rb_link_node(&sp->node, parent, p);
9895         rb_insert_color(&sp->node, &fs_info->swapfile_pins);
9896         spin_unlock(&fs_info->swapfile_pins_lock);
9897         return 0;
9898 }
9899
9900 /* Free all of the entries pinned by this swapfile. */
9901 static void btrfs_free_swapfile_pins(struct inode *inode)
9902 {
9903         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9904         struct btrfs_swapfile_pin *sp;
9905         struct rb_node *node, *next;
9906
9907         spin_lock(&fs_info->swapfile_pins_lock);
9908         node = rb_first(&fs_info->swapfile_pins);
9909         while (node) {
9910                 next = rb_next(node);
9911                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
9912                 if (sp->inode == inode) {
9913                         rb_erase(&sp->node, &fs_info->swapfile_pins);
9914                         if (sp->is_block_group)
9915                                 btrfs_put_block_group(sp->ptr);
9916                         kfree(sp);
9917                 }
9918                 node = next;
9919         }
9920         spin_unlock(&fs_info->swapfile_pins_lock);
9921 }
9922
9923 struct btrfs_swap_info {
9924         u64 start;
9925         u64 block_start;
9926         u64 block_len;
9927         u64 lowest_ppage;
9928         u64 highest_ppage;
9929         unsigned long nr_pages;
9930         int nr_extents;
9931 };
9932
9933 static int btrfs_add_swap_extent(struct swap_info_struct *sis,
9934                                  struct btrfs_swap_info *bsi)
9935 {
9936         unsigned long nr_pages;
9937         u64 first_ppage, first_ppage_reported, next_ppage;
9938         int ret;
9939
9940         first_ppage = ALIGN(bsi->block_start, PAGE_SIZE) >> PAGE_SHIFT;
9941         next_ppage = ALIGN_DOWN(bsi->block_start + bsi->block_len,
9942                                 PAGE_SIZE) >> PAGE_SHIFT;
9943
9944         if (first_ppage >= next_ppage)
9945                 return 0;
9946         nr_pages = next_ppage - first_ppage;
9947
9948         first_ppage_reported = first_ppage;
9949         if (bsi->start == 0)
9950                 first_ppage_reported++;
9951         if (bsi->lowest_ppage > first_ppage_reported)
9952                 bsi->lowest_ppage = first_ppage_reported;
9953         if (bsi->highest_ppage < (next_ppage - 1))
9954                 bsi->highest_ppage = next_ppage - 1;
9955
9956         ret = add_swap_extent(sis, bsi->nr_pages, nr_pages, first_ppage);
9957         if (ret < 0)
9958                 return ret;
9959         bsi->nr_extents += ret;
9960         bsi->nr_pages += nr_pages;
9961         return 0;
9962 }
9963
9964 static void btrfs_swap_deactivate(struct file *file)
9965 {
9966         struct inode *inode = file_inode(file);
9967
9968         btrfs_free_swapfile_pins(inode);
9969         atomic_dec(&BTRFS_I(inode)->root->nr_swapfiles);
9970 }
9971
9972 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
9973                                sector_t *span)
9974 {
9975         struct inode *inode = file_inode(file);
9976         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
9977         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9978         struct extent_state *cached_state = NULL;
9979         struct extent_map *em = NULL;
9980         struct btrfs_device *device = NULL;
9981         struct btrfs_swap_info bsi = {
9982                 .lowest_ppage = (sector_t)-1ULL,
9983         };
9984         int ret = 0;
9985         u64 isize;
9986         u64 start;
9987
9988         /*
9989          * If the swap file was just created, make sure delalloc is done. If the
9990          * file changes again after this, the user is doing something stupid and
9991          * we don't really care.
9992          */
9993         ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
9994         if (ret)
9995                 return ret;
9996
9997         /*
9998          * The inode is locked, so these flags won't change after we check them.
9999          */
10000         if (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS) {
10001                 btrfs_warn(fs_info, "swapfile must not be compressed");
10002                 return -EINVAL;
10003         }
10004         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)) {
10005                 btrfs_warn(fs_info, "swapfile must not be copy-on-write");
10006                 return -EINVAL;
10007         }
10008         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
10009                 btrfs_warn(fs_info, "swapfile must not be checksummed");
10010                 return -EINVAL;
10011         }
10012
10013         /*
10014          * Balance or device remove/replace/resize can move stuff around from
10015          * under us. The EXCL_OP flag makes sure they aren't running/won't run
10016          * concurrently while we are mapping the swap extents, and
10017          * fs_info->swapfile_pins prevents them from running while the swap file
10018          * is active and moving the extents. Note that this also prevents a
10019          * concurrent device add which isn't actually necessary, but it's not
10020          * really worth the trouble to allow it.
10021          */
10022         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
10023                 btrfs_warn(fs_info,
10024            "cannot activate swapfile while exclusive operation is running");
10025                 return -EBUSY;
10026         }
10027         /*
10028          * Snapshots can create extents which require COW even if NODATACOW is
10029          * set. We use this counter to prevent snapshots. We must increment it
10030          * before walking the extents because we don't want a concurrent
10031          * snapshot to run after we've already checked the extents.
10032          */
10033         atomic_inc(&BTRFS_I(inode)->root->nr_swapfiles);
10034
10035         isize = ALIGN_DOWN(inode->i_size, fs_info->sectorsize);
10036
10037         lock_extent_bits(io_tree, 0, isize - 1, &cached_state);
10038         start = 0;
10039         while (start < isize) {
10040                 u64 logical_block_start, physical_block_start;
10041                 struct btrfs_block_group *bg;
10042                 u64 len = isize - start;
10043
10044                 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
10045                 if (IS_ERR(em)) {
10046                         ret = PTR_ERR(em);
10047                         goto out;
10048                 }
10049
10050                 if (em->block_start == EXTENT_MAP_HOLE) {
10051                         btrfs_warn(fs_info, "swapfile must not have holes");
10052                         ret = -EINVAL;
10053                         goto out;
10054                 }
10055                 if (em->block_start == EXTENT_MAP_INLINE) {
10056                         /*
10057                          * It's unlikely we'll ever actually find ourselves
10058                          * here, as a file small enough to fit inline won't be
10059                          * big enough to store more than the swap header, but in
10060                          * case something changes in the future, let's catch it
10061                          * here rather than later.
10062                          */
10063                         btrfs_warn(fs_info, "swapfile must not be inline");
10064                         ret = -EINVAL;
10065                         goto out;
10066                 }
10067                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
10068                         btrfs_warn(fs_info, "swapfile must not be compressed");
10069                         ret = -EINVAL;
10070                         goto out;
10071                 }
10072
10073                 logical_block_start = em->block_start + (start - em->start);
10074                 len = min(len, em->len - (start - em->start));
10075                 free_extent_map(em);
10076                 em = NULL;
10077
10078                 ret = can_nocow_extent(inode, start, &len, NULL, NULL, NULL);
10079                 if (ret < 0) {
10080                         goto out;
10081                 } else if (ret) {
10082                         ret = 0;
10083                 } else {
10084                         btrfs_warn(fs_info,
10085                                    "swapfile must not be copy-on-write");
10086                         ret = -EINVAL;
10087                         goto out;
10088                 }
10089
10090                 em = btrfs_get_chunk_map(fs_info, logical_block_start, len);
10091                 if (IS_ERR(em)) {
10092                         ret = PTR_ERR(em);
10093                         goto out;
10094                 }
10095
10096                 if (em->map_lookup->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
10097                         btrfs_warn(fs_info,
10098                                    "swapfile must have single data profile");
10099                         ret = -EINVAL;
10100                         goto out;
10101                 }
10102
10103                 if (device == NULL) {
10104                         device = em->map_lookup->stripes[0].dev;
10105                         ret = btrfs_add_swapfile_pin(inode, device, false);
10106                         if (ret == 1)
10107                                 ret = 0;
10108                         else if (ret)
10109                                 goto out;
10110                 } else if (device != em->map_lookup->stripes[0].dev) {
10111                         btrfs_warn(fs_info, "swapfile must be on one device");
10112                         ret = -EINVAL;
10113                         goto out;
10114                 }
10115
10116                 physical_block_start = (em->map_lookup->stripes[0].physical +
10117                                         (logical_block_start - em->start));
10118                 len = min(len, em->len - (logical_block_start - em->start));
10119                 free_extent_map(em);
10120                 em = NULL;
10121
10122                 bg = btrfs_lookup_block_group(fs_info, logical_block_start);
10123                 if (!bg) {
10124                         btrfs_warn(fs_info,
10125                            "could not find block group containing swapfile");
10126                         ret = -EINVAL;
10127                         goto out;
10128                 }
10129
10130                 ret = btrfs_add_swapfile_pin(inode, bg, true);
10131                 if (ret) {
10132                         btrfs_put_block_group(bg);
10133                         if (ret == 1)
10134                                 ret = 0;
10135                         else
10136                                 goto out;
10137                 }
10138
10139                 if (bsi.block_len &&
10140                     bsi.block_start + bsi.block_len == physical_block_start) {
10141                         bsi.block_len += len;
10142                 } else {
10143                         if (bsi.block_len) {
10144                                 ret = btrfs_add_swap_extent(sis, &bsi);
10145                                 if (ret)
10146                                         goto out;
10147                         }
10148                         bsi.start = start;
10149                         bsi.block_start = physical_block_start;
10150                         bsi.block_len = len;
10151                 }
10152
10153                 start += len;
10154         }
10155
10156         if (bsi.block_len)
10157                 ret = btrfs_add_swap_extent(sis, &bsi);
10158
10159 out:
10160         if (!IS_ERR_OR_NULL(em))
10161                 free_extent_map(em);
10162
10163         unlock_extent_cached(io_tree, 0, isize - 1, &cached_state);
10164
10165         if (ret)
10166                 btrfs_swap_deactivate(file);
10167
10168         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
10169
10170         if (ret)
10171                 return ret;
10172
10173         if (device)
10174                 sis->bdev = device->bdev;
10175         *span = bsi.highest_ppage - bsi.lowest_ppage + 1;
10176         sis->max = bsi.nr_pages;
10177         sis->pages = bsi.nr_pages - 1;
10178         sis->highest_bit = bsi.nr_pages - 1;
10179         return bsi.nr_extents;
10180 }
10181 #else
10182 static void btrfs_swap_deactivate(struct file *file)
10183 {
10184 }
10185
10186 static int btrfs_swap_activate(struct swap_info_struct *sis, struct file *file,
10187                                sector_t *span)
10188 {
10189         return -EOPNOTSUPP;
10190 }
10191 #endif
10192
10193 static const struct inode_operations btrfs_dir_inode_operations = {
10194         .getattr        = btrfs_getattr,
10195         .lookup         = btrfs_lookup,
10196         .create         = btrfs_create,
10197         .unlink         = btrfs_unlink,
10198         .link           = btrfs_link,
10199         .mkdir          = btrfs_mkdir,
10200         .rmdir          = btrfs_rmdir,
10201         .rename         = btrfs_rename2,
10202         .symlink        = btrfs_symlink,
10203         .setattr        = btrfs_setattr,
10204         .mknod          = btrfs_mknod,
10205         .listxattr      = btrfs_listxattr,
10206         .permission     = btrfs_permission,
10207         .get_acl        = btrfs_get_acl,
10208         .set_acl        = btrfs_set_acl,
10209         .update_time    = btrfs_update_time,
10210         .tmpfile        = btrfs_tmpfile,
10211 };
10212
10213 static const struct file_operations btrfs_dir_file_operations = {
10214         .llseek         = generic_file_llseek,
10215         .read           = generic_read_dir,
10216         .iterate_shared = btrfs_real_readdir,
10217         .open           = btrfs_opendir,
10218         .unlocked_ioctl = btrfs_ioctl,
10219 #ifdef CONFIG_COMPAT
10220         .compat_ioctl   = btrfs_compat_ioctl,
10221 #endif
10222         .release        = btrfs_release_file,
10223         .fsync          = btrfs_sync_file,
10224 };
10225
10226 static const struct extent_io_ops btrfs_extent_io_ops = {
10227         /* mandatory callbacks */
10228         .submit_bio_hook = btrfs_submit_bio_hook,
10229         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10230 };
10231
10232 /*
10233  * btrfs doesn't support the bmap operation because swapfiles
10234  * use bmap to make a mapping of extents in the file.  They assume
10235  * these extents won't change over the life of the file and they
10236  * use the bmap result to do IO directly to the drive.
10237  *
10238  * the btrfs bmap call would return logical addresses that aren't
10239  * suitable for IO and they also will change frequently as COW
10240  * operations happen.  So, swapfile + btrfs == corruption.
10241  *
10242  * For now we're avoiding this by dropping bmap.
10243  */
10244 static const struct address_space_operations btrfs_aops = {
10245         .readpage       = btrfs_readpage,
10246         .writepage      = btrfs_writepage,
10247         .writepages     = btrfs_writepages,
10248         .readahead      = btrfs_readahead,
10249         .direct_IO      = btrfs_direct_IO,
10250         .invalidatepage = btrfs_invalidatepage,
10251         .releasepage    = btrfs_releasepage,
10252 #ifdef CONFIG_MIGRATION
10253         .migratepage    = btrfs_migratepage,
10254 #endif
10255         .set_page_dirty = btrfs_set_page_dirty,
10256         .error_remove_page = generic_error_remove_page,
10257         .swap_activate  = btrfs_swap_activate,
10258         .swap_deactivate = btrfs_swap_deactivate,
10259 };
10260
10261 static const struct inode_operations btrfs_file_inode_operations = {
10262         .getattr        = btrfs_getattr,
10263         .setattr        = btrfs_setattr,
10264         .listxattr      = btrfs_listxattr,
10265         .permission     = btrfs_permission,
10266         .fiemap         = btrfs_fiemap,
10267         .get_acl        = btrfs_get_acl,
10268         .set_acl        = btrfs_set_acl,
10269         .update_time    = btrfs_update_time,
10270 };
10271 static const struct inode_operations btrfs_special_inode_operations = {
10272         .getattr        = btrfs_getattr,
10273         .setattr        = btrfs_setattr,
10274         .permission     = btrfs_permission,
10275         .listxattr      = btrfs_listxattr,
10276         .get_acl        = btrfs_get_acl,
10277         .set_acl        = btrfs_set_acl,
10278         .update_time    = btrfs_update_time,
10279 };
10280 static const struct inode_operations btrfs_symlink_inode_operations = {
10281         .get_link       = page_get_link,
10282         .getattr        = btrfs_getattr,
10283         .setattr        = btrfs_setattr,
10284         .permission     = btrfs_permission,
10285         .listxattr      = btrfs_listxattr,
10286         .update_time    = btrfs_update_time,
10287 };
10288
10289 const struct dentry_operations btrfs_dentry_operations = {
10290         .d_delete       = btrfs_dentry_delete,
10291 };