Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45 #include "subpage.h"
46
47 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
48                                  BTRFS_HEADER_FLAG_RELOC |\
49                                  BTRFS_SUPER_FLAG_ERROR |\
50                                  BTRFS_SUPER_FLAG_SEEDING |\
51                                  BTRFS_SUPER_FLAG_METADUMP |\
52                                  BTRFS_SUPER_FLAG_METADUMP_V2)
53
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
56 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57                                       struct btrfs_fs_info *fs_info);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
60                                         struct extent_io_tree *dirty_pages,
61                                         int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
63                                        struct extent_io_tree *pinned_extents);
64 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
65 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
66
67 /*
68  * btrfs_end_io_wq structs are used to do processing in task context when an IO
69  * is complete.  This is used during reads to verify checksums, and it is used
70  * by writes to insert metadata for new file extents after IO is complete.
71  */
72 struct btrfs_end_io_wq {
73         struct bio *bio;
74         bio_end_io_t *end_io;
75         void *private;
76         struct btrfs_fs_info *info;
77         blk_status_t status;
78         enum btrfs_wq_endio_type metadata;
79         struct btrfs_work work;
80 };
81
82 static struct kmem_cache *btrfs_end_io_wq_cache;
83
84 int __init btrfs_end_io_wq_init(void)
85 {
86         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
87                                         sizeof(struct btrfs_end_io_wq),
88                                         0,
89                                         SLAB_MEM_SPREAD,
90                                         NULL);
91         if (!btrfs_end_io_wq_cache)
92                 return -ENOMEM;
93         return 0;
94 }
95
96 void __cold btrfs_end_io_wq_exit(void)
97 {
98         kmem_cache_destroy(btrfs_end_io_wq_cache);
99 }
100
101 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
102 {
103         if (fs_info->csum_shash)
104                 crypto_free_shash(fs_info->csum_shash);
105 }
106
107 /*
108  * async submit bios are used to offload expensive checksumming
109  * onto the worker threads.  They checksum file and metadata bios
110  * just before they are sent down the IO stack.
111  */
112 struct async_submit_bio {
113         struct inode *inode;
114         struct bio *bio;
115         extent_submit_bio_start_t *submit_bio_start;
116         int mirror_num;
117
118         /* Optional parameter for submit_bio_start used by direct io */
119         u64 dio_file_offset;
120         struct btrfs_work work;
121         blk_status_t status;
122 };
123
124 /*
125  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
126  * eb, the lockdep key is determined by the btrfs_root it belongs to and
127  * the level the eb occupies in the tree.
128  *
129  * Different roots are used for different purposes and may nest inside each
130  * other and they require separate keysets.  As lockdep keys should be
131  * static, assign keysets according to the purpose of the root as indicated
132  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
133  * roots have separate keysets.
134  *
135  * Lock-nesting across peer nodes is always done with the immediate parent
136  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
137  * subclass to avoid triggering lockdep warning in such cases.
138  *
139  * The key is set by the readpage_end_io_hook after the buffer has passed
140  * csum validation but before the pages are unlocked.  It is also set by
141  * btrfs_init_new_buffer on freshly allocated blocks.
142  *
143  * We also add a check to make sure the highest level of the tree is the
144  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
145  * needs update as well.
146  */
147 #ifdef CONFIG_DEBUG_LOCK_ALLOC
148 # if BTRFS_MAX_LEVEL != 8
149 #  error
150 # endif
151
152 #define DEFINE_LEVEL(stem, level)                                       \
153         .names[level] = "btrfs-" stem "-0" #level,
154
155 #define DEFINE_NAME(stem)                                               \
156         DEFINE_LEVEL(stem, 0)                                           \
157         DEFINE_LEVEL(stem, 1)                                           \
158         DEFINE_LEVEL(stem, 2)                                           \
159         DEFINE_LEVEL(stem, 3)                                           \
160         DEFINE_LEVEL(stem, 4)                                           \
161         DEFINE_LEVEL(stem, 5)                                           \
162         DEFINE_LEVEL(stem, 6)                                           \
163         DEFINE_LEVEL(stem, 7)
164
165 static struct btrfs_lockdep_keyset {
166         u64                     id;             /* root objectid */
167         /* Longest entry: btrfs-free-space-00 */
168         char                    names[BTRFS_MAX_LEVEL][20];
169         struct lock_class_key   keys[BTRFS_MAX_LEVEL];
170 } btrfs_lockdep_keysets[] = {
171         { .id = BTRFS_ROOT_TREE_OBJECTID,       DEFINE_NAME("root")     },
172         { .id = BTRFS_EXTENT_TREE_OBJECTID,     DEFINE_NAME("extent")   },
173         { .id = BTRFS_CHUNK_TREE_OBJECTID,      DEFINE_NAME("chunk")    },
174         { .id = BTRFS_DEV_TREE_OBJECTID,        DEFINE_NAME("dev")      },
175         { .id = BTRFS_CSUM_TREE_OBJECTID,       DEFINE_NAME("csum")     },
176         { .id = BTRFS_QUOTA_TREE_OBJECTID,      DEFINE_NAME("quota")    },
177         { .id = BTRFS_TREE_LOG_OBJECTID,        DEFINE_NAME("log")      },
178         { .id = BTRFS_TREE_RELOC_OBJECTID,      DEFINE_NAME("treloc")   },
179         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc")   },
180         { .id = BTRFS_UUID_TREE_OBJECTID,       DEFINE_NAME("uuid")     },
181         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
182         { .id = 0,                              DEFINE_NAME("tree")     },
183 };
184
185 #undef DEFINE_LEVEL
186 #undef DEFINE_NAME
187
188 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
189                                     int level)
190 {
191         struct btrfs_lockdep_keyset *ks;
192
193         BUG_ON(level >= ARRAY_SIZE(ks->keys));
194
195         /* find the matching keyset, id 0 is the default entry */
196         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
197                 if (ks->id == objectid)
198                         break;
199
200         lockdep_set_class_and_name(&eb->lock,
201                                    &ks->keys[level], ks->names[level]);
202 }
203
204 #endif
205
206 /*
207  * Compute the csum of a btree block and store the result to provided buffer.
208  */
209 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
210 {
211         struct btrfs_fs_info *fs_info = buf->fs_info;
212         const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
213         const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
214         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
215         char *kaddr;
216         int i;
217
218         shash->tfm = fs_info->csum_shash;
219         crypto_shash_init(shash);
220         kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
221         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
222                             first_page_part - BTRFS_CSUM_SIZE);
223
224         for (i = 1; i < num_pages; i++) {
225                 kaddr = page_address(buf->pages[i]);
226                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
227         }
228         memset(result, 0, BTRFS_CSUM_SIZE);
229         crypto_shash_final(shash, result);
230 }
231
232 /*
233  * we can't consider a given block up to date unless the transid of the
234  * block matches the transid in the parent node's pointer.  This is how we
235  * detect blocks that either didn't get written at all or got written
236  * in the wrong place.
237  */
238 static int verify_parent_transid(struct extent_io_tree *io_tree,
239                                  struct extent_buffer *eb, u64 parent_transid,
240                                  int atomic)
241 {
242         struct extent_state *cached_state = NULL;
243         int ret;
244         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
245
246         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
247                 return 0;
248
249         if (atomic)
250                 return -EAGAIN;
251
252         if (need_lock)
253                 btrfs_tree_read_lock(eb);
254
255         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
256                          &cached_state);
257         if (extent_buffer_uptodate(eb) &&
258             btrfs_header_generation(eb) == parent_transid) {
259                 ret = 0;
260                 goto out;
261         }
262         btrfs_err_rl(eb->fs_info,
263                 "parent transid verify failed on %llu wanted %llu found %llu",
264                         eb->start,
265                         parent_transid, btrfs_header_generation(eb));
266         ret = 1;
267
268         /*
269          * Things reading via commit roots that don't have normal protection,
270          * like send, can have a really old block in cache that may point at a
271          * block that has been freed and re-allocated.  So don't clear uptodate
272          * if we find an eb that is under IO (dirty/writeback) because we could
273          * end up reading in the stale data and then writing it back out and
274          * making everybody very sad.
275          */
276         if (!extent_buffer_under_io(eb))
277                 clear_extent_buffer_uptodate(eb);
278 out:
279         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
280                              &cached_state);
281         if (need_lock)
282                 btrfs_tree_read_unlock(eb);
283         return ret;
284 }
285
286 static bool btrfs_supported_super_csum(u16 csum_type)
287 {
288         switch (csum_type) {
289         case BTRFS_CSUM_TYPE_CRC32:
290         case BTRFS_CSUM_TYPE_XXHASH:
291         case BTRFS_CSUM_TYPE_SHA256:
292         case BTRFS_CSUM_TYPE_BLAKE2:
293                 return true;
294         default:
295                 return false;
296         }
297 }
298
299 /*
300  * Return 0 if the superblock checksum type matches the checksum value of that
301  * algorithm. Pass the raw disk superblock data.
302  */
303 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
304                                   char *raw_disk_sb)
305 {
306         struct btrfs_super_block *disk_sb =
307                 (struct btrfs_super_block *)raw_disk_sb;
308         char result[BTRFS_CSUM_SIZE];
309         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
310
311         shash->tfm = fs_info->csum_shash;
312
313         /*
314          * The super_block structure does not span the whole
315          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
316          * filled with zeros and is included in the checksum.
317          */
318         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
319                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
320
321         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
322                 return 1;
323
324         return 0;
325 }
326
327 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
328                            struct btrfs_key *first_key, u64 parent_transid)
329 {
330         struct btrfs_fs_info *fs_info = eb->fs_info;
331         int found_level;
332         struct btrfs_key found_key;
333         int ret;
334
335         found_level = btrfs_header_level(eb);
336         if (found_level != level) {
337                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
338                      KERN_ERR "BTRFS: tree level check failed\n");
339                 btrfs_err(fs_info,
340 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
341                           eb->start, level, found_level);
342                 return -EIO;
343         }
344
345         if (!first_key)
346                 return 0;
347
348         /*
349          * For live tree block (new tree blocks in current transaction),
350          * we need proper lock context to avoid race, which is impossible here.
351          * So we only checks tree blocks which is read from disk, whose
352          * generation <= fs_info->last_trans_committed.
353          */
354         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
355                 return 0;
356
357         /* We have @first_key, so this @eb must have at least one item */
358         if (btrfs_header_nritems(eb) == 0) {
359                 btrfs_err(fs_info,
360                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
361                           eb->start);
362                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
363                 return -EUCLEAN;
364         }
365
366         if (found_level)
367                 btrfs_node_key_to_cpu(eb, &found_key, 0);
368         else
369                 btrfs_item_key_to_cpu(eb, &found_key, 0);
370         ret = btrfs_comp_cpu_keys(first_key, &found_key);
371
372         if (ret) {
373                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
374                      KERN_ERR "BTRFS: tree first key check failed\n");
375                 btrfs_err(fs_info,
376 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
377                           eb->start, parent_transid, first_key->objectid,
378                           first_key->type, first_key->offset,
379                           found_key.objectid, found_key.type,
380                           found_key.offset);
381         }
382         return ret;
383 }
384
385 /*
386  * helper to read a given tree block, doing retries as required when
387  * the checksums don't match and we have alternate mirrors to try.
388  *
389  * @parent_transid:     expected transid, skip check if 0
390  * @level:              expected level, mandatory check
391  * @first_key:          expected key of first slot, skip check if NULL
392  */
393 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
394                                           u64 parent_transid, int level,
395                                           struct btrfs_key *first_key)
396 {
397         struct btrfs_fs_info *fs_info = eb->fs_info;
398         struct extent_io_tree *io_tree;
399         int failed = 0;
400         int ret;
401         int num_copies = 0;
402         int mirror_num = 0;
403         int failed_mirror = 0;
404
405         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
406         while (1) {
407                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
408                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
409                 if (!ret) {
410                         if (verify_parent_transid(io_tree, eb,
411                                                    parent_transid, 0))
412                                 ret = -EIO;
413                         else if (btrfs_verify_level_key(eb, level,
414                                                 first_key, parent_transid))
415                                 ret = -EUCLEAN;
416                         else
417                                 break;
418                 }
419
420                 num_copies = btrfs_num_copies(fs_info,
421                                               eb->start, eb->len);
422                 if (num_copies == 1)
423                         break;
424
425                 if (!failed_mirror) {
426                         failed = 1;
427                         failed_mirror = eb->read_mirror;
428                 }
429
430                 mirror_num++;
431                 if (mirror_num == failed_mirror)
432                         mirror_num++;
433
434                 if (mirror_num > num_copies)
435                         break;
436         }
437
438         if (failed && !ret && failed_mirror)
439                 btrfs_repair_eb_io_failure(eb, failed_mirror);
440
441         return ret;
442 }
443
444 static int csum_one_extent_buffer(struct extent_buffer *eb)
445 {
446         struct btrfs_fs_info *fs_info = eb->fs_info;
447         u8 result[BTRFS_CSUM_SIZE];
448         int ret;
449
450         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
451                                     offsetof(struct btrfs_header, fsid),
452                                     BTRFS_FSID_SIZE) == 0);
453         csum_tree_block(eb, result);
454
455         if (btrfs_header_level(eb))
456                 ret = btrfs_check_node(eb);
457         else
458                 ret = btrfs_check_leaf_full(eb);
459
460         if (ret < 0) {
461                 btrfs_print_tree(eb, 0);
462                 btrfs_err(fs_info,
463                         "block=%llu write time tree block corruption detected",
464                         eb->start);
465                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
466                 return ret;
467         }
468         write_extent_buffer(eb, result, 0, fs_info->csum_size);
469
470         return 0;
471 }
472
473 /* Checksum all dirty extent buffers in one bio_vec */
474 static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
475                                       struct bio_vec *bvec)
476 {
477         struct page *page = bvec->bv_page;
478         u64 bvec_start = page_offset(page) + bvec->bv_offset;
479         u64 cur;
480         int ret = 0;
481
482         for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
483              cur += fs_info->nodesize) {
484                 struct extent_buffer *eb;
485                 bool uptodate;
486
487                 eb = find_extent_buffer(fs_info, cur);
488                 uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
489                                                        fs_info->nodesize);
490
491                 /* A dirty eb shouldn't disappear from buffer_radix */
492                 if (WARN_ON(!eb))
493                         return -EUCLEAN;
494
495                 if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
496                         free_extent_buffer(eb);
497                         return -EUCLEAN;
498                 }
499                 if (WARN_ON(!uptodate)) {
500                         free_extent_buffer(eb);
501                         return -EUCLEAN;
502                 }
503
504                 ret = csum_one_extent_buffer(eb);
505                 free_extent_buffer(eb);
506                 if (ret < 0)
507                         return ret;
508         }
509         return ret;
510 }
511
512 /*
513  * Checksum a dirty tree block before IO.  This has extra checks to make sure
514  * we only fill in the checksum field in the first page of a multi-page block.
515  * For subpage extent buffers we need bvec to also read the offset in the page.
516  */
517 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
518 {
519         struct page *page = bvec->bv_page;
520         u64 start = page_offset(page);
521         u64 found_start;
522         struct extent_buffer *eb;
523
524         if (fs_info->sectorsize < PAGE_SIZE)
525                 return csum_dirty_subpage_buffers(fs_info, bvec);
526
527         eb = (struct extent_buffer *)page->private;
528         if (page != eb->pages[0])
529                 return 0;
530
531         found_start = btrfs_header_bytenr(eb);
532
533         if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
534                 WARN_ON(found_start != 0);
535                 return 0;
536         }
537
538         /*
539          * Please do not consolidate these warnings into a single if.
540          * It is useful to know what went wrong.
541          */
542         if (WARN_ON(found_start != start))
543                 return -EUCLEAN;
544         if (WARN_ON(!PageUptodate(page)))
545                 return -EUCLEAN;
546
547         return csum_one_extent_buffer(eb);
548 }
549
550 static int check_tree_block_fsid(struct extent_buffer *eb)
551 {
552         struct btrfs_fs_info *fs_info = eb->fs_info;
553         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
554         u8 fsid[BTRFS_FSID_SIZE];
555         u8 *metadata_uuid;
556
557         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
558                            BTRFS_FSID_SIZE);
559         /*
560          * Checking the incompat flag is only valid for the current fs. For
561          * seed devices it's forbidden to have their uuid changed so reading
562          * ->fsid in this case is fine
563          */
564         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
565                 metadata_uuid = fs_devices->metadata_uuid;
566         else
567                 metadata_uuid = fs_devices->fsid;
568
569         if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
570                 return 0;
571
572         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
573                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
574                         return 0;
575
576         return 1;
577 }
578
579 /* Do basic extent buffer checks at read time */
580 static int validate_extent_buffer(struct extent_buffer *eb)
581 {
582         struct btrfs_fs_info *fs_info = eb->fs_info;
583         u64 found_start;
584         const u32 csum_size = fs_info->csum_size;
585         u8 found_level;
586         u8 result[BTRFS_CSUM_SIZE];
587         int ret = 0;
588
589         found_start = btrfs_header_bytenr(eb);
590         if (found_start != eb->start) {
591                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
592                              eb->start, found_start);
593                 ret = -EIO;
594                 goto out;
595         }
596         if (check_tree_block_fsid(eb)) {
597                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
598                              eb->start);
599                 ret = -EIO;
600                 goto out;
601         }
602         found_level = btrfs_header_level(eb);
603         if (found_level >= BTRFS_MAX_LEVEL) {
604                 btrfs_err(fs_info, "bad tree block level %d on %llu",
605                           (int)btrfs_header_level(eb), eb->start);
606                 ret = -EIO;
607                 goto out;
608         }
609
610         csum_tree_block(eb, result);
611
612         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
613                 u8 val[BTRFS_CSUM_SIZE] = { 0 };
614
615                 read_extent_buffer(eb, &val, 0, csum_size);
616                 btrfs_warn_rl(fs_info,
617         "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
618                               fs_info->sb->s_id, eb->start,
619                               CSUM_FMT_VALUE(csum_size, val),
620                               CSUM_FMT_VALUE(csum_size, result),
621                               btrfs_header_level(eb));
622                 ret = -EUCLEAN;
623                 goto out;
624         }
625
626         /*
627          * If this is a leaf block and it is corrupt, set the corrupt bit so
628          * that we don't try and read the other copies of this block, just
629          * return -EIO.
630          */
631         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
632                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633                 ret = -EIO;
634         }
635
636         if (found_level > 0 && btrfs_check_node(eb))
637                 ret = -EIO;
638
639         if (!ret)
640                 set_extent_buffer_uptodate(eb);
641         else
642                 btrfs_err(fs_info,
643                           "block=%llu read time tree block corruption detected",
644                           eb->start);
645 out:
646         return ret;
647 }
648
649 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
650                                    int mirror)
651 {
652         struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
653         struct extent_buffer *eb;
654         bool reads_done;
655         int ret = 0;
656
657         /*
658          * We don't allow bio merge for subpage metadata read, so we should
659          * only get one eb for each endio hook.
660          */
661         ASSERT(end == start + fs_info->nodesize - 1);
662         ASSERT(PagePrivate(page));
663
664         eb = find_extent_buffer(fs_info, start);
665         /*
666          * When we are reading one tree block, eb must have been inserted into
667          * the radix tree. If not, something is wrong.
668          */
669         ASSERT(eb);
670
671         reads_done = atomic_dec_and_test(&eb->io_pages);
672         /* Subpage read must finish in page read */
673         ASSERT(reads_done);
674
675         eb->read_mirror = mirror;
676         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
677                 ret = -EIO;
678                 goto err;
679         }
680         ret = validate_extent_buffer(eb);
681         if (ret < 0)
682                 goto err;
683
684         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
685                 btree_readahead_hook(eb, ret);
686
687         set_extent_buffer_uptodate(eb);
688
689         free_extent_buffer(eb);
690         return ret;
691 err:
692         /*
693          * end_bio_extent_readpage decrements io_pages in case of error,
694          * make sure it has something to decrement.
695          */
696         atomic_inc(&eb->io_pages);
697         clear_extent_buffer_uptodate(eb);
698         free_extent_buffer(eb);
699         return ret;
700 }
701
702 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
703                                    struct page *page, u64 start, u64 end,
704                                    int mirror)
705 {
706         struct extent_buffer *eb;
707         int ret = 0;
708         int reads_done;
709
710         ASSERT(page->private);
711
712         if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
713                 return validate_subpage_buffer(page, start, end, mirror);
714
715         eb = (struct extent_buffer *)page->private;
716
717         /*
718          * The pending IO might have been the only thing that kept this buffer
719          * in memory.  Make sure we have a ref for all this other checks
720          */
721         atomic_inc(&eb->refs);
722
723         reads_done = atomic_dec_and_test(&eb->io_pages);
724         if (!reads_done)
725                 goto err;
726
727         eb->read_mirror = mirror;
728         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
729                 ret = -EIO;
730                 goto err;
731         }
732         ret = validate_extent_buffer(eb);
733 err:
734         if (reads_done &&
735             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
736                 btree_readahead_hook(eb, ret);
737
738         if (ret) {
739                 /*
740                  * our io error hook is going to dec the io pages
741                  * again, we have to make sure it has something
742                  * to decrement
743                  */
744                 atomic_inc(&eb->io_pages);
745                 clear_extent_buffer_uptodate(eb);
746         }
747         free_extent_buffer(eb);
748
749         return ret;
750 }
751
752 static void end_workqueue_bio(struct bio *bio)
753 {
754         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
755         struct btrfs_fs_info *fs_info;
756         struct btrfs_workqueue *wq;
757
758         fs_info = end_io_wq->info;
759         end_io_wq->status = bio->bi_status;
760
761         if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
762                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
763                         wq = fs_info->endio_meta_write_workers;
764                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
765                         wq = fs_info->endio_freespace_worker;
766                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
767                         wq = fs_info->endio_raid56_workers;
768                 else
769                         wq = fs_info->endio_write_workers;
770         } else {
771                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
772                         wq = fs_info->endio_raid56_workers;
773                 else if (end_io_wq->metadata)
774                         wq = fs_info->endio_meta_workers;
775                 else
776                         wq = fs_info->endio_workers;
777         }
778
779         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
780         btrfs_queue_work(wq, &end_io_wq->work);
781 }
782
783 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
784                         enum btrfs_wq_endio_type metadata)
785 {
786         struct btrfs_end_io_wq *end_io_wq;
787
788         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
789         if (!end_io_wq)
790                 return BLK_STS_RESOURCE;
791
792         end_io_wq->private = bio->bi_private;
793         end_io_wq->end_io = bio->bi_end_io;
794         end_io_wq->info = info;
795         end_io_wq->status = 0;
796         end_io_wq->bio = bio;
797         end_io_wq->metadata = metadata;
798
799         bio->bi_private = end_io_wq;
800         bio->bi_end_io = end_workqueue_bio;
801         return 0;
802 }
803
804 static void run_one_async_start(struct btrfs_work *work)
805 {
806         struct async_submit_bio *async;
807         blk_status_t ret;
808
809         async = container_of(work, struct  async_submit_bio, work);
810         ret = async->submit_bio_start(async->inode, async->bio,
811                                       async->dio_file_offset);
812         if (ret)
813                 async->status = ret;
814 }
815
816 /*
817  * In order to insert checksums into the metadata in large chunks, we wait
818  * until bio submission time.   All the pages in the bio are checksummed and
819  * sums are attached onto the ordered extent record.
820  *
821  * At IO completion time the csums attached on the ordered extent record are
822  * inserted into the tree.
823  */
824 static void run_one_async_done(struct btrfs_work *work)
825 {
826         struct async_submit_bio *async;
827         struct inode *inode;
828         blk_status_t ret;
829
830         async = container_of(work, struct  async_submit_bio, work);
831         inode = async->inode;
832
833         /* If an error occurred we just want to clean up the bio and move on */
834         if (async->status) {
835                 async->bio->bi_status = async->status;
836                 bio_endio(async->bio);
837                 return;
838         }
839
840         /*
841          * All of the bios that pass through here are from async helpers.
842          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
843          * This changes nothing when cgroups aren't in use.
844          */
845         async->bio->bi_opf |= REQ_CGROUP_PUNT;
846         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
847         if (ret) {
848                 async->bio->bi_status = ret;
849                 bio_endio(async->bio);
850         }
851 }
852
853 static void run_one_async_free(struct btrfs_work *work)
854 {
855         struct async_submit_bio *async;
856
857         async = container_of(work, struct  async_submit_bio, work);
858         kfree(async);
859 }
860
861 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
862                                  int mirror_num, unsigned long bio_flags,
863                                  u64 dio_file_offset,
864                                  extent_submit_bio_start_t *submit_bio_start)
865 {
866         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
867         struct async_submit_bio *async;
868
869         async = kmalloc(sizeof(*async), GFP_NOFS);
870         if (!async)
871                 return BLK_STS_RESOURCE;
872
873         async->inode = inode;
874         async->bio = bio;
875         async->mirror_num = mirror_num;
876         async->submit_bio_start = submit_bio_start;
877
878         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
879                         run_one_async_free);
880
881         async->dio_file_offset = dio_file_offset;
882
883         async->status = 0;
884
885         if (op_is_sync(bio->bi_opf))
886                 btrfs_set_work_high_priority(&async->work);
887
888         btrfs_queue_work(fs_info->workers, &async->work);
889         return 0;
890 }
891
892 static blk_status_t btree_csum_one_bio(struct bio *bio)
893 {
894         struct bio_vec *bvec;
895         struct btrfs_root *root;
896         int ret = 0;
897         struct bvec_iter_all iter_all;
898
899         ASSERT(!bio_flagged(bio, BIO_CLONED));
900         bio_for_each_segment_all(bvec, bio, iter_all) {
901                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
902                 ret = csum_dirty_buffer(root->fs_info, bvec);
903                 if (ret)
904                         break;
905         }
906
907         return errno_to_blk_status(ret);
908 }
909
910 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
911                                            u64 dio_file_offset)
912 {
913         /*
914          * when we're called for a write, we're already in the async
915          * submission context.  Just jump into btrfs_map_bio
916          */
917         return btree_csum_one_bio(bio);
918 }
919
920 static int check_async_write(struct btrfs_fs_info *fs_info,
921                              struct btrfs_inode *bi)
922 {
923         if (btrfs_is_zoned(fs_info))
924                 return 0;
925         if (atomic_read(&bi->sync_writers))
926                 return 0;
927         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
928                 return 0;
929         return 1;
930 }
931
932 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
933                                        int mirror_num, unsigned long bio_flags)
934 {
935         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
936         int async = check_async_write(fs_info, BTRFS_I(inode));
937         blk_status_t ret;
938
939         if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
940                 /*
941                  * called for a read, do the setup so that checksum validation
942                  * can happen in the async kernel threads
943                  */
944                 ret = btrfs_bio_wq_end_io(fs_info, bio,
945                                           BTRFS_WQ_ENDIO_METADATA);
946                 if (ret)
947                         goto out_w_error;
948                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
949         } else if (!async) {
950                 ret = btree_csum_one_bio(bio);
951                 if (ret)
952                         goto out_w_error;
953                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
954         } else {
955                 /*
956                  * kthread helpers are used to submit writes so that
957                  * checksumming can happen in parallel across all CPUs
958                  */
959                 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
960                                           0, btree_submit_bio_start);
961         }
962
963         if (ret)
964                 goto out_w_error;
965         return 0;
966
967 out_w_error:
968         bio->bi_status = ret;
969         bio_endio(bio);
970         return ret;
971 }
972
973 #ifdef CONFIG_MIGRATION
974 static int btree_migratepage(struct address_space *mapping,
975                         struct page *newpage, struct page *page,
976                         enum migrate_mode mode)
977 {
978         /*
979          * we can't safely write a btree page from here,
980          * we haven't done the locking hook
981          */
982         if (PageDirty(page))
983                 return -EAGAIN;
984         /*
985          * Buffers may be managed in a filesystem specific way.
986          * We must have no buffers or drop them.
987          */
988         if (page_has_private(page) &&
989             !try_to_release_page(page, GFP_KERNEL))
990                 return -EAGAIN;
991         return migrate_page(mapping, newpage, page, mode);
992 }
993 #endif
994
995
996 static int btree_writepages(struct address_space *mapping,
997                             struct writeback_control *wbc)
998 {
999         struct btrfs_fs_info *fs_info;
1000         int ret;
1001
1002         if (wbc->sync_mode == WB_SYNC_NONE) {
1003
1004                 if (wbc->for_kupdate)
1005                         return 0;
1006
1007                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
1008                 /* this is a bit racy, but that's ok */
1009                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1010                                              BTRFS_DIRTY_METADATA_THRESH,
1011                                              fs_info->dirty_metadata_batch);
1012                 if (ret < 0)
1013                         return 0;
1014         }
1015         return btree_write_cache_pages(mapping, wbc);
1016 }
1017
1018 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1019 {
1020         if (PageWriteback(page) || PageDirty(page))
1021                 return 0;
1022
1023         return try_release_extent_buffer(page);
1024 }
1025
1026 static void btree_invalidatepage(struct page *page, unsigned int offset,
1027                                  unsigned int length)
1028 {
1029         struct extent_io_tree *tree;
1030         tree = &BTRFS_I(page->mapping->host)->io_tree;
1031         extent_invalidatepage(tree, page, offset);
1032         btree_releasepage(page, GFP_NOFS);
1033         if (PagePrivate(page)) {
1034                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1035                            "page private not zero on page %llu",
1036                            (unsigned long long)page_offset(page));
1037                 detach_page_private(page);
1038         }
1039 }
1040
1041 static int btree_set_page_dirty(struct page *page)
1042 {
1043 #ifdef DEBUG
1044         struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
1045         struct btrfs_subpage *subpage;
1046         struct extent_buffer *eb;
1047         int cur_bit = 0;
1048         u64 page_start = page_offset(page);
1049
1050         if (fs_info->sectorsize == PAGE_SIZE) {
1051                 BUG_ON(!PagePrivate(page));
1052                 eb = (struct extent_buffer *)page->private;
1053                 BUG_ON(!eb);
1054                 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1055                 BUG_ON(!atomic_read(&eb->refs));
1056                 btrfs_assert_tree_locked(eb);
1057                 return __set_page_dirty_nobuffers(page);
1058         }
1059         ASSERT(PagePrivate(page) && page->private);
1060         subpage = (struct btrfs_subpage *)page->private;
1061
1062         ASSERT(subpage->dirty_bitmap);
1063         while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
1064                 unsigned long flags;
1065                 u64 cur;
1066                 u16 tmp = (1 << cur_bit);
1067
1068                 spin_lock_irqsave(&subpage->lock, flags);
1069                 if (!(tmp & subpage->dirty_bitmap)) {
1070                         spin_unlock_irqrestore(&subpage->lock, flags);
1071                         cur_bit++;
1072                         continue;
1073                 }
1074                 spin_unlock_irqrestore(&subpage->lock, flags);
1075                 cur = page_start + cur_bit * fs_info->sectorsize;
1076
1077                 eb = find_extent_buffer(fs_info, cur);
1078                 ASSERT(eb);
1079                 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1080                 ASSERT(atomic_read(&eb->refs));
1081                 btrfs_assert_tree_locked(eb);
1082                 free_extent_buffer(eb);
1083
1084                 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
1085         }
1086 #endif
1087         return __set_page_dirty_nobuffers(page);
1088 }
1089
1090 static const struct address_space_operations btree_aops = {
1091         .writepages     = btree_writepages,
1092         .releasepage    = btree_releasepage,
1093         .invalidatepage = btree_invalidatepage,
1094 #ifdef CONFIG_MIGRATION
1095         .migratepage    = btree_migratepage,
1096 #endif
1097         .set_page_dirty = btree_set_page_dirty,
1098 };
1099
1100 struct extent_buffer *btrfs_find_create_tree_block(
1101                                                 struct btrfs_fs_info *fs_info,
1102                                                 u64 bytenr, u64 owner_root,
1103                                                 int level)
1104 {
1105         if (btrfs_is_testing(fs_info))
1106                 return alloc_test_extent_buffer(fs_info, bytenr);
1107         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1108 }
1109
1110 /*
1111  * Read tree block at logical address @bytenr and do variant basic but critical
1112  * verification.
1113  *
1114  * @owner_root:         the objectid of the root owner for this block.
1115  * @parent_transid:     expected transid of this tree block, skip check if 0
1116  * @level:              expected level, mandatory check
1117  * @first_key:          expected key in slot 0, skip check if NULL
1118  */
1119 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1120                                       u64 owner_root, u64 parent_transid,
1121                                       int level, struct btrfs_key *first_key)
1122 {
1123         struct extent_buffer *buf = NULL;
1124         int ret;
1125
1126         buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1127         if (IS_ERR(buf))
1128                 return buf;
1129
1130         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1131                                              level, first_key);
1132         if (ret) {
1133                 free_extent_buffer_stale(buf);
1134                 return ERR_PTR(ret);
1135         }
1136         return buf;
1137
1138 }
1139
1140 void btrfs_clean_tree_block(struct extent_buffer *buf)
1141 {
1142         struct btrfs_fs_info *fs_info = buf->fs_info;
1143         if (btrfs_header_generation(buf) ==
1144             fs_info->running_transaction->transid) {
1145                 btrfs_assert_tree_locked(buf);
1146
1147                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1148                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1149                                                  -buf->len,
1150                                                  fs_info->dirty_metadata_batch);
1151                         clear_extent_buffer_dirty(buf);
1152                 }
1153         }
1154 }
1155
1156 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1157                          u64 objectid)
1158 {
1159         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1160         root->fs_info = fs_info;
1161         root->node = NULL;
1162         root->commit_root = NULL;
1163         root->state = 0;
1164         root->orphan_cleanup_state = 0;
1165
1166         root->last_trans = 0;
1167         root->free_objectid = 0;
1168         root->nr_delalloc_inodes = 0;
1169         root->nr_ordered_extents = 0;
1170         root->inode_tree = RB_ROOT;
1171         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1172         root->block_rsv = NULL;
1173
1174         INIT_LIST_HEAD(&root->dirty_list);
1175         INIT_LIST_HEAD(&root->root_list);
1176         INIT_LIST_HEAD(&root->delalloc_inodes);
1177         INIT_LIST_HEAD(&root->delalloc_root);
1178         INIT_LIST_HEAD(&root->ordered_extents);
1179         INIT_LIST_HEAD(&root->ordered_root);
1180         INIT_LIST_HEAD(&root->reloc_dirty_list);
1181         INIT_LIST_HEAD(&root->logged_list[0]);
1182         INIT_LIST_HEAD(&root->logged_list[1]);
1183         spin_lock_init(&root->inode_lock);
1184         spin_lock_init(&root->delalloc_lock);
1185         spin_lock_init(&root->ordered_extent_lock);
1186         spin_lock_init(&root->accounting_lock);
1187         spin_lock_init(&root->log_extents_lock[0]);
1188         spin_lock_init(&root->log_extents_lock[1]);
1189         spin_lock_init(&root->qgroup_meta_rsv_lock);
1190         mutex_init(&root->objectid_mutex);
1191         mutex_init(&root->log_mutex);
1192         mutex_init(&root->ordered_extent_mutex);
1193         mutex_init(&root->delalloc_mutex);
1194         init_waitqueue_head(&root->qgroup_flush_wait);
1195         init_waitqueue_head(&root->log_writer_wait);
1196         init_waitqueue_head(&root->log_commit_wait[0]);
1197         init_waitqueue_head(&root->log_commit_wait[1]);
1198         INIT_LIST_HEAD(&root->log_ctxs[0]);
1199         INIT_LIST_HEAD(&root->log_ctxs[1]);
1200         atomic_set(&root->log_commit[0], 0);
1201         atomic_set(&root->log_commit[1], 0);
1202         atomic_set(&root->log_writers, 0);
1203         atomic_set(&root->log_batch, 0);
1204         refcount_set(&root->refs, 1);
1205         atomic_set(&root->snapshot_force_cow, 0);
1206         atomic_set(&root->nr_swapfiles, 0);
1207         root->log_transid = 0;
1208         root->log_transid_committed = -1;
1209         root->last_log_commit = 0;
1210         if (!dummy) {
1211                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1212                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1213                 extent_io_tree_init(fs_info, &root->log_csum_range,
1214                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1215         }
1216
1217         memset(&root->root_key, 0, sizeof(root->root_key));
1218         memset(&root->root_item, 0, sizeof(root->root_item));
1219         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1220         root->root_key.objectid = objectid;
1221         root->anon_dev = 0;
1222
1223         spin_lock_init(&root->root_item_lock);
1224         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1225 #ifdef CONFIG_BTRFS_DEBUG
1226         INIT_LIST_HEAD(&root->leak_list);
1227         spin_lock(&fs_info->fs_roots_radix_lock);
1228         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1229         spin_unlock(&fs_info->fs_roots_radix_lock);
1230 #endif
1231 }
1232
1233 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1234                                            u64 objectid, gfp_t flags)
1235 {
1236         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1237         if (root)
1238                 __setup_root(root, fs_info, objectid);
1239         return root;
1240 }
1241
1242 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1243 /* Should only be used by the testing infrastructure */
1244 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1245 {
1246         struct btrfs_root *root;
1247
1248         if (!fs_info)
1249                 return ERR_PTR(-EINVAL);
1250
1251         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1252         if (!root)
1253                 return ERR_PTR(-ENOMEM);
1254
1255         /* We don't use the stripesize in selftest, set it as sectorsize */
1256         root->alloc_bytenr = 0;
1257
1258         return root;
1259 }
1260 #endif
1261
1262 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1263                                      u64 objectid)
1264 {
1265         struct btrfs_fs_info *fs_info = trans->fs_info;
1266         struct extent_buffer *leaf;
1267         struct btrfs_root *tree_root = fs_info->tree_root;
1268         struct btrfs_root *root;
1269         struct btrfs_key key;
1270         unsigned int nofs_flag;
1271         int ret = 0;
1272
1273         /*
1274          * We're holding a transaction handle, so use a NOFS memory allocation
1275          * context to avoid deadlock if reclaim happens.
1276          */
1277         nofs_flag = memalloc_nofs_save();
1278         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1279         memalloc_nofs_restore(nofs_flag);
1280         if (!root)
1281                 return ERR_PTR(-ENOMEM);
1282
1283         root->root_key.objectid = objectid;
1284         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1285         root->root_key.offset = 0;
1286
1287         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1288                                       BTRFS_NESTING_NORMAL);
1289         if (IS_ERR(leaf)) {
1290                 ret = PTR_ERR(leaf);
1291                 leaf = NULL;
1292                 goto fail_unlock;
1293         }
1294
1295         root->node = leaf;
1296         btrfs_mark_buffer_dirty(leaf);
1297
1298         root->commit_root = btrfs_root_node(root);
1299         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1300
1301         btrfs_set_root_flags(&root->root_item, 0);
1302         btrfs_set_root_limit(&root->root_item, 0);
1303         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1304         btrfs_set_root_generation(&root->root_item, trans->transid);
1305         btrfs_set_root_level(&root->root_item, 0);
1306         btrfs_set_root_refs(&root->root_item, 1);
1307         btrfs_set_root_used(&root->root_item, leaf->len);
1308         btrfs_set_root_last_snapshot(&root->root_item, 0);
1309         btrfs_set_root_dirid(&root->root_item, 0);
1310         if (is_fstree(objectid))
1311                 generate_random_guid(root->root_item.uuid);
1312         else
1313                 export_guid(root->root_item.uuid, &guid_null);
1314         btrfs_set_root_drop_level(&root->root_item, 0);
1315
1316         btrfs_tree_unlock(leaf);
1317
1318         key.objectid = objectid;
1319         key.type = BTRFS_ROOT_ITEM_KEY;
1320         key.offset = 0;
1321         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1322         if (ret)
1323                 goto fail;
1324
1325         return root;
1326
1327 fail_unlock:
1328         if (leaf)
1329                 btrfs_tree_unlock(leaf);
1330 fail:
1331         btrfs_put_root(root);
1332
1333         return ERR_PTR(ret);
1334 }
1335
1336 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1337                                          struct btrfs_fs_info *fs_info)
1338 {
1339         struct btrfs_root *root;
1340
1341         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1342         if (!root)
1343                 return ERR_PTR(-ENOMEM);
1344
1345         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1346         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1347         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1348
1349         return root;
1350 }
1351
1352 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1353                               struct btrfs_root *root)
1354 {
1355         struct extent_buffer *leaf;
1356
1357         /*
1358          * DON'T set SHAREABLE bit for log trees.
1359          *
1360          * Log trees are not exposed to user space thus can't be snapshotted,
1361          * and they go away before a real commit is actually done.
1362          *
1363          * They do store pointers to file data extents, and those reference
1364          * counts still get updated (along with back refs to the log tree).
1365          */
1366
1367         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1368                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1369         if (IS_ERR(leaf))
1370                 return PTR_ERR(leaf);
1371
1372         root->node = leaf;
1373
1374         btrfs_mark_buffer_dirty(root->node);
1375         btrfs_tree_unlock(root->node);
1376
1377         return 0;
1378 }
1379
1380 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1381                              struct btrfs_fs_info *fs_info)
1382 {
1383         struct btrfs_root *log_root;
1384
1385         log_root = alloc_log_tree(trans, fs_info);
1386         if (IS_ERR(log_root))
1387                 return PTR_ERR(log_root);
1388
1389         if (!btrfs_is_zoned(fs_info)) {
1390                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1391
1392                 if (ret) {
1393                         btrfs_put_root(log_root);
1394                         return ret;
1395                 }
1396         }
1397
1398         WARN_ON(fs_info->log_root_tree);
1399         fs_info->log_root_tree = log_root;
1400         return 0;
1401 }
1402
1403 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1404                        struct btrfs_root *root)
1405 {
1406         struct btrfs_fs_info *fs_info = root->fs_info;
1407         struct btrfs_root *log_root;
1408         struct btrfs_inode_item *inode_item;
1409         int ret;
1410
1411         log_root = alloc_log_tree(trans, fs_info);
1412         if (IS_ERR(log_root))
1413                 return PTR_ERR(log_root);
1414
1415         ret = btrfs_alloc_log_tree_node(trans, log_root);
1416         if (ret) {
1417                 btrfs_put_root(log_root);
1418                 return ret;
1419         }
1420
1421         log_root->last_trans = trans->transid;
1422         log_root->root_key.offset = root->root_key.objectid;
1423
1424         inode_item = &log_root->root_item.inode;
1425         btrfs_set_stack_inode_generation(inode_item, 1);
1426         btrfs_set_stack_inode_size(inode_item, 3);
1427         btrfs_set_stack_inode_nlink(inode_item, 1);
1428         btrfs_set_stack_inode_nbytes(inode_item,
1429                                      fs_info->nodesize);
1430         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1431
1432         btrfs_set_root_node(&log_root->root_item, log_root->node);
1433
1434         WARN_ON(root->log_root);
1435         root->log_root = log_root;
1436         root->log_transid = 0;
1437         root->log_transid_committed = -1;
1438         root->last_log_commit = 0;
1439         return 0;
1440 }
1441
1442 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1443                                               struct btrfs_path *path,
1444                                               struct btrfs_key *key)
1445 {
1446         struct btrfs_root *root;
1447         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1448         u64 generation;
1449         int ret;
1450         int level;
1451
1452         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1453         if (!root)
1454                 return ERR_PTR(-ENOMEM);
1455
1456         ret = btrfs_find_root(tree_root, key, path,
1457                               &root->root_item, &root->root_key);
1458         if (ret) {
1459                 if (ret > 0)
1460                         ret = -ENOENT;
1461                 goto fail;
1462         }
1463
1464         generation = btrfs_root_generation(&root->root_item);
1465         level = btrfs_root_level(&root->root_item);
1466         root->node = read_tree_block(fs_info,
1467                                      btrfs_root_bytenr(&root->root_item),
1468                                      key->objectid, generation, level, NULL);
1469         if (IS_ERR(root->node)) {
1470                 ret = PTR_ERR(root->node);
1471                 root->node = NULL;
1472                 goto fail;
1473         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1474                 ret = -EIO;
1475                 goto fail;
1476         }
1477         root->commit_root = btrfs_root_node(root);
1478         return root;
1479 fail:
1480         btrfs_put_root(root);
1481         return ERR_PTR(ret);
1482 }
1483
1484 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1485                                         struct btrfs_key *key)
1486 {
1487         struct btrfs_root *root;
1488         struct btrfs_path *path;
1489
1490         path = btrfs_alloc_path();
1491         if (!path)
1492                 return ERR_PTR(-ENOMEM);
1493         root = read_tree_root_path(tree_root, path, key);
1494         btrfs_free_path(path);
1495
1496         return root;
1497 }
1498
1499 /*
1500  * Initialize subvolume root in-memory structure
1501  *
1502  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1503  */
1504 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1505 {
1506         int ret;
1507         unsigned int nofs_flag;
1508
1509         /*
1510          * We might be called under a transaction (e.g. indirect backref
1511          * resolution) which could deadlock if it triggers memory reclaim
1512          */
1513         nofs_flag = memalloc_nofs_save();
1514         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1515         memalloc_nofs_restore(nofs_flag);
1516         if (ret)
1517                 goto fail;
1518
1519         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1520             root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1521                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1522                 btrfs_check_and_init_root_item(&root->root_item);
1523         }
1524
1525         /*
1526          * Don't assign anonymous block device to roots that are not exposed to
1527          * userspace, the id pool is limited to 1M
1528          */
1529         if (is_fstree(root->root_key.objectid) &&
1530             btrfs_root_refs(&root->root_item) > 0) {
1531                 if (!anon_dev) {
1532                         ret = get_anon_bdev(&root->anon_dev);
1533                         if (ret)
1534                                 goto fail;
1535                 } else {
1536                         root->anon_dev = anon_dev;
1537                 }
1538         }
1539
1540         mutex_lock(&root->objectid_mutex);
1541         ret = btrfs_init_root_free_objectid(root);
1542         if (ret) {
1543                 mutex_unlock(&root->objectid_mutex);
1544                 goto fail;
1545         }
1546
1547         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1548
1549         mutex_unlock(&root->objectid_mutex);
1550
1551         return 0;
1552 fail:
1553         /* The caller is responsible to call btrfs_free_fs_root */
1554         return ret;
1555 }
1556
1557 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1558                                                u64 root_id)
1559 {
1560         struct btrfs_root *root;
1561
1562         spin_lock(&fs_info->fs_roots_radix_lock);
1563         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1564                                  (unsigned long)root_id);
1565         if (root)
1566                 root = btrfs_grab_root(root);
1567         spin_unlock(&fs_info->fs_roots_radix_lock);
1568         return root;
1569 }
1570
1571 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1572                                                 u64 objectid)
1573 {
1574         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1575                 return btrfs_grab_root(fs_info->tree_root);
1576         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1577                 return btrfs_grab_root(fs_info->extent_root);
1578         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1579                 return btrfs_grab_root(fs_info->chunk_root);
1580         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1581                 return btrfs_grab_root(fs_info->dev_root);
1582         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1583                 return btrfs_grab_root(fs_info->csum_root);
1584         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1585                 return btrfs_grab_root(fs_info->quota_root) ?
1586                         fs_info->quota_root : ERR_PTR(-ENOENT);
1587         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1588                 return btrfs_grab_root(fs_info->uuid_root) ?
1589                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1590         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1591                 return btrfs_grab_root(fs_info->free_space_root) ?
1592                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1593         return NULL;
1594 }
1595
1596 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1597                          struct btrfs_root *root)
1598 {
1599         int ret;
1600
1601         ret = radix_tree_preload(GFP_NOFS);
1602         if (ret)
1603                 return ret;
1604
1605         spin_lock(&fs_info->fs_roots_radix_lock);
1606         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1607                                 (unsigned long)root->root_key.objectid,
1608                                 root);
1609         if (ret == 0) {
1610                 btrfs_grab_root(root);
1611                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1612         }
1613         spin_unlock(&fs_info->fs_roots_radix_lock);
1614         radix_tree_preload_end();
1615
1616         return ret;
1617 }
1618
1619 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1620 {
1621 #ifdef CONFIG_BTRFS_DEBUG
1622         struct btrfs_root *root;
1623
1624         while (!list_empty(&fs_info->allocated_roots)) {
1625                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1626
1627                 root = list_first_entry(&fs_info->allocated_roots,
1628                                         struct btrfs_root, leak_list);
1629                 btrfs_err(fs_info, "leaked root %s refcount %d",
1630                           btrfs_root_name(&root->root_key, buf),
1631                           refcount_read(&root->refs));
1632                 while (refcount_read(&root->refs) > 1)
1633                         btrfs_put_root(root);
1634                 btrfs_put_root(root);
1635         }
1636 #endif
1637 }
1638
1639 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1640 {
1641         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1642         percpu_counter_destroy(&fs_info->delalloc_bytes);
1643         percpu_counter_destroy(&fs_info->ordered_bytes);
1644         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1645         btrfs_free_csum_hash(fs_info);
1646         btrfs_free_stripe_hash_table(fs_info);
1647         btrfs_free_ref_cache(fs_info);
1648         kfree(fs_info->balance_ctl);
1649         kfree(fs_info->delayed_root);
1650         btrfs_put_root(fs_info->extent_root);
1651         btrfs_put_root(fs_info->tree_root);
1652         btrfs_put_root(fs_info->chunk_root);
1653         btrfs_put_root(fs_info->dev_root);
1654         btrfs_put_root(fs_info->csum_root);
1655         btrfs_put_root(fs_info->quota_root);
1656         btrfs_put_root(fs_info->uuid_root);
1657         btrfs_put_root(fs_info->free_space_root);
1658         btrfs_put_root(fs_info->fs_root);
1659         btrfs_put_root(fs_info->data_reloc_root);
1660         btrfs_check_leaked_roots(fs_info);
1661         btrfs_extent_buffer_leak_debug_check(fs_info);
1662         kfree(fs_info->super_copy);
1663         kfree(fs_info->super_for_commit);
1664         kvfree(fs_info);
1665 }
1666
1667
1668 /*
1669  * Get an in-memory reference of a root structure.
1670  *
1671  * For essential trees like root/extent tree, we grab it from fs_info directly.
1672  * For subvolume trees, we check the cached filesystem roots first. If not
1673  * found, then read it from disk and add it to cached fs roots.
1674  *
1675  * Caller should release the root by calling btrfs_put_root() after the usage.
1676  *
1677  * NOTE: Reloc and log trees can't be read by this function as they share the
1678  *       same root objectid.
1679  *
1680  * @objectid:   root id
1681  * @anon_dev:   preallocated anonymous block device number for new roots,
1682  *              pass 0 for new allocation.
1683  * @check_ref:  whether to check root item references, If true, return -ENOENT
1684  *              for orphan roots
1685  */
1686 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1687                                              u64 objectid, dev_t anon_dev,
1688                                              bool check_ref)
1689 {
1690         struct btrfs_root *root;
1691         struct btrfs_path *path;
1692         struct btrfs_key key;
1693         int ret;
1694
1695         root = btrfs_get_global_root(fs_info, objectid);
1696         if (root)
1697                 return root;
1698 again:
1699         root = btrfs_lookup_fs_root(fs_info, objectid);
1700         if (root) {
1701                 /* Shouldn't get preallocated anon_dev for cached roots */
1702                 ASSERT(!anon_dev);
1703                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1704                         btrfs_put_root(root);
1705                         return ERR_PTR(-ENOENT);
1706                 }
1707                 return root;
1708         }
1709
1710         key.objectid = objectid;
1711         key.type = BTRFS_ROOT_ITEM_KEY;
1712         key.offset = (u64)-1;
1713         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1714         if (IS_ERR(root))
1715                 return root;
1716
1717         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1718                 ret = -ENOENT;
1719                 goto fail;
1720         }
1721
1722         ret = btrfs_init_fs_root(root, anon_dev);
1723         if (ret)
1724                 goto fail;
1725
1726         path = btrfs_alloc_path();
1727         if (!path) {
1728                 ret = -ENOMEM;
1729                 goto fail;
1730         }
1731         key.objectid = BTRFS_ORPHAN_OBJECTID;
1732         key.type = BTRFS_ORPHAN_ITEM_KEY;
1733         key.offset = objectid;
1734
1735         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1736         btrfs_free_path(path);
1737         if (ret < 0)
1738                 goto fail;
1739         if (ret == 0)
1740                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1741
1742         ret = btrfs_insert_fs_root(fs_info, root);
1743         if (ret) {
1744                 btrfs_put_root(root);
1745                 if (ret == -EEXIST)
1746                         goto again;
1747                 goto fail;
1748         }
1749         return root;
1750 fail:
1751         btrfs_put_root(root);
1752         return ERR_PTR(ret);
1753 }
1754
1755 /*
1756  * Get in-memory reference of a root structure
1757  *
1758  * @objectid:   tree objectid
1759  * @check_ref:  if set, verify that the tree exists and the item has at least
1760  *              one reference
1761  */
1762 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1763                                      u64 objectid, bool check_ref)
1764 {
1765         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1766 }
1767
1768 /*
1769  * Get in-memory reference of a root structure, created as new, optionally pass
1770  * the anonymous block device id
1771  *
1772  * @objectid:   tree objectid
1773  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1774  *              parameter value
1775  */
1776 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1777                                          u64 objectid, dev_t anon_dev)
1778 {
1779         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1780 }
1781
1782 /*
1783  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1784  * @fs_info:    the fs_info
1785  * @objectid:   the objectid we need to lookup
1786  *
1787  * This is exclusively used for backref walking, and exists specifically because
1788  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1789  * creation time, which means we may have to read the tree_root in order to look
1790  * up a fs root that is not in memory.  If the root is not in memory we will
1791  * read the tree root commit root and look up the fs root from there.  This is a
1792  * temporary root, it will not be inserted into the radix tree as it doesn't
1793  * have the most uptodate information, it'll simply be discarded once the
1794  * backref code is finished using the root.
1795  */
1796 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1797                                                  struct btrfs_path *path,
1798                                                  u64 objectid)
1799 {
1800         struct btrfs_root *root;
1801         struct btrfs_key key;
1802
1803         ASSERT(path->search_commit_root && path->skip_locking);
1804
1805         /*
1806          * This can return -ENOENT if we ask for a root that doesn't exist, but
1807          * since this is called via the backref walking code we won't be looking
1808          * up a root that doesn't exist, unless there's corruption.  So if root
1809          * != NULL just return it.
1810          */
1811         root = btrfs_get_global_root(fs_info, objectid);
1812         if (root)
1813                 return root;
1814
1815         root = btrfs_lookup_fs_root(fs_info, objectid);
1816         if (root)
1817                 return root;
1818
1819         key.objectid = objectid;
1820         key.type = BTRFS_ROOT_ITEM_KEY;
1821         key.offset = (u64)-1;
1822         root = read_tree_root_path(fs_info->tree_root, path, &key);
1823         btrfs_release_path(path);
1824
1825         return root;
1826 }
1827
1828 /*
1829  * called by the kthread helper functions to finally call the bio end_io
1830  * functions.  This is where read checksum verification actually happens
1831  */
1832 static void end_workqueue_fn(struct btrfs_work *work)
1833 {
1834         struct bio *bio;
1835         struct btrfs_end_io_wq *end_io_wq;
1836
1837         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1838         bio = end_io_wq->bio;
1839
1840         bio->bi_status = end_io_wq->status;
1841         bio->bi_private = end_io_wq->private;
1842         bio->bi_end_io = end_io_wq->end_io;
1843         bio_endio(bio);
1844         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1845 }
1846
1847 static int cleaner_kthread(void *arg)
1848 {
1849         struct btrfs_root *root = arg;
1850         struct btrfs_fs_info *fs_info = root->fs_info;
1851         int again;
1852
1853         while (1) {
1854                 again = 0;
1855
1856                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1857
1858                 /* Make the cleaner go to sleep early. */
1859                 if (btrfs_need_cleaner_sleep(fs_info))
1860                         goto sleep;
1861
1862                 /*
1863                  * Do not do anything if we might cause open_ctree() to block
1864                  * before we have finished mounting the filesystem.
1865                  */
1866                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1867                         goto sleep;
1868
1869                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1870                         goto sleep;
1871
1872                 /*
1873                  * Avoid the problem that we change the status of the fs
1874                  * during the above check and trylock.
1875                  */
1876                 if (btrfs_need_cleaner_sleep(fs_info)) {
1877                         mutex_unlock(&fs_info->cleaner_mutex);
1878                         goto sleep;
1879                 }
1880
1881                 btrfs_run_delayed_iputs(fs_info);
1882
1883                 again = btrfs_clean_one_deleted_snapshot(root);
1884                 mutex_unlock(&fs_info->cleaner_mutex);
1885
1886                 /*
1887                  * The defragger has dealt with the R/O remount and umount,
1888                  * needn't do anything special here.
1889                  */
1890                 btrfs_run_defrag_inodes(fs_info);
1891
1892                 /*
1893                  * Acquires fs_info->reclaim_bgs_lock to avoid racing
1894                  * with relocation (btrfs_relocate_chunk) and relocation
1895                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1896                  * after acquiring fs_info->reclaim_bgs_lock. So we
1897                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1898                  * unused block groups.
1899                  */
1900                 btrfs_delete_unused_bgs(fs_info);
1901
1902                 /*
1903                  * Reclaim block groups in the reclaim_bgs list after we deleted
1904                  * all unused block_groups. This possibly gives us some more free
1905                  * space.
1906                  */
1907                 btrfs_reclaim_bgs(fs_info);
1908 sleep:
1909                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1910                 if (kthread_should_park())
1911                         kthread_parkme();
1912                 if (kthread_should_stop())
1913                         return 0;
1914                 if (!again) {
1915                         set_current_state(TASK_INTERRUPTIBLE);
1916                         schedule();
1917                         __set_current_state(TASK_RUNNING);
1918                 }
1919         }
1920 }
1921
1922 static int transaction_kthread(void *arg)
1923 {
1924         struct btrfs_root *root = arg;
1925         struct btrfs_fs_info *fs_info = root->fs_info;
1926         struct btrfs_trans_handle *trans;
1927         struct btrfs_transaction *cur;
1928         u64 transid;
1929         time64_t delta;
1930         unsigned long delay;
1931         bool cannot_commit;
1932
1933         do {
1934                 cannot_commit = false;
1935                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1936                 mutex_lock(&fs_info->transaction_kthread_mutex);
1937
1938                 spin_lock(&fs_info->trans_lock);
1939                 cur = fs_info->running_transaction;
1940                 if (!cur) {
1941                         spin_unlock(&fs_info->trans_lock);
1942                         goto sleep;
1943                 }
1944
1945                 delta = ktime_get_seconds() - cur->start_time;
1946                 if (cur->state < TRANS_STATE_COMMIT_START &&
1947                     delta < fs_info->commit_interval) {
1948                         spin_unlock(&fs_info->trans_lock);
1949                         delay -= msecs_to_jiffies((delta - 1) * 1000);
1950                         delay = min(delay,
1951                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
1952                         goto sleep;
1953                 }
1954                 transid = cur->transid;
1955                 spin_unlock(&fs_info->trans_lock);
1956
1957                 /* If the file system is aborted, this will always fail. */
1958                 trans = btrfs_attach_transaction(root);
1959                 if (IS_ERR(trans)) {
1960                         if (PTR_ERR(trans) != -ENOENT)
1961                                 cannot_commit = true;
1962                         goto sleep;
1963                 }
1964                 if (transid == trans->transid) {
1965                         btrfs_commit_transaction(trans);
1966                 } else {
1967                         btrfs_end_transaction(trans);
1968                 }
1969 sleep:
1970                 wake_up_process(fs_info->cleaner_kthread);
1971                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1972
1973                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1974                                       &fs_info->fs_state)))
1975                         btrfs_cleanup_transaction(fs_info);
1976                 if (!kthread_should_stop() &&
1977                                 (!btrfs_transaction_blocked(fs_info) ||
1978                                  cannot_commit))
1979                         schedule_timeout_interruptible(delay);
1980         } while (!kthread_should_stop());
1981         return 0;
1982 }
1983
1984 /*
1985  * This will find the highest generation in the array of root backups.  The
1986  * index of the highest array is returned, or -EINVAL if we can't find
1987  * anything.
1988  *
1989  * We check to make sure the array is valid by comparing the
1990  * generation of the latest  root in the array with the generation
1991  * in the super block.  If they don't match we pitch it.
1992  */
1993 static int find_newest_super_backup(struct btrfs_fs_info *info)
1994 {
1995         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1996         u64 cur;
1997         struct btrfs_root_backup *root_backup;
1998         int i;
1999
2000         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2001                 root_backup = info->super_copy->super_roots + i;
2002                 cur = btrfs_backup_tree_root_gen(root_backup);
2003                 if (cur == newest_gen)
2004                         return i;
2005         }
2006
2007         return -EINVAL;
2008 }
2009
2010 /*
2011  * copy all the root pointers into the super backup array.
2012  * this will bump the backup pointer by one when it is
2013  * done
2014  */
2015 static void backup_super_roots(struct btrfs_fs_info *info)
2016 {
2017         const int next_backup = info->backup_root_index;
2018         struct btrfs_root_backup *root_backup;
2019
2020         root_backup = info->super_for_commit->super_roots + next_backup;
2021
2022         /*
2023          * make sure all of our padding and empty slots get zero filled
2024          * regardless of which ones we use today
2025          */
2026         memset(root_backup, 0, sizeof(*root_backup));
2027
2028         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2029
2030         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2031         btrfs_set_backup_tree_root_gen(root_backup,
2032                                btrfs_header_generation(info->tree_root->node));
2033
2034         btrfs_set_backup_tree_root_level(root_backup,
2035                                btrfs_header_level(info->tree_root->node));
2036
2037         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2038         btrfs_set_backup_chunk_root_gen(root_backup,
2039                                btrfs_header_generation(info->chunk_root->node));
2040         btrfs_set_backup_chunk_root_level(root_backup,
2041                                btrfs_header_level(info->chunk_root->node));
2042
2043         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2044         btrfs_set_backup_extent_root_gen(root_backup,
2045                                btrfs_header_generation(info->extent_root->node));
2046         btrfs_set_backup_extent_root_level(root_backup,
2047                                btrfs_header_level(info->extent_root->node));
2048
2049         /*
2050          * we might commit during log recovery, which happens before we set
2051          * the fs_root.  Make sure it is valid before we fill it in.
2052          */
2053         if (info->fs_root && info->fs_root->node) {
2054                 btrfs_set_backup_fs_root(root_backup,
2055                                          info->fs_root->node->start);
2056                 btrfs_set_backup_fs_root_gen(root_backup,
2057                                btrfs_header_generation(info->fs_root->node));
2058                 btrfs_set_backup_fs_root_level(root_backup,
2059                                btrfs_header_level(info->fs_root->node));
2060         }
2061
2062         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2063         btrfs_set_backup_dev_root_gen(root_backup,
2064                                btrfs_header_generation(info->dev_root->node));
2065         btrfs_set_backup_dev_root_level(root_backup,
2066                                        btrfs_header_level(info->dev_root->node));
2067
2068         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2069         btrfs_set_backup_csum_root_gen(root_backup,
2070                                btrfs_header_generation(info->csum_root->node));
2071         btrfs_set_backup_csum_root_level(root_backup,
2072                                btrfs_header_level(info->csum_root->node));
2073
2074         btrfs_set_backup_total_bytes(root_backup,
2075                              btrfs_super_total_bytes(info->super_copy));
2076         btrfs_set_backup_bytes_used(root_backup,
2077                              btrfs_super_bytes_used(info->super_copy));
2078         btrfs_set_backup_num_devices(root_backup,
2079                              btrfs_super_num_devices(info->super_copy));
2080
2081         /*
2082          * if we don't copy this out to the super_copy, it won't get remembered
2083          * for the next commit
2084          */
2085         memcpy(&info->super_copy->super_roots,
2086                &info->super_for_commit->super_roots,
2087                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2088 }
2089
2090 /*
2091  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2092  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2093  *
2094  * fs_info - filesystem whose backup roots need to be read
2095  * priority - priority of backup root required
2096  *
2097  * Returns backup root index on success and -EINVAL otherwise.
2098  */
2099 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2100 {
2101         int backup_index = find_newest_super_backup(fs_info);
2102         struct btrfs_super_block *super = fs_info->super_copy;
2103         struct btrfs_root_backup *root_backup;
2104
2105         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2106                 if (priority == 0)
2107                         return backup_index;
2108
2109                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2110                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2111         } else {
2112                 return -EINVAL;
2113         }
2114
2115         root_backup = super->super_roots + backup_index;
2116
2117         btrfs_set_super_generation(super,
2118                                    btrfs_backup_tree_root_gen(root_backup));
2119         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2120         btrfs_set_super_root_level(super,
2121                                    btrfs_backup_tree_root_level(root_backup));
2122         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2123
2124         /*
2125          * Fixme: the total bytes and num_devices need to match or we should
2126          * need a fsck
2127          */
2128         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2129         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2130
2131         return backup_index;
2132 }
2133
2134 /* helper to cleanup workers */
2135 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2136 {
2137         btrfs_destroy_workqueue(fs_info->fixup_workers);
2138         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2139         btrfs_destroy_workqueue(fs_info->workers);
2140         btrfs_destroy_workqueue(fs_info->endio_workers);
2141         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2142         btrfs_destroy_workqueue(fs_info->rmw_workers);
2143         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2144         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2145         btrfs_destroy_workqueue(fs_info->delayed_workers);
2146         btrfs_destroy_workqueue(fs_info->caching_workers);
2147         btrfs_destroy_workqueue(fs_info->readahead_workers);
2148         btrfs_destroy_workqueue(fs_info->flush_workers);
2149         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2150         if (fs_info->discard_ctl.discard_workers)
2151                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2152         /*
2153          * Now that all other work queues are destroyed, we can safely destroy
2154          * the queues used for metadata I/O, since tasks from those other work
2155          * queues can do metadata I/O operations.
2156          */
2157         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2158         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2159 }
2160
2161 static void free_root_extent_buffers(struct btrfs_root *root)
2162 {
2163         if (root) {
2164                 free_extent_buffer(root->node);
2165                 free_extent_buffer(root->commit_root);
2166                 root->node = NULL;
2167                 root->commit_root = NULL;
2168         }
2169 }
2170
2171 /* helper to cleanup tree roots */
2172 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2173 {
2174         free_root_extent_buffers(info->tree_root);
2175
2176         free_root_extent_buffers(info->dev_root);
2177         free_root_extent_buffers(info->extent_root);
2178         free_root_extent_buffers(info->csum_root);
2179         free_root_extent_buffers(info->quota_root);
2180         free_root_extent_buffers(info->uuid_root);
2181         free_root_extent_buffers(info->fs_root);
2182         free_root_extent_buffers(info->data_reloc_root);
2183         if (free_chunk_root)
2184                 free_root_extent_buffers(info->chunk_root);
2185         free_root_extent_buffers(info->free_space_root);
2186 }
2187
2188 void btrfs_put_root(struct btrfs_root *root)
2189 {
2190         if (!root)
2191                 return;
2192
2193         if (refcount_dec_and_test(&root->refs)) {
2194                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2195                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2196                 if (root->anon_dev)
2197                         free_anon_bdev(root->anon_dev);
2198                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2199                 free_root_extent_buffers(root);
2200 #ifdef CONFIG_BTRFS_DEBUG
2201                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2202                 list_del_init(&root->leak_list);
2203                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2204 #endif
2205                 kfree(root);
2206         }
2207 }
2208
2209 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2210 {
2211         int ret;
2212         struct btrfs_root *gang[8];
2213         int i;
2214
2215         while (!list_empty(&fs_info->dead_roots)) {
2216                 gang[0] = list_entry(fs_info->dead_roots.next,
2217                                      struct btrfs_root, root_list);
2218                 list_del(&gang[0]->root_list);
2219
2220                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2221                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2222                 btrfs_put_root(gang[0]);
2223         }
2224
2225         while (1) {
2226                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2227                                              (void **)gang, 0,
2228                                              ARRAY_SIZE(gang));
2229                 if (!ret)
2230                         break;
2231                 for (i = 0; i < ret; i++)
2232                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2233         }
2234 }
2235
2236 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2237 {
2238         mutex_init(&fs_info->scrub_lock);
2239         atomic_set(&fs_info->scrubs_running, 0);
2240         atomic_set(&fs_info->scrub_pause_req, 0);
2241         atomic_set(&fs_info->scrubs_paused, 0);
2242         atomic_set(&fs_info->scrub_cancel_req, 0);
2243         init_waitqueue_head(&fs_info->scrub_pause_wait);
2244         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2245 }
2246
2247 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2248 {
2249         spin_lock_init(&fs_info->balance_lock);
2250         mutex_init(&fs_info->balance_mutex);
2251         atomic_set(&fs_info->balance_pause_req, 0);
2252         atomic_set(&fs_info->balance_cancel_req, 0);
2253         fs_info->balance_ctl = NULL;
2254         init_waitqueue_head(&fs_info->balance_wait_q);
2255 }
2256
2257 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2258 {
2259         struct inode *inode = fs_info->btree_inode;
2260
2261         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2262         set_nlink(inode, 1);
2263         /*
2264          * we set the i_size on the btree inode to the max possible int.
2265          * the real end of the address space is determined by all of
2266          * the devices in the system
2267          */
2268         inode->i_size = OFFSET_MAX;
2269         inode->i_mapping->a_ops = &btree_aops;
2270
2271         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2272         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2273                             IO_TREE_BTREE_INODE_IO, inode);
2274         BTRFS_I(inode)->io_tree.track_uptodate = false;
2275         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2276
2277         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2278         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2279         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2280         btrfs_insert_inode_hash(inode);
2281 }
2282
2283 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2284 {
2285         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2286         init_rwsem(&fs_info->dev_replace.rwsem);
2287         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2288 }
2289
2290 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2291 {
2292         spin_lock_init(&fs_info->qgroup_lock);
2293         mutex_init(&fs_info->qgroup_ioctl_lock);
2294         fs_info->qgroup_tree = RB_ROOT;
2295         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2296         fs_info->qgroup_seq = 1;
2297         fs_info->qgroup_ulist = NULL;
2298         fs_info->qgroup_rescan_running = false;
2299         mutex_init(&fs_info->qgroup_rescan_lock);
2300 }
2301
2302 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2303                 struct btrfs_fs_devices *fs_devices)
2304 {
2305         u32 max_active = fs_info->thread_pool_size;
2306         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2307
2308         fs_info->workers =
2309                 btrfs_alloc_workqueue(fs_info, "worker",
2310                                       flags | WQ_HIGHPRI, max_active, 16);
2311
2312         fs_info->delalloc_workers =
2313                 btrfs_alloc_workqueue(fs_info, "delalloc",
2314                                       flags, max_active, 2);
2315
2316         fs_info->flush_workers =
2317                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2318                                       flags, max_active, 0);
2319
2320         fs_info->caching_workers =
2321                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2322
2323         fs_info->fixup_workers =
2324                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2325
2326         /*
2327          * endios are largely parallel and should have a very
2328          * low idle thresh
2329          */
2330         fs_info->endio_workers =
2331                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2332         fs_info->endio_meta_workers =
2333                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2334                                       max_active, 4);
2335         fs_info->endio_meta_write_workers =
2336                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2337                                       max_active, 2);
2338         fs_info->endio_raid56_workers =
2339                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2340                                       max_active, 4);
2341         fs_info->rmw_workers =
2342                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2343         fs_info->endio_write_workers =
2344                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2345                                       max_active, 2);
2346         fs_info->endio_freespace_worker =
2347                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2348                                       max_active, 0);
2349         fs_info->delayed_workers =
2350                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2351                                       max_active, 0);
2352         fs_info->readahead_workers =
2353                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2354                                       max_active, 2);
2355         fs_info->qgroup_rescan_workers =
2356                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2357         fs_info->discard_ctl.discard_workers =
2358                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2359
2360         if (!(fs_info->workers && fs_info->delalloc_workers &&
2361               fs_info->flush_workers &&
2362               fs_info->endio_workers && fs_info->endio_meta_workers &&
2363               fs_info->endio_meta_write_workers &&
2364               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2365               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2366               fs_info->caching_workers && fs_info->readahead_workers &&
2367               fs_info->fixup_workers && fs_info->delayed_workers &&
2368               fs_info->qgroup_rescan_workers &&
2369               fs_info->discard_ctl.discard_workers)) {
2370                 return -ENOMEM;
2371         }
2372
2373         return 0;
2374 }
2375
2376 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2377 {
2378         struct crypto_shash *csum_shash;
2379         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2380
2381         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2382
2383         if (IS_ERR(csum_shash)) {
2384                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2385                           csum_driver);
2386                 return PTR_ERR(csum_shash);
2387         }
2388
2389         fs_info->csum_shash = csum_shash;
2390
2391         return 0;
2392 }
2393
2394 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2395                             struct btrfs_fs_devices *fs_devices)
2396 {
2397         int ret;
2398         struct btrfs_root *log_tree_root;
2399         struct btrfs_super_block *disk_super = fs_info->super_copy;
2400         u64 bytenr = btrfs_super_log_root(disk_super);
2401         int level = btrfs_super_log_root_level(disk_super);
2402
2403         if (fs_devices->rw_devices == 0) {
2404                 btrfs_warn(fs_info, "log replay required on RO media");
2405                 return -EIO;
2406         }
2407
2408         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2409                                          GFP_KERNEL);
2410         if (!log_tree_root)
2411                 return -ENOMEM;
2412
2413         log_tree_root->node = read_tree_block(fs_info, bytenr,
2414                                               BTRFS_TREE_LOG_OBJECTID,
2415                                               fs_info->generation + 1, level,
2416                                               NULL);
2417         if (IS_ERR(log_tree_root->node)) {
2418                 btrfs_warn(fs_info, "failed to read log tree");
2419                 ret = PTR_ERR(log_tree_root->node);
2420                 log_tree_root->node = NULL;
2421                 btrfs_put_root(log_tree_root);
2422                 return ret;
2423         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2424                 btrfs_err(fs_info, "failed to read log tree");
2425                 btrfs_put_root(log_tree_root);
2426                 return -EIO;
2427         }
2428         /* returns with log_tree_root freed on success */
2429         ret = btrfs_recover_log_trees(log_tree_root);
2430         if (ret) {
2431                 btrfs_handle_fs_error(fs_info, ret,
2432                                       "Failed to recover log tree");
2433                 btrfs_put_root(log_tree_root);
2434                 return ret;
2435         }
2436
2437         if (sb_rdonly(fs_info->sb)) {
2438                 ret = btrfs_commit_super(fs_info);
2439                 if (ret)
2440                         return ret;
2441         }
2442
2443         return 0;
2444 }
2445
2446 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2447 {
2448         struct btrfs_root *tree_root = fs_info->tree_root;
2449         struct btrfs_root *root;
2450         struct btrfs_key location;
2451         int ret;
2452
2453         BUG_ON(!fs_info->tree_root);
2454
2455         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2456         location.type = BTRFS_ROOT_ITEM_KEY;
2457         location.offset = 0;
2458
2459         root = btrfs_read_tree_root(tree_root, &location);
2460         if (IS_ERR(root)) {
2461                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2462                         ret = PTR_ERR(root);
2463                         goto out;
2464                 }
2465         } else {
2466                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2467                 fs_info->extent_root = root;
2468         }
2469
2470         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2471         root = btrfs_read_tree_root(tree_root, &location);
2472         if (IS_ERR(root)) {
2473                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2474                         ret = PTR_ERR(root);
2475                         goto out;
2476                 }
2477         } else {
2478                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2479                 fs_info->dev_root = root;
2480         }
2481         /* Initialize fs_info for all devices in any case */
2482         btrfs_init_devices_late(fs_info);
2483
2484         /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2485         if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2486                 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2487                 root = btrfs_read_tree_root(tree_root, &location);
2488                 if (IS_ERR(root)) {
2489                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2490                                 ret = PTR_ERR(root);
2491                                 goto out;
2492                         }
2493                 } else {
2494                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2495                         fs_info->csum_root = root;
2496                 }
2497         }
2498
2499         /*
2500          * This tree can share blocks with some other fs tree during relocation
2501          * and we need a proper setup by btrfs_get_fs_root
2502          */
2503         root = btrfs_get_fs_root(tree_root->fs_info,
2504                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2505         if (IS_ERR(root)) {
2506                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2507                         ret = PTR_ERR(root);
2508                         goto out;
2509                 }
2510         } else {
2511                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2512                 fs_info->data_reloc_root = root;
2513         }
2514
2515         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2516         root = btrfs_read_tree_root(tree_root, &location);
2517         if (!IS_ERR(root)) {
2518                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2519                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2520                 fs_info->quota_root = root;
2521         }
2522
2523         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2524         root = btrfs_read_tree_root(tree_root, &location);
2525         if (IS_ERR(root)) {
2526                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2527                         ret = PTR_ERR(root);
2528                         if (ret != -ENOENT)
2529                                 goto out;
2530                 }
2531         } else {
2532                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2533                 fs_info->uuid_root = root;
2534         }
2535
2536         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2537                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2538                 root = btrfs_read_tree_root(tree_root, &location);
2539                 if (IS_ERR(root)) {
2540                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2541                                 ret = PTR_ERR(root);
2542                                 goto out;
2543                         }
2544                 }  else {
2545                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2546                         fs_info->free_space_root = root;
2547                 }
2548         }
2549
2550         return 0;
2551 out:
2552         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2553                    location.objectid, ret);
2554         return ret;
2555 }
2556
2557 /*
2558  * Real super block validation
2559  * NOTE: super csum type and incompat features will not be checked here.
2560  *
2561  * @sb:         super block to check
2562  * @mirror_num: the super block number to check its bytenr:
2563  *              0       the primary (1st) sb
2564  *              1, 2    2nd and 3rd backup copy
2565  *             -1       skip bytenr check
2566  */
2567 static int validate_super(struct btrfs_fs_info *fs_info,
2568                             struct btrfs_super_block *sb, int mirror_num)
2569 {
2570         u64 nodesize = btrfs_super_nodesize(sb);
2571         u64 sectorsize = btrfs_super_sectorsize(sb);
2572         int ret = 0;
2573
2574         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2575                 btrfs_err(fs_info, "no valid FS found");
2576                 ret = -EINVAL;
2577         }
2578         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2579                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2580                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2581                 ret = -EINVAL;
2582         }
2583         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2584                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2585                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2586                 ret = -EINVAL;
2587         }
2588         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2589                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2590                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2591                 ret = -EINVAL;
2592         }
2593         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2594                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2595                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2596                 ret = -EINVAL;
2597         }
2598
2599         /*
2600          * Check sectorsize and nodesize first, other check will need it.
2601          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2602          */
2603         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2604             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2605                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2606                 ret = -EINVAL;
2607         }
2608
2609         /*
2610          * For 4K page size, we only support 4K sector size.
2611          * For 64K page size, we support read-write for 64K sector size, and
2612          * read-only for 4K sector size.
2613          */
2614         if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2615             (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2616                                      sectorsize != SZ_64K))) {
2617                 btrfs_err(fs_info,
2618                         "sectorsize %llu not yet supported for page size %lu",
2619                         sectorsize, PAGE_SIZE);
2620                 ret = -EINVAL;
2621         }
2622
2623         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2624             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2625                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2626                 ret = -EINVAL;
2627         }
2628         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2629                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2630                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2631                 ret = -EINVAL;
2632         }
2633
2634         /* Root alignment check */
2635         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2636                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2637                            btrfs_super_root(sb));
2638                 ret = -EINVAL;
2639         }
2640         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2641                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2642                            btrfs_super_chunk_root(sb));
2643                 ret = -EINVAL;
2644         }
2645         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2646                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2647                            btrfs_super_log_root(sb));
2648                 ret = -EINVAL;
2649         }
2650
2651         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2652                    BTRFS_FSID_SIZE) != 0) {
2653                 btrfs_err(fs_info,
2654                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2655                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2656                 ret = -EINVAL;
2657         }
2658
2659         /*
2660          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2661          * done later
2662          */
2663         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2664                 btrfs_err(fs_info, "bytes_used is too small %llu",
2665                           btrfs_super_bytes_used(sb));
2666                 ret = -EINVAL;
2667         }
2668         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2669                 btrfs_err(fs_info, "invalid stripesize %u",
2670                           btrfs_super_stripesize(sb));
2671                 ret = -EINVAL;
2672         }
2673         if (btrfs_super_num_devices(sb) > (1UL << 31))
2674                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2675                            btrfs_super_num_devices(sb));
2676         if (btrfs_super_num_devices(sb) == 0) {
2677                 btrfs_err(fs_info, "number of devices is 0");
2678                 ret = -EINVAL;
2679         }
2680
2681         if (mirror_num >= 0 &&
2682             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2683                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2684                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2685                 ret = -EINVAL;
2686         }
2687
2688         /*
2689          * Obvious sys_chunk_array corruptions, it must hold at least one key
2690          * and one chunk
2691          */
2692         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2693                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2694                           btrfs_super_sys_array_size(sb),
2695                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2696                 ret = -EINVAL;
2697         }
2698         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2699                         + sizeof(struct btrfs_chunk)) {
2700                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2701                           btrfs_super_sys_array_size(sb),
2702                           sizeof(struct btrfs_disk_key)
2703                           + sizeof(struct btrfs_chunk));
2704                 ret = -EINVAL;
2705         }
2706
2707         /*
2708          * The generation is a global counter, we'll trust it more than the others
2709          * but it's still possible that it's the one that's wrong.
2710          */
2711         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2712                 btrfs_warn(fs_info,
2713                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2714                         btrfs_super_generation(sb),
2715                         btrfs_super_chunk_root_generation(sb));
2716         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2717             && btrfs_super_cache_generation(sb) != (u64)-1)
2718                 btrfs_warn(fs_info,
2719                         "suspicious: generation < cache_generation: %llu < %llu",
2720                         btrfs_super_generation(sb),
2721                         btrfs_super_cache_generation(sb));
2722
2723         return ret;
2724 }
2725
2726 /*
2727  * Validation of super block at mount time.
2728  * Some checks already done early at mount time, like csum type and incompat
2729  * flags will be skipped.
2730  */
2731 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2732 {
2733         return validate_super(fs_info, fs_info->super_copy, 0);
2734 }
2735
2736 /*
2737  * Validation of super block at write time.
2738  * Some checks like bytenr check will be skipped as their values will be
2739  * overwritten soon.
2740  * Extra checks like csum type and incompat flags will be done here.
2741  */
2742 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2743                                       struct btrfs_super_block *sb)
2744 {
2745         int ret;
2746
2747         ret = validate_super(fs_info, sb, -1);
2748         if (ret < 0)
2749                 goto out;
2750         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2751                 ret = -EUCLEAN;
2752                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2753                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2754                 goto out;
2755         }
2756         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2757                 ret = -EUCLEAN;
2758                 btrfs_err(fs_info,
2759                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2760                           btrfs_super_incompat_flags(sb),
2761                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2762                 goto out;
2763         }
2764 out:
2765         if (ret < 0)
2766                 btrfs_err(fs_info,
2767                 "super block corruption detected before writing it to disk");
2768         return ret;
2769 }
2770
2771 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2772 {
2773         int backup_index = find_newest_super_backup(fs_info);
2774         struct btrfs_super_block *sb = fs_info->super_copy;
2775         struct btrfs_root *tree_root = fs_info->tree_root;
2776         bool handle_error = false;
2777         int ret = 0;
2778         int i;
2779
2780         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2781                 u64 generation;
2782                 int level;
2783
2784                 if (handle_error) {
2785                         if (!IS_ERR(tree_root->node))
2786                                 free_extent_buffer(tree_root->node);
2787                         tree_root->node = NULL;
2788
2789                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2790                                 break;
2791
2792                         free_root_pointers(fs_info, 0);
2793
2794                         /*
2795                          * Don't use the log in recovery mode, it won't be
2796                          * valid
2797                          */
2798                         btrfs_set_super_log_root(sb, 0);
2799
2800                         /* We can't trust the free space cache either */
2801                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2802
2803                         ret = read_backup_root(fs_info, i);
2804                         backup_index = ret;
2805                         if (ret < 0)
2806                                 return ret;
2807                 }
2808                 generation = btrfs_super_generation(sb);
2809                 level = btrfs_super_root_level(sb);
2810                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2811                                                   BTRFS_ROOT_TREE_OBJECTID,
2812                                                   generation, level, NULL);
2813                 if (IS_ERR(tree_root->node)) {
2814                         handle_error = true;
2815                         ret = PTR_ERR(tree_root->node);
2816                         tree_root->node = NULL;
2817                         btrfs_warn(fs_info, "couldn't read tree root");
2818                         continue;
2819
2820                 } else if (!extent_buffer_uptodate(tree_root->node)) {
2821                         handle_error = true;
2822                         ret = -EIO;
2823                         btrfs_warn(fs_info, "error while reading tree root");
2824                         continue;
2825                 }
2826
2827                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2828                 tree_root->commit_root = btrfs_root_node(tree_root);
2829                 btrfs_set_root_refs(&tree_root->root_item, 1);
2830
2831                 /*
2832                  * No need to hold btrfs_root::objectid_mutex since the fs
2833                  * hasn't been fully initialised and we are the only user
2834                  */
2835                 ret = btrfs_init_root_free_objectid(tree_root);
2836                 if (ret < 0) {
2837                         handle_error = true;
2838                         continue;
2839                 }
2840
2841                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2842
2843                 ret = btrfs_read_roots(fs_info);
2844                 if (ret < 0) {
2845                         handle_error = true;
2846                         continue;
2847                 }
2848
2849                 /* All successful */
2850                 fs_info->generation = generation;
2851                 fs_info->last_trans_committed = generation;
2852
2853                 /* Always begin writing backup roots after the one being used */
2854                 if (backup_index < 0) {
2855                         fs_info->backup_root_index = 0;
2856                 } else {
2857                         fs_info->backup_root_index = backup_index + 1;
2858                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2859                 }
2860                 break;
2861         }
2862
2863         return ret;
2864 }
2865
2866 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2867 {
2868         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2869         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2870         INIT_LIST_HEAD(&fs_info->trans_list);
2871         INIT_LIST_HEAD(&fs_info->dead_roots);
2872         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2873         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2874         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2875         spin_lock_init(&fs_info->delalloc_root_lock);
2876         spin_lock_init(&fs_info->trans_lock);
2877         spin_lock_init(&fs_info->fs_roots_radix_lock);
2878         spin_lock_init(&fs_info->delayed_iput_lock);
2879         spin_lock_init(&fs_info->defrag_inodes_lock);
2880         spin_lock_init(&fs_info->super_lock);
2881         spin_lock_init(&fs_info->buffer_lock);
2882         spin_lock_init(&fs_info->unused_bgs_lock);
2883         spin_lock_init(&fs_info->treelog_bg_lock);
2884         rwlock_init(&fs_info->tree_mod_log_lock);
2885         mutex_init(&fs_info->unused_bg_unpin_mutex);
2886         mutex_init(&fs_info->reclaim_bgs_lock);
2887         mutex_init(&fs_info->reloc_mutex);
2888         mutex_init(&fs_info->delalloc_root_mutex);
2889         mutex_init(&fs_info->zoned_meta_io_lock);
2890         seqlock_init(&fs_info->profiles_lock);
2891
2892         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2893         INIT_LIST_HEAD(&fs_info->space_info);
2894         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2895         INIT_LIST_HEAD(&fs_info->unused_bgs);
2896         INIT_LIST_HEAD(&fs_info->reclaim_bgs);
2897 #ifdef CONFIG_BTRFS_DEBUG
2898         INIT_LIST_HEAD(&fs_info->allocated_roots);
2899         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2900         spin_lock_init(&fs_info->eb_leak_lock);
2901 #endif
2902         extent_map_tree_init(&fs_info->mapping_tree);
2903         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2904                              BTRFS_BLOCK_RSV_GLOBAL);
2905         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2906         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2907         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2908         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2909                              BTRFS_BLOCK_RSV_DELOPS);
2910         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2911                              BTRFS_BLOCK_RSV_DELREFS);
2912
2913         atomic_set(&fs_info->async_delalloc_pages, 0);
2914         atomic_set(&fs_info->defrag_running, 0);
2915         atomic_set(&fs_info->reada_works_cnt, 0);
2916         atomic_set(&fs_info->nr_delayed_iputs, 0);
2917         atomic64_set(&fs_info->tree_mod_seq, 0);
2918         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2919         fs_info->metadata_ratio = 0;
2920         fs_info->defrag_inodes = RB_ROOT;
2921         atomic64_set(&fs_info->free_chunk_space, 0);
2922         fs_info->tree_mod_log = RB_ROOT;
2923         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2924         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2925         /* readahead state */
2926         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2927         spin_lock_init(&fs_info->reada_lock);
2928         btrfs_init_ref_verify(fs_info);
2929
2930         fs_info->thread_pool_size = min_t(unsigned long,
2931                                           num_online_cpus() + 2, 8);
2932
2933         INIT_LIST_HEAD(&fs_info->ordered_roots);
2934         spin_lock_init(&fs_info->ordered_root_lock);
2935
2936         btrfs_init_scrub(fs_info);
2937 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2938         fs_info->check_integrity_print_mask = 0;
2939 #endif
2940         btrfs_init_balance(fs_info);
2941         btrfs_init_async_reclaim_work(fs_info);
2942
2943         spin_lock_init(&fs_info->block_group_cache_lock);
2944         fs_info->block_group_cache_tree = RB_ROOT;
2945         fs_info->first_logical_byte = (u64)-1;
2946
2947         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2948                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2949         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2950
2951         mutex_init(&fs_info->ordered_operations_mutex);
2952         mutex_init(&fs_info->tree_log_mutex);
2953         mutex_init(&fs_info->chunk_mutex);
2954         mutex_init(&fs_info->transaction_kthread_mutex);
2955         mutex_init(&fs_info->cleaner_mutex);
2956         mutex_init(&fs_info->ro_block_group_mutex);
2957         init_rwsem(&fs_info->commit_root_sem);
2958         init_rwsem(&fs_info->cleanup_work_sem);
2959         init_rwsem(&fs_info->subvol_sem);
2960         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2961
2962         btrfs_init_dev_replace_locks(fs_info);
2963         btrfs_init_qgroup(fs_info);
2964         btrfs_discard_init(fs_info);
2965
2966         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2967         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2968
2969         init_waitqueue_head(&fs_info->transaction_throttle);
2970         init_waitqueue_head(&fs_info->transaction_wait);
2971         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2972         init_waitqueue_head(&fs_info->async_submit_wait);
2973         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2974
2975         /* Usable values until the real ones are cached from the superblock */
2976         fs_info->nodesize = 4096;
2977         fs_info->sectorsize = 4096;
2978         fs_info->sectorsize_bits = ilog2(4096);
2979         fs_info->stripesize = 4096;
2980
2981         spin_lock_init(&fs_info->swapfile_pins_lock);
2982         fs_info->swapfile_pins = RB_ROOT;
2983
2984         fs_info->send_in_progress = 0;
2985
2986         fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2987         INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
2988 }
2989
2990 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2991 {
2992         int ret;
2993
2994         fs_info->sb = sb;
2995         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2996         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2997
2998         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2999         if (ret)
3000                 return ret;
3001
3002         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3003         if (ret)
3004                 return ret;
3005
3006         fs_info->dirty_metadata_batch = PAGE_SIZE *
3007                                         (1 + ilog2(nr_cpu_ids));
3008
3009         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3010         if (ret)
3011                 return ret;
3012
3013         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3014                         GFP_KERNEL);
3015         if (ret)
3016                 return ret;
3017
3018         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3019                                         GFP_KERNEL);
3020         if (!fs_info->delayed_root)
3021                 return -ENOMEM;
3022         btrfs_init_delayed_root(fs_info->delayed_root);
3023
3024         if (sb_rdonly(sb))
3025                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3026
3027         return btrfs_alloc_stripe_hash_table(fs_info);
3028 }
3029
3030 static int btrfs_uuid_rescan_kthread(void *data)
3031 {
3032         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3033         int ret;
3034
3035         /*
3036          * 1st step is to iterate through the existing UUID tree and
3037          * to delete all entries that contain outdated data.
3038          * 2nd step is to add all missing entries to the UUID tree.
3039          */
3040         ret = btrfs_uuid_tree_iterate(fs_info);
3041         if (ret < 0) {
3042                 if (ret != -EINTR)
3043                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3044                                    ret);
3045                 up(&fs_info->uuid_tree_rescan_sem);
3046                 return ret;
3047         }
3048         return btrfs_uuid_scan_kthread(data);
3049 }
3050
3051 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3052 {
3053         struct task_struct *task;
3054
3055         down(&fs_info->uuid_tree_rescan_sem);
3056         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3057         if (IS_ERR(task)) {
3058                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
3059                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
3060                 up(&fs_info->uuid_tree_rescan_sem);
3061                 return PTR_ERR(task);
3062         }
3063
3064         return 0;
3065 }
3066
3067 /*
3068  * Some options only have meaning at mount time and shouldn't persist across
3069  * remounts, or be displayed. Clear these at the end of mount and remount
3070  * code paths.
3071  */
3072 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3073 {
3074         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3075         btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3076 }
3077
3078 /*
3079  * Mounting logic specific to read-write file systems. Shared by open_ctree
3080  * and btrfs_remount when remounting from read-only to read-write.
3081  */
3082 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3083 {
3084         int ret;
3085         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3086         bool clear_free_space_tree = false;
3087
3088         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3089             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3090                 clear_free_space_tree = true;
3091         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3092                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3093                 btrfs_warn(fs_info, "free space tree is invalid");
3094                 clear_free_space_tree = true;
3095         }
3096
3097         if (clear_free_space_tree) {
3098                 btrfs_info(fs_info, "clearing free space tree");
3099                 ret = btrfs_clear_free_space_tree(fs_info);
3100                 if (ret) {
3101                         btrfs_warn(fs_info,
3102                                    "failed to clear free space tree: %d", ret);
3103                         goto out;
3104                 }
3105         }
3106
3107         /*
3108          * btrfs_find_orphan_roots() is responsible for finding all the dead
3109          * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3110          * them into the fs_info->fs_roots_radix tree. This must be done before
3111          * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3112          * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3113          * item before the root's tree is deleted - this means that if we unmount
3114          * or crash before the deletion completes, on the next mount we will not
3115          * delete what remains of the tree because the orphan item does not
3116          * exists anymore, which is what tells us we have a pending deletion.
3117          */
3118         ret = btrfs_find_orphan_roots(fs_info);
3119         if (ret)
3120                 goto out;
3121
3122         ret = btrfs_cleanup_fs_roots(fs_info);
3123         if (ret)
3124                 goto out;
3125
3126         down_read(&fs_info->cleanup_work_sem);
3127         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3128             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3129                 up_read(&fs_info->cleanup_work_sem);
3130                 goto out;
3131         }
3132         up_read(&fs_info->cleanup_work_sem);
3133
3134         mutex_lock(&fs_info->cleaner_mutex);
3135         ret = btrfs_recover_relocation(fs_info->tree_root);
3136         mutex_unlock(&fs_info->cleaner_mutex);
3137         if (ret < 0) {
3138                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3139                 goto out;
3140         }
3141
3142         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3143             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3144                 btrfs_info(fs_info, "creating free space tree");
3145                 ret = btrfs_create_free_space_tree(fs_info);
3146                 if (ret) {
3147                         btrfs_warn(fs_info,
3148                                 "failed to create free space tree: %d", ret);
3149                         goto out;
3150                 }
3151         }
3152
3153         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3154                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3155                 if (ret)
3156                         goto out;
3157         }
3158
3159         ret = btrfs_resume_balance_async(fs_info);
3160         if (ret)
3161                 goto out;
3162
3163         ret = btrfs_resume_dev_replace_async(fs_info);
3164         if (ret) {
3165                 btrfs_warn(fs_info, "failed to resume dev_replace");
3166                 goto out;
3167         }
3168
3169         btrfs_qgroup_rescan_resume(fs_info);
3170
3171         if (!fs_info->uuid_root) {
3172                 btrfs_info(fs_info, "creating UUID tree");
3173                 ret = btrfs_create_uuid_tree(fs_info);
3174                 if (ret) {
3175                         btrfs_warn(fs_info,
3176                                    "failed to create the UUID tree %d", ret);
3177                         goto out;
3178                 }
3179         }
3180
3181 out:
3182         return ret;
3183 }
3184
3185 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3186                       char *options)
3187 {
3188         u32 sectorsize;
3189         u32 nodesize;
3190         u32 stripesize;
3191         u64 generation;
3192         u64 features;
3193         u16 csum_type;
3194         struct btrfs_super_block *disk_super;
3195         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3196         struct btrfs_root *tree_root;
3197         struct btrfs_root *chunk_root;
3198         int ret;
3199         int err = -EINVAL;
3200         int level;
3201
3202         ret = init_mount_fs_info(fs_info, sb);
3203         if (ret) {
3204                 err = ret;
3205                 goto fail;
3206         }
3207
3208         /* These need to be init'ed before we start creating inodes and such. */
3209         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3210                                      GFP_KERNEL);
3211         fs_info->tree_root = tree_root;
3212         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3213                                       GFP_KERNEL);
3214         fs_info->chunk_root = chunk_root;
3215         if (!tree_root || !chunk_root) {
3216                 err = -ENOMEM;
3217                 goto fail;
3218         }
3219
3220         fs_info->btree_inode = new_inode(sb);
3221         if (!fs_info->btree_inode) {
3222                 err = -ENOMEM;
3223                 goto fail;
3224         }
3225         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3226         btrfs_init_btree_inode(fs_info);
3227
3228         invalidate_bdev(fs_devices->latest_bdev);
3229
3230         /*
3231          * Read super block and check the signature bytes only
3232          */
3233         disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3234         if (IS_ERR(disk_super)) {
3235                 err = PTR_ERR(disk_super);
3236                 goto fail_alloc;
3237         }
3238
3239         /*
3240          * Verify the type first, if that or the checksum value are
3241          * corrupted, we'll find out
3242          */
3243         csum_type = btrfs_super_csum_type(disk_super);
3244         if (!btrfs_supported_super_csum(csum_type)) {
3245                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3246                           csum_type);
3247                 err = -EINVAL;
3248                 btrfs_release_disk_super(disk_super);
3249                 goto fail_alloc;
3250         }
3251
3252         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3253
3254         ret = btrfs_init_csum_hash(fs_info, csum_type);
3255         if (ret) {
3256                 err = ret;
3257                 btrfs_release_disk_super(disk_super);
3258                 goto fail_alloc;
3259         }
3260
3261         /*
3262          * We want to check superblock checksum, the type is stored inside.
3263          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3264          */
3265         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3266                 btrfs_err(fs_info, "superblock checksum mismatch");
3267                 err = -EINVAL;
3268                 btrfs_release_disk_super(disk_super);
3269                 goto fail_alloc;
3270         }
3271
3272         /*
3273          * super_copy is zeroed at allocation time and we never touch the
3274          * following bytes up to INFO_SIZE, the checksum is calculated from
3275          * the whole block of INFO_SIZE
3276          */
3277         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3278         btrfs_release_disk_super(disk_super);
3279
3280         disk_super = fs_info->super_copy;
3281
3282         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3283                        BTRFS_FSID_SIZE));
3284
3285         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
3286                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3287                                 fs_info->super_copy->metadata_uuid,
3288                                 BTRFS_FSID_SIZE));
3289         }
3290
3291         features = btrfs_super_flags(disk_super);
3292         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3293                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3294                 btrfs_set_super_flags(disk_super, features);
3295                 btrfs_info(fs_info,
3296                         "found metadata UUID change in progress flag, clearing");
3297         }
3298
3299         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3300                sizeof(*fs_info->super_for_commit));
3301
3302         ret = btrfs_validate_mount_super(fs_info);
3303         if (ret) {
3304                 btrfs_err(fs_info, "superblock contains fatal errors");
3305                 err = -EINVAL;
3306                 goto fail_alloc;
3307         }
3308
3309         if (!btrfs_super_root(disk_super))
3310                 goto fail_alloc;
3311
3312         /* check FS state, whether FS is broken. */
3313         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3314                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3315
3316         /*
3317          * In the long term, we'll store the compression type in the super
3318          * block, and it'll be used for per file compression control.
3319          */
3320         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3321
3322         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3323         if (ret) {
3324                 err = ret;
3325                 goto fail_alloc;
3326         }
3327
3328         features = btrfs_super_incompat_flags(disk_super) &
3329                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3330         if (features) {
3331                 btrfs_err(fs_info,
3332                     "cannot mount because of unsupported optional features (%llx)",
3333                     features);
3334                 err = -EINVAL;
3335                 goto fail_alloc;
3336         }
3337
3338         features = btrfs_super_incompat_flags(disk_super);
3339         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3340         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3341                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3342         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3343                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3344
3345         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3346                 btrfs_info(fs_info, "has skinny extents");
3347
3348         /*
3349          * flag our filesystem as having big metadata blocks if
3350          * they are bigger than the page size
3351          */
3352         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3353                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3354                         btrfs_info(fs_info,
3355                                 "flagging fs with big metadata feature");
3356                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3357         }
3358
3359         nodesize = btrfs_super_nodesize(disk_super);
3360         sectorsize = btrfs_super_sectorsize(disk_super);
3361         stripesize = sectorsize;
3362         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3363         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3364
3365         /* Cache block sizes */
3366         fs_info->nodesize = nodesize;
3367         fs_info->sectorsize = sectorsize;
3368         fs_info->sectorsize_bits = ilog2(sectorsize);
3369         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3370         fs_info->stripesize = stripesize;
3371
3372         /*
3373          * mixed block groups end up with duplicate but slightly offset
3374          * extent buffers for the same range.  It leads to corruptions
3375          */
3376         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3377             (sectorsize != nodesize)) {
3378                 btrfs_err(fs_info,
3379 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3380                         nodesize, sectorsize);
3381                 goto fail_alloc;
3382         }
3383
3384         /*
3385          * Needn't use the lock because there is no other task which will
3386          * update the flag.
3387          */
3388         btrfs_set_super_incompat_flags(disk_super, features);
3389
3390         features = btrfs_super_compat_ro_flags(disk_super) &
3391                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3392         if (!sb_rdonly(sb) && features) {
3393                 btrfs_err(fs_info,
3394         "cannot mount read-write because of unsupported optional features (%llx)",
3395                        features);
3396                 err = -EINVAL;
3397                 goto fail_alloc;
3398         }
3399
3400         /* For 4K sector size support, it's only read-only */
3401         if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) {
3402                 if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) {
3403                         btrfs_err(fs_info,
3404         "subpage sectorsize %u only supported read-only for page size %lu",
3405                                 sectorsize, PAGE_SIZE);
3406                         err = -EINVAL;
3407                         goto fail_alloc;
3408                 }
3409         }
3410
3411         ret = btrfs_init_workqueues(fs_info, fs_devices);
3412         if (ret) {
3413                 err = ret;
3414                 goto fail_sb_buffer;
3415         }
3416
3417         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3418         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3419
3420         sb->s_blocksize = sectorsize;
3421         sb->s_blocksize_bits = blksize_bits(sectorsize);
3422         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3423
3424         mutex_lock(&fs_info->chunk_mutex);
3425         ret = btrfs_read_sys_array(fs_info);
3426         mutex_unlock(&fs_info->chunk_mutex);
3427         if (ret) {
3428                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3429                 goto fail_sb_buffer;
3430         }
3431
3432         generation = btrfs_super_chunk_root_generation(disk_super);
3433         level = btrfs_super_chunk_root_level(disk_super);
3434
3435         chunk_root->node = read_tree_block(fs_info,
3436                                            btrfs_super_chunk_root(disk_super),
3437                                            BTRFS_CHUNK_TREE_OBJECTID,
3438                                            generation, level, NULL);
3439         if (IS_ERR(chunk_root->node) ||
3440             !extent_buffer_uptodate(chunk_root->node)) {
3441                 btrfs_err(fs_info, "failed to read chunk root");
3442                 if (!IS_ERR(chunk_root->node))
3443                         free_extent_buffer(chunk_root->node);
3444                 chunk_root->node = NULL;
3445                 goto fail_tree_roots;
3446         }
3447         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3448         chunk_root->commit_root = btrfs_root_node(chunk_root);
3449
3450         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3451                            offsetof(struct btrfs_header, chunk_tree_uuid),
3452                            BTRFS_UUID_SIZE);
3453
3454         ret = btrfs_read_chunk_tree(fs_info);
3455         if (ret) {
3456                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3457                 goto fail_tree_roots;
3458         }
3459
3460         /*
3461          * At this point we know all the devices that make this filesystem,
3462          * including the seed devices but we don't know yet if the replace
3463          * target is required. So free devices that are not part of this
3464          * filesystem but skip the replace traget device which is checked
3465          * below in btrfs_init_dev_replace().
3466          */
3467         btrfs_free_extra_devids(fs_devices);
3468         if (!fs_devices->latest_bdev) {
3469                 btrfs_err(fs_info, "failed to read devices");
3470                 goto fail_tree_roots;
3471         }
3472
3473         ret = init_tree_roots(fs_info);
3474         if (ret)
3475                 goto fail_tree_roots;
3476
3477         /*
3478          * Get zone type information of zoned block devices. This will also
3479          * handle emulation of a zoned filesystem if a regular device has the
3480          * zoned incompat feature flag set.
3481          */
3482         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3483         if (ret) {
3484                 btrfs_err(fs_info,
3485                           "zoned: failed to read device zone info: %d",
3486                           ret);
3487                 goto fail_block_groups;
3488         }
3489
3490         /*
3491          * If we have a uuid root and we're not being told to rescan we need to
3492          * check the generation here so we can set the
3493          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3494          * transaction during a balance or the log replay without updating the
3495          * uuid generation, and then if we crash we would rescan the uuid tree,
3496          * even though it was perfectly fine.
3497          */
3498         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3499             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3500                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3501
3502         ret = btrfs_verify_dev_extents(fs_info);
3503         if (ret) {
3504                 btrfs_err(fs_info,
3505                           "failed to verify dev extents against chunks: %d",
3506                           ret);
3507                 goto fail_block_groups;
3508         }
3509         ret = btrfs_recover_balance(fs_info);
3510         if (ret) {
3511                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3512                 goto fail_block_groups;
3513         }
3514
3515         ret = btrfs_init_dev_stats(fs_info);
3516         if (ret) {
3517                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3518                 goto fail_block_groups;
3519         }
3520
3521         ret = btrfs_init_dev_replace(fs_info);
3522         if (ret) {
3523                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3524                 goto fail_block_groups;
3525         }
3526
3527         ret = btrfs_check_zoned_mode(fs_info);
3528         if (ret) {
3529                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3530                           ret);
3531                 goto fail_block_groups;
3532         }
3533
3534         ret = btrfs_sysfs_add_fsid(fs_devices);
3535         if (ret) {
3536                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3537                                 ret);
3538                 goto fail_block_groups;
3539         }
3540
3541         ret = btrfs_sysfs_add_mounted(fs_info);
3542         if (ret) {
3543                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3544                 goto fail_fsdev_sysfs;
3545         }
3546
3547         ret = btrfs_init_space_info(fs_info);
3548         if (ret) {
3549                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3550                 goto fail_sysfs;
3551         }
3552
3553         ret = btrfs_read_block_groups(fs_info);
3554         if (ret) {
3555                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3556                 goto fail_sysfs;
3557         }
3558
3559         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3560                 btrfs_warn(fs_info,
3561                 "writable mount is not allowed due to too many missing devices");
3562                 goto fail_sysfs;
3563         }
3564
3565         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3566                                                "btrfs-cleaner");
3567         if (IS_ERR(fs_info->cleaner_kthread))
3568                 goto fail_sysfs;
3569
3570         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3571                                                    tree_root,
3572                                                    "btrfs-transaction");
3573         if (IS_ERR(fs_info->transaction_kthread))
3574                 goto fail_cleaner;
3575
3576         if (!btrfs_test_opt(fs_info, NOSSD) &&
3577             !fs_info->fs_devices->rotating) {
3578                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3579         }
3580
3581         /*
3582          * Mount does not set all options immediately, we can do it now and do
3583          * not have to wait for transaction commit
3584          */
3585         btrfs_apply_pending_changes(fs_info);
3586
3587 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3588         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3589                 ret = btrfsic_mount(fs_info, fs_devices,
3590                                     btrfs_test_opt(fs_info,
3591                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3592                                     1 : 0,
3593                                     fs_info->check_integrity_print_mask);
3594                 if (ret)
3595                         btrfs_warn(fs_info,
3596                                 "failed to initialize integrity check module: %d",
3597                                 ret);
3598         }
3599 #endif
3600         ret = btrfs_read_qgroup_config(fs_info);
3601         if (ret)
3602                 goto fail_trans_kthread;
3603
3604         if (btrfs_build_ref_tree(fs_info))
3605                 btrfs_err(fs_info, "couldn't build ref tree");
3606
3607         /* do not make disk changes in broken FS or nologreplay is given */
3608         if (btrfs_super_log_root(disk_super) != 0 &&
3609             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3610                 btrfs_info(fs_info, "start tree-log replay");
3611                 ret = btrfs_replay_log(fs_info, fs_devices);
3612                 if (ret) {
3613                         err = ret;
3614                         goto fail_qgroup;
3615                 }
3616         }
3617
3618         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3619         if (IS_ERR(fs_info->fs_root)) {
3620                 err = PTR_ERR(fs_info->fs_root);
3621                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3622                 fs_info->fs_root = NULL;
3623                 goto fail_qgroup;
3624         }
3625
3626         if (sb_rdonly(sb))
3627                 goto clear_oneshot;
3628
3629         ret = btrfs_start_pre_rw_mount(fs_info);
3630         if (ret) {
3631                 close_ctree(fs_info);
3632                 return ret;
3633         }
3634         btrfs_discard_resume(fs_info);
3635
3636         if (fs_info->uuid_root &&
3637             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3638              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3639                 btrfs_info(fs_info, "checking UUID tree");
3640                 ret = btrfs_check_uuid_tree(fs_info);
3641                 if (ret) {
3642                         btrfs_warn(fs_info,
3643                                 "failed to check the UUID tree: %d", ret);
3644                         close_ctree(fs_info);
3645                         return ret;
3646                 }
3647         }
3648
3649         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3650
3651 clear_oneshot:
3652         btrfs_clear_oneshot_options(fs_info);
3653         return 0;
3654
3655 fail_qgroup:
3656         btrfs_free_qgroup_config(fs_info);
3657 fail_trans_kthread:
3658         kthread_stop(fs_info->transaction_kthread);
3659         btrfs_cleanup_transaction(fs_info);
3660         btrfs_free_fs_roots(fs_info);
3661 fail_cleaner:
3662         kthread_stop(fs_info->cleaner_kthread);
3663
3664         /*
3665          * make sure we're done with the btree inode before we stop our
3666          * kthreads
3667          */
3668         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3669
3670 fail_sysfs:
3671         btrfs_sysfs_remove_mounted(fs_info);
3672
3673 fail_fsdev_sysfs:
3674         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3675
3676 fail_block_groups:
3677         btrfs_put_block_group_cache(fs_info);
3678
3679 fail_tree_roots:
3680         if (fs_info->data_reloc_root)
3681                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3682         free_root_pointers(fs_info, true);
3683         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3684
3685 fail_sb_buffer:
3686         btrfs_stop_all_workers(fs_info);
3687         btrfs_free_block_groups(fs_info);
3688 fail_alloc:
3689         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3690
3691         iput(fs_info->btree_inode);
3692 fail:
3693         btrfs_close_devices(fs_info->fs_devices);
3694         return err;
3695 }
3696 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3697
3698 static void btrfs_end_super_write(struct bio *bio)
3699 {
3700         struct btrfs_device *device = bio->bi_private;
3701         struct bio_vec *bvec;
3702         struct bvec_iter_all iter_all;
3703         struct page *page;
3704
3705         bio_for_each_segment_all(bvec, bio, iter_all) {
3706                 page = bvec->bv_page;
3707
3708                 if (bio->bi_status) {
3709                         btrfs_warn_rl_in_rcu(device->fs_info,
3710                                 "lost page write due to IO error on %s (%d)",
3711                                 rcu_str_deref(device->name),
3712                                 blk_status_to_errno(bio->bi_status));
3713                         ClearPageUptodate(page);
3714                         SetPageError(page);
3715                         btrfs_dev_stat_inc_and_print(device,
3716                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3717                 } else {
3718                         SetPageUptodate(page);
3719                 }
3720
3721                 put_page(page);
3722                 unlock_page(page);
3723         }
3724
3725         bio_put(bio);
3726 }
3727
3728 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3729                                                    int copy_num)
3730 {
3731         struct btrfs_super_block *super;
3732         struct page *page;
3733         u64 bytenr, bytenr_orig;
3734         struct address_space *mapping = bdev->bd_inode->i_mapping;
3735         int ret;
3736
3737         bytenr_orig = btrfs_sb_offset(copy_num);
3738         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3739         if (ret == -ENOENT)
3740                 return ERR_PTR(-EINVAL);
3741         else if (ret)
3742                 return ERR_PTR(ret);
3743
3744         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3745                 return ERR_PTR(-EINVAL);
3746
3747         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3748         if (IS_ERR(page))
3749                 return ERR_CAST(page);
3750
3751         super = page_address(page);
3752         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3753                 btrfs_release_disk_super(super);
3754                 return ERR_PTR(-ENODATA);
3755         }
3756
3757         if (btrfs_super_bytenr(super) != bytenr_orig) {
3758                 btrfs_release_disk_super(super);
3759                 return ERR_PTR(-EINVAL);
3760         }
3761
3762         return super;
3763 }
3764
3765
3766 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3767 {
3768         struct btrfs_super_block *super, *latest = NULL;
3769         int i;
3770         u64 transid = 0;
3771
3772         /* we would like to check all the supers, but that would make
3773          * a btrfs mount succeed after a mkfs from a different FS.
3774          * So, we need to add a special mount option to scan for
3775          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3776          */
3777         for (i = 0; i < 1; i++) {
3778                 super = btrfs_read_dev_one_super(bdev, i);
3779                 if (IS_ERR(super))
3780                         continue;
3781
3782                 if (!latest || btrfs_super_generation(super) > transid) {
3783                         if (latest)
3784                                 btrfs_release_disk_super(super);
3785
3786                         latest = super;
3787                         transid = btrfs_super_generation(super);
3788                 }
3789         }
3790
3791         return super;
3792 }
3793
3794 /*
3795  * Write superblock @sb to the @device. Do not wait for completion, all the
3796  * pages we use for writing are locked.
3797  *
3798  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3799  * the expected device size at commit time. Note that max_mirrors must be
3800  * same for write and wait phases.
3801  *
3802  * Return number of errors when page is not found or submission fails.
3803  */
3804 static int write_dev_supers(struct btrfs_device *device,
3805                             struct btrfs_super_block *sb, int max_mirrors)
3806 {
3807         struct btrfs_fs_info *fs_info = device->fs_info;
3808         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3809         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3810         int i;
3811         int errors = 0;
3812         int ret;
3813         u64 bytenr, bytenr_orig;
3814
3815         if (max_mirrors == 0)
3816                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3817
3818         shash->tfm = fs_info->csum_shash;
3819
3820         for (i = 0; i < max_mirrors; i++) {
3821                 struct page *page;
3822                 struct bio *bio;
3823                 struct btrfs_super_block *disk_super;
3824
3825                 bytenr_orig = btrfs_sb_offset(i);
3826                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3827                 if (ret == -ENOENT) {
3828                         continue;
3829                 } else if (ret < 0) {
3830                         btrfs_err(device->fs_info,
3831                                 "couldn't get super block location for mirror %d",
3832                                 i);
3833                         errors++;
3834                         continue;
3835                 }
3836                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3837                     device->commit_total_bytes)
3838                         break;
3839
3840                 btrfs_set_super_bytenr(sb, bytenr_orig);
3841
3842                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3843                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3844                                     sb->csum);
3845
3846                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3847                                            GFP_NOFS);
3848                 if (!page) {
3849                         btrfs_err(device->fs_info,
3850                             "couldn't get super block page for bytenr %llu",
3851                             bytenr);
3852                         errors++;
3853                         continue;
3854                 }
3855
3856                 /* Bump the refcount for wait_dev_supers() */
3857                 get_page(page);
3858
3859                 disk_super = page_address(page);
3860                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3861
3862                 /*
3863                  * Directly use bios here instead of relying on the page cache
3864                  * to do I/O, so we don't lose the ability to do integrity
3865                  * checking.
3866                  */
3867                 bio = bio_alloc(GFP_NOFS, 1);
3868                 bio_set_dev(bio, device->bdev);
3869                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3870                 bio->bi_private = device;
3871                 bio->bi_end_io = btrfs_end_super_write;
3872                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3873                                offset_in_page(bytenr));
3874
3875                 /*
3876                  * We FUA only the first super block.  The others we allow to
3877                  * go down lazy and there's a short window where the on-disk
3878                  * copies might still contain the older version.
3879                  */
3880                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3881                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3882                         bio->bi_opf |= REQ_FUA;
3883
3884                 btrfsic_submit_bio(bio);
3885                 btrfs_advance_sb_log(device, i);
3886         }
3887         return errors < i ? 0 : -1;
3888 }
3889
3890 /*
3891  * Wait for write completion of superblocks done by write_dev_supers,
3892  * @max_mirrors same for write and wait phases.
3893  *
3894  * Return number of errors when page is not found or not marked up to
3895  * date.
3896  */
3897 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3898 {
3899         int i;
3900         int errors = 0;
3901         bool primary_failed = false;
3902         int ret;
3903         u64 bytenr;
3904
3905         if (max_mirrors == 0)
3906                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3907
3908         for (i = 0; i < max_mirrors; i++) {
3909                 struct page *page;
3910
3911                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3912                 if (ret == -ENOENT) {
3913                         break;
3914                 } else if (ret < 0) {
3915                         errors++;
3916                         if (i == 0)
3917                                 primary_failed = true;
3918                         continue;
3919                 }
3920                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3921                     device->commit_total_bytes)
3922                         break;
3923
3924                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3925                                      bytenr >> PAGE_SHIFT);
3926                 if (!page) {
3927                         errors++;
3928                         if (i == 0)
3929                                 primary_failed = true;
3930                         continue;
3931                 }
3932                 /* Page is submitted locked and unlocked once the IO completes */
3933                 wait_on_page_locked(page);
3934                 if (PageError(page)) {
3935                         errors++;
3936                         if (i == 0)
3937                                 primary_failed = true;
3938                 }
3939
3940                 /* Drop our reference */
3941                 put_page(page);
3942
3943                 /* Drop the reference from the writing run */
3944                 put_page(page);
3945         }
3946
3947         /* log error, force error return */
3948         if (primary_failed) {
3949                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3950                           device->devid);
3951                 return -1;
3952         }
3953
3954         return errors < i ? 0 : -1;
3955 }
3956
3957 /*
3958  * endio for the write_dev_flush, this will wake anyone waiting
3959  * for the barrier when it is done
3960  */
3961 static void btrfs_end_empty_barrier(struct bio *bio)
3962 {
3963         complete(bio->bi_private);
3964 }
3965
3966 /*
3967  * Submit a flush request to the device if it supports it. Error handling is
3968  * done in the waiting counterpart.
3969  */
3970 static void write_dev_flush(struct btrfs_device *device)
3971 {
3972         struct request_queue *q = bdev_get_queue(device->bdev);
3973         struct bio *bio = device->flush_bio;
3974
3975         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3976                 return;
3977
3978         bio_reset(bio);
3979         bio->bi_end_io = btrfs_end_empty_barrier;
3980         bio_set_dev(bio, device->bdev);
3981         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3982         init_completion(&device->flush_wait);
3983         bio->bi_private = &device->flush_wait;
3984
3985         btrfsic_submit_bio(bio);
3986         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3987 }
3988
3989 /*
3990  * If the flush bio has been submitted by write_dev_flush, wait for it.
3991  */
3992 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3993 {
3994         struct bio *bio = device->flush_bio;
3995
3996         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3997                 return BLK_STS_OK;
3998
3999         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4000         wait_for_completion_io(&device->flush_wait);
4001
4002         return bio->bi_status;
4003 }
4004
4005 static int check_barrier_error(struct btrfs_fs_info *fs_info)
4006 {
4007         if (!btrfs_check_rw_degradable(fs_info, NULL))
4008                 return -EIO;
4009         return 0;
4010 }
4011
4012 /*
4013  * send an empty flush down to each device in parallel,
4014  * then wait for them
4015  */
4016 static int barrier_all_devices(struct btrfs_fs_info *info)
4017 {
4018         struct list_head *head;
4019         struct btrfs_device *dev;
4020         int errors_wait = 0;
4021         blk_status_t ret;
4022
4023         lockdep_assert_held(&info->fs_devices->device_list_mutex);
4024         /* send down all the barriers */
4025         head = &info->fs_devices->devices;
4026         list_for_each_entry(dev, head, dev_list) {
4027                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4028                         continue;
4029                 if (!dev->bdev)
4030                         continue;
4031                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4032                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4033                         continue;
4034
4035                 write_dev_flush(dev);
4036                 dev->last_flush_error = BLK_STS_OK;
4037         }
4038
4039         /* wait for all the barriers */
4040         list_for_each_entry(dev, head, dev_list) {
4041                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4042                         continue;
4043                 if (!dev->bdev) {
4044                         errors_wait++;
4045                         continue;
4046                 }
4047                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4048                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4049                         continue;
4050
4051                 ret = wait_dev_flush(dev);
4052                 if (ret) {
4053                         dev->last_flush_error = ret;
4054                         btrfs_dev_stat_inc_and_print(dev,
4055                                         BTRFS_DEV_STAT_FLUSH_ERRS);
4056                         errors_wait++;
4057                 }
4058         }
4059
4060         if (errors_wait) {
4061                 /*
4062                  * At some point we need the status of all disks
4063                  * to arrive at the volume status. So error checking
4064                  * is being pushed to a separate loop.
4065                  */
4066                 return check_barrier_error(info);
4067         }
4068         return 0;
4069 }
4070
4071 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4072 {
4073         int raid_type;
4074         int min_tolerated = INT_MAX;
4075
4076         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4077             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4078                 min_tolerated = min_t(int, min_tolerated,
4079                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
4080                                     tolerated_failures);
4081
4082         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4083                 if (raid_type == BTRFS_RAID_SINGLE)
4084                         continue;
4085                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4086                         continue;
4087                 min_tolerated = min_t(int, min_tolerated,
4088                                     btrfs_raid_array[raid_type].
4089                                     tolerated_failures);
4090         }
4091
4092         if (min_tolerated == INT_MAX) {
4093                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
4094                 min_tolerated = 0;
4095         }
4096
4097         return min_tolerated;
4098 }
4099
4100 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4101 {
4102         struct list_head *head;
4103         struct btrfs_device *dev;
4104         struct btrfs_super_block *sb;
4105         struct btrfs_dev_item *dev_item;
4106         int ret;
4107         int do_barriers;
4108         int max_errors;
4109         int total_errors = 0;
4110         u64 flags;
4111
4112         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4113
4114         /*
4115          * max_mirrors == 0 indicates we're from commit_transaction,
4116          * not from fsync where the tree roots in fs_info have not
4117          * been consistent on disk.
4118          */
4119         if (max_mirrors == 0)
4120                 backup_super_roots(fs_info);
4121
4122         sb = fs_info->super_for_commit;
4123         dev_item = &sb->dev_item;
4124
4125         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4126         head = &fs_info->fs_devices->devices;
4127         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4128
4129         if (do_barriers) {
4130                 ret = barrier_all_devices(fs_info);
4131                 if (ret) {
4132                         mutex_unlock(
4133                                 &fs_info->fs_devices->device_list_mutex);
4134                         btrfs_handle_fs_error(fs_info, ret,
4135                                               "errors while submitting device barriers.");
4136                         return ret;
4137                 }
4138         }
4139
4140         list_for_each_entry(dev, head, dev_list) {
4141                 if (!dev->bdev) {
4142                         total_errors++;
4143                         continue;
4144                 }
4145                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4146                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4147                         continue;
4148
4149                 btrfs_set_stack_device_generation(dev_item, 0);
4150                 btrfs_set_stack_device_type(dev_item, dev->type);
4151                 btrfs_set_stack_device_id(dev_item, dev->devid);
4152                 btrfs_set_stack_device_total_bytes(dev_item,
4153                                                    dev->commit_total_bytes);
4154                 btrfs_set_stack_device_bytes_used(dev_item,
4155                                                   dev->commit_bytes_used);
4156                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4157                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4158                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4159                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4160                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4161                        BTRFS_FSID_SIZE);
4162
4163                 flags = btrfs_super_flags(sb);
4164                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4165
4166                 ret = btrfs_validate_write_super(fs_info, sb);
4167                 if (ret < 0) {
4168                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4169                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4170                                 "unexpected superblock corruption detected");
4171                         return -EUCLEAN;
4172                 }
4173
4174                 ret = write_dev_supers(dev, sb, max_mirrors);
4175                 if (ret)
4176                         total_errors++;
4177         }
4178         if (total_errors > max_errors) {
4179                 btrfs_err(fs_info, "%d errors while writing supers",
4180                           total_errors);
4181                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4182
4183                 /* FUA is masked off if unsupported and can't be the reason */
4184                 btrfs_handle_fs_error(fs_info, -EIO,
4185                                       "%d errors while writing supers",
4186                                       total_errors);
4187                 return -EIO;
4188         }
4189
4190         total_errors = 0;
4191         list_for_each_entry(dev, head, dev_list) {
4192                 if (!dev->bdev)
4193                         continue;
4194                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4195                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4196                         continue;
4197
4198                 ret = wait_dev_supers(dev, max_mirrors);
4199                 if (ret)
4200                         total_errors++;
4201         }
4202         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4203         if (total_errors > max_errors) {
4204                 btrfs_handle_fs_error(fs_info, -EIO,
4205                                       "%d errors while writing supers",
4206                                       total_errors);
4207                 return -EIO;
4208         }
4209         return 0;
4210 }
4211
4212 /* Drop a fs root from the radix tree and free it. */
4213 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4214                                   struct btrfs_root *root)
4215 {
4216         bool drop_ref = false;
4217
4218         spin_lock(&fs_info->fs_roots_radix_lock);
4219         radix_tree_delete(&fs_info->fs_roots_radix,
4220                           (unsigned long)root->root_key.objectid);
4221         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4222                 drop_ref = true;
4223         spin_unlock(&fs_info->fs_roots_radix_lock);
4224
4225         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4226                 ASSERT(root->log_root == NULL);
4227                 if (root->reloc_root) {
4228                         btrfs_put_root(root->reloc_root);
4229                         root->reloc_root = NULL;
4230                 }
4231         }
4232
4233         if (drop_ref)
4234                 btrfs_put_root(root);
4235 }
4236
4237 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4238 {
4239         u64 root_objectid = 0;
4240         struct btrfs_root *gang[8];
4241         int i = 0;
4242         int err = 0;
4243         unsigned int ret = 0;
4244
4245         while (1) {
4246                 spin_lock(&fs_info->fs_roots_radix_lock);
4247                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4248                                              (void **)gang, root_objectid,
4249                                              ARRAY_SIZE(gang));
4250                 if (!ret) {
4251                         spin_unlock(&fs_info->fs_roots_radix_lock);
4252                         break;
4253                 }
4254                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4255
4256                 for (i = 0; i < ret; i++) {
4257                         /* Avoid to grab roots in dead_roots */
4258                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4259                                 gang[i] = NULL;
4260                                 continue;
4261                         }
4262                         /* grab all the search result for later use */
4263                         gang[i] = btrfs_grab_root(gang[i]);
4264                 }
4265                 spin_unlock(&fs_info->fs_roots_radix_lock);
4266
4267                 for (i = 0; i < ret; i++) {
4268                         if (!gang[i])
4269                                 continue;
4270                         root_objectid = gang[i]->root_key.objectid;
4271                         err = btrfs_orphan_cleanup(gang[i]);
4272                         if (err)
4273                                 break;
4274                         btrfs_put_root(gang[i]);
4275                 }
4276                 root_objectid++;
4277         }
4278
4279         /* release the uncleaned roots due to error */
4280         for (; i < ret; i++) {
4281                 if (gang[i])
4282                         btrfs_put_root(gang[i]);
4283         }
4284         return err;
4285 }
4286
4287 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4288 {
4289         struct btrfs_root *root = fs_info->tree_root;
4290         struct btrfs_trans_handle *trans;
4291
4292         mutex_lock(&fs_info->cleaner_mutex);
4293         btrfs_run_delayed_iputs(fs_info);
4294         mutex_unlock(&fs_info->cleaner_mutex);
4295         wake_up_process(fs_info->cleaner_kthread);
4296
4297         /* wait until ongoing cleanup work done */
4298         down_write(&fs_info->cleanup_work_sem);
4299         up_write(&fs_info->cleanup_work_sem);
4300
4301         trans = btrfs_join_transaction(root);
4302         if (IS_ERR(trans))
4303                 return PTR_ERR(trans);
4304         return btrfs_commit_transaction(trans);
4305 }
4306
4307 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4308 {
4309         int ret;
4310
4311         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4312         /*
4313          * We don't want the cleaner to start new transactions, add more delayed
4314          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4315          * because that frees the task_struct, and the transaction kthread might
4316          * still try to wake up the cleaner.
4317          */
4318         kthread_park(fs_info->cleaner_kthread);
4319
4320         /* wait for the qgroup rescan worker to stop */
4321         btrfs_qgroup_wait_for_completion(fs_info, false);
4322
4323         /* wait for the uuid_scan task to finish */
4324         down(&fs_info->uuid_tree_rescan_sem);
4325         /* avoid complains from lockdep et al., set sem back to initial state */
4326         up(&fs_info->uuid_tree_rescan_sem);
4327
4328         /* pause restriper - we want to resume on mount */
4329         btrfs_pause_balance(fs_info);
4330
4331         btrfs_dev_replace_suspend_for_unmount(fs_info);
4332
4333         btrfs_scrub_cancel(fs_info);
4334
4335         /* wait for any defraggers to finish */
4336         wait_event(fs_info->transaction_wait,
4337                    (atomic_read(&fs_info->defrag_running) == 0));
4338
4339         /* clear out the rbtree of defraggable inodes */
4340         btrfs_cleanup_defrag_inodes(fs_info);
4341
4342         cancel_work_sync(&fs_info->async_reclaim_work);
4343         cancel_work_sync(&fs_info->async_data_reclaim_work);
4344         cancel_work_sync(&fs_info->preempt_reclaim_work);
4345
4346         cancel_work_sync(&fs_info->reclaim_bgs_work);
4347
4348         /* Cancel or finish ongoing discard work */
4349         btrfs_discard_cleanup(fs_info);
4350
4351         if (!sb_rdonly(fs_info->sb)) {
4352                 /*
4353                  * The cleaner kthread is stopped, so do one final pass over
4354                  * unused block groups.
4355                  */
4356                 btrfs_delete_unused_bgs(fs_info);
4357
4358                 /*
4359                  * There might be existing delayed inode workers still running
4360                  * and holding an empty delayed inode item. We must wait for
4361                  * them to complete first because they can create a transaction.
4362                  * This happens when someone calls btrfs_balance_delayed_items()
4363                  * and then a transaction commit runs the same delayed nodes
4364                  * before any delayed worker has done something with the nodes.
4365                  * We must wait for any worker here and not at transaction
4366                  * commit time since that could cause a deadlock.
4367                  * This is a very rare case.
4368                  */
4369                 btrfs_flush_workqueue(fs_info->delayed_workers);
4370
4371                 ret = btrfs_commit_super(fs_info);
4372                 if (ret)
4373                         btrfs_err(fs_info, "commit super ret %d", ret);
4374         }
4375
4376         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4377             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4378                 btrfs_error_commit_super(fs_info);
4379
4380         kthread_stop(fs_info->transaction_kthread);
4381         kthread_stop(fs_info->cleaner_kthread);
4382
4383         ASSERT(list_empty(&fs_info->delayed_iputs));
4384         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4385
4386         if (btrfs_check_quota_leak(fs_info)) {
4387                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4388                 btrfs_err(fs_info, "qgroup reserved space leaked");
4389         }
4390
4391         btrfs_free_qgroup_config(fs_info);
4392         ASSERT(list_empty(&fs_info->delalloc_roots));
4393
4394         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4395                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4396                        percpu_counter_sum(&fs_info->delalloc_bytes));
4397         }
4398
4399         if (percpu_counter_sum(&fs_info->ordered_bytes))
4400                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4401                            percpu_counter_sum(&fs_info->ordered_bytes));
4402
4403         btrfs_sysfs_remove_mounted(fs_info);
4404         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4405
4406         btrfs_put_block_group_cache(fs_info);
4407
4408         /*
4409          * we must make sure there is not any read request to
4410          * submit after we stopping all workers.
4411          */
4412         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4413         btrfs_stop_all_workers(fs_info);
4414
4415         /* We shouldn't have any transaction open at this point */
4416         ASSERT(list_empty(&fs_info->trans_list));
4417
4418         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4419         free_root_pointers(fs_info, true);
4420         btrfs_free_fs_roots(fs_info);
4421
4422         /*
4423          * We must free the block groups after dropping the fs_roots as we could
4424          * have had an IO error and have left over tree log blocks that aren't
4425          * cleaned up until the fs roots are freed.  This makes the block group
4426          * accounting appear to be wrong because there's pending reserved bytes,
4427          * so make sure we do the block group cleanup afterwards.
4428          */
4429         btrfs_free_block_groups(fs_info);
4430
4431         iput(fs_info->btree_inode);
4432
4433 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4434         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4435                 btrfsic_unmount(fs_info->fs_devices);
4436 #endif
4437
4438         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4439         btrfs_close_devices(fs_info->fs_devices);
4440 }
4441
4442 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4443                           int atomic)
4444 {
4445         int ret;
4446         struct inode *btree_inode = buf->pages[0]->mapping->host;
4447
4448         ret = extent_buffer_uptodate(buf);
4449         if (!ret)
4450                 return ret;
4451
4452         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4453                                     parent_transid, atomic);
4454         if (ret == -EAGAIN)
4455                 return ret;
4456         return !ret;
4457 }
4458
4459 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4460 {
4461         struct btrfs_fs_info *fs_info = buf->fs_info;
4462         u64 transid = btrfs_header_generation(buf);
4463         int was_dirty;
4464
4465 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4466         /*
4467          * This is a fast path so only do this check if we have sanity tests
4468          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4469          * outside of the sanity tests.
4470          */
4471         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4472                 return;
4473 #endif
4474         btrfs_assert_tree_locked(buf);
4475         if (transid != fs_info->generation)
4476                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4477                         buf->start, transid, fs_info->generation);
4478         was_dirty = set_extent_buffer_dirty(buf);
4479         if (!was_dirty)
4480                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4481                                          buf->len,
4482                                          fs_info->dirty_metadata_batch);
4483 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4484         /*
4485          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4486          * but item data not updated.
4487          * So here we should only check item pointers, not item data.
4488          */
4489         if (btrfs_header_level(buf) == 0 &&
4490             btrfs_check_leaf_relaxed(buf)) {
4491                 btrfs_print_leaf(buf);
4492                 ASSERT(0);
4493         }
4494 #endif
4495 }
4496
4497 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4498                                         int flush_delayed)
4499 {
4500         /*
4501          * looks as though older kernels can get into trouble with
4502          * this code, they end up stuck in balance_dirty_pages forever
4503          */
4504         int ret;
4505
4506         if (current->flags & PF_MEMALLOC)
4507                 return;
4508
4509         if (flush_delayed)
4510                 btrfs_balance_delayed_items(fs_info);
4511
4512         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4513                                      BTRFS_DIRTY_METADATA_THRESH,
4514                                      fs_info->dirty_metadata_batch);
4515         if (ret > 0) {
4516                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4517         }
4518 }
4519
4520 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4521 {
4522         __btrfs_btree_balance_dirty(fs_info, 1);
4523 }
4524
4525 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4526 {
4527         __btrfs_btree_balance_dirty(fs_info, 0);
4528 }
4529
4530 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4531                       struct btrfs_key *first_key)
4532 {
4533         return btree_read_extent_buffer_pages(buf, parent_transid,
4534                                               level, first_key);
4535 }
4536
4537 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4538 {
4539         /* cleanup FS via transaction */
4540         btrfs_cleanup_transaction(fs_info);
4541
4542         mutex_lock(&fs_info->cleaner_mutex);
4543         btrfs_run_delayed_iputs(fs_info);
4544         mutex_unlock(&fs_info->cleaner_mutex);
4545
4546         down_write(&fs_info->cleanup_work_sem);
4547         up_write(&fs_info->cleanup_work_sem);
4548 }
4549
4550 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4551 {
4552         struct btrfs_root *gang[8];
4553         u64 root_objectid = 0;
4554         int ret;
4555
4556         spin_lock(&fs_info->fs_roots_radix_lock);
4557         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4558                                              (void **)gang, root_objectid,
4559                                              ARRAY_SIZE(gang))) != 0) {
4560                 int i;
4561
4562                 for (i = 0; i < ret; i++)
4563                         gang[i] = btrfs_grab_root(gang[i]);
4564                 spin_unlock(&fs_info->fs_roots_radix_lock);
4565
4566                 for (i = 0; i < ret; i++) {
4567                         if (!gang[i])
4568                                 continue;
4569                         root_objectid = gang[i]->root_key.objectid;
4570                         btrfs_free_log(NULL, gang[i]);
4571                         btrfs_put_root(gang[i]);
4572                 }
4573                 root_objectid++;
4574                 spin_lock(&fs_info->fs_roots_radix_lock);
4575         }
4576         spin_unlock(&fs_info->fs_roots_radix_lock);
4577         btrfs_free_log_root_tree(NULL, fs_info);
4578 }
4579
4580 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4581 {
4582         struct btrfs_ordered_extent *ordered;
4583
4584         spin_lock(&root->ordered_extent_lock);
4585         /*
4586          * This will just short circuit the ordered completion stuff which will
4587          * make sure the ordered extent gets properly cleaned up.
4588          */
4589         list_for_each_entry(ordered, &root->ordered_extents,
4590                             root_extent_list)
4591                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4592         spin_unlock(&root->ordered_extent_lock);
4593 }
4594
4595 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4596 {
4597         struct btrfs_root *root;
4598         struct list_head splice;
4599
4600         INIT_LIST_HEAD(&splice);
4601
4602         spin_lock(&fs_info->ordered_root_lock);
4603         list_splice_init(&fs_info->ordered_roots, &splice);
4604         while (!list_empty(&splice)) {
4605                 root = list_first_entry(&splice, struct btrfs_root,
4606                                         ordered_root);
4607                 list_move_tail(&root->ordered_root,
4608                                &fs_info->ordered_roots);
4609
4610                 spin_unlock(&fs_info->ordered_root_lock);
4611                 btrfs_destroy_ordered_extents(root);
4612
4613                 cond_resched();
4614                 spin_lock(&fs_info->ordered_root_lock);
4615         }
4616         spin_unlock(&fs_info->ordered_root_lock);
4617
4618         /*
4619          * We need this here because if we've been flipped read-only we won't
4620          * get sync() from the umount, so we need to make sure any ordered
4621          * extents that haven't had their dirty pages IO start writeout yet
4622          * actually get run and error out properly.
4623          */
4624         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4625 }
4626
4627 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4628                                       struct btrfs_fs_info *fs_info)
4629 {
4630         struct rb_node *node;
4631         struct btrfs_delayed_ref_root *delayed_refs;
4632         struct btrfs_delayed_ref_node *ref;
4633         int ret = 0;
4634
4635         delayed_refs = &trans->delayed_refs;
4636
4637         spin_lock(&delayed_refs->lock);
4638         if (atomic_read(&delayed_refs->num_entries) == 0) {
4639                 spin_unlock(&delayed_refs->lock);
4640                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4641                 return ret;
4642         }
4643
4644         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4645                 struct btrfs_delayed_ref_head *head;
4646                 struct rb_node *n;
4647                 bool pin_bytes = false;
4648
4649                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4650                                 href_node);
4651                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4652                         continue;
4653
4654                 spin_lock(&head->lock);
4655                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4656                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4657                                        ref_node);
4658                         ref->in_tree = 0;
4659                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4660                         RB_CLEAR_NODE(&ref->ref_node);
4661                         if (!list_empty(&ref->add_list))
4662                                 list_del(&ref->add_list);
4663                         atomic_dec(&delayed_refs->num_entries);
4664                         btrfs_put_delayed_ref(ref);
4665                 }
4666                 if (head->must_insert_reserved)
4667                         pin_bytes = true;
4668                 btrfs_free_delayed_extent_op(head->extent_op);
4669                 btrfs_delete_ref_head(delayed_refs, head);
4670                 spin_unlock(&head->lock);
4671                 spin_unlock(&delayed_refs->lock);
4672                 mutex_unlock(&head->mutex);
4673
4674                 if (pin_bytes) {
4675                         struct btrfs_block_group *cache;
4676
4677                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4678                         BUG_ON(!cache);
4679
4680                         spin_lock(&cache->space_info->lock);
4681                         spin_lock(&cache->lock);
4682                         cache->pinned += head->num_bytes;
4683                         btrfs_space_info_update_bytes_pinned(fs_info,
4684                                 cache->space_info, head->num_bytes);
4685                         cache->reserved -= head->num_bytes;
4686                         cache->space_info->bytes_reserved -= head->num_bytes;
4687                         spin_unlock(&cache->lock);
4688                         spin_unlock(&cache->space_info->lock);
4689                         percpu_counter_add_batch(
4690                                 &cache->space_info->total_bytes_pinned,
4691                                 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4692
4693                         btrfs_put_block_group(cache);
4694
4695                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4696                                 head->bytenr + head->num_bytes - 1);
4697                 }
4698                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4699                 btrfs_put_delayed_ref_head(head);
4700                 cond_resched();
4701                 spin_lock(&delayed_refs->lock);
4702         }
4703         btrfs_qgroup_destroy_extent_records(trans);
4704
4705         spin_unlock(&delayed_refs->lock);
4706
4707         return ret;
4708 }
4709
4710 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4711 {
4712         struct btrfs_inode *btrfs_inode;
4713         struct list_head splice;
4714
4715         INIT_LIST_HEAD(&splice);
4716
4717         spin_lock(&root->delalloc_lock);
4718         list_splice_init(&root->delalloc_inodes, &splice);
4719
4720         while (!list_empty(&splice)) {
4721                 struct inode *inode = NULL;
4722                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4723                                                delalloc_inodes);
4724                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4725                 spin_unlock(&root->delalloc_lock);
4726
4727                 /*
4728                  * Make sure we get a live inode and that it'll not disappear
4729                  * meanwhile.
4730                  */
4731                 inode = igrab(&btrfs_inode->vfs_inode);
4732                 if (inode) {
4733                         invalidate_inode_pages2(inode->i_mapping);
4734                         iput(inode);
4735                 }
4736                 spin_lock(&root->delalloc_lock);
4737         }
4738         spin_unlock(&root->delalloc_lock);
4739 }
4740
4741 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4742 {
4743         struct btrfs_root *root;
4744         struct list_head splice;
4745
4746         INIT_LIST_HEAD(&splice);
4747
4748         spin_lock(&fs_info->delalloc_root_lock);
4749         list_splice_init(&fs_info->delalloc_roots, &splice);
4750         while (!list_empty(&splice)) {
4751                 root = list_first_entry(&splice, struct btrfs_root,
4752                                          delalloc_root);
4753                 root = btrfs_grab_root(root);
4754                 BUG_ON(!root);
4755                 spin_unlock(&fs_info->delalloc_root_lock);
4756
4757                 btrfs_destroy_delalloc_inodes(root);
4758                 btrfs_put_root(root);
4759
4760                 spin_lock(&fs_info->delalloc_root_lock);
4761         }
4762         spin_unlock(&fs_info->delalloc_root_lock);
4763 }
4764
4765 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4766                                         struct extent_io_tree *dirty_pages,
4767                                         int mark)
4768 {
4769         int ret;
4770         struct extent_buffer *eb;
4771         u64 start = 0;
4772         u64 end;
4773
4774         while (1) {
4775                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4776                                             mark, NULL);
4777                 if (ret)
4778                         break;
4779
4780                 clear_extent_bits(dirty_pages, start, end, mark);
4781                 while (start <= end) {
4782                         eb = find_extent_buffer(fs_info, start);
4783                         start += fs_info->nodesize;
4784                         if (!eb)
4785                                 continue;
4786                         wait_on_extent_buffer_writeback(eb);
4787
4788                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4789                                                &eb->bflags))
4790                                 clear_extent_buffer_dirty(eb);
4791                         free_extent_buffer_stale(eb);
4792                 }
4793         }
4794
4795         return ret;
4796 }
4797
4798 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4799                                        struct extent_io_tree *unpin)
4800 {
4801         u64 start;
4802         u64 end;
4803         int ret;
4804
4805         while (1) {
4806                 struct extent_state *cached_state = NULL;
4807
4808                 /*
4809                  * The btrfs_finish_extent_commit() may get the same range as
4810                  * ours between find_first_extent_bit and clear_extent_dirty.
4811                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4812                  * the same extent range.
4813                  */
4814                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4815                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4816                                             EXTENT_DIRTY, &cached_state);
4817                 if (ret) {
4818                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4819                         break;
4820                 }
4821
4822                 clear_extent_dirty(unpin, start, end, &cached_state);
4823                 free_extent_state(cached_state);
4824                 btrfs_error_unpin_extent_range(fs_info, start, end);
4825                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4826                 cond_resched();
4827         }
4828
4829         return 0;
4830 }
4831
4832 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4833 {
4834         struct inode *inode;
4835
4836         inode = cache->io_ctl.inode;
4837         if (inode) {
4838                 invalidate_inode_pages2(inode->i_mapping);
4839                 BTRFS_I(inode)->generation = 0;
4840                 cache->io_ctl.inode = NULL;
4841                 iput(inode);
4842         }
4843         ASSERT(cache->io_ctl.pages == NULL);
4844         btrfs_put_block_group(cache);
4845 }
4846
4847 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4848                              struct btrfs_fs_info *fs_info)
4849 {
4850         struct btrfs_block_group *cache;
4851
4852         spin_lock(&cur_trans->dirty_bgs_lock);
4853         while (!list_empty(&cur_trans->dirty_bgs)) {
4854                 cache = list_first_entry(&cur_trans->dirty_bgs,
4855                                          struct btrfs_block_group,
4856                                          dirty_list);
4857
4858                 if (!list_empty(&cache->io_list)) {
4859                         spin_unlock(&cur_trans->dirty_bgs_lock);
4860                         list_del_init(&cache->io_list);
4861                         btrfs_cleanup_bg_io(cache);
4862                         spin_lock(&cur_trans->dirty_bgs_lock);
4863                 }
4864
4865                 list_del_init(&cache->dirty_list);
4866                 spin_lock(&cache->lock);
4867                 cache->disk_cache_state = BTRFS_DC_ERROR;
4868                 spin_unlock(&cache->lock);
4869
4870                 spin_unlock(&cur_trans->dirty_bgs_lock);
4871                 btrfs_put_block_group(cache);
4872                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4873                 spin_lock(&cur_trans->dirty_bgs_lock);
4874         }
4875         spin_unlock(&cur_trans->dirty_bgs_lock);
4876
4877         /*
4878          * Refer to the definition of io_bgs member for details why it's safe
4879          * to use it without any locking
4880          */
4881         while (!list_empty(&cur_trans->io_bgs)) {
4882                 cache = list_first_entry(&cur_trans->io_bgs,
4883                                          struct btrfs_block_group,
4884                                          io_list);
4885
4886                 list_del_init(&cache->io_list);
4887                 spin_lock(&cache->lock);
4888                 cache->disk_cache_state = BTRFS_DC_ERROR;
4889                 spin_unlock(&cache->lock);
4890                 btrfs_cleanup_bg_io(cache);
4891         }
4892 }
4893
4894 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4895                                    struct btrfs_fs_info *fs_info)
4896 {
4897         struct btrfs_device *dev, *tmp;
4898
4899         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4900         ASSERT(list_empty(&cur_trans->dirty_bgs));
4901         ASSERT(list_empty(&cur_trans->io_bgs));
4902
4903         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4904                                  post_commit_list) {
4905                 list_del_init(&dev->post_commit_list);
4906         }
4907
4908         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4909
4910         cur_trans->state = TRANS_STATE_COMMIT_START;
4911         wake_up(&fs_info->transaction_blocked_wait);
4912
4913         cur_trans->state = TRANS_STATE_UNBLOCKED;
4914         wake_up(&fs_info->transaction_wait);
4915
4916         btrfs_destroy_delayed_inodes(fs_info);
4917
4918         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4919                                      EXTENT_DIRTY);
4920         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4921
4922         btrfs_free_redirty_list(cur_trans);
4923
4924         cur_trans->state =TRANS_STATE_COMPLETED;
4925         wake_up(&cur_trans->commit_wait);
4926 }
4927
4928 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4929 {
4930         struct btrfs_transaction *t;
4931
4932         mutex_lock(&fs_info->transaction_kthread_mutex);
4933
4934         spin_lock(&fs_info->trans_lock);
4935         while (!list_empty(&fs_info->trans_list)) {
4936                 t = list_first_entry(&fs_info->trans_list,
4937                                      struct btrfs_transaction, list);
4938                 if (t->state >= TRANS_STATE_COMMIT_START) {
4939                         refcount_inc(&t->use_count);
4940                         spin_unlock(&fs_info->trans_lock);
4941                         btrfs_wait_for_commit(fs_info, t->transid);
4942                         btrfs_put_transaction(t);
4943                         spin_lock(&fs_info->trans_lock);
4944                         continue;
4945                 }
4946                 if (t == fs_info->running_transaction) {
4947                         t->state = TRANS_STATE_COMMIT_DOING;
4948                         spin_unlock(&fs_info->trans_lock);
4949                         /*
4950                          * We wait for 0 num_writers since we don't hold a trans
4951                          * handle open currently for this transaction.
4952                          */
4953                         wait_event(t->writer_wait,
4954                                    atomic_read(&t->num_writers) == 0);
4955                 } else {
4956                         spin_unlock(&fs_info->trans_lock);
4957                 }
4958                 btrfs_cleanup_one_transaction(t, fs_info);
4959
4960                 spin_lock(&fs_info->trans_lock);
4961                 if (t == fs_info->running_transaction)
4962                         fs_info->running_transaction = NULL;
4963                 list_del_init(&t->list);
4964                 spin_unlock(&fs_info->trans_lock);
4965
4966                 btrfs_put_transaction(t);
4967                 trace_btrfs_transaction_commit(fs_info->tree_root);
4968                 spin_lock(&fs_info->trans_lock);
4969         }
4970         spin_unlock(&fs_info->trans_lock);
4971         btrfs_destroy_all_ordered_extents(fs_info);
4972         btrfs_destroy_delayed_inodes(fs_info);
4973         btrfs_assert_delayed_root_empty(fs_info);
4974         btrfs_destroy_all_delalloc_inodes(fs_info);
4975         btrfs_drop_all_logs(fs_info);
4976         mutex_unlock(&fs_info->transaction_kthread_mutex);
4977
4978         return 0;
4979 }
4980
4981 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4982 {
4983         struct btrfs_path *path;
4984         int ret;
4985         struct extent_buffer *l;
4986         struct btrfs_key search_key;
4987         struct btrfs_key found_key;
4988         int slot;
4989
4990         path = btrfs_alloc_path();
4991         if (!path)
4992                 return -ENOMEM;
4993
4994         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4995         search_key.type = -1;
4996         search_key.offset = (u64)-1;
4997         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4998         if (ret < 0)
4999                 goto error;
5000         BUG_ON(ret == 0); /* Corruption */
5001         if (path->slots[0] > 0) {
5002                 slot = path->slots[0] - 1;
5003                 l = path->nodes[0];
5004                 btrfs_item_key_to_cpu(l, &found_key, slot);
5005                 root->free_objectid = max_t(u64, found_key.objectid + 1,
5006                                             BTRFS_FIRST_FREE_OBJECTID);
5007         } else {
5008                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5009         }
5010         ret = 0;
5011 error:
5012         btrfs_free_path(path);
5013         return ret;
5014 }
5015
5016 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5017 {
5018         int ret;
5019         mutex_lock(&root->objectid_mutex);
5020
5021         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5022                 btrfs_warn(root->fs_info,
5023                            "the objectid of root %llu reaches its highest value",
5024                            root->root_key.objectid);
5025                 ret = -ENOSPC;
5026                 goto out;
5027         }
5028
5029         *objectid = root->free_objectid++;
5030         ret = 0;
5031 out:
5032         mutex_unlock(&root->objectid_mutex);
5033         return ret;
5034 }