Merge tag 'pm-5.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-microblaze.git] / fs / btrfs / disk-io.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/workqueue.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <linux/migrate.h>
14 #include <linux/ratelimit.h>
15 #include <linux/uuid.h>
16 #include <linux/semaphore.h>
17 #include <linux/error-injection.h>
18 #include <linux/crc32c.h>
19 #include <linux/sched/mm.h>
20 #include <asm/unaligned.h>
21 #include <crypto/hash.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "check-integrity.h"
33 #include "rcu-string.h"
34 #include "dev-replace.h"
35 #include "raid56.h"
36 #include "sysfs.h"
37 #include "qgroup.h"
38 #include "compression.h"
39 #include "tree-checker.h"
40 #include "ref-verify.h"
41 #include "block-group.h"
42 #include "discard.h"
43 #include "space-info.h"
44 #include "zoned.h"
45
46 #define BTRFS_SUPER_FLAG_SUPP   (BTRFS_HEADER_FLAG_WRITTEN |\
47                                  BTRFS_HEADER_FLAG_RELOC |\
48                                  BTRFS_SUPER_FLAG_ERROR |\
49                                  BTRFS_SUPER_FLAG_SEEDING |\
50                                  BTRFS_SUPER_FLAG_METADUMP |\
51                                  BTRFS_SUPER_FLAG_METADUMP_V2)
52
53 static void end_workqueue_fn(struct btrfs_work *work);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56                                       struct btrfs_fs_info *fs_info);
57 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
59                                         struct extent_io_tree *dirty_pages,
60                                         int mark);
61 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
62                                        struct extent_io_tree *pinned_extents);
63 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
64 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
65
66 /*
67  * btrfs_end_io_wq structs are used to do processing in task context when an IO
68  * is complete.  This is used during reads to verify checksums, and it is used
69  * by writes to insert metadata for new file extents after IO is complete.
70  */
71 struct btrfs_end_io_wq {
72         struct bio *bio;
73         bio_end_io_t *end_io;
74         void *private;
75         struct btrfs_fs_info *info;
76         blk_status_t status;
77         enum btrfs_wq_endio_type metadata;
78         struct btrfs_work work;
79 };
80
81 static struct kmem_cache *btrfs_end_io_wq_cache;
82
83 int __init btrfs_end_io_wq_init(void)
84 {
85         btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
86                                         sizeof(struct btrfs_end_io_wq),
87                                         0,
88                                         SLAB_MEM_SPREAD,
89                                         NULL);
90         if (!btrfs_end_io_wq_cache)
91                 return -ENOMEM;
92         return 0;
93 }
94
95 void __cold btrfs_end_io_wq_exit(void)
96 {
97         kmem_cache_destroy(btrfs_end_io_wq_cache);
98 }
99
100 static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
101 {
102         if (fs_info->csum_shash)
103                 crypto_free_shash(fs_info->csum_shash);
104 }
105
106 /*
107  * async submit bios are used to offload expensive checksumming
108  * onto the worker threads.  They checksum file and metadata bios
109  * just before they are sent down the IO stack.
110  */
111 struct async_submit_bio {
112         struct inode *inode;
113         struct bio *bio;
114         extent_submit_bio_start_t *submit_bio_start;
115         int mirror_num;
116
117         /* Optional parameter for submit_bio_start used by direct io */
118         u64 dio_file_offset;
119         struct btrfs_work work;
120         blk_status_t status;
121 };
122
123 /*
124  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
125  * eb, the lockdep key is determined by the btrfs_root it belongs to and
126  * the level the eb occupies in the tree.
127  *
128  * Different roots are used for different purposes and may nest inside each
129  * other and they require separate keysets.  As lockdep keys should be
130  * static, assign keysets according to the purpose of the root as indicated
131  * by btrfs_root->root_key.objectid.  This ensures that all special purpose
132  * roots have separate keysets.
133  *
134  * Lock-nesting across peer nodes is always done with the immediate parent
135  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
136  * subclass to avoid triggering lockdep warning in such cases.
137  *
138  * The key is set by the readpage_end_io_hook after the buffer has passed
139  * csum validation but before the pages are unlocked.  It is also set by
140  * btrfs_init_new_buffer on freshly allocated blocks.
141  *
142  * We also add a check to make sure the highest level of the tree is the
143  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
144  * needs update as well.
145  */
146 #ifdef CONFIG_DEBUG_LOCK_ALLOC
147 # if BTRFS_MAX_LEVEL != 8
148 #  error
149 # endif
150
151 #define DEFINE_LEVEL(stem, level)                                       \
152         .names[level] = "btrfs-" stem "-0" #level,
153
154 #define DEFINE_NAME(stem)                                               \
155         DEFINE_LEVEL(stem, 0)                                           \
156         DEFINE_LEVEL(stem, 1)                                           \
157         DEFINE_LEVEL(stem, 2)                                           \
158         DEFINE_LEVEL(stem, 3)                                           \
159         DEFINE_LEVEL(stem, 4)                                           \
160         DEFINE_LEVEL(stem, 5)                                           \
161         DEFINE_LEVEL(stem, 6)                                           \
162         DEFINE_LEVEL(stem, 7)
163
164 static struct btrfs_lockdep_keyset {
165         u64                     id;             /* root objectid */
166         /* Longest entry: btrfs-free-space-00 */
167         char                    names[BTRFS_MAX_LEVEL][20];
168         struct lock_class_key   keys[BTRFS_MAX_LEVEL];
169 } btrfs_lockdep_keysets[] = {
170         { .id = BTRFS_ROOT_TREE_OBJECTID,       DEFINE_NAME("root")     },
171         { .id = BTRFS_EXTENT_TREE_OBJECTID,     DEFINE_NAME("extent")   },
172         { .id = BTRFS_CHUNK_TREE_OBJECTID,      DEFINE_NAME("chunk")    },
173         { .id = BTRFS_DEV_TREE_OBJECTID,        DEFINE_NAME("dev")      },
174         { .id = BTRFS_CSUM_TREE_OBJECTID,       DEFINE_NAME("csum")     },
175         { .id = BTRFS_QUOTA_TREE_OBJECTID,      DEFINE_NAME("quota")    },
176         { .id = BTRFS_TREE_LOG_OBJECTID,        DEFINE_NAME("log")      },
177         { .id = BTRFS_TREE_RELOC_OBJECTID,      DEFINE_NAME("treloc")   },
178         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc")   },
179         { .id = BTRFS_UUID_TREE_OBJECTID,       DEFINE_NAME("uuid")     },
180         { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
181         { .id = 0,                              DEFINE_NAME("tree")     },
182 };
183
184 #undef DEFINE_LEVEL
185 #undef DEFINE_NAME
186
187 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
188                                     int level)
189 {
190         struct btrfs_lockdep_keyset *ks;
191
192         BUG_ON(level >= ARRAY_SIZE(ks->keys));
193
194         /* find the matching keyset, id 0 is the default entry */
195         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
196                 if (ks->id == objectid)
197                         break;
198
199         lockdep_set_class_and_name(&eb->lock,
200                                    &ks->keys[level], ks->names[level]);
201 }
202
203 #endif
204
205 /*
206  * Compute the csum of a btree block and store the result to provided buffer.
207  */
208 static void csum_tree_block(struct extent_buffer *buf, u8 *result)
209 {
210         struct btrfs_fs_info *fs_info = buf->fs_info;
211         const int num_pages = fs_info->nodesize >> PAGE_SHIFT;
212         const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
213         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
214         char *kaddr;
215         int i;
216
217         shash->tfm = fs_info->csum_shash;
218         crypto_shash_init(shash);
219         kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
220         crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
221                             first_page_part - BTRFS_CSUM_SIZE);
222
223         for (i = 1; i < num_pages; i++) {
224                 kaddr = page_address(buf->pages[i]);
225                 crypto_shash_update(shash, kaddr, PAGE_SIZE);
226         }
227         memset(result, 0, BTRFS_CSUM_SIZE);
228         crypto_shash_final(shash, result);
229 }
230
231 /*
232  * we can't consider a given block up to date unless the transid of the
233  * block matches the transid in the parent node's pointer.  This is how we
234  * detect blocks that either didn't get written at all or got written
235  * in the wrong place.
236  */
237 static int verify_parent_transid(struct extent_io_tree *io_tree,
238                                  struct extent_buffer *eb, u64 parent_transid,
239                                  int atomic)
240 {
241         struct extent_state *cached_state = NULL;
242         int ret;
243         bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
244
245         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
246                 return 0;
247
248         if (atomic)
249                 return -EAGAIN;
250
251         if (need_lock)
252                 btrfs_tree_read_lock(eb);
253
254         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
255                          &cached_state);
256         if (extent_buffer_uptodate(eb) &&
257             btrfs_header_generation(eb) == parent_transid) {
258                 ret = 0;
259                 goto out;
260         }
261         btrfs_err_rl(eb->fs_info,
262                 "parent transid verify failed on %llu wanted %llu found %llu",
263                         eb->start,
264                         parent_transid, btrfs_header_generation(eb));
265         ret = 1;
266
267         /*
268          * Things reading via commit roots that don't have normal protection,
269          * like send, can have a really old block in cache that may point at a
270          * block that has been freed and re-allocated.  So don't clear uptodate
271          * if we find an eb that is under IO (dirty/writeback) because we could
272          * end up reading in the stale data and then writing it back out and
273          * making everybody very sad.
274          */
275         if (!extent_buffer_under_io(eb))
276                 clear_extent_buffer_uptodate(eb);
277 out:
278         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
279                              &cached_state);
280         if (need_lock)
281                 btrfs_tree_read_unlock(eb);
282         return ret;
283 }
284
285 static bool btrfs_supported_super_csum(u16 csum_type)
286 {
287         switch (csum_type) {
288         case BTRFS_CSUM_TYPE_CRC32:
289         case BTRFS_CSUM_TYPE_XXHASH:
290         case BTRFS_CSUM_TYPE_SHA256:
291         case BTRFS_CSUM_TYPE_BLAKE2:
292                 return true;
293         default:
294                 return false;
295         }
296 }
297
298 /*
299  * Return 0 if the superblock checksum type matches the checksum value of that
300  * algorithm. Pass the raw disk superblock data.
301  */
302 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
303                                   char *raw_disk_sb)
304 {
305         struct btrfs_super_block *disk_sb =
306                 (struct btrfs_super_block *)raw_disk_sb;
307         char result[BTRFS_CSUM_SIZE];
308         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
309
310         shash->tfm = fs_info->csum_shash;
311
312         /*
313          * The super_block structure does not span the whole
314          * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
315          * filled with zeros and is included in the checksum.
316          */
317         crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
318                             BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
319
320         if (memcmp(disk_sb->csum, result, fs_info->csum_size))
321                 return 1;
322
323         return 0;
324 }
325
326 int btrfs_verify_level_key(struct extent_buffer *eb, int level,
327                            struct btrfs_key *first_key, u64 parent_transid)
328 {
329         struct btrfs_fs_info *fs_info = eb->fs_info;
330         int found_level;
331         struct btrfs_key found_key;
332         int ret;
333
334         found_level = btrfs_header_level(eb);
335         if (found_level != level) {
336                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
337                      KERN_ERR "BTRFS: tree level check failed\n");
338                 btrfs_err(fs_info,
339 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
340                           eb->start, level, found_level);
341                 return -EIO;
342         }
343
344         if (!first_key)
345                 return 0;
346
347         /*
348          * For live tree block (new tree blocks in current transaction),
349          * we need proper lock context to avoid race, which is impossible here.
350          * So we only checks tree blocks which is read from disk, whose
351          * generation <= fs_info->last_trans_committed.
352          */
353         if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
354                 return 0;
355
356         /* We have @first_key, so this @eb must have at least one item */
357         if (btrfs_header_nritems(eb) == 0) {
358                 btrfs_err(fs_info,
359                 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
360                           eb->start);
361                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
362                 return -EUCLEAN;
363         }
364
365         if (found_level)
366                 btrfs_node_key_to_cpu(eb, &found_key, 0);
367         else
368                 btrfs_item_key_to_cpu(eb, &found_key, 0);
369         ret = btrfs_comp_cpu_keys(first_key, &found_key);
370
371         if (ret) {
372                 WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
373                      KERN_ERR "BTRFS: tree first key check failed\n");
374                 btrfs_err(fs_info,
375 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
376                           eb->start, parent_transid, first_key->objectid,
377                           first_key->type, first_key->offset,
378                           found_key.objectid, found_key.type,
379                           found_key.offset);
380         }
381         return ret;
382 }
383
384 /*
385  * helper to read a given tree block, doing retries as required when
386  * the checksums don't match and we have alternate mirrors to try.
387  *
388  * @parent_transid:     expected transid, skip check if 0
389  * @level:              expected level, mandatory check
390  * @first_key:          expected key of first slot, skip check if NULL
391  */
392 static int btree_read_extent_buffer_pages(struct extent_buffer *eb,
393                                           u64 parent_transid, int level,
394                                           struct btrfs_key *first_key)
395 {
396         struct btrfs_fs_info *fs_info = eb->fs_info;
397         struct extent_io_tree *io_tree;
398         int failed = 0;
399         int ret;
400         int num_copies = 0;
401         int mirror_num = 0;
402         int failed_mirror = 0;
403
404         io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
405         while (1) {
406                 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
407                 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
408                 if (!ret) {
409                         if (verify_parent_transid(io_tree, eb,
410                                                    parent_transid, 0))
411                                 ret = -EIO;
412                         else if (btrfs_verify_level_key(eb, level,
413                                                 first_key, parent_transid))
414                                 ret = -EUCLEAN;
415                         else
416                                 break;
417                 }
418
419                 num_copies = btrfs_num_copies(fs_info,
420                                               eb->start, eb->len);
421                 if (num_copies == 1)
422                         break;
423
424                 if (!failed_mirror) {
425                         failed = 1;
426                         failed_mirror = eb->read_mirror;
427                 }
428
429                 mirror_num++;
430                 if (mirror_num == failed_mirror)
431                         mirror_num++;
432
433                 if (mirror_num > num_copies)
434                         break;
435         }
436
437         if (failed && !ret && failed_mirror)
438                 btrfs_repair_eb_io_failure(eb, failed_mirror);
439
440         return ret;
441 }
442
443 /*
444  * Checksum a dirty tree block before IO.  This has extra checks to make sure
445  * we only fill in the checksum field in the first page of a multi-page block.
446  * For subpage extent buffers we need bvec to also read the offset in the page.
447  */
448 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
449 {
450         struct page *page = bvec->bv_page;
451         u64 start = page_offset(page);
452         u64 found_start;
453         u8 result[BTRFS_CSUM_SIZE];
454         struct extent_buffer *eb;
455         int ret;
456
457         eb = (struct extent_buffer *)page->private;
458         if (page != eb->pages[0])
459                 return 0;
460
461         found_start = btrfs_header_bytenr(eb);
462
463         if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
464                 WARN_ON(found_start != 0);
465                 return 0;
466         }
467
468         /*
469          * Please do not consolidate these warnings into a single if.
470          * It is useful to know what went wrong.
471          */
472         if (WARN_ON(found_start != start))
473                 return -EUCLEAN;
474         if (WARN_ON(!PageUptodate(page)))
475                 return -EUCLEAN;
476
477         ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
478                                     offsetof(struct btrfs_header, fsid),
479                                     BTRFS_FSID_SIZE) == 0);
480
481         csum_tree_block(eb, result);
482
483         if (btrfs_header_level(eb))
484                 ret = btrfs_check_node(eb);
485         else
486                 ret = btrfs_check_leaf_full(eb);
487
488         if (ret < 0) {
489                 btrfs_print_tree(eb, 0);
490                 btrfs_err(fs_info,
491                 "block=%llu write time tree block corruption detected",
492                           eb->start);
493                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
494                 return ret;
495         }
496         write_extent_buffer(eb, result, 0, fs_info->csum_size);
497
498         return 0;
499 }
500
501 static int check_tree_block_fsid(struct extent_buffer *eb)
502 {
503         struct btrfs_fs_info *fs_info = eb->fs_info;
504         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
505         u8 fsid[BTRFS_FSID_SIZE];
506         u8 *metadata_uuid;
507
508         read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
509                            BTRFS_FSID_SIZE);
510         /*
511          * Checking the incompat flag is only valid for the current fs. For
512          * seed devices it's forbidden to have their uuid changed so reading
513          * ->fsid in this case is fine
514          */
515         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
516                 metadata_uuid = fs_devices->metadata_uuid;
517         else
518                 metadata_uuid = fs_devices->fsid;
519
520         if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
521                 return 0;
522
523         list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
524                 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
525                         return 0;
526
527         return 1;
528 }
529
530 /* Do basic extent buffer checks at read time */
531 static int validate_extent_buffer(struct extent_buffer *eb)
532 {
533         struct btrfs_fs_info *fs_info = eb->fs_info;
534         u64 found_start;
535         const u32 csum_size = fs_info->csum_size;
536         u8 found_level;
537         u8 result[BTRFS_CSUM_SIZE];
538         int ret = 0;
539
540         found_start = btrfs_header_bytenr(eb);
541         if (found_start != eb->start) {
542                 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
543                              eb->start, found_start);
544                 ret = -EIO;
545                 goto out;
546         }
547         if (check_tree_block_fsid(eb)) {
548                 btrfs_err_rl(fs_info, "bad fsid on block %llu",
549                              eb->start);
550                 ret = -EIO;
551                 goto out;
552         }
553         found_level = btrfs_header_level(eb);
554         if (found_level >= BTRFS_MAX_LEVEL) {
555                 btrfs_err(fs_info, "bad tree block level %d on %llu",
556                           (int)btrfs_header_level(eb), eb->start);
557                 ret = -EIO;
558                 goto out;
559         }
560
561         csum_tree_block(eb, result);
562
563         if (memcmp_extent_buffer(eb, result, 0, csum_size)) {
564                 u8 val[BTRFS_CSUM_SIZE] = { 0 };
565
566                 read_extent_buffer(eb, &val, 0, csum_size);
567                 btrfs_warn_rl(fs_info,
568         "%s checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
569                               fs_info->sb->s_id, eb->start,
570                               CSUM_FMT_VALUE(csum_size, val),
571                               CSUM_FMT_VALUE(csum_size, result),
572                               btrfs_header_level(eb));
573                 ret = -EUCLEAN;
574                 goto out;
575         }
576
577         /*
578          * If this is a leaf block and it is corrupt, set the corrupt bit so
579          * that we don't try and read the other copies of this block, just
580          * return -EIO.
581          */
582         if (found_level == 0 && btrfs_check_leaf_full(eb)) {
583                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
584                 ret = -EIO;
585         }
586
587         if (found_level > 0 && btrfs_check_node(eb))
588                 ret = -EIO;
589
590         if (!ret)
591                 set_extent_buffer_uptodate(eb);
592         else
593                 btrfs_err(fs_info,
594                           "block=%llu read time tree block corruption detected",
595                           eb->start);
596 out:
597         return ret;
598 }
599
600 static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
601                                    int mirror)
602 {
603         struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
604         struct extent_buffer *eb;
605         bool reads_done;
606         int ret = 0;
607
608         /*
609          * We don't allow bio merge for subpage metadata read, so we should
610          * only get one eb for each endio hook.
611          */
612         ASSERT(end == start + fs_info->nodesize - 1);
613         ASSERT(PagePrivate(page));
614
615         eb = find_extent_buffer(fs_info, start);
616         /*
617          * When we are reading one tree block, eb must have been inserted into
618          * the radix tree. If not, something is wrong.
619          */
620         ASSERT(eb);
621
622         reads_done = atomic_dec_and_test(&eb->io_pages);
623         /* Subpage read must finish in page read */
624         ASSERT(reads_done);
625
626         eb->read_mirror = mirror;
627         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
628                 ret = -EIO;
629                 goto err;
630         }
631         ret = validate_extent_buffer(eb);
632         if (ret < 0)
633                 goto err;
634
635         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
636                 btree_readahead_hook(eb, ret);
637
638         set_extent_buffer_uptodate(eb);
639
640         free_extent_buffer(eb);
641         return ret;
642 err:
643         /*
644          * end_bio_extent_readpage decrements io_pages in case of error,
645          * make sure it has something to decrement.
646          */
647         atomic_inc(&eb->io_pages);
648         clear_extent_buffer_uptodate(eb);
649         free_extent_buffer(eb);
650         return ret;
651 }
652
653 int btrfs_validate_metadata_buffer(struct btrfs_io_bio *io_bio,
654                                    struct page *page, u64 start, u64 end,
655                                    int mirror)
656 {
657         struct extent_buffer *eb;
658         int ret = 0;
659         int reads_done;
660
661         ASSERT(page->private);
662
663         if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
664                 return validate_subpage_buffer(page, start, end, mirror);
665
666         eb = (struct extent_buffer *)page->private;
667
668         /*
669          * The pending IO might have been the only thing that kept this buffer
670          * in memory.  Make sure we have a ref for all this other checks
671          */
672         atomic_inc(&eb->refs);
673
674         reads_done = atomic_dec_and_test(&eb->io_pages);
675         if (!reads_done)
676                 goto err;
677
678         eb->read_mirror = mirror;
679         if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
680                 ret = -EIO;
681                 goto err;
682         }
683         ret = validate_extent_buffer(eb);
684 err:
685         if (reads_done &&
686             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687                 btree_readahead_hook(eb, ret);
688
689         if (ret) {
690                 /*
691                  * our io error hook is going to dec the io pages
692                  * again, we have to make sure it has something
693                  * to decrement
694                  */
695                 atomic_inc(&eb->io_pages);
696                 clear_extent_buffer_uptodate(eb);
697         }
698         free_extent_buffer(eb);
699
700         return ret;
701 }
702
703 static void end_workqueue_bio(struct bio *bio)
704 {
705         struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
706         struct btrfs_fs_info *fs_info;
707         struct btrfs_workqueue *wq;
708
709         fs_info = end_io_wq->info;
710         end_io_wq->status = bio->bi_status;
711
712         if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
713                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
714                         wq = fs_info->endio_meta_write_workers;
715                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
716                         wq = fs_info->endio_freespace_worker;
717                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
718                         wq = fs_info->endio_raid56_workers;
719                 else
720                         wq = fs_info->endio_write_workers;
721         } else {
722                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
723                         wq = fs_info->endio_raid56_workers;
724                 else if (end_io_wq->metadata)
725                         wq = fs_info->endio_meta_workers;
726                 else
727                         wq = fs_info->endio_workers;
728         }
729
730         btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
731         btrfs_queue_work(wq, &end_io_wq->work);
732 }
733
734 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
735                         enum btrfs_wq_endio_type metadata)
736 {
737         struct btrfs_end_io_wq *end_io_wq;
738
739         end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
740         if (!end_io_wq)
741                 return BLK_STS_RESOURCE;
742
743         end_io_wq->private = bio->bi_private;
744         end_io_wq->end_io = bio->bi_end_io;
745         end_io_wq->info = info;
746         end_io_wq->status = 0;
747         end_io_wq->bio = bio;
748         end_io_wq->metadata = metadata;
749
750         bio->bi_private = end_io_wq;
751         bio->bi_end_io = end_workqueue_bio;
752         return 0;
753 }
754
755 static void run_one_async_start(struct btrfs_work *work)
756 {
757         struct async_submit_bio *async;
758         blk_status_t ret;
759
760         async = container_of(work, struct  async_submit_bio, work);
761         ret = async->submit_bio_start(async->inode, async->bio,
762                                       async->dio_file_offset);
763         if (ret)
764                 async->status = ret;
765 }
766
767 /*
768  * In order to insert checksums into the metadata in large chunks, we wait
769  * until bio submission time.   All the pages in the bio are checksummed and
770  * sums are attached onto the ordered extent record.
771  *
772  * At IO completion time the csums attached on the ordered extent record are
773  * inserted into the tree.
774  */
775 static void run_one_async_done(struct btrfs_work *work)
776 {
777         struct async_submit_bio *async;
778         struct inode *inode;
779         blk_status_t ret;
780
781         async = container_of(work, struct  async_submit_bio, work);
782         inode = async->inode;
783
784         /* If an error occurred we just want to clean up the bio and move on */
785         if (async->status) {
786                 async->bio->bi_status = async->status;
787                 bio_endio(async->bio);
788                 return;
789         }
790
791         /*
792          * All of the bios that pass through here are from async helpers.
793          * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
794          * This changes nothing when cgroups aren't in use.
795          */
796         async->bio->bi_opf |= REQ_CGROUP_PUNT;
797         ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
798         if (ret) {
799                 async->bio->bi_status = ret;
800                 bio_endio(async->bio);
801         }
802 }
803
804 static void run_one_async_free(struct btrfs_work *work)
805 {
806         struct async_submit_bio *async;
807
808         async = container_of(work, struct  async_submit_bio, work);
809         kfree(async);
810 }
811
812 blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
813                                  int mirror_num, unsigned long bio_flags,
814                                  u64 dio_file_offset,
815                                  extent_submit_bio_start_t *submit_bio_start)
816 {
817         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
818         struct async_submit_bio *async;
819
820         async = kmalloc(sizeof(*async), GFP_NOFS);
821         if (!async)
822                 return BLK_STS_RESOURCE;
823
824         async->inode = inode;
825         async->bio = bio;
826         async->mirror_num = mirror_num;
827         async->submit_bio_start = submit_bio_start;
828
829         btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
830                         run_one_async_free);
831
832         async->dio_file_offset = dio_file_offset;
833
834         async->status = 0;
835
836         if (op_is_sync(bio->bi_opf))
837                 btrfs_set_work_high_priority(&async->work);
838
839         btrfs_queue_work(fs_info->workers, &async->work);
840         return 0;
841 }
842
843 static blk_status_t btree_csum_one_bio(struct bio *bio)
844 {
845         struct bio_vec *bvec;
846         struct btrfs_root *root;
847         int ret = 0;
848         struct bvec_iter_all iter_all;
849
850         ASSERT(!bio_flagged(bio, BIO_CLONED));
851         bio_for_each_segment_all(bvec, bio, iter_all) {
852                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
853                 ret = csum_dirty_buffer(root->fs_info, bvec);
854                 if (ret)
855                         break;
856         }
857
858         return errno_to_blk_status(ret);
859 }
860
861 static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
862                                            u64 dio_file_offset)
863 {
864         /*
865          * when we're called for a write, we're already in the async
866          * submission context.  Just jump into btrfs_map_bio
867          */
868         return btree_csum_one_bio(bio);
869 }
870
871 static int check_async_write(struct btrfs_fs_info *fs_info,
872                              struct btrfs_inode *bi)
873 {
874         if (btrfs_is_zoned(fs_info))
875                 return 0;
876         if (atomic_read(&bi->sync_writers))
877                 return 0;
878         if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
879                 return 0;
880         return 1;
881 }
882
883 blk_status_t btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio,
884                                        int mirror_num, unsigned long bio_flags)
885 {
886         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
887         int async = check_async_write(fs_info, BTRFS_I(inode));
888         blk_status_t ret;
889
890         if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
891                 /*
892                  * called for a read, do the setup so that checksum validation
893                  * can happen in the async kernel threads
894                  */
895                 ret = btrfs_bio_wq_end_io(fs_info, bio,
896                                           BTRFS_WQ_ENDIO_METADATA);
897                 if (ret)
898                         goto out_w_error;
899                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
900         } else if (!async) {
901                 ret = btree_csum_one_bio(bio);
902                 if (ret)
903                         goto out_w_error;
904                 ret = btrfs_map_bio(fs_info, bio, mirror_num);
905         } else {
906                 /*
907                  * kthread helpers are used to submit writes so that
908                  * checksumming can happen in parallel across all CPUs
909                  */
910                 ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
911                                           0, btree_submit_bio_start);
912         }
913
914         if (ret)
915                 goto out_w_error;
916         return 0;
917
918 out_w_error:
919         bio->bi_status = ret;
920         bio_endio(bio);
921         return ret;
922 }
923
924 #ifdef CONFIG_MIGRATION
925 static int btree_migratepage(struct address_space *mapping,
926                         struct page *newpage, struct page *page,
927                         enum migrate_mode mode)
928 {
929         /*
930          * we can't safely write a btree page from here,
931          * we haven't done the locking hook
932          */
933         if (PageDirty(page))
934                 return -EAGAIN;
935         /*
936          * Buffers may be managed in a filesystem specific way.
937          * We must have no buffers or drop them.
938          */
939         if (page_has_private(page) &&
940             !try_to_release_page(page, GFP_KERNEL))
941                 return -EAGAIN;
942         return migrate_page(mapping, newpage, page, mode);
943 }
944 #endif
945
946
947 static int btree_writepages(struct address_space *mapping,
948                             struct writeback_control *wbc)
949 {
950         struct btrfs_fs_info *fs_info;
951         int ret;
952
953         if (wbc->sync_mode == WB_SYNC_NONE) {
954
955                 if (wbc->for_kupdate)
956                         return 0;
957
958                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
959                 /* this is a bit racy, but that's ok */
960                 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
961                                              BTRFS_DIRTY_METADATA_THRESH,
962                                              fs_info->dirty_metadata_batch);
963                 if (ret < 0)
964                         return 0;
965         }
966         return btree_write_cache_pages(mapping, wbc);
967 }
968
969 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
970 {
971         if (PageWriteback(page) || PageDirty(page))
972                 return 0;
973
974         return try_release_extent_buffer(page);
975 }
976
977 static void btree_invalidatepage(struct page *page, unsigned int offset,
978                                  unsigned int length)
979 {
980         struct extent_io_tree *tree;
981         tree = &BTRFS_I(page->mapping->host)->io_tree;
982         extent_invalidatepage(tree, page, offset);
983         btree_releasepage(page, GFP_NOFS);
984         if (PagePrivate(page)) {
985                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
986                            "page private not zero on page %llu",
987                            (unsigned long long)page_offset(page));
988                 detach_page_private(page);
989         }
990 }
991
992 static int btree_set_page_dirty(struct page *page)
993 {
994 #ifdef DEBUG
995         struct extent_buffer *eb;
996
997         BUG_ON(!PagePrivate(page));
998         eb = (struct extent_buffer *)page->private;
999         BUG_ON(!eb);
1000         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1001         BUG_ON(!atomic_read(&eb->refs));
1002         btrfs_assert_tree_locked(eb);
1003 #endif
1004         return __set_page_dirty_nobuffers(page);
1005 }
1006
1007 static const struct address_space_operations btree_aops = {
1008         .writepages     = btree_writepages,
1009         .releasepage    = btree_releasepage,
1010         .invalidatepage = btree_invalidatepage,
1011 #ifdef CONFIG_MIGRATION
1012         .migratepage    = btree_migratepage,
1013 #endif
1014         .set_page_dirty = btree_set_page_dirty,
1015 };
1016
1017 struct extent_buffer *btrfs_find_create_tree_block(
1018                                                 struct btrfs_fs_info *fs_info,
1019                                                 u64 bytenr, u64 owner_root,
1020                                                 int level)
1021 {
1022         if (btrfs_is_testing(fs_info))
1023                 return alloc_test_extent_buffer(fs_info, bytenr);
1024         return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
1025 }
1026
1027 /*
1028  * Read tree block at logical address @bytenr and do variant basic but critical
1029  * verification.
1030  *
1031  * @owner_root:         the objectid of the root owner for this block.
1032  * @parent_transid:     expected transid of this tree block, skip check if 0
1033  * @level:              expected level, mandatory check
1034  * @first_key:          expected key in slot 0, skip check if NULL
1035  */
1036 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1037                                       u64 owner_root, u64 parent_transid,
1038                                       int level, struct btrfs_key *first_key)
1039 {
1040         struct extent_buffer *buf = NULL;
1041         int ret;
1042
1043         buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
1044         if (IS_ERR(buf))
1045                 return buf;
1046
1047         ret = btree_read_extent_buffer_pages(buf, parent_transid,
1048                                              level, first_key);
1049         if (ret) {
1050                 free_extent_buffer_stale(buf);
1051                 return ERR_PTR(ret);
1052         }
1053         return buf;
1054
1055 }
1056
1057 void btrfs_clean_tree_block(struct extent_buffer *buf)
1058 {
1059         struct btrfs_fs_info *fs_info = buf->fs_info;
1060         if (btrfs_header_generation(buf) ==
1061             fs_info->running_transaction->transid) {
1062                 btrfs_assert_tree_locked(buf);
1063
1064                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1065                         percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1066                                                  -buf->len,
1067                                                  fs_info->dirty_metadata_batch);
1068                         clear_extent_buffer_dirty(buf);
1069                 }
1070         }
1071 }
1072
1073 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1074                          u64 objectid)
1075 {
1076         bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1077         root->fs_info = fs_info;
1078         root->node = NULL;
1079         root->commit_root = NULL;
1080         root->state = 0;
1081         root->orphan_cleanup_state = 0;
1082
1083         root->last_trans = 0;
1084         root->free_objectid = 0;
1085         root->nr_delalloc_inodes = 0;
1086         root->nr_ordered_extents = 0;
1087         root->inode_tree = RB_ROOT;
1088         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1089         root->block_rsv = NULL;
1090
1091         INIT_LIST_HEAD(&root->dirty_list);
1092         INIT_LIST_HEAD(&root->root_list);
1093         INIT_LIST_HEAD(&root->delalloc_inodes);
1094         INIT_LIST_HEAD(&root->delalloc_root);
1095         INIT_LIST_HEAD(&root->ordered_extents);
1096         INIT_LIST_HEAD(&root->ordered_root);
1097         INIT_LIST_HEAD(&root->reloc_dirty_list);
1098         INIT_LIST_HEAD(&root->logged_list[0]);
1099         INIT_LIST_HEAD(&root->logged_list[1]);
1100         spin_lock_init(&root->inode_lock);
1101         spin_lock_init(&root->delalloc_lock);
1102         spin_lock_init(&root->ordered_extent_lock);
1103         spin_lock_init(&root->accounting_lock);
1104         spin_lock_init(&root->log_extents_lock[0]);
1105         spin_lock_init(&root->log_extents_lock[1]);
1106         spin_lock_init(&root->qgroup_meta_rsv_lock);
1107         mutex_init(&root->objectid_mutex);
1108         mutex_init(&root->log_mutex);
1109         mutex_init(&root->ordered_extent_mutex);
1110         mutex_init(&root->delalloc_mutex);
1111         init_waitqueue_head(&root->qgroup_flush_wait);
1112         init_waitqueue_head(&root->log_writer_wait);
1113         init_waitqueue_head(&root->log_commit_wait[0]);
1114         init_waitqueue_head(&root->log_commit_wait[1]);
1115         INIT_LIST_HEAD(&root->log_ctxs[0]);
1116         INIT_LIST_HEAD(&root->log_ctxs[1]);
1117         atomic_set(&root->log_commit[0], 0);
1118         atomic_set(&root->log_commit[1], 0);
1119         atomic_set(&root->log_writers, 0);
1120         atomic_set(&root->log_batch, 0);
1121         refcount_set(&root->refs, 1);
1122         atomic_set(&root->snapshot_force_cow, 0);
1123         atomic_set(&root->nr_swapfiles, 0);
1124         root->log_transid = 0;
1125         root->log_transid_committed = -1;
1126         root->last_log_commit = 0;
1127         if (!dummy) {
1128                 extent_io_tree_init(fs_info, &root->dirty_log_pages,
1129                                     IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
1130                 extent_io_tree_init(fs_info, &root->log_csum_range,
1131                                     IO_TREE_LOG_CSUM_RANGE, NULL);
1132         }
1133
1134         memset(&root->root_key, 0, sizeof(root->root_key));
1135         memset(&root->root_item, 0, sizeof(root->root_item));
1136         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1137         root->root_key.objectid = objectid;
1138         root->anon_dev = 0;
1139
1140         spin_lock_init(&root->root_item_lock);
1141         btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1142 #ifdef CONFIG_BTRFS_DEBUG
1143         INIT_LIST_HEAD(&root->leak_list);
1144         spin_lock(&fs_info->fs_roots_radix_lock);
1145         list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1146         spin_unlock(&fs_info->fs_roots_radix_lock);
1147 #endif
1148 }
1149
1150 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1151                                            u64 objectid, gfp_t flags)
1152 {
1153         struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1154         if (root)
1155                 __setup_root(root, fs_info, objectid);
1156         return root;
1157 }
1158
1159 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1160 /* Should only be used by the testing infrastructure */
1161 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1162 {
1163         struct btrfs_root *root;
1164
1165         if (!fs_info)
1166                 return ERR_PTR(-EINVAL);
1167
1168         root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1169         if (!root)
1170                 return ERR_PTR(-ENOMEM);
1171
1172         /* We don't use the stripesize in selftest, set it as sectorsize */
1173         root->alloc_bytenr = 0;
1174
1175         return root;
1176 }
1177 #endif
1178
1179 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1180                                      u64 objectid)
1181 {
1182         struct btrfs_fs_info *fs_info = trans->fs_info;
1183         struct extent_buffer *leaf;
1184         struct btrfs_root *tree_root = fs_info->tree_root;
1185         struct btrfs_root *root;
1186         struct btrfs_key key;
1187         unsigned int nofs_flag;
1188         int ret = 0;
1189
1190         /*
1191          * We're holding a transaction handle, so use a NOFS memory allocation
1192          * context to avoid deadlock if reclaim happens.
1193          */
1194         nofs_flag = memalloc_nofs_save();
1195         root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1196         memalloc_nofs_restore(nofs_flag);
1197         if (!root)
1198                 return ERR_PTR(-ENOMEM);
1199
1200         root->root_key.objectid = objectid;
1201         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1202         root->root_key.offset = 0;
1203
1204         leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1205                                       BTRFS_NESTING_NORMAL);
1206         if (IS_ERR(leaf)) {
1207                 ret = PTR_ERR(leaf);
1208                 leaf = NULL;
1209                 goto fail_unlock;
1210         }
1211
1212         root->node = leaf;
1213         btrfs_mark_buffer_dirty(leaf);
1214
1215         root->commit_root = btrfs_root_node(root);
1216         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1217
1218         btrfs_set_root_flags(&root->root_item, 0);
1219         btrfs_set_root_limit(&root->root_item, 0);
1220         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1221         btrfs_set_root_generation(&root->root_item, trans->transid);
1222         btrfs_set_root_level(&root->root_item, 0);
1223         btrfs_set_root_refs(&root->root_item, 1);
1224         btrfs_set_root_used(&root->root_item, leaf->len);
1225         btrfs_set_root_last_snapshot(&root->root_item, 0);
1226         btrfs_set_root_dirid(&root->root_item, 0);
1227         if (is_fstree(objectid))
1228                 generate_random_guid(root->root_item.uuid);
1229         else
1230                 export_guid(root->root_item.uuid, &guid_null);
1231         btrfs_set_root_drop_level(&root->root_item, 0);
1232
1233         btrfs_tree_unlock(leaf);
1234
1235         key.objectid = objectid;
1236         key.type = BTRFS_ROOT_ITEM_KEY;
1237         key.offset = 0;
1238         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1239         if (ret)
1240                 goto fail;
1241
1242         return root;
1243
1244 fail_unlock:
1245         if (leaf)
1246                 btrfs_tree_unlock(leaf);
1247 fail:
1248         btrfs_put_root(root);
1249
1250         return ERR_PTR(ret);
1251 }
1252
1253 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1254                                          struct btrfs_fs_info *fs_info)
1255 {
1256         struct btrfs_root *root;
1257
1258         root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1259         if (!root)
1260                 return ERR_PTR(-ENOMEM);
1261
1262         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1263         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1264         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1265
1266         return root;
1267 }
1268
1269 int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1270                               struct btrfs_root *root)
1271 {
1272         struct extent_buffer *leaf;
1273
1274         /*
1275          * DON'T set SHAREABLE bit for log trees.
1276          *
1277          * Log trees are not exposed to user space thus can't be snapshotted,
1278          * and they go away before a real commit is actually done.
1279          *
1280          * They do store pointers to file data extents, and those reference
1281          * counts still get updated (along with back refs to the log tree).
1282          */
1283
1284         leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1285                         NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1286         if (IS_ERR(leaf))
1287                 return PTR_ERR(leaf);
1288
1289         root->node = leaf;
1290
1291         btrfs_mark_buffer_dirty(root->node);
1292         btrfs_tree_unlock(root->node);
1293
1294         return 0;
1295 }
1296
1297 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1298                              struct btrfs_fs_info *fs_info)
1299 {
1300         struct btrfs_root *log_root;
1301
1302         log_root = alloc_log_tree(trans, fs_info);
1303         if (IS_ERR(log_root))
1304                 return PTR_ERR(log_root);
1305
1306         if (!btrfs_is_zoned(fs_info)) {
1307                 int ret = btrfs_alloc_log_tree_node(trans, log_root);
1308
1309                 if (ret) {
1310                         btrfs_put_root(log_root);
1311                         return ret;
1312                 }
1313         }
1314
1315         WARN_ON(fs_info->log_root_tree);
1316         fs_info->log_root_tree = log_root;
1317         return 0;
1318 }
1319
1320 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1321                        struct btrfs_root *root)
1322 {
1323         struct btrfs_fs_info *fs_info = root->fs_info;
1324         struct btrfs_root *log_root;
1325         struct btrfs_inode_item *inode_item;
1326         int ret;
1327
1328         log_root = alloc_log_tree(trans, fs_info);
1329         if (IS_ERR(log_root))
1330                 return PTR_ERR(log_root);
1331
1332         ret = btrfs_alloc_log_tree_node(trans, log_root);
1333         if (ret) {
1334                 btrfs_put_root(log_root);
1335                 return ret;
1336         }
1337
1338         log_root->last_trans = trans->transid;
1339         log_root->root_key.offset = root->root_key.objectid;
1340
1341         inode_item = &log_root->root_item.inode;
1342         btrfs_set_stack_inode_generation(inode_item, 1);
1343         btrfs_set_stack_inode_size(inode_item, 3);
1344         btrfs_set_stack_inode_nlink(inode_item, 1);
1345         btrfs_set_stack_inode_nbytes(inode_item,
1346                                      fs_info->nodesize);
1347         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1348
1349         btrfs_set_root_node(&log_root->root_item, log_root->node);
1350
1351         WARN_ON(root->log_root);
1352         root->log_root = log_root;
1353         root->log_transid = 0;
1354         root->log_transid_committed = -1;
1355         root->last_log_commit = 0;
1356         return 0;
1357 }
1358
1359 static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1360                                               struct btrfs_path *path,
1361                                               struct btrfs_key *key)
1362 {
1363         struct btrfs_root *root;
1364         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1365         u64 generation;
1366         int ret;
1367         int level;
1368
1369         root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1370         if (!root)
1371                 return ERR_PTR(-ENOMEM);
1372
1373         ret = btrfs_find_root(tree_root, key, path,
1374                               &root->root_item, &root->root_key);
1375         if (ret) {
1376                 if (ret > 0)
1377                         ret = -ENOENT;
1378                 goto fail;
1379         }
1380
1381         generation = btrfs_root_generation(&root->root_item);
1382         level = btrfs_root_level(&root->root_item);
1383         root->node = read_tree_block(fs_info,
1384                                      btrfs_root_bytenr(&root->root_item),
1385                                      key->objectid, generation, level, NULL);
1386         if (IS_ERR(root->node)) {
1387                 ret = PTR_ERR(root->node);
1388                 root->node = NULL;
1389                 goto fail;
1390         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1391                 ret = -EIO;
1392                 goto fail;
1393         }
1394         root->commit_root = btrfs_root_node(root);
1395         return root;
1396 fail:
1397         btrfs_put_root(root);
1398         return ERR_PTR(ret);
1399 }
1400
1401 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1402                                         struct btrfs_key *key)
1403 {
1404         struct btrfs_root *root;
1405         struct btrfs_path *path;
1406
1407         path = btrfs_alloc_path();
1408         if (!path)
1409                 return ERR_PTR(-ENOMEM);
1410         root = read_tree_root_path(tree_root, path, key);
1411         btrfs_free_path(path);
1412
1413         return root;
1414 }
1415
1416 /*
1417  * Initialize subvolume root in-memory structure
1418  *
1419  * @anon_dev:   anonymous device to attach to the root, if zero, allocate new
1420  */
1421 static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1422 {
1423         int ret;
1424         unsigned int nofs_flag;
1425
1426         /*
1427          * We might be called under a transaction (e.g. indirect backref
1428          * resolution) which could deadlock if it triggers memory reclaim
1429          */
1430         nofs_flag = memalloc_nofs_save();
1431         ret = btrfs_drew_lock_init(&root->snapshot_lock);
1432         memalloc_nofs_restore(nofs_flag);
1433         if (ret)
1434                 goto fail;
1435
1436         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1437             root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
1438                 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1439                 btrfs_check_and_init_root_item(&root->root_item);
1440         }
1441
1442         /*
1443          * Don't assign anonymous block device to roots that are not exposed to
1444          * userspace, the id pool is limited to 1M
1445          */
1446         if (is_fstree(root->root_key.objectid) &&
1447             btrfs_root_refs(&root->root_item) > 0) {
1448                 if (!anon_dev) {
1449                         ret = get_anon_bdev(&root->anon_dev);
1450                         if (ret)
1451                                 goto fail;
1452                 } else {
1453                         root->anon_dev = anon_dev;
1454                 }
1455         }
1456
1457         mutex_lock(&root->objectid_mutex);
1458         ret = btrfs_init_root_free_objectid(root);
1459         if (ret) {
1460                 mutex_unlock(&root->objectid_mutex);
1461                 goto fail;
1462         }
1463
1464         ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1465
1466         mutex_unlock(&root->objectid_mutex);
1467
1468         return 0;
1469 fail:
1470         /* The caller is responsible to call btrfs_free_fs_root */
1471         return ret;
1472 }
1473
1474 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1475                                                u64 root_id)
1476 {
1477         struct btrfs_root *root;
1478
1479         spin_lock(&fs_info->fs_roots_radix_lock);
1480         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1481                                  (unsigned long)root_id);
1482         if (root)
1483                 root = btrfs_grab_root(root);
1484         spin_unlock(&fs_info->fs_roots_radix_lock);
1485         return root;
1486 }
1487
1488 static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1489                                                 u64 objectid)
1490 {
1491         if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1492                 return btrfs_grab_root(fs_info->tree_root);
1493         if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1494                 return btrfs_grab_root(fs_info->extent_root);
1495         if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1496                 return btrfs_grab_root(fs_info->chunk_root);
1497         if (objectid == BTRFS_DEV_TREE_OBJECTID)
1498                 return btrfs_grab_root(fs_info->dev_root);
1499         if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1500                 return btrfs_grab_root(fs_info->csum_root);
1501         if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1502                 return btrfs_grab_root(fs_info->quota_root) ?
1503                         fs_info->quota_root : ERR_PTR(-ENOENT);
1504         if (objectid == BTRFS_UUID_TREE_OBJECTID)
1505                 return btrfs_grab_root(fs_info->uuid_root) ?
1506                         fs_info->uuid_root : ERR_PTR(-ENOENT);
1507         if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1508                 return btrfs_grab_root(fs_info->free_space_root) ?
1509                         fs_info->free_space_root : ERR_PTR(-ENOENT);
1510         return NULL;
1511 }
1512
1513 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1514                          struct btrfs_root *root)
1515 {
1516         int ret;
1517
1518         ret = radix_tree_preload(GFP_NOFS);
1519         if (ret)
1520                 return ret;
1521
1522         spin_lock(&fs_info->fs_roots_radix_lock);
1523         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1524                                 (unsigned long)root->root_key.objectid,
1525                                 root);
1526         if (ret == 0) {
1527                 btrfs_grab_root(root);
1528                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1529         }
1530         spin_unlock(&fs_info->fs_roots_radix_lock);
1531         radix_tree_preload_end();
1532
1533         return ret;
1534 }
1535
1536 void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1537 {
1538 #ifdef CONFIG_BTRFS_DEBUG
1539         struct btrfs_root *root;
1540
1541         while (!list_empty(&fs_info->allocated_roots)) {
1542                 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1543
1544                 root = list_first_entry(&fs_info->allocated_roots,
1545                                         struct btrfs_root, leak_list);
1546                 btrfs_err(fs_info, "leaked root %s refcount %d",
1547                           btrfs_root_name(&root->root_key, buf),
1548                           refcount_read(&root->refs));
1549                 while (refcount_read(&root->refs) > 1)
1550                         btrfs_put_root(root);
1551                 btrfs_put_root(root);
1552         }
1553 #endif
1554 }
1555
1556 void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1557 {
1558         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1559         percpu_counter_destroy(&fs_info->delalloc_bytes);
1560         percpu_counter_destroy(&fs_info->ordered_bytes);
1561         percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1562         btrfs_free_csum_hash(fs_info);
1563         btrfs_free_stripe_hash_table(fs_info);
1564         btrfs_free_ref_cache(fs_info);
1565         kfree(fs_info->balance_ctl);
1566         kfree(fs_info->delayed_root);
1567         btrfs_put_root(fs_info->extent_root);
1568         btrfs_put_root(fs_info->tree_root);
1569         btrfs_put_root(fs_info->chunk_root);
1570         btrfs_put_root(fs_info->dev_root);
1571         btrfs_put_root(fs_info->csum_root);
1572         btrfs_put_root(fs_info->quota_root);
1573         btrfs_put_root(fs_info->uuid_root);
1574         btrfs_put_root(fs_info->free_space_root);
1575         btrfs_put_root(fs_info->fs_root);
1576         btrfs_put_root(fs_info->data_reloc_root);
1577         btrfs_check_leaked_roots(fs_info);
1578         btrfs_extent_buffer_leak_debug_check(fs_info);
1579         kfree(fs_info->super_copy);
1580         kfree(fs_info->super_for_commit);
1581         kvfree(fs_info);
1582 }
1583
1584
1585 /*
1586  * Get an in-memory reference of a root structure.
1587  *
1588  * For essential trees like root/extent tree, we grab it from fs_info directly.
1589  * For subvolume trees, we check the cached filesystem roots first. If not
1590  * found, then read it from disk and add it to cached fs roots.
1591  *
1592  * Caller should release the root by calling btrfs_put_root() after the usage.
1593  *
1594  * NOTE: Reloc and log trees can't be read by this function as they share the
1595  *       same root objectid.
1596  *
1597  * @objectid:   root id
1598  * @anon_dev:   preallocated anonymous block device number for new roots,
1599  *              pass 0 for new allocation.
1600  * @check_ref:  whether to check root item references, If true, return -ENOENT
1601  *              for orphan roots
1602  */
1603 static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1604                                              u64 objectid, dev_t anon_dev,
1605                                              bool check_ref)
1606 {
1607         struct btrfs_root *root;
1608         struct btrfs_path *path;
1609         struct btrfs_key key;
1610         int ret;
1611
1612         root = btrfs_get_global_root(fs_info, objectid);
1613         if (root)
1614                 return root;
1615 again:
1616         root = btrfs_lookup_fs_root(fs_info, objectid);
1617         if (root) {
1618                 /* Shouldn't get preallocated anon_dev for cached roots */
1619                 ASSERT(!anon_dev);
1620                 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1621                         btrfs_put_root(root);
1622                         return ERR_PTR(-ENOENT);
1623                 }
1624                 return root;
1625         }
1626
1627         key.objectid = objectid;
1628         key.type = BTRFS_ROOT_ITEM_KEY;
1629         key.offset = (u64)-1;
1630         root = btrfs_read_tree_root(fs_info->tree_root, &key);
1631         if (IS_ERR(root))
1632                 return root;
1633
1634         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1635                 ret = -ENOENT;
1636                 goto fail;
1637         }
1638
1639         ret = btrfs_init_fs_root(root, anon_dev);
1640         if (ret)
1641                 goto fail;
1642
1643         path = btrfs_alloc_path();
1644         if (!path) {
1645                 ret = -ENOMEM;
1646                 goto fail;
1647         }
1648         key.objectid = BTRFS_ORPHAN_OBJECTID;
1649         key.type = BTRFS_ORPHAN_ITEM_KEY;
1650         key.offset = objectid;
1651
1652         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1653         btrfs_free_path(path);
1654         if (ret < 0)
1655                 goto fail;
1656         if (ret == 0)
1657                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1658
1659         ret = btrfs_insert_fs_root(fs_info, root);
1660         if (ret) {
1661                 btrfs_put_root(root);
1662                 if (ret == -EEXIST)
1663                         goto again;
1664                 goto fail;
1665         }
1666         return root;
1667 fail:
1668         btrfs_put_root(root);
1669         return ERR_PTR(ret);
1670 }
1671
1672 /*
1673  * Get in-memory reference of a root structure
1674  *
1675  * @objectid:   tree objectid
1676  * @check_ref:  if set, verify that the tree exists and the item has at least
1677  *              one reference
1678  */
1679 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1680                                      u64 objectid, bool check_ref)
1681 {
1682         return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
1683 }
1684
1685 /*
1686  * Get in-memory reference of a root structure, created as new, optionally pass
1687  * the anonymous block device id
1688  *
1689  * @objectid:   tree objectid
1690  * @anon_dev:   if zero, allocate a new anonymous block device or use the
1691  *              parameter value
1692  */
1693 struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1694                                          u64 objectid, dev_t anon_dev)
1695 {
1696         return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1697 }
1698
1699 /*
1700  * btrfs_get_fs_root_commit_root - return a root for the given objectid
1701  * @fs_info:    the fs_info
1702  * @objectid:   the objectid we need to lookup
1703  *
1704  * This is exclusively used for backref walking, and exists specifically because
1705  * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1706  * creation time, which means we may have to read the tree_root in order to look
1707  * up a fs root that is not in memory.  If the root is not in memory we will
1708  * read the tree root commit root and look up the fs root from there.  This is a
1709  * temporary root, it will not be inserted into the radix tree as it doesn't
1710  * have the most uptodate information, it'll simply be discarded once the
1711  * backref code is finished using the root.
1712  */
1713 struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1714                                                  struct btrfs_path *path,
1715                                                  u64 objectid)
1716 {
1717         struct btrfs_root *root;
1718         struct btrfs_key key;
1719
1720         ASSERT(path->search_commit_root && path->skip_locking);
1721
1722         /*
1723          * This can return -ENOENT if we ask for a root that doesn't exist, but
1724          * since this is called via the backref walking code we won't be looking
1725          * up a root that doesn't exist, unless there's corruption.  So if root
1726          * != NULL just return it.
1727          */
1728         root = btrfs_get_global_root(fs_info, objectid);
1729         if (root)
1730                 return root;
1731
1732         root = btrfs_lookup_fs_root(fs_info, objectid);
1733         if (root)
1734                 return root;
1735
1736         key.objectid = objectid;
1737         key.type = BTRFS_ROOT_ITEM_KEY;
1738         key.offset = (u64)-1;
1739         root = read_tree_root_path(fs_info->tree_root, path, &key);
1740         btrfs_release_path(path);
1741
1742         return root;
1743 }
1744
1745 /*
1746  * called by the kthread helper functions to finally call the bio end_io
1747  * functions.  This is where read checksum verification actually happens
1748  */
1749 static void end_workqueue_fn(struct btrfs_work *work)
1750 {
1751         struct bio *bio;
1752         struct btrfs_end_io_wq *end_io_wq;
1753
1754         end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1755         bio = end_io_wq->bio;
1756
1757         bio->bi_status = end_io_wq->status;
1758         bio->bi_private = end_io_wq->private;
1759         bio->bi_end_io = end_io_wq->end_io;
1760         bio_endio(bio);
1761         kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1762 }
1763
1764 static int cleaner_kthread(void *arg)
1765 {
1766         struct btrfs_root *root = arg;
1767         struct btrfs_fs_info *fs_info = root->fs_info;
1768         int again;
1769
1770         while (1) {
1771                 again = 0;
1772
1773                 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1774
1775                 /* Make the cleaner go to sleep early. */
1776                 if (btrfs_need_cleaner_sleep(fs_info))
1777                         goto sleep;
1778
1779                 /*
1780                  * Do not do anything if we might cause open_ctree() to block
1781                  * before we have finished mounting the filesystem.
1782                  */
1783                 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1784                         goto sleep;
1785
1786                 if (!mutex_trylock(&fs_info->cleaner_mutex))
1787                         goto sleep;
1788
1789                 /*
1790                  * Avoid the problem that we change the status of the fs
1791                  * during the above check and trylock.
1792                  */
1793                 if (btrfs_need_cleaner_sleep(fs_info)) {
1794                         mutex_unlock(&fs_info->cleaner_mutex);
1795                         goto sleep;
1796                 }
1797
1798                 btrfs_run_delayed_iputs(fs_info);
1799
1800                 again = btrfs_clean_one_deleted_snapshot(root);
1801                 mutex_unlock(&fs_info->cleaner_mutex);
1802
1803                 /*
1804                  * The defragger has dealt with the R/O remount and umount,
1805                  * needn't do anything special here.
1806                  */
1807                 btrfs_run_defrag_inodes(fs_info);
1808
1809                 /*
1810                  * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1811                  * with relocation (btrfs_relocate_chunk) and relocation
1812                  * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1813                  * after acquiring fs_info->delete_unused_bgs_mutex. So we
1814                  * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1815                  * unused block groups.
1816                  */
1817                 btrfs_delete_unused_bgs(fs_info);
1818 sleep:
1819                 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1820                 if (kthread_should_park())
1821                         kthread_parkme();
1822                 if (kthread_should_stop())
1823                         return 0;
1824                 if (!again) {
1825                         set_current_state(TASK_INTERRUPTIBLE);
1826                         schedule();
1827                         __set_current_state(TASK_RUNNING);
1828                 }
1829         }
1830 }
1831
1832 static int transaction_kthread(void *arg)
1833 {
1834         struct btrfs_root *root = arg;
1835         struct btrfs_fs_info *fs_info = root->fs_info;
1836         struct btrfs_trans_handle *trans;
1837         struct btrfs_transaction *cur;
1838         u64 transid;
1839         time64_t delta;
1840         unsigned long delay;
1841         bool cannot_commit;
1842
1843         do {
1844                 cannot_commit = false;
1845                 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1846                 mutex_lock(&fs_info->transaction_kthread_mutex);
1847
1848                 spin_lock(&fs_info->trans_lock);
1849                 cur = fs_info->running_transaction;
1850                 if (!cur) {
1851                         spin_unlock(&fs_info->trans_lock);
1852                         goto sleep;
1853                 }
1854
1855                 delta = ktime_get_seconds() - cur->start_time;
1856                 if (cur->state < TRANS_STATE_COMMIT_START &&
1857                     delta < fs_info->commit_interval) {
1858                         spin_unlock(&fs_info->trans_lock);
1859                         delay -= msecs_to_jiffies((delta - 1) * 1000);
1860                         delay = min(delay,
1861                                     msecs_to_jiffies(fs_info->commit_interval * 1000));
1862                         goto sleep;
1863                 }
1864                 transid = cur->transid;
1865                 spin_unlock(&fs_info->trans_lock);
1866
1867                 /* If the file system is aborted, this will always fail. */
1868                 trans = btrfs_attach_transaction(root);
1869                 if (IS_ERR(trans)) {
1870                         if (PTR_ERR(trans) != -ENOENT)
1871                                 cannot_commit = true;
1872                         goto sleep;
1873                 }
1874                 if (transid == trans->transid) {
1875                         btrfs_commit_transaction(trans);
1876                 } else {
1877                         btrfs_end_transaction(trans);
1878                 }
1879 sleep:
1880                 wake_up_process(fs_info->cleaner_kthread);
1881                 mutex_unlock(&fs_info->transaction_kthread_mutex);
1882
1883                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1884                                       &fs_info->fs_state)))
1885                         btrfs_cleanup_transaction(fs_info);
1886                 if (!kthread_should_stop() &&
1887                                 (!btrfs_transaction_blocked(fs_info) ||
1888                                  cannot_commit))
1889                         schedule_timeout_interruptible(delay);
1890         } while (!kthread_should_stop());
1891         return 0;
1892 }
1893
1894 /*
1895  * This will find the highest generation in the array of root backups.  The
1896  * index of the highest array is returned, or -EINVAL if we can't find
1897  * anything.
1898  *
1899  * We check to make sure the array is valid by comparing the
1900  * generation of the latest  root in the array with the generation
1901  * in the super block.  If they don't match we pitch it.
1902  */
1903 static int find_newest_super_backup(struct btrfs_fs_info *info)
1904 {
1905         const u64 newest_gen = btrfs_super_generation(info->super_copy);
1906         u64 cur;
1907         struct btrfs_root_backup *root_backup;
1908         int i;
1909
1910         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1911                 root_backup = info->super_copy->super_roots + i;
1912                 cur = btrfs_backup_tree_root_gen(root_backup);
1913                 if (cur == newest_gen)
1914                         return i;
1915         }
1916
1917         return -EINVAL;
1918 }
1919
1920 /*
1921  * copy all the root pointers into the super backup array.
1922  * this will bump the backup pointer by one when it is
1923  * done
1924  */
1925 static void backup_super_roots(struct btrfs_fs_info *info)
1926 {
1927         const int next_backup = info->backup_root_index;
1928         struct btrfs_root_backup *root_backup;
1929
1930         root_backup = info->super_for_commit->super_roots + next_backup;
1931
1932         /*
1933          * make sure all of our padding and empty slots get zero filled
1934          * regardless of which ones we use today
1935          */
1936         memset(root_backup, 0, sizeof(*root_backup));
1937
1938         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1939
1940         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1941         btrfs_set_backup_tree_root_gen(root_backup,
1942                                btrfs_header_generation(info->tree_root->node));
1943
1944         btrfs_set_backup_tree_root_level(root_backup,
1945                                btrfs_header_level(info->tree_root->node));
1946
1947         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1948         btrfs_set_backup_chunk_root_gen(root_backup,
1949                                btrfs_header_generation(info->chunk_root->node));
1950         btrfs_set_backup_chunk_root_level(root_backup,
1951                                btrfs_header_level(info->chunk_root->node));
1952
1953         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1954         btrfs_set_backup_extent_root_gen(root_backup,
1955                                btrfs_header_generation(info->extent_root->node));
1956         btrfs_set_backup_extent_root_level(root_backup,
1957                                btrfs_header_level(info->extent_root->node));
1958
1959         /*
1960          * we might commit during log recovery, which happens before we set
1961          * the fs_root.  Make sure it is valid before we fill it in.
1962          */
1963         if (info->fs_root && info->fs_root->node) {
1964                 btrfs_set_backup_fs_root(root_backup,
1965                                          info->fs_root->node->start);
1966                 btrfs_set_backup_fs_root_gen(root_backup,
1967                                btrfs_header_generation(info->fs_root->node));
1968                 btrfs_set_backup_fs_root_level(root_backup,
1969                                btrfs_header_level(info->fs_root->node));
1970         }
1971
1972         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1973         btrfs_set_backup_dev_root_gen(root_backup,
1974                                btrfs_header_generation(info->dev_root->node));
1975         btrfs_set_backup_dev_root_level(root_backup,
1976                                        btrfs_header_level(info->dev_root->node));
1977
1978         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1979         btrfs_set_backup_csum_root_gen(root_backup,
1980                                btrfs_header_generation(info->csum_root->node));
1981         btrfs_set_backup_csum_root_level(root_backup,
1982                                btrfs_header_level(info->csum_root->node));
1983
1984         btrfs_set_backup_total_bytes(root_backup,
1985                              btrfs_super_total_bytes(info->super_copy));
1986         btrfs_set_backup_bytes_used(root_backup,
1987                              btrfs_super_bytes_used(info->super_copy));
1988         btrfs_set_backup_num_devices(root_backup,
1989                              btrfs_super_num_devices(info->super_copy));
1990
1991         /*
1992          * if we don't copy this out to the super_copy, it won't get remembered
1993          * for the next commit
1994          */
1995         memcpy(&info->super_copy->super_roots,
1996                &info->super_for_commit->super_roots,
1997                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1998 }
1999
2000 /*
2001  * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2002  * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2003  *
2004  * fs_info - filesystem whose backup roots need to be read
2005  * priority - priority of backup root required
2006  *
2007  * Returns backup root index on success and -EINVAL otherwise.
2008  */
2009 static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
2010 {
2011         int backup_index = find_newest_super_backup(fs_info);
2012         struct btrfs_super_block *super = fs_info->super_copy;
2013         struct btrfs_root_backup *root_backup;
2014
2015         if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2016                 if (priority == 0)
2017                         return backup_index;
2018
2019                 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2020                 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
2021         } else {
2022                 return -EINVAL;
2023         }
2024
2025         root_backup = super->super_roots + backup_index;
2026
2027         btrfs_set_super_generation(super,
2028                                    btrfs_backup_tree_root_gen(root_backup));
2029         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2030         btrfs_set_super_root_level(super,
2031                                    btrfs_backup_tree_root_level(root_backup));
2032         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2033
2034         /*
2035          * Fixme: the total bytes and num_devices need to match or we should
2036          * need a fsck
2037          */
2038         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2039         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2040
2041         return backup_index;
2042 }
2043
2044 /* helper to cleanup workers */
2045 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2046 {
2047         btrfs_destroy_workqueue(fs_info->fixup_workers);
2048         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2049         btrfs_destroy_workqueue(fs_info->workers);
2050         btrfs_destroy_workqueue(fs_info->endio_workers);
2051         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2052         btrfs_destroy_workqueue(fs_info->rmw_workers);
2053         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2054         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2055         btrfs_destroy_workqueue(fs_info->delayed_workers);
2056         btrfs_destroy_workqueue(fs_info->caching_workers);
2057         btrfs_destroy_workqueue(fs_info->readahead_workers);
2058         btrfs_destroy_workqueue(fs_info->flush_workers);
2059         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2060         if (fs_info->discard_ctl.discard_workers)
2061                 destroy_workqueue(fs_info->discard_ctl.discard_workers);
2062         /*
2063          * Now that all other work queues are destroyed, we can safely destroy
2064          * the queues used for metadata I/O, since tasks from those other work
2065          * queues can do metadata I/O operations.
2066          */
2067         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2068         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2069 }
2070
2071 static void free_root_extent_buffers(struct btrfs_root *root)
2072 {
2073         if (root) {
2074                 free_extent_buffer(root->node);
2075                 free_extent_buffer(root->commit_root);
2076                 root->node = NULL;
2077                 root->commit_root = NULL;
2078         }
2079 }
2080
2081 /* helper to cleanup tree roots */
2082 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2083 {
2084         free_root_extent_buffers(info->tree_root);
2085
2086         free_root_extent_buffers(info->dev_root);
2087         free_root_extent_buffers(info->extent_root);
2088         free_root_extent_buffers(info->csum_root);
2089         free_root_extent_buffers(info->quota_root);
2090         free_root_extent_buffers(info->uuid_root);
2091         free_root_extent_buffers(info->fs_root);
2092         free_root_extent_buffers(info->data_reloc_root);
2093         if (free_chunk_root)
2094                 free_root_extent_buffers(info->chunk_root);
2095         free_root_extent_buffers(info->free_space_root);
2096 }
2097
2098 void btrfs_put_root(struct btrfs_root *root)
2099 {
2100         if (!root)
2101                 return;
2102
2103         if (refcount_dec_and_test(&root->refs)) {
2104                 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2105                 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2106                 if (root->anon_dev)
2107                         free_anon_bdev(root->anon_dev);
2108                 btrfs_drew_lock_destroy(&root->snapshot_lock);
2109                 free_root_extent_buffers(root);
2110 #ifdef CONFIG_BTRFS_DEBUG
2111                 spin_lock(&root->fs_info->fs_roots_radix_lock);
2112                 list_del_init(&root->leak_list);
2113                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
2114 #endif
2115                 kfree(root);
2116         }
2117 }
2118
2119 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2120 {
2121         int ret;
2122         struct btrfs_root *gang[8];
2123         int i;
2124
2125         while (!list_empty(&fs_info->dead_roots)) {
2126                 gang[0] = list_entry(fs_info->dead_roots.next,
2127                                      struct btrfs_root, root_list);
2128                 list_del(&gang[0]->root_list);
2129
2130                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2131                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2132                 btrfs_put_root(gang[0]);
2133         }
2134
2135         while (1) {
2136                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2137                                              (void **)gang, 0,
2138                                              ARRAY_SIZE(gang));
2139                 if (!ret)
2140                         break;
2141                 for (i = 0; i < ret; i++)
2142                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2143         }
2144 }
2145
2146 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2147 {
2148         mutex_init(&fs_info->scrub_lock);
2149         atomic_set(&fs_info->scrubs_running, 0);
2150         atomic_set(&fs_info->scrub_pause_req, 0);
2151         atomic_set(&fs_info->scrubs_paused, 0);
2152         atomic_set(&fs_info->scrub_cancel_req, 0);
2153         init_waitqueue_head(&fs_info->scrub_pause_wait);
2154         refcount_set(&fs_info->scrub_workers_refcnt, 0);
2155 }
2156
2157 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2158 {
2159         spin_lock_init(&fs_info->balance_lock);
2160         mutex_init(&fs_info->balance_mutex);
2161         atomic_set(&fs_info->balance_pause_req, 0);
2162         atomic_set(&fs_info->balance_cancel_req, 0);
2163         fs_info->balance_ctl = NULL;
2164         init_waitqueue_head(&fs_info->balance_wait_q);
2165 }
2166
2167 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2168 {
2169         struct inode *inode = fs_info->btree_inode;
2170
2171         inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2172         set_nlink(inode, 1);
2173         /*
2174          * we set the i_size on the btree inode to the max possible int.
2175          * the real end of the address space is determined by all of
2176          * the devices in the system
2177          */
2178         inode->i_size = OFFSET_MAX;
2179         inode->i_mapping->a_ops = &btree_aops;
2180
2181         RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2182         extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2183                             IO_TREE_BTREE_INODE_IO, inode);
2184         BTRFS_I(inode)->io_tree.track_uptodate = false;
2185         extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2186
2187         BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2188         memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2189         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2190         btrfs_insert_inode_hash(inode);
2191 }
2192
2193 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2194 {
2195         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2196         init_rwsem(&fs_info->dev_replace.rwsem);
2197         init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2198 }
2199
2200 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2201 {
2202         spin_lock_init(&fs_info->qgroup_lock);
2203         mutex_init(&fs_info->qgroup_ioctl_lock);
2204         fs_info->qgroup_tree = RB_ROOT;
2205         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2206         fs_info->qgroup_seq = 1;
2207         fs_info->qgroup_ulist = NULL;
2208         fs_info->qgroup_rescan_running = false;
2209         mutex_init(&fs_info->qgroup_rescan_lock);
2210 }
2211
2212 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2213                 struct btrfs_fs_devices *fs_devices)
2214 {
2215         u32 max_active = fs_info->thread_pool_size;
2216         unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2217
2218         fs_info->workers =
2219                 btrfs_alloc_workqueue(fs_info, "worker",
2220                                       flags | WQ_HIGHPRI, max_active, 16);
2221
2222         fs_info->delalloc_workers =
2223                 btrfs_alloc_workqueue(fs_info, "delalloc",
2224                                       flags, max_active, 2);
2225
2226         fs_info->flush_workers =
2227                 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2228                                       flags, max_active, 0);
2229
2230         fs_info->caching_workers =
2231                 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2232
2233         fs_info->fixup_workers =
2234                 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2235
2236         /*
2237          * endios are largely parallel and should have a very
2238          * low idle thresh
2239          */
2240         fs_info->endio_workers =
2241                 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2242         fs_info->endio_meta_workers =
2243                 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2244                                       max_active, 4);
2245         fs_info->endio_meta_write_workers =
2246                 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2247                                       max_active, 2);
2248         fs_info->endio_raid56_workers =
2249                 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2250                                       max_active, 4);
2251         fs_info->rmw_workers =
2252                 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2253         fs_info->endio_write_workers =
2254                 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2255                                       max_active, 2);
2256         fs_info->endio_freespace_worker =
2257                 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2258                                       max_active, 0);
2259         fs_info->delayed_workers =
2260                 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2261                                       max_active, 0);
2262         fs_info->readahead_workers =
2263                 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2264                                       max_active, 2);
2265         fs_info->qgroup_rescan_workers =
2266                 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2267         fs_info->discard_ctl.discard_workers =
2268                 alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2269
2270         if (!(fs_info->workers && fs_info->delalloc_workers &&
2271               fs_info->flush_workers &&
2272               fs_info->endio_workers && fs_info->endio_meta_workers &&
2273               fs_info->endio_meta_write_workers &&
2274               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2275               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2276               fs_info->caching_workers && fs_info->readahead_workers &&
2277               fs_info->fixup_workers && fs_info->delayed_workers &&
2278               fs_info->qgroup_rescan_workers &&
2279               fs_info->discard_ctl.discard_workers)) {
2280                 return -ENOMEM;
2281         }
2282
2283         return 0;
2284 }
2285
2286 static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2287 {
2288         struct crypto_shash *csum_shash;
2289         const char *csum_driver = btrfs_super_csum_driver(csum_type);
2290
2291         csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2292
2293         if (IS_ERR(csum_shash)) {
2294                 btrfs_err(fs_info, "error allocating %s hash for checksum",
2295                           csum_driver);
2296                 return PTR_ERR(csum_shash);
2297         }
2298
2299         fs_info->csum_shash = csum_shash;
2300
2301         return 0;
2302 }
2303
2304 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2305                             struct btrfs_fs_devices *fs_devices)
2306 {
2307         int ret;
2308         struct btrfs_root *log_tree_root;
2309         struct btrfs_super_block *disk_super = fs_info->super_copy;
2310         u64 bytenr = btrfs_super_log_root(disk_super);
2311         int level = btrfs_super_log_root_level(disk_super);
2312
2313         if (fs_devices->rw_devices == 0) {
2314                 btrfs_warn(fs_info, "log replay required on RO media");
2315                 return -EIO;
2316         }
2317
2318         log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2319                                          GFP_KERNEL);
2320         if (!log_tree_root)
2321                 return -ENOMEM;
2322
2323         log_tree_root->node = read_tree_block(fs_info, bytenr,
2324                                               BTRFS_TREE_LOG_OBJECTID,
2325                                               fs_info->generation + 1, level,
2326                                               NULL);
2327         if (IS_ERR(log_tree_root->node)) {
2328                 btrfs_warn(fs_info, "failed to read log tree");
2329                 ret = PTR_ERR(log_tree_root->node);
2330                 log_tree_root->node = NULL;
2331                 btrfs_put_root(log_tree_root);
2332                 return ret;
2333         } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2334                 btrfs_err(fs_info, "failed to read log tree");
2335                 btrfs_put_root(log_tree_root);
2336                 return -EIO;
2337         }
2338         /* returns with log_tree_root freed on success */
2339         ret = btrfs_recover_log_trees(log_tree_root);
2340         if (ret) {
2341                 btrfs_handle_fs_error(fs_info, ret,
2342                                       "Failed to recover log tree");
2343                 btrfs_put_root(log_tree_root);
2344                 return ret;
2345         }
2346
2347         if (sb_rdonly(fs_info->sb)) {
2348                 ret = btrfs_commit_super(fs_info);
2349                 if (ret)
2350                         return ret;
2351         }
2352
2353         return 0;
2354 }
2355
2356 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2357 {
2358         struct btrfs_root *tree_root = fs_info->tree_root;
2359         struct btrfs_root *root;
2360         struct btrfs_key location;
2361         int ret;
2362
2363         BUG_ON(!fs_info->tree_root);
2364
2365         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2366         location.type = BTRFS_ROOT_ITEM_KEY;
2367         location.offset = 0;
2368
2369         root = btrfs_read_tree_root(tree_root, &location);
2370         if (IS_ERR(root)) {
2371                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2372                         ret = PTR_ERR(root);
2373                         goto out;
2374                 }
2375         } else {
2376                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2377                 fs_info->extent_root = root;
2378         }
2379
2380         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2381         root = btrfs_read_tree_root(tree_root, &location);
2382         if (IS_ERR(root)) {
2383                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2384                         ret = PTR_ERR(root);
2385                         goto out;
2386                 }
2387         } else {
2388                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389                 fs_info->dev_root = root;
2390                 btrfs_init_devices_late(fs_info);
2391         }
2392
2393         /* If IGNOREDATACSUMS is set don't bother reading the csum root. */
2394         if (!btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2395                 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2396                 root = btrfs_read_tree_root(tree_root, &location);
2397                 if (IS_ERR(root)) {
2398                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2399                                 ret = PTR_ERR(root);
2400                                 goto out;
2401                         }
2402                 } else {
2403                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2404                         fs_info->csum_root = root;
2405                 }
2406         }
2407
2408         /*
2409          * This tree can share blocks with some other fs tree during relocation
2410          * and we need a proper setup by btrfs_get_fs_root
2411          */
2412         root = btrfs_get_fs_root(tree_root->fs_info,
2413                                  BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2414         if (IS_ERR(root)) {
2415                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2416                         ret = PTR_ERR(root);
2417                         goto out;
2418                 }
2419         } else {
2420                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2421                 fs_info->data_reloc_root = root;
2422         }
2423
2424         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2425         root = btrfs_read_tree_root(tree_root, &location);
2426         if (!IS_ERR(root)) {
2427                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2428                 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2429                 fs_info->quota_root = root;
2430         }
2431
2432         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2433         root = btrfs_read_tree_root(tree_root, &location);
2434         if (IS_ERR(root)) {
2435                 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2436                         ret = PTR_ERR(root);
2437                         if (ret != -ENOENT)
2438                                 goto out;
2439                 }
2440         } else {
2441                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2442                 fs_info->uuid_root = root;
2443         }
2444
2445         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2446                 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2447                 root = btrfs_read_tree_root(tree_root, &location);
2448                 if (IS_ERR(root)) {
2449                         if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2450                                 ret = PTR_ERR(root);
2451                                 goto out;
2452                         }
2453                 }  else {
2454                         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2455                         fs_info->free_space_root = root;
2456                 }
2457         }
2458
2459         return 0;
2460 out:
2461         btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2462                    location.objectid, ret);
2463         return ret;
2464 }
2465
2466 /*
2467  * Real super block validation
2468  * NOTE: super csum type and incompat features will not be checked here.
2469  *
2470  * @sb:         super block to check
2471  * @mirror_num: the super block number to check its bytenr:
2472  *              0       the primary (1st) sb
2473  *              1, 2    2nd and 3rd backup copy
2474  *             -1       skip bytenr check
2475  */
2476 static int validate_super(struct btrfs_fs_info *fs_info,
2477                             struct btrfs_super_block *sb, int mirror_num)
2478 {
2479         u64 nodesize = btrfs_super_nodesize(sb);
2480         u64 sectorsize = btrfs_super_sectorsize(sb);
2481         int ret = 0;
2482
2483         if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2484                 btrfs_err(fs_info, "no valid FS found");
2485                 ret = -EINVAL;
2486         }
2487         if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2488                 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2489                                 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2490                 ret = -EINVAL;
2491         }
2492         if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2493                 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2494                                 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2495                 ret = -EINVAL;
2496         }
2497         if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2498                 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2499                                 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2500                 ret = -EINVAL;
2501         }
2502         if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2503                 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2504                                 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2505                 ret = -EINVAL;
2506         }
2507
2508         /*
2509          * Check sectorsize and nodesize first, other check will need it.
2510          * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2511          */
2512         if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2513             sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2514                 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2515                 ret = -EINVAL;
2516         }
2517
2518         /*
2519          * For 4K page size, we only support 4K sector size.
2520          * For 64K page size, we support read-write for 64K sector size, and
2521          * read-only for 4K sector size.
2522          */
2523         if ((PAGE_SIZE == SZ_4K && sectorsize != PAGE_SIZE) ||
2524             (PAGE_SIZE == SZ_64K && (sectorsize != SZ_4K &&
2525                                      sectorsize != SZ_64K))) {
2526                 btrfs_err(fs_info,
2527                         "sectorsize %llu not yet supported for page size %lu",
2528                         sectorsize, PAGE_SIZE);
2529                 ret = -EINVAL;
2530         }
2531
2532         if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2533             nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2534                 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2535                 ret = -EINVAL;
2536         }
2537         if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2538                 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2539                           le32_to_cpu(sb->__unused_leafsize), nodesize);
2540                 ret = -EINVAL;
2541         }
2542
2543         /* Root alignment check */
2544         if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2545                 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2546                            btrfs_super_root(sb));
2547                 ret = -EINVAL;
2548         }
2549         if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2550                 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2551                            btrfs_super_chunk_root(sb));
2552                 ret = -EINVAL;
2553         }
2554         if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2555                 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2556                            btrfs_super_log_root(sb));
2557                 ret = -EINVAL;
2558         }
2559
2560         if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2561                    BTRFS_FSID_SIZE) != 0) {
2562                 btrfs_err(fs_info,
2563                         "dev_item UUID does not match metadata fsid: %pU != %pU",
2564                         fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2565                 ret = -EINVAL;
2566         }
2567
2568         /*
2569          * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2570          * done later
2571          */
2572         if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2573                 btrfs_err(fs_info, "bytes_used is too small %llu",
2574                           btrfs_super_bytes_used(sb));
2575                 ret = -EINVAL;
2576         }
2577         if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2578                 btrfs_err(fs_info, "invalid stripesize %u",
2579                           btrfs_super_stripesize(sb));
2580                 ret = -EINVAL;
2581         }
2582         if (btrfs_super_num_devices(sb) > (1UL << 31))
2583                 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2584                            btrfs_super_num_devices(sb));
2585         if (btrfs_super_num_devices(sb) == 0) {
2586                 btrfs_err(fs_info, "number of devices is 0");
2587                 ret = -EINVAL;
2588         }
2589
2590         if (mirror_num >= 0 &&
2591             btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2592                 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2593                           btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2594                 ret = -EINVAL;
2595         }
2596
2597         /*
2598          * Obvious sys_chunk_array corruptions, it must hold at least one key
2599          * and one chunk
2600          */
2601         if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2602                 btrfs_err(fs_info, "system chunk array too big %u > %u",
2603                           btrfs_super_sys_array_size(sb),
2604                           BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2605                 ret = -EINVAL;
2606         }
2607         if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2608                         + sizeof(struct btrfs_chunk)) {
2609                 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2610                           btrfs_super_sys_array_size(sb),
2611                           sizeof(struct btrfs_disk_key)
2612                           + sizeof(struct btrfs_chunk));
2613                 ret = -EINVAL;
2614         }
2615
2616         /*
2617          * The generation is a global counter, we'll trust it more than the others
2618          * but it's still possible that it's the one that's wrong.
2619          */
2620         if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2621                 btrfs_warn(fs_info,
2622                         "suspicious: generation < chunk_root_generation: %llu < %llu",
2623                         btrfs_super_generation(sb),
2624                         btrfs_super_chunk_root_generation(sb));
2625         if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2626             && btrfs_super_cache_generation(sb) != (u64)-1)
2627                 btrfs_warn(fs_info,
2628                         "suspicious: generation < cache_generation: %llu < %llu",
2629                         btrfs_super_generation(sb),
2630                         btrfs_super_cache_generation(sb));
2631
2632         return ret;
2633 }
2634
2635 /*
2636  * Validation of super block at mount time.
2637  * Some checks already done early at mount time, like csum type and incompat
2638  * flags will be skipped.
2639  */
2640 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2641 {
2642         return validate_super(fs_info, fs_info->super_copy, 0);
2643 }
2644
2645 /*
2646  * Validation of super block at write time.
2647  * Some checks like bytenr check will be skipped as their values will be
2648  * overwritten soon.
2649  * Extra checks like csum type and incompat flags will be done here.
2650  */
2651 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2652                                       struct btrfs_super_block *sb)
2653 {
2654         int ret;
2655
2656         ret = validate_super(fs_info, sb, -1);
2657         if (ret < 0)
2658                 goto out;
2659         if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2660                 ret = -EUCLEAN;
2661                 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2662                           btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2663                 goto out;
2664         }
2665         if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2666                 ret = -EUCLEAN;
2667                 btrfs_err(fs_info,
2668                 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2669                           btrfs_super_incompat_flags(sb),
2670                           (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2671                 goto out;
2672         }
2673 out:
2674         if (ret < 0)
2675                 btrfs_err(fs_info,
2676                 "super block corruption detected before writing it to disk");
2677         return ret;
2678 }
2679
2680 static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2681 {
2682         int backup_index = find_newest_super_backup(fs_info);
2683         struct btrfs_super_block *sb = fs_info->super_copy;
2684         struct btrfs_root *tree_root = fs_info->tree_root;
2685         bool handle_error = false;
2686         int ret = 0;
2687         int i;
2688
2689         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2690                 u64 generation;
2691                 int level;
2692
2693                 if (handle_error) {
2694                         if (!IS_ERR(tree_root->node))
2695                                 free_extent_buffer(tree_root->node);
2696                         tree_root->node = NULL;
2697
2698                         if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2699                                 break;
2700
2701                         free_root_pointers(fs_info, 0);
2702
2703                         /*
2704                          * Don't use the log in recovery mode, it won't be
2705                          * valid
2706                          */
2707                         btrfs_set_super_log_root(sb, 0);
2708
2709                         /* We can't trust the free space cache either */
2710                         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2711
2712                         ret = read_backup_root(fs_info, i);
2713                         backup_index = ret;
2714                         if (ret < 0)
2715                                 return ret;
2716                 }
2717                 generation = btrfs_super_generation(sb);
2718                 level = btrfs_super_root_level(sb);
2719                 tree_root->node = read_tree_block(fs_info, btrfs_super_root(sb),
2720                                                   BTRFS_ROOT_TREE_OBJECTID,
2721                                                   generation, level, NULL);
2722                 if (IS_ERR(tree_root->node)) {
2723                         handle_error = true;
2724                         ret = PTR_ERR(tree_root->node);
2725                         tree_root->node = NULL;
2726                         btrfs_warn(fs_info, "couldn't read tree root");
2727                         continue;
2728
2729                 } else if (!extent_buffer_uptodate(tree_root->node)) {
2730                         handle_error = true;
2731                         ret = -EIO;
2732                         btrfs_warn(fs_info, "error while reading tree root");
2733                         continue;
2734                 }
2735
2736                 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2737                 tree_root->commit_root = btrfs_root_node(tree_root);
2738                 btrfs_set_root_refs(&tree_root->root_item, 1);
2739
2740                 /*
2741                  * No need to hold btrfs_root::objectid_mutex since the fs
2742                  * hasn't been fully initialised and we are the only user
2743                  */
2744                 ret = btrfs_init_root_free_objectid(tree_root);
2745                 if (ret < 0) {
2746                         handle_error = true;
2747                         continue;
2748                 }
2749
2750                 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
2751
2752                 ret = btrfs_read_roots(fs_info);
2753                 if (ret < 0) {
2754                         handle_error = true;
2755                         continue;
2756                 }
2757
2758                 /* All successful */
2759                 fs_info->generation = generation;
2760                 fs_info->last_trans_committed = generation;
2761
2762                 /* Always begin writing backup roots after the one being used */
2763                 if (backup_index < 0) {
2764                         fs_info->backup_root_index = 0;
2765                 } else {
2766                         fs_info->backup_root_index = backup_index + 1;
2767                         fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2768                 }
2769                 break;
2770         }
2771
2772         return ret;
2773 }
2774
2775 void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2776 {
2777         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2778         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2779         INIT_LIST_HEAD(&fs_info->trans_list);
2780         INIT_LIST_HEAD(&fs_info->dead_roots);
2781         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2782         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2783         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2784         spin_lock_init(&fs_info->delalloc_root_lock);
2785         spin_lock_init(&fs_info->trans_lock);
2786         spin_lock_init(&fs_info->fs_roots_radix_lock);
2787         spin_lock_init(&fs_info->delayed_iput_lock);
2788         spin_lock_init(&fs_info->defrag_inodes_lock);
2789         spin_lock_init(&fs_info->super_lock);
2790         spin_lock_init(&fs_info->buffer_lock);
2791         spin_lock_init(&fs_info->unused_bgs_lock);
2792         spin_lock_init(&fs_info->treelog_bg_lock);
2793         rwlock_init(&fs_info->tree_mod_log_lock);
2794         mutex_init(&fs_info->unused_bg_unpin_mutex);
2795         mutex_init(&fs_info->delete_unused_bgs_mutex);
2796         mutex_init(&fs_info->reloc_mutex);
2797         mutex_init(&fs_info->delalloc_root_mutex);
2798         mutex_init(&fs_info->zoned_meta_io_lock);
2799         seqlock_init(&fs_info->profiles_lock);
2800
2801         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2802         INIT_LIST_HEAD(&fs_info->space_info);
2803         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2804         INIT_LIST_HEAD(&fs_info->unused_bgs);
2805 #ifdef CONFIG_BTRFS_DEBUG
2806         INIT_LIST_HEAD(&fs_info->allocated_roots);
2807         INIT_LIST_HEAD(&fs_info->allocated_ebs);
2808         spin_lock_init(&fs_info->eb_leak_lock);
2809 #endif
2810         extent_map_tree_init(&fs_info->mapping_tree);
2811         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2812                              BTRFS_BLOCK_RSV_GLOBAL);
2813         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2814         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2815         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2816         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2817                              BTRFS_BLOCK_RSV_DELOPS);
2818         btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2819                              BTRFS_BLOCK_RSV_DELREFS);
2820
2821         atomic_set(&fs_info->async_delalloc_pages, 0);
2822         atomic_set(&fs_info->defrag_running, 0);
2823         atomic_set(&fs_info->reada_works_cnt, 0);
2824         atomic_set(&fs_info->nr_delayed_iputs, 0);
2825         atomic64_set(&fs_info->tree_mod_seq, 0);
2826         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2827         fs_info->metadata_ratio = 0;
2828         fs_info->defrag_inodes = RB_ROOT;
2829         atomic64_set(&fs_info->free_chunk_space, 0);
2830         fs_info->tree_mod_log = RB_ROOT;
2831         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2832         fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2833         /* readahead state */
2834         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2835         spin_lock_init(&fs_info->reada_lock);
2836         btrfs_init_ref_verify(fs_info);
2837
2838         fs_info->thread_pool_size = min_t(unsigned long,
2839                                           num_online_cpus() + 2, 8);
2840
2841         INIT_LIST_HEAD(&fs_info->ordered_roots);
2842         spin_lock_init(&fs_info->ordered_root_lock);
2843
2844         btrfs_init_scrub(fs_info);
2845 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2846         fs_info->check_integrity_print_mask = 0;
2847 #endif
2848         btrfs_init_balance(fs_info);
2849         btrfs_init_async_reclaim_work(fs_info);
2850
2851         spin_lock_init(&fs_info->block_group_cache_lock);
2852         fs_info->block_group_cache_tree = RB_ROOT;
2853         fs_info->first_logical_byte = (u64)-1;
2854
2855         extent_io_tree_init(fs_info, &fs_info->excluded_extents,
2856                             IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
2857         set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2858
2859         mutex_init(&fs_info->ordered_operations_mutex);
2860         mutex_init(&fs_info->tree_log_mutex);
2861         mutex_init(&fs_info->chunk_mutex);
2862         mutex_init(&fs_info->transaction_kthread_mutex);
2863         mutex_init(&fs_info->cleaner_mutex);
2864         mutex_init(&fs_info->ro_block_group_mutex);
2865         init_rwsem(&fs_info->commit_root_sem);
2866         init_rwsem(&fs_info->cleanup_work_sem);
2867         init_rwsem(&fs_info->subvol_sem);
2868         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2869
2870         btrfs_init_dev_replace_locks(fs_info);
2871         btrfs_init_qgroup(fs_info);
2872         btrfs_discard_init(fs_info);
2873
2874         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2875         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2876
2877         init_waitqueue_head(&fs_info->transaction_throttle);
2878         init_waitqueue_head(&fs_info->transaction_wait);
2879         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2880         init_waitqueue_head(&fs_info->async_submit_wait);
2881         init_waitqueue_head(&fs_info->delayed_iputs_wait);
2882
2883         /* Usable values until the real ones are cached from the superblock */
2884         fs_info->nodesize = 4096;
2885         fs_info->sectorsize = 4096;
2886         fs_info->sectorsize_bits = ilog2(4096);
2887         fs_info->stripesize = 4096;
2888
2889         spin_lock_init(&fs_info->swapfile_pins_lock);
2890         fs_info->swapfile_pins = RB_ROOT;
2891
2892         fs_info->send_in_progress = 0;
2893 }
2894
2895 static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2896 {
2897         int ret;
2898
2899         fs_info->sb = sb;
2900         sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2901         sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2902
2903         ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
2904         if (ret)
2905                 return ret;
2906
2907         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2908         if (ret)
2909                 return ret;
2910
2911         fs_info->dirty_metadata_batch = PAGE_SIZE *
2912                                         (1 + ilog2(nr_cpu_ids));
2913
2914         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2915         if (ret)
2916                 return ret;
2917
2918         ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2919                         GFP_KERNEL);
2920         if (ret)
2921                 return ret;
2922
2923         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2924                                         GFP_KERNEL);
2925         if (!fs_info->delayed_root)
2926                 return -ENOMEM;
2927         btrfs_init_delayed_root(fs_info->delayed_root);
2928
2929         if (sb_rdonly(sb))
2930                 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2931
2932         return btrfs_alloc_stripe_hash_table(fs_info);
2933 }
2934
2935 static int btrfs_uuid_rescan_kthread(void *data)
2936 {
2937         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
2938         int ret;
2939
2940         /*
2941          * 1st step is to iterate through the existing UUID tree and
2942          * to delete all entries that contain outdated data.
2943          * 2nd step is to add all missing entries to the UUID tree.
2944          */
2945         ret = btrfs_uuid_tree_iterate(fs_info);
2946         if (ret < 0) {
2947                 if (ret != -EINTR)
2948                         btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2949                                    ret);
2950                 up(&fs_info->uuid_tree_rescan_sem);
2951                 return ret;
2952         }
2953         return btrfs_uuid_scan_kthread(data);
2954 }
2955
2956 static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2957 {
2958         struct task_struct *task;
2959
2960         down(&fs_info->uuid_tree_rescan_sem);
2961         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2962         if (IS_ERR(task)) {
2963                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2964                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2965                 up(&fs_info->uuid_tree_rescan_sem);
2966                 return PTR_ERR(task);
2967         }
2968
2969         return 0;
2970 }
2971
2972 /*
2973  * Some options only have meaning at mount time and shouldn't persist across
2974  * remounts, or be displayed. Clear these at the end of mount and remount
2975  * code paths.
2976  */
2977 void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
2978 {
2979         btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
2980         btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
2981 }
2982
2983 /*
2984  * Mounting logic specific to read-write file systems. Shared by open_ctree
2985  * and btrfs_remount when remounting from read-only to read-write.
2986  */
2987 int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2988 {
2989         int ret;
2990         const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
2991         bool clear_free_space_tree = false;
2992
2993         if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2994             btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2995                 clear_free_space_tree = true;
2996         } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2997                    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2998                 btrfs_warn(fs_info, "free space tree is invalid");
2999                 clear_free_space_tree = true;
3000         }
3001
3002         if (clear_free_space_tree) {
3003                 btrfs_info(fs_info, "clearing free space tree");
3004                 ret = btrfs_clear_free_space_tree(fs_info);
3005                 if (ret) {
3006                         btrfs_warn(fs_info,
3007                                    "failed to clear free space tree: %d", ret);
3008                         goto out;
3009                 }
3010         }
3011
3012         ret = btrfs_cleanup_fs_roots(fs_info);
3013         if (ret)
3014                 goto out;
3015
3016         down_read(&fs_info->cleanup_work_sem);
3017         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3018             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3019                 up_read(&fs_info->cleanup_work_sem);
3020                 goto out;
3021         }
3022         up_read(&fs_info->cleanup_work_sem);
3023
3024         mutex_lock(&fs_info->cleaner_mutex);
3025         ret = btrfs_recover_relocation(fs_info->tree_root);
3026         mutex_unlock(&fs_info->cleaner_mutex);
3027         if (ret < 0) {
3028                 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3029                 goto out;
3030         }
3031
3032         if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3033             !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3034                 btrfs_info(fs_info, "creating free space tree");
3035                 ret = btrfs_create_free_space_tree(fs_info);
3036                 if (ret) {
3037                         btrfs_warn(fs_info,
3038                                 "failed to create free space tree: %d", ret);
3039                         goto out;
3040                 }
3041         }
3042
3043         if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3044                 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3045                 if (ret)
3046                         goto out;
3047         }
3048
3049         ret = btrfs_resume_balance_async(fs_info);
3050         if (ret)
3051                 goto out;
3052
3053         ret = btrfs_resume_dev_replace_async(fs_info);
3054         if (ret) {
3055                 btrfs_warn(fs_info, "failed to resume dev_replace");
3056                 goto out;
3057         }
3058
3059         btrfs_qgroup_rescan_resume(fs_info);
3060
3061         if (!fs_info->uuid_root) {
3062                 btrfs_info(fs_info, "creating UUID tree");
3063                 ret = btrfs_create_uuid_tree(fs_info);
3064                 if (ret) {
3065                         btrfs_warn(fs_info,
3066                                    "failed to create the UUID tree %d", ret);
3067                         goto out;
3068                 }
3069         }
3070
3071         ret = btrfs_find_orphan_roots(fs_info);
3072 out:
3073         return ret;
3074 }
3075
3076 int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3077                       char *options)
3078 {
3079         u32 sectorsize;
3080         u32 nodesize;
3081         u32 stripesize;
3082         u64 generation;
3083         u64 features;
3084         u16 csum_type;
3085         struct btrfs_super_block *disk_super;
3086         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3087         struct btrfs_root *tree_root;
3088         struct btrfs_root *chunk_root;
3089         int ret;
3090         int err = -EINVAL;
3091         int level;
3092
3093         ret = init_mount_fs_info(fs_info, sb);
3094         if (ret) {
3095                 err = ret;
3096                 goto fail;
3097         }
3098
3099         /* These need to be init'ed before we start creating inodes and such. */
3100         tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3101                                      GFP_KERNEL);
3102         fs_info->tree_root = tree_root;
3103         chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3104                                       GFP_KERNEL);
3105         fs_info->chunk_root = chunk_root;
3106         if (!tree_root || !chunk_root) {
3107                 err = -ENOMEM;
3108                 goto fail;
3109         }
3110
3111         fs_info->btree_inode = new_inode(sb);
3112         if (!fs_info->btree_inode) {
3113                 err = -ENOMEM;
3114                 goto fail;
3115         }
3116         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3117         btrfs_init_btree_inode(fs_info);
3118
3119         invalidate_bdev(fs_devices->latest_bdev);
3120
3121         /*
3122          * Read super block and check the signature bytes only
3123          */
3124         disk_super = btrfs_read_dev_super(fs_devices->latest_bdev);
3125         if (IS_ERR(disk_super)) {
3126                 err = PTR_ERR(disk_super);
3127                 goto fail_alloc;
3128         }
3129
3130         /*
3131          * Verify the type first, if that or the checksum value are
3132          * corrupted, we'll find out
3133          */
3134         csum_type = btrfs_super_csum_type(disk_super);
3135         if (!btrfs_supported_super_csum(csum_type)) {
3136                 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3137                           csum_type);
3138                 err = -EINVAL;
3139                 btrfs_release_disk_super(disk_super);
3140                 goto fail_alloc;
3141         }
3142
3143         fs_info->csum_size = btrfs_super_csum_size(disk_super);
3144
3145         ret = btrfs_init_csum_hash(fs_info, csum_type);
3146         if (ret) {
3147                 err = ret;
3148                 btrfs_release_disk_super(disk_super);
3149                 goto fail_alloc;
3150         }
3151
3152         /*
3153          * We want to check superblock checksum, the type is stored inside.
3154          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3155          */
3156         if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
3157                 btrfs_err(fs_info, "superblock checksum mismatch");
3158                 err = -EINVAL;
3159                 btrfs_release_disk_super(disk_super);
3160                 goto fail_alloc;
3161         }
3162
3163         /*
3164          * super_copy is zeroed at allocation time and we never touch the
3165          * following bytes up to INFO_SIZE, the checksum is calculated from
3166          * the whole block of INFO_SIZE
3167          */
3168         memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3169         btrfs_release_disk_super(disk_super);
3170
3171         disk_super = fs_info->super_copy;
3172
3173         ASSERT(!memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
3174                        BTRFS_FSID_SIZE));
3175
3176         if (btrfs_fs_incompat(fs_info, METADATA_UUID)) {
3177                 ASSERT(!memcmp(fs_info->fs_devices->metadata_uuid,
3178                                 fs_info->super_copy->metadata_uuid,
3179                                 BTRFS_FSID_SIZE));
3180         }
3181
3182         features = btrfs_super_flags(disk_super);
3183         if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3184                 features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3185                 btrfs_set_super_flags(disk_super, features);
3186                 btrfs_info(fs_info,
3187                         "found metadata UUID change in progress flag, clearing");
3188         }
3189
3190         memcpy(fs_info->super_for_commit, fs_info->super_copy,
3191                sizeof(*fs_info->super_for_commit));
3192
3193         ret = btrfs_validate_mount_super(fs_info);
3194         if (ret) {
3195                 btrfs_err(fs_info, "superblock contains fatal errors");
3196                 err = -EINVAL;
3197                 goto fail_alloc;
3198         }
3199
3200         if (!btrfs_super_root(disk_super))
3201                 goto fail_alloc;
3202
3203         /* check FS state, whether FS is broken. */
3204         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3205                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3206
3207         /*
3208          * In the long term, we'll store the compression type in the super
3209          * block, and it'll be used for per file compression control.
3210          */
3211         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3212
3213         ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3214         if (ret) {
3215                 err = ret;
3216                 goto fail_alloc;
3217         }
3218
3219         features = btrfs_super_incompat_flags(disk_super) &
3220                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
3221         if (features) {
3222                 btrfs_err(fs_info,
3223                     "cannot mount because of unsupported optional features (%llx)",
3224                     features);
3225                 err = -EINVAL;
3226                 goto fail_alloc;
3227         }
3228
3229         features = btrfs_super_incompat_flags(disk_super);
3230         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3231         if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3232                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3233         else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3234                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3235
3236         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
3237                 btrfs_info(fs_info, "has skinny extents");
3238
3239         /*
3240          * flag our filesystem as having big metadata blocks if
3241          * they are bigger than the page size
3242          */
3243         if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
3244                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
3245                         btrfs_info(fs_info,
3246                                 "flagging fs with big metadata feature");
3247                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3248         }
3249
3250         nodesize = btrfs_super_nodesize(disk_super);
3251         sectorsize = btrfs_super_sectorsize(disk_super);
3252         stripesize = sectorsize;
3253         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3254         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3255
3256         /* Cache block sizes */
3257         fs_info->nodesize = nodesize;
3258         fs_info->sectorsize = sectorsize;
3259         fs_info->sectorsize_bits = ilog2(sectorsize);
3260         fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3261         fs_info->stripesize = stripesize;
3262
3263         /*
3264          * mixed block groups end up with duplicate but slightly offset
3265          * extent buffers for the same range.  It leads to corruptions
3266          */
3267         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3268             (sectorsize != nodesize)) {
3269                 btrfs_err(fs_info,
3270 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3271                         nodesize, sectorsize);
3272                 goto fail_alloc;
3273         }
3274
3275         /*
3276          * Needn't use the lock because there is no other task which will
3277          * update the flag.
3278          */
3279         btrfs_set_super_incompat_flags(disk_super, features);
3280
3281         features = btrfs_super_compat_ro_flags(disk_super) &
3282                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
3283         if (!sb_rdonly(sb) && features) {
3284                 btrfs_err(fs_info,
3285         "cannot mount read-write because of unsupported optional features (%llx)",
3286                        features);
3287                 err = -EINVAL;
3288                 goto fail_alloc;
3289         }
3290
3291         /* For 4K sector size support, it's only read-only */
3292         if (PAGE_SIZE == SZ_64K && sectorsize == SZ_4K) {
3293                 if (!sb_rdonly(sb) || btrfs_super_log_root(disk_super)) {
3294                         btrfs_err(fs_info,
3295         "subpage sectorsize %u only supported read-only for page size %lu",
3296                                 sectorsize, PAGE_SIZE);
3297                         err = -EINVAL;
3298                         goto fail_alloc;
3299                 }
3300         }
3301
3302         ret = btrfs_init_workqueues(fs_info, fs_devices);
3303         if (ret) {
3304                 err = ret;
3305                 goto fail_sb_buffer;
3306         }
3307
3308         sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3309         sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
3310
3311         sb->s_blocksize = sectorsize;
3312         sb->s_blocksize_bits = blksize_bits(sectorsize);
3313         memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3314
3315         mutex_lock(&fs_info->chunk_mutex);
3316         ret = btrfs_read_sys_array(fs_info);
3317         mutex_unlock(&fs_info->chunk_mutex);
3318         if (ret) {
3319                 btrfs_err(fs_info, "failed to read the system array: %d", ret);
3320                 goto fail_sb_buffer;
3321         }
3322
3323         generation = btrfs_super_chunk_root_generation(disk_super);
3324         level = btrfs_super_chunk_root_level(disk_super);
3325
3326         chunk_root->node = read_tree_block(fs_info,
3327                                            btrfs_super_chunk_root(disk_super),
3328                                            BTRFS_CHUNK_TREE_OBJECTID,
3329                                            generation, level, NULL);
3330         if (IS_ERR(chunk_root->node) ||
3331             !extent_buffer_uptodate(chunk_root->node)) {
3332                 btrfs_err(fs_info, "failed to read chunk root");
3333                 if (!IS_ERR(chunk_root->node))
3334                         free_extent_buffer(chunk_root->node);
3335                 chunk_root->node = NULL;
3336                 goto fail_tree_roots;
3337         }
3338         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
3339         chunk_root->commit_root = btrfs_root_node(chunk_root);
3340
3341         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3342                            offsetof(struct btrfs_header, chunk_tree_uuid),
3343                            BTRFS_UUID_SIZE);
3344
3345         ret = btrfs_read_chunk_tree(fs_info);
3346         if (ret) {
3347                 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3348                 goto fail_tree_roots;
3349         }
3350
3351         /*
3352          * At this point we know all the devices that make this filesystem,
3353          * including the seed devices but we don't know yet if the replace
3354          * target is required. So free devices that are not part of this
3355          * filesystem but skip the replace traget device which is checked
3356          * below in btrfs_init_dev_replace().
3357          */
3358         btrfs_free_extra_devids(fs_devices);
3359         if (!fs_devices->latest_bdev) {
3360                 btrfs_err(fs_info, "failed to read devices");
3361                 goto fail_tree_roots;
3362         }
3363
3364         ret = init_tree_roots(fs_info);
3365         if (ret)
3366                 goto fail_tree_roots;
3367
3368         /*
3369          * Get zone type information of zoned block devices. This will also
3370          * handle emulation of a zoned filesystem if a regular device has the
3371          * zoned incompat feature flag set.
3372          */
3373         ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3374         if (ret) {
3375                 btrfs_err(fs_info,
3376                           "zoned: failed to read device zone info: %d",
3377                           ret);
3378                 goto fail_block_groups;
3379         }
3380
3381         /*
3382          * If we have a uuid root and we're not being told to rescan we need to
3383          * check the generation here so we can set the
3384          * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3385          * transaction during a balance or the log replay without updating the
3386          * uuid generation, and then if we crash we would rescan the uuid tree,
3387          * even though it was perfectly fine.
3388          */
3389         if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3390             fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3391                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3392
3393         ret = btrfs_verify_dev_extents(fs_info);
3394         if (ret) {
3395                 btrfs_err(fs_info,
3396                           "failed to verify dev extents against chunks: %d",
3397                           ret);
3398                 goto fail_block_groups;
3399         }
3400         ret = btrfs_recover_balance(fs_info);
3401         if (ret) {
3402                 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3403                 goto fail_block_groups;
3404         }
3405
3406         ret = btrfs_init_dev_stats(fs_info);
3407         if (ret) {
3408                 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3409                 goto fail_block_groups;
3410         }
3411
3412         ret = btrfs_init_dev_replace(fs_info);
3413         if (ret) {
3414                 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3415                 goto fail_block_groups;
3416         }
3417
3418         ret = btrfs_check_zoned_mode(fs_info);
3419         if (ret) {
3420                 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3421                           ret);
3422                 goto fail_block_groups;
3423         }
3424
3425         ret = btrfs_sysfs_add_fsid(fs_devices);
3426         if (ret) {
3427                 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3428                                 ret);
3429                 goto fail_block_groups;
3430         }
3431
3432         ret = btrfs_sysfs_add_mounted(fs_info);
3433         if (ret) {
3434                 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3435                 goto fail_fsdev_sysfs;
3436         }
3437
3438         ret = btrfs_init_space_info(fs_info);
3439         if (ret) {
3440                 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3441                 goto fail_sysfs;
3442         }
3443
3444         ret = btrfs_read_block_groups(fs_info);
3445         if (ret) {
3446                 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3447                 goto fail_sysfs;
3448         }
3449
3450         if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
3451                 btrfs_warn(fs_info,
3452                 "writable mount is not allowed due to too many missing devices");
3453                 goto fail_sysfs;
3454         }
3455
3456         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3457                                                "btrfs-cleaner");
3458         if (IS_ERR(fs_info->cleaner_kthread))
3459                 goto fail_sysfs;
3460
3461         fs_info->transaction_kthread = kthread_run(transaction_kthread,
3462                                                    tree_root,
3463                                                    "btrfs-transaction");
3464         if (IS_ERR(fs_info->transaction_kthread))
3465                 goto fail_cleaner;
3466
3467         if (!btrfs_test_opt(fs_info, NOSSD) &&
3468             !fs_info->fs_devices->rotating) {
3469                 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3470         }
3471
3472         /*
3473          * Mount does not set all options immediately, we can do it now and do
3474          * not have to wait for transaction commit
3475          */
3476         btrfs_apply_pending_changes(fs_info);
3477
3478 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3479         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3480                 ret = btrfsic_mount(fs_info, fs_devices,
3481                                     btrfs_test_opt(fs_info,
3482                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3483                                     1 : 0,
3484                                     fs_info->check_integrity_print_mask);
3485                 if (ret)
3486                         btrfs_warn(fs_info,
3487                                 "failed to initialize integrity check module: %d",
3488                                 ret);
3489         }
3490 #endif
3491         ret = btrfs_read_qgroup_config(fs_info);
3492         if (ret)
3493                 goto fail_trans_kthread;
3494
3495         if (btrfs_build_ref_tree(fs_info))
3496                 btrfs_err(fs_info, "couldn't build ref tree");
3497
3498         /* do not make disk changes in broken FS or nologreplay is given */
3499         if (btrfs_super_log_root(disk_super) != 0 &&
3500             !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3501                 btrfs_info(fs_info, "start tree-log replay");
3502                 ret = btrfs_replay_log(fs_info, fs_devices);
3503                 if (ret) {
3504                         err = ret;
3505                         goto fail_qgroup;
3506                 }
3507         }
3508
3509         fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3510         if (IS_ERR(fs_info->fs_root)) {
3511                 err = PTR_ERR(fs_info->fs_root);
3512                 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3513                 fs_info->fs_root = NULL;
3514                 goto fail_qgroup;
3515         }
3516
3517         if (sb_rdonly(sb))
3518                 goto clear_oneshot;
3519
3520         ret = btrfs_start_pre_rw_mount(fs_info);
3521         if (ret) {
3522                 close_ctree(fs_info);
3523                 return ret;
3524         }
3525         btrfs_discard_resume(fs_info);
3526
3527         if (fs_info->uuid_root &&
3528             (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3529              fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3530                 btrfs_info(fs_info, "checking UUID tree");
3531                 ret = btrfs_check_uuid_tree(fs_info);
3532                 if (ret) {
3533                         btrfs_warn(fs_info,
3534                                 "failed to check the UUID tree: %d", ret);
3535                         close_ctree(fs_info);
3536                         return ret;
3537                 }
3538         }
3539
3540         set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3541
3542 clear_oneshot:
3543         btrfs_clear_oneshot_options(fs_info);
3544         return 0;
3545
3546 fail_qgroup:
3547         btrfs_free_qgroup_config(fs_info);
3548 fail_trans_kthread:
3549         kthread_stop(fs_info->transaction_kthread);
3550         btrfs_cleanup_transaction(fs_info);
3551         btrfs_free_fs_roots(fs_info);
3552 fail_cleaner:
3553         kthread_stop(fs_info->cleaner_kthread);
3554
3555         /*
3556          * make sure we're done with the btree inode before we stop our
3557          * kthreads
3558          */
3559         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3560
3561 fail_sysfs:
3562         btrfs_sysfs_remove_mounted(fs_info);
3563
3564 fail_fsdev_sysfs:
3565         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3566
3567 fail_block_groups:
3568         btrfs_put_block_group_cache(fs_info);
3569
3570 fail_tree_roots:
3571         if (fs_info->data_reloc_root)
3572                 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3573         free_root_pointers(fs_info, true);
3574         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3575
3576 fail_sb_buffer:
3577         btrfs_stop_all_workers(fs_info);
3578         btrfs_free_block_groups(fs_info);
3579 fail_alloc:
3580         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3581
3582         iput(fs_info->btree_inode);
3583 fail:
3584         btrfs_close_devices(fs_info->fs_devices);
3585         return err;
3586 }
3587 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3588
3589 static void btrfs_end_super_write(struct bio *bio)
3590 {
3591         struct btrfs_device *device = bio->bi_private;
3592         struct bio_vec *bvec;
3593         struct bvec_iter_all iter_all;
3594         struct page *page;
3595
3596         bio_for_each_segment_all(bvec, bio, iter_all) {
3597                 page = bvec->bv_page;
3598
3599                 if (bio->bi_status) {
3600                         btrfs_warn_rl_in_rcu(device->fs_info,
3601                                 "lost page write due to IO error on %s (%d)",
3602                                 rcu_str_deref(device->name),
3603                                 blk_status_to_errno(bio->bi_status));
3604                         ClearPageUptodate(page);
3605                         SetPageError(page);
3606                         btrfs_dev_stat_inc_and_print(device,
3607                                                      BTRFS_DEV_STAT_WRITE_ERRS);
3608                 } else {
3609                         SetPageUptodate(page);
3610                 }
3611
3612                 put_page(page);
3613                 unlock_page(page);
3614         }
3615
3616         bio_put(bio);
3617 }
3618
3619 struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
3620                                                    int copy_num)
3621 {
3622         struct btrfs_super_block *super;
3623         struct page *page;
3624         u64 bytenr, bytenr_orig;
3625         struct address_space *mapping = bdev->bd_inode->i_mapping;
3626         int ret;
3627
3628         bytenr_orig = btrfs_sb_offset(copy_num);
3629         ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3630         if (ret == -ENOENT)
3631                 return ERR_PTR(-EINVAL);
3632         else if (ret)
3633                 return ERR_PTR(ret);
3634
3635         if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3636                 return ERR_PTR(-EINVAL);
3637
3638         page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3639         if (IS_ERR(page))
3640                 return ERR_CAST(page);
3641
3642         super = page_address(page);
3643         if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3644                 btrfs_release_disk_super(super);
3645                 return ERR_PTR(-ENODATA);
3646         }
3647
3648         if (btrfs_super_bytenr(super) != bytenr_orig) {
3649                 btrfs_release_disk_super(super);
3650                 return ERR_PTR(-EINVAL);
3651         }
3652
3653         return super;
3654 }
3655
3656
3657 struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
3658 {
3659         struct btrfs_super_block *super, *latest = NULL;
3660         int i;
3661         u64 transid = 0;
3662
3663         /* we would like to check all the supers, but that would make
3664          * a btrfs mount succeed after a mkfs from a different FS.
3665          * So, we need to add a special mount option to scan for
3666          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3667          */
3668         for (i = 0; i < 1; i++) {
3669                 super = btrfs_read_dev_one_super(bdev, i);
3670                 if (IS_ERR(super))
3671                         continue;
3672
3673                 if (!latest || btrfs_super_generation(super) > transid) {
3674                         if (latest)
3675                                 btrfs_release_disk_super(super);
3676
3677                         latest = super;
3678                         transid = btrfs_super_generation(super);
3679                 }
3680         }
3681
3682         return super;
3683 }
3684
3685 /*
3686  * Write superblock @sb to the @device. Do not wait for completion, all the
3687  * pages we use for writing are locked.
3688  *
3689  * Write @max_mirrors copies of the superblock, where 0 means default that fit
3690  * the expected device size at commit time. Note that max_mirrors must be
3691  * same for write and wait phases.
3692  *
3693  * Return number of errors when page is not found or submission fails.
3694  */
3695 static int write_dev_supers(struct btrfs_device *device,
3696                             struct btrfs_super_block *sb, int max_mirrors)
3697 {
3698         struct btrfs_fs_info *fs_info = device->fs_info;
3699         struct address_space *mapping = device->bdev->bd_inode->i_mapping;
3700         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
3701         int i;
3702         int errors = 0;
3703         int ret;
3704         u64 bytenr, bytenr_orig;
3705
3706         if (max_mirrors == 0)
3707                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3708
3709         shash->tfm = fs_info->csum_shash;
3710
3711         for (i = 0; i < max_mirrors; i++) {
3712                 struct page *page;
3713                 struct bio *bio;
3714                 struct btrfs_super_block *disk_super;
3715
3716                 bytenr_orig = btrfs_sb_offset(i);
3717                 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3718                 if (ret == -ENOENT) {
3719                         continue;
3720                 } else if (ret < 0) {
3721                         btrfs_err(device->fs_info,
3722                                 "couldn't get super block location for mirror %d",
3723                                 i);
3724                         errors++;
3725                         continue;
3726                 }
3727                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3728                     device->commit_total_bytes)
3729                         break;
3730
3731                 btrfs_set_super_bytenr(sb, bytenr_orig);
3732
3733                 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3734                                     BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3735                                     sb->csum);
3736
3737                 page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
3738                                            GFP_NOFS);
3739                 if (!page) {
3740                         btrfs_err(device->fs_info,
3741                             "couldn't get super block page for bytenr %llu",
3742                             bytenr);
3743                         errors++;
3744                         continue;
3745                 }
3746
3747                 /* Bump the refcount for wait_dev_supers() */
3748                 get_page(page);
3749
3750                 disk_super = page_address(page);
3751                 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
3752
3753                 /*
3754                  * Directly use bios here instead of relying on the page cache
3755                  * to do I/O, so we don't lose the ability to do integrity
3756                  * checking.
3757                  */
3758                 bio = bio_alloc(GFP_NOFS, 1);
3759                 bio_set_dev(bio, device->bdev);
3760                 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3761                 bio->bi_private = device;
3762                 bio->bi_end_io = btrfs_end_super_write;
3763                 __bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
3764                                offset_in_page(bytenr));
3765
3766                 /*
3767                  * We FUA only the first super block.  The others we allow to
3768                  * go down lazy and there's a short window where the on-disk
3769                  * copies might still contain the older version.
3770                  */
3771                 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO;
3772                 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3773                         bio->bi_opf |= REQ_FUA;
3774
3775                 btrfsic_submit_bio(bio);
3776                 btrfs_advance_sb_log(device, i);
3777         }
3778         return errors < i ? 0 : -1;
3779 }
3780
3781 /*
3782  * Wait for write completion of superblocks done by write_dev_supers,
3783  * @max_mirrors same for write and wait phases.
3784  *
3785  * Return number of errors when page is not found or not marked up to
3786  * date.
3787  */
3788 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3789 {
3790         int i;
3791         int errors = 0;
3792         bool primary_failed = false;
3793         int ret;
3794         u64 bytenr;
3795
3796         if (max_mirrors == 0)
3797                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3798
3799         for (i = 0; i < max_mirrors; i++) {
3800                 struct page *page;
3801
3802                 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3803                 if (ret == -ENOENT) {
3804                         break;
3805                 } else if (ret < 0) {
3806                         errors++;
3807                         if (i == 0)
3808                                 primary_failed = true;
3809                         continue;
3810                 }
3811                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3812                     device->commit_total_bytes)
3813                         break;
3814
3815                 page = find_get_page(device->bdev->bd_inode->i_mapping,
3816                                      bytenr >> PAGE_SHIFT);
3817                 if (!page) {
3818                         errors++;
3819                         if (i == 0)
3820                                 primary_failed = true;
3821                         continue;
3822                 }
3823                 /* Page is submitted locked and unlocked once the IO completes */
3824                 wait_on_page_locked(page);
3825                 if (PageError(page)) {
3826                         errors++;
3827                         if (i == 0)
3828                                 primary_failed = true;
3829                 }
3830
3831                 /* Drop our reference */
3832                 put_page(page);
3833
3834                 /* Drop the reference from the writing run */
3835                 put_page(page);
3836         }
3837
3838         /* log error, force error return */
3839         if (primary_failed) {
3840                 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3841                           device->devid);
3842                 return -1;
3843         }
3844
3845         return errors < i ? 0 : -1;
3846 }
3847
3848 /*
3849  * endio for the write_dev_flush, this will wake anyone waiting
3850  * for the barrier when it is done
3851  */
3852 static void btrfs_end_empty_barrier(struct bio *bio)
3853 {
3854         complete(bio->bi_private);
3855 }
3856
3857 /*
3858  * Submit a flush request to the device if it supports it. Error handling is
3859  * done in the waiting counterpart.
3860  */
3861 static void write_dev_flush(struct btrfs_device *device)
3862 {
3863         struct request_queue *q = bdev_get_queue(device->bdev);
3864         struct bio *bio = device->flush_bio;
3865
3866         if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3867                 return;
3868
3869         bio_reset(bio);
3870         bio->bi_end_io = btrfs_end_empty_barrier;
3871         bio_set_dev(bio, device->bdev);
3872         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3873         init_completion(&device->flush_wait);
3874         bio->bi_private = &device->flush_wait;
3875
3876         btrfsic_submit_bio(bio);
3877         set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3878 }
3879
3880 /*
3881  * If the flush bio has been submitted by write_dev_flush, wait for it.
3882  */
3883 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3884 {
3885         struct bio *bio = device->flush_bio;
3886
3887         if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3888                 return BLK_STS_OK;
3889
3890         clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3891         wait_for_completion_io(&device->flush_wait);
3892
3893         return bio->bi_status;
3894 }
3895
3896 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3897 {
3898         if (!btrfs_check_rw_degradable(fs_info, NULL))
3899                 return -EIO;
3900         return 0;
3901 }
3902
3903 /*
3904  * send an empty flush down to each device in parallel,
3905  * then wait for them
3906  */
3907 static int barrier_all_devices(struct btrfs_fs_info *info)
3908 {
3909         struct list_head *head;
3910         struct btrfs_device *dev;
3911         int errors_wait = 0;
3912         blk_status_t ret;
3913
3914         lockdep_assert_held(&info->fs_devices->device_list_mutex);
3915         /* send down all the barriers */
3916         head = &info->fs_devices->devices;
3917         list_for_each_entry(dev, head, dev_list) {
3918                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3919                         continue;
3920                 if (!dev->bdev)
3921                         continue;
3922                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3923                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3924                         continue;
3925
3926                 write_dev_flush(dev);
3927                 dev->last_flush_error = BLK_STS_OK;
3928         }
3929
3930         /* wait for all the barriers */
3931         list_for_each_entry(dev, head, dev_list) {
3932                 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3933                         continue;
3934                 if (!dev->bdev) {
3935                         errors_wait++;
3936                         continue;
3937                 }
3938                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3939                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3940                         continue;
3941
3942                 ret = wait_dev_flush(dev);
3943                 if (ret) {
3944                         dev->last_flush_error = ret;
3945                         btrfs_dev_stat_inc_and_print(dev,
3946                                         BTRFS_DEV_STAT_FLUSH_ERRS);
3947                         errors_wait++;
3948                 }
3949         }
3950
3951         if (errors_wait) {
3952                 /*
3953                  * At some point we need the status of all disks
3954                  * to arrive at the volume status. So error checking
3955                  * is being pushed to a separate loop.
3956                  */
3957                 return check_barrier_error(info);
3958         }
3959         return 0;
3960 }
3961
3962 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3963 {
3964         int raid_type;
3965         int min_tolerated = INT_MAX;
3966
3967         if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3968             (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3969                 min_tolerated = min_t(int, min_tolerated,
3970                                     btrfs_raid_array[BTRFS_RAID_SINGLE].
3971                                     tolerated_failures);
3972
3973         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3974                 if (raid_type == BTRFS_RAID_SINGLE)
3975                         continue;
3976                 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3977                         continue;
3978                 min_tolerated = min_t(int, min_tolerated,
3979                                     btrfs_raid_array[raid_type].
3980                                     tolerated_failures);
3981         }
3982
3983         if (min_tolerated == INT_MAX) {
3984                 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3985                 min_tolerated = 0;
3986         }
3987
3988         return min_tolerated;
3989 }
3990
3991 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3992 {
3993         struct list_head *head;
3994         struct btrfs_device *dev;
3995         struct btrfs_super_block *sb;
3996         struct btrfs_dev_item *dev_item;
3997         int ret;
3998         int do_barriers;
3999         int max_errors;
4000         int total_errors = 0;
4001         u64 flags;
4002
4003         do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4004
4005         /*
4006          * max_mirrors == 0 indicates we're from commit_transaction,
4007          * not from fsync where the tree roots in fs_info have not
4008          * been consistent on disk.
4009          */
4010         if (max_mirrors == 0)
4011                 backup_super_roots(fs_info);
4012
4013         sb = fs_info->super_for_commit;
4014         dev_item = &sb->dev_item;
4015
4016         mutex_lock(&fs_info->fs_devices->device_list_mutex);
4017         head = &fs_info->fs_devices->devices;
4018         max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4019
4020         if (do_barriers) {
4021                 ret = barrier_all_devices(fs_info);
4022                 if (ret) {
4023                         mutex_unlock(
4024                                 &fs_info->fs_devices->device_list_mutex);
4025                         btrfs_handle_fs_error(fs_info, ret,
4026                                               "errors while submitting device barriers.");
4027                         return ret;
4028                 }
4029         }
4030
4031         list_for_each_entry(dev, head, dev_list) {
4032                 if (!dev->bdev) {
4033                         total_errors++;
4034                         continue;
4035                 }
4036                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4037                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4038                         continue;
4039
4040                 btrfs_set_stack_device_generation(dev_item, 0);
4041                 btrfs_set_stack_device_type(dev_item, dev->type);
4042                 btrfs_set_stack_device_id(dev_item, dev->devid);
4043                 btrfs_set_stack_device_total_bytes(dev_item,
4044                                                    dev->commit_total_bytes);
4045                 btrfs_set_stack_device_bytes_used(dev_item,
4046                                                   dev->commit_bytes_used);
4047                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4048                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4049                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4050                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4051                 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4052                        BTRFS_FSID_SIZE);
4053
4054                 flags = btrfs_super_flags(sb);
4055                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4056
4057                 ret = btrfs_validate_write_super(fs_info, sb);
4058                 if (ret < 0) {
4059                         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4060                         btrfs_handle_fs_error(fs_info, -EUCLEAN,
4061                                 "unexpected superblock corruption detected");
4062                         return -EUCLEAN;
4063                 }
4064
4065                 ret = write_dev_supers(dev, sb, max_mirrors);
4066                 if (ret)
4067                         total_errors++;
4068         }
4069         if (total_errors > max_errors) {
4070                 btrfs_err(fs_info, "%d errors while writing supers",
4071                           total_errors);
4072                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4073
4074                 /* FUA is masked off if unsupported and can't be the reason */
4075                 btrfs_handle_fs_error(fs_info, -EIO,
4076                                       "%d errors while writing supers",
4077                                       total_errors);
4078                 return -EIO;
4079         }
4080
4081         total_errors = 0;
4082         list_for_each_entry(dev, head, dev_list) {
4083                 if (!dev->bdev)
4084                         continue;
4085                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4086                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4087                         continue;
4088
4089                 ret = wait_dev_supers(dev, max_mirrors);
4090                 if (ret)
4091                         total_errors++;
4092         }
4093         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4094         if (total_errors > max_errors) {
4095                 btrfs_handle_fs_error(fs_info, -EIO,
4096                                       "%d errors while writing supers",
4097                                       total_errors);
4098                 return -EIO;
4099         }
4100         return 0;
4101 }
4102
4103 /* Drop a fs root from the radix tree and free it. */
4104 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4105                                   struct btrfs_root *root)
4106 {
4107         bool drop_ref = false;
4108
4109         spin_lock(&fs_info->fs_roots_radix_lock);
4110         radix_tree_delete(&fs_info->fs_roots_radix,
4111                           (unsigned long)root->root_key.objectid);
4112         if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4113                 drop_ref = true;
4114         spin_unlock(&fs_info->fs_roots_radix_lock);
4115
4116         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4117                 ASSERT(root->log_root == NULL);
4118                 if (root->reloc_root) {
4119                         btrfs_put_root(root->reloc_root);
4120                         root->reloc_root = NULL;
4121                 }
4122         }
4123
4124         if (drop_ref)
4125                 btrfs_put_root(root);
4126 }
4127
4128 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4129 {
4130         u64 root_objectid = 0;
4131         struct btrfs_root *gang[8];
4132         int i = 0;
4133         int err = 0;
4134         unsigned int ret = 0;
4135
4136         while (1) {
4137                 spin_lock(&fs_info->fs_roots_radix_lock);
4138                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4139                                              (void **)gang, root_objectid,
4140                                              ARRAY_SIZE(gang));
4141                 if (!ret) {
4142                         spin_unlock(&fs_info->fs_roots_radix_lock);
4143                         break;
4144                 }
4145                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
4146
4147                 for (i = 0; i < ret; i++) {
4148                         /* Avoid to grab roots in dead_roots */
4149                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4150                                 gang[i] = NULL;
4151                                 continue;
4152                         }
4153                         /* grab all the search result for later use */
4154                         gang[i] = btrfs_grab_root(gang[i]);
4155                 }
4156                 spin_unlock(&fs_info->fs_roots_radix_lock);
4157
4158                 for (i = 0; i < ret; i++) {
4159                         if (!gang[i])
4160                                 continue;
4161                         root_objectid = gang[i]->root_key.objectid;
4162                         err = btrfs_orphan_cleanup(gang[i]);
4163                         if (err)
4164                                 break;
4165                         btrfs_put_root(gang[i]);
4166                 }
4167                 root_objectid++;
4168         }
4169
4170         /* release the uncleaned roots due to error */
4171         for (; i < ret; i++) {
4172                 if (gang[i])
4173                         btrfs_put_root(gang[i]);
4174         }
4175         return err;
4176 }
4177
4178 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4179 {
4180         struct btrfs_root *root = fs_info->tree_root;
4181         struct btrfs_trans_handle *trans;
4182
4183         mutex_lock(&fs_info->cleaner_mutex);
4184         btrfs_run_delayed_iputs(fs_info);
4185         mutex_unlock(&fs_info->cleaner_mutex);
4186         wake_up_process(fs_info->cleaner_kthread);
4187
4188         /* wait until ongoing cleanup work done */
4189         down_write(&fs_info->cleanup_work_sem);
4190         up_write(&fs_info->cleanup_work_sem);
4191
4192         trans = btrfs_join_transaction(root);
4193         if (IS_ERR(trans))
4194                 return PTR_ERR(trans);
4195         return btrfs_commit_transaction(trans);
4196 }
4197
4198 void __cold close_ctree(struct btrfs_fs_info *fs_info)
4199 {
4200         int ret;
4201
4202         set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4203         /*
4204          * We don't want the cleaner to start new transactions, add more delayed
4205          * iputs, etc. while we're closing. We can't use kthread_stop() yet
4206          * because that frees the task_struct, and the transaction kthread might
4207          * still try to wake up the cleaner.
4208          */
4209         kthread_park(fs_info->cleaner_kthread);
4210
4211         /* wait for the qgroup rescan worker to stop */
4212         btrfs_qgroup_wait_for_completion(fs_info, false);
4213
4214         /* wait for the uuid_scan task to finish */
4215         down(&fs_info->uuid_tree_rescan_sem);
4216         /* avoid complains from lockdep et al., set sem back to initial state */
4217         up(&fs_info->uuid_tree_rescan_sem);
4218
4219         /* pause restriper - we want to resume on mount */
4220         btrfs_pause_balance(fs_info);
4221
4222         btrfs_dev_replace_suspend_for_unmount(fs_info);
4223
4224         btrfs_scrub_cancel(fs_info);
4225
4226         /* wait for any defraggers to finish */
4227         wait_event(fs_info->transaction_wait,
4228                    (atomic_read(&fs_info->defrag_running) == 0));
4229
4230         /* clear out the rbtree of defraggable inodes */
4231         btrfs_cleanup_defrag_inodes(fs_info);
4232
4233         cancel_work_sync(&fs_info->async_reclaim_work);
4234         cancel_work_sync(&fs_info->async_data_reclaim_work);
4235         cancel_work_sync(&fs_info->preempt_reclaim_work);
4236
4237         /* Cancel or finish ongoing discard work */
4238         btrfs_discard_cleanup(fs_info);
4239
4240         if (!sb_rdonly(fs_info->sb)) {
4241                 /*
4242                  * The cleaner kthread is stopped, so do one final pass over
4243                  * unused block groups.
4244                  */
4245                 btrfs_delete_unused_bgs(fs_info);
4246
4247                 /*
4248                  * There might be existing delayed inode workers still running
4249                  * and holding an empty delayed inode item. We must wait for
4250                  * them to complete first because they can create a transaction.
4251                  * This happens when someone calls btrfs_balance_delayed_items()
4252                  * and then a transaction commit runs the same delayed nodes
4253                  * before any delayed worker has done something with the nodes.
4254                  * We must wait for any worker here and not at transaction
4255                  * commit time since that could cause a deadlock.
4256                  * This is a very rare case.
4257                  */
4258                 btrfs_flush_workqueue(fs_info->delayed_workers);
4259
4260                 ret = btrfs_commit_super(fs_info);
4261                 if (ret)
4262                         btrfs_err(fs_info, "commit super ret %d", ret);
4263         }
4264
4265         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4266             test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4267                 btrfs_error_commit_super(fs_info);
4268
4269         kthread_stop(fs_info->transaction_kthread);
4270         kthread_stop(fs_info->cleaner_kthread);
4271
4272         ASSERT(list_empty(&fs_info->delayed_iputs));
4273         set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4274
4275         if (btrfs_check_quota_leak(fs_info)) {
4276                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4277                 btrfs_err(fs_info, "qgroup reserved space leaked");
4278         }
4279
4280         btrfs_free_qgroup_config(fs_info);
4281         ASSERT(list_empty(&fs_info->delalloc_roots));
4282
4283         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4284                 btrfs_info(fs_info, "at unmount delalloc count %lld",
4285                        percpu_counter_sum(&fs_info->delalloc_bytes));
4286         }
4287
4288         if (percpu_counter_sum(&fs_info->ordered_bytes))
4289                 btrfs_info(fs_info, "at unmount dio bytes count %lld",
4290                            percpu_counter_sum(&fs_info->ordered_bytes));
4291
4292         btrfs_sysfs_remove_mounted(fs_info);
4293         btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4294
4295         btrfs_put_block_group_cache(fs_info);
4296
4297         /*
4298          * we must make sure there is not any read request to
4299          * submit after we stopping all workers.
4300          */
4301         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4302         btrfs_stop_all_workers(fs_info);
4303
4304         /* We shouldn't have any transaction open at this point */
4305         ASSERT(list_empty(&fs_info->trans_list));
4306
4307         clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4308         free_root_pointers(fs_info, true);
4309         btrfs_free_fs_roots(fs_info);
4310
4311         /*
4312          * We must free the block groups after dropping the fs_roots as we could
4313          * have had an IO error and have left over tree log blocks that aren't
4314          * cleaned up until the fs roots are freed.  This makes the block group
4315          * accounting appear to be wrong because there's pending reserved bytes,
4316          * so make sure we do the block group cleanup afterwards.
4317          */
4318         btrfs_free_block_groups(fs_info);
4319
4320         iput(fs_info->btree_inode);
4321
4322 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4323         if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4324                 btrfsic_unmount(fs_info->fs_devices);
4325 #endif
4326
4327         btrfs_mapping_tree_free(&fs_info->mapping_tree);
4328         btrfs_close_devices(fs_info->fs_devices);
4329 }
4330
4331 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4332                           int atomic)
4333 {
4334         int ret;
4335         struct inode *btree_inode = buf->pages[0]->mapping->host;
4336
4337         ret = extent_buffer_uptodate(buf);
4338         if (!ret)
4339                 return ret;
4340
4341         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4342                                     parent_transid, atomic);
4343         if (ret == -EAGAIN)
4344                 return ret;
4345         return !ret;
4346 }
4347
4348 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4349 {
4350         struct btrfs_fs_info *fs_info = buf->fs_info;
4351         u64 transid = btrfs_header_generation(buf);
4352         int was_dirty;
4353
4354 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4355         /*
4356          * This is a fast path so only do this check if we have sanity tests
4357          * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4358          * outside of the sanity tests.
4359          */
4360         if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4361                 return;
4362 #endif
4363         btrfs_assert_tree_locked(buf);
4364         if (transid != fs_info->generation)
4365                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4366                         buf->start, transid, fs_info->generation);
4367         was_dirty = set_extent_buffer_dirty(buf);
4368         if (!was_dirty)
4369                 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4370                                          buf->len,
4371                                          fs_info->dirty_metadata_batch);
4372 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4373         /*
4374          * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4375          * but item data not updated.
4376          * So here we should only check item pointers, not item data.
4377          */
4378         if (btrfs_header_level(buf) == 0 &&
4379             btrfs_check_leaf_relaxed(buf)) {
4380                 btrfs_print_leaf(buf);
4381                 ASSERT(0);
4382         }
4383 #endif
4384 }
4385
4386 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4387                                         int flush_delayed)
4388 {
4389         /*
4390          * looks as though older kernels can get into trouble with
4391          * this code, they end up stuck in balance_dirty_pages forever
4392          */
4393         int ret;
4394
4395         if (current->flags & PF_MEMALLOC)
4396                 return;
4397
4398         if (flush_delayed)
4399                 btrfs_balance_delayed_items(fs_info);
4400
4401         ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4402                                      BTRFS_DIRTY_METADATA_THRESH,
4403                                      fs_info->dirty_metadata_batch);
4404         if (ret > 0) {
4405                 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4406         }
4407 }
4408
4409 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4410 {
4411         __btrfs_btree_balance_dirty(fs_info, 1);
4412 }
4413
4414 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4415 {
4416         __btrfs_btree_balance_dirty(fs_info, 0);
4417 }
4418
4419 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4420                       struct btrfs_key *first_key)
4421 {
4422         return btree_read_extent_buffer_pages(buf, parent_transid,
4423                                               level, first_key);
4424 }
4425
4426 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4427 {
4428         /* cleanup FS via transaction */
4429         btrfs_cleanup_transaction(fs_info);
4430
4431         mutex_lock(&fs_info->cleaner_mutex);
4432         btrfs_run_delayed_iputs(fs_info);
4433         mutex_unlock(&fs_info->cleaner_mutex);
4434
4435         down_write(&fs_info->cleanup_work_sem);
4436         up_write(&fs_info->cleanup_work_sem);
4437 }
4438
4439 static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4440 {
4441         struct btrfs_root *gang[8];
4442         u64 root_objectid = 0;
4443         int ret;
4444
4445         spin_lock(&fs_info->fs_roots_radix_lock);
4446         while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4447                                              (void **)gang, root_objectid,
4448                                              ARRAY_SIZE(gang))) != 0) {
4449                 int i;
4450
4451                 for (i = 0; i < ret; i++)
4452                         gang[i] = btrfs_grab_root(gang[i]);
4453                 spin_unlock(&fs_info->fs_roots_radix_lock);
4454
4455                 for (i = 0; i < ret; i++) {
4456                         if (!gang[i])
4457                                 continue;
4458                         root_objectid = gang[i]->root_key.objectid;
4459                         btrfs_free_log(NULL, gang[i]);
4460                         btrfs_put_root(gang[i]);
4461                 }
4462                 root_objectid++;
4463                 spin_lock(&fs_info->fs_roots_radix_lock);
4464         }
4465         spin_unlock(&fs_info->fs_roots_radix_lock);
4466         btrfs_free_log_root_tree(NULL, fs_info);
4467 }
4468
4469 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4470 {
4471         struct btrfs_ordered_extent *ordered;
4472
4473         spin_lock(&root->ordered_extent_lock);
4474         /*
4475          * This will just short circuit the ordered completion stuff which will
4476          * make sure the ordered extent gets properly cleaned up.
4477          */
4478         list_for_each_entry(ordered, &root->ordered_extents,
4479                             root_extent_list)
4480                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4481         spin_unlock(&root->ordered_extent_lock);
4482 }
4483
4484 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4485 {
4486         struct btrfs_root *root;
4487         struct list_head splice;
4488
4489         INIT_LIST_HEAD(&splice);
4490
4491         spin_lock(&fs_info->ordered_root_lock);
4492         list_splice_init(&fs_info->ordered_roots, &splice);
4493         while (!list_empty(&splice)) {
4494                 root = list_first_entry(&splice, struct btrfs_root,
4495                                         ordered_root);
4496                 list_move_tail(&root->ordered_root,
4497                                &fs_info->ordered_roots);
4498
4499                 spin_unlock(&fs_info->ordered_root_lock);
4500                 btrfs_destroy_ordered_extents(root);
4501
4502                 cond_resched();
4503                 spin_lock(&fs_info->ordered_root_lock);
4504         }
4505         spin_unlock(&fs_info->ordered_root_lock);
4506
4507         /*
4508          * We need this here because if we've been flipped read-only we won't
4509          * get sync() from the umount, so we need to make sure any ordered
4510          * extents that haven't had their dirty pages IO start writeout yet
4511          * actually get run and error out properly.
4512          */
4513         btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4514 }
4515
4516 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4517                                       struct btrfs_fs_info *fs_info)
4518 {
4519         struct rb_node *node;
4520         struct btrfs_delayed_ref_root *delayed_refs;
4521         struct btrfs_delayed_ref_node *ref;
4522         int ret = 0;
4523
4524         delayed_refs = &trans->delayed_refs;
4525
4526         spin_lock(&delayed_refs->lock);
4527         if (atomic_read(&delayed_refs->num_entries) == 0) {
4528                 spin_unlock(&delayed_refs->lock);
4529                 btrfs_debug(fs_info, "delayed_refs has NO entry");
4530                 return ret;
4531         }
4532
4533         while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
4534                 struct btrfs_delayed_ref_head *head;
4535                 struct rb_node *n;
4536                 bool pin_bytes = false;
4537
4538                 head = rb_entry(node, struct btrfs_delayed_ref_head,
4539                                 href_node);
4540                 if (btrfs_delayed_ref_lock(delayed_refs, head))
4541                         continue;
4542
4543                 spin_lock(&head->lock);
4544                 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
4545                         ref = rb_entry(n, struct btrfs_delayed_ref_node,
4546                                        ref_node);
4547                         ref->in_tree = 0;
4548                         rb_erase_cached(&ref->ref_node, &head->ref_tree);
4549                         RB_CLEAR_NODE(&ref->ref_node);
4550                         if (!list_empty(&ref->add_list))
4551                                 list_del(&ref->add_list);
4552                         atomic_dec(&delayed_refs->num_entries);
4553                         btrfs_put_delayed_ref(ref);
4554                 }
4555                 if (head->must_insert_reserved)
4556                         pin_bytes = true;
4557                 btrfs_free_delayed_extent_op(head->extent_op);
4558                 btrfs_delete_ref_head(delayed_refs, head);
4559                 spin_unlock(&head->lock);
4560                 spin_unlock(&delayed_refs->lock);
4561                 mutex_unlock(&head->mutex);
4562
4563                 if (pin_bytes) {
4564                         struct btrfs_block_group *cache;
4565
4566                         cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4567                         BUG_ON(!cache);
4568
4569                         spin_lock(&cache->space_info->lock);
4570                         spin_lock(&cache->lock);
4571                         cache->pinned += head->num_bytes;
4572                         btrfs_space_info_update_bytes_pinned(fs_info,
4573                                 cache->space_info, head->num_bytes);
4574                         cache->reserved -= head->num_bytes;
4575                         cache->space_info->bytes_reserved -= head->num_bytes;
4576                         spin_unlock(&cache->lock);
4577                         spin_unlock(&cache->space_info->lock);
4578                         percpu_counter_add_batch(
4579                                 &cache->space_info->total_bytes_pinned,
4580                                 head->num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
4581
4582                         btrfs_put_block_group(cache);
4583
4584                         btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4585                                 head->bytenr + head->num_bytes - 1);
4586                 }
4587                 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
4588                 btrfs_put_delayed_ref_head(head);
4589                 cond_resched();
4590                 spin_lock(&delayed_refs->lock);
4591         }
4592         btrfs_qgroup_destroy_extent_records(trans);
4593
4594         spin_unlock(&delayed_refs->lock);
4595
4596         return ret;
4597 }
4598
4599 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4600 {
4601         struct btrfs_inode *btrfs_inode;
4602         struct list_head splice;
4603
4604         INIT_LIST_HEAD(&splice);
4605
4606         spin_lock(&root->delalloc_lock);
4607         list_splice_init(&root->delalloc_inodes, &splice);
4608
4609         while (!list_empty(&splice)) {
4610                 struct inode *inode = NULL;
4611                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4612                                                delalloc_inodes);
4613                 __btrfs_del_delalloc_inode(root, btrfs_inode);
4614                 spin_unlock(&root->delalloc_lock);
4615
4616                 /*
4617                  * Make sure we get a live inode and that it'll not disappear
4618                  * meanwhile.
4619                  */
4620                 inode = igrab(&btrfs_inode->vfs_inode);
4621                 if (inode) {
4622                         invalidate_inode_pages2(inode->i_mapping);
4623                         iput(inode);
4624                 }
4625                 spin_lock(&root->delalloc_lock);
4626         }
4627         spin_unlock(&root->delalloc_lock);
4628 }
4629
4630 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4631 {
4632         struct btrfs_root *root;
4633         struct list_head splice;
4634
4635         INIT_LIST_HEAD(&splice);
4636
4637         spin_lock(&fs_info->delalloc_root_lock);
4638         list_splice_init(&fs_info->delalloc_roots, &splice);
4639         while (!list_empty(&splice)) {
4640                 root = list_first_entry(&splice, struct btrfs_root,
4641                                          delalloc_root);
4642                 root = btrfs_grab_root(root);
4643                 BUG_ON(!root);
4644                 spin_unlock(&fs_info->delalloc_root_lock);
4645
4646                 btrfs_destroy_delalloc_inodes(root);
4647                 btrfs_put_root(root);
4648
4649                 spin_lock(&fs_info->delalloc_root_lock);
4650         }
4651         spin_unlock(&fs_info->delalloc_root_lock);
4652 }
4653
4654 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4655                                         struct extent_io_tree *dirty_pages,
4656                                         int mark)
4657 {
4658         int ret;
4659         struct extent_buffer *eb;
4660         u64 start = 0;
4661         u64 end;
4662
4663         while (1) {
4664                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4665                                             mark, NULL);
4666                 if (ret)
4667                         break;
4668
4669                 clear_extent_bits(dirty_pages, start, end, mark);
4670                 while (start <= end) {
4671                         eb = find_extent_buffer(fs_info, start);
4672                         start += fs_info->nodesize;
4673                         if (!eb)
4674                                 continue;
4675                         wait_on_extent_buffer_writeback(eb);
4676
4677                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4678                                                &eb->bflags))
4679                                 clear_extent_buffer_dirty(eb);
4680                         free_extent_buffer_stale(eb);
4681                 }
4682         }
4683
4684         return ret;
4685 }
4686
4687 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4688                                        struct extent_io_tree *unpin)
4689 {
4690         u64 start;
4691         u64 end;
4692         int ret;
4693
4694         while (1) {
4695                 struct extent_state *cached_state = NULL;
4696
4697                 /*
4698                  * The btrfs_finish_extent_commit() may get the same range as
4699                  * ours between find_first_extent_bit and clear_extent_dirty.
4700                  * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4701                  * the same extent range.
4702                  */
4703                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4704                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4705                                             EXTENT_DIRTY, &cached_state);
4706                 if (ret) {
4707                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4708                         break;
4709                 }
4710
4711                 clear_extent_dirty(unpin, start, end, &cached_state);
4712                 free_extent_state(cached_state);
4713                 btrfs_error_unpin_extent_range(fs_info, start, end);
4714                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4715                 cond_resched();
4716         }
4717
4718         return 0;
4719 }
4720
4721 static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
4722 {
4723         struct inode *inode;
4724
4725         inode = cache->io_ctl.inode;
4726         if (inode) {
4727                 invalidate_inode_pages2(inode->i_mapping);
4728                 BTRFS_I(inode)->generation = 0;
4729                 cache->io_ctl.inode = NULL;
4730                 iput(inode);
4731         }
4732         ASSERT(cache->io_ctl.pages == NULL);
4733         btrfs_put_block_group(cache);
4734 }
4735
4736 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4737                              struct btrfs_fs_info *fs_info)
4738 {
4739         struct btrfs_block_group *cache;
4740
4741         spin_lock(&cur_trans->dirty_bgs_lock);
4742         while (!list_empty(&cur_trans->dirty_bgs)) {
4743                 cache = list_first_entry(&cur_trans->dirty_bgs,
4744                                          struct btrfs_block_group,
4745                                          dirty_list);
4746
4747                 if (!list_empty(&cache->io_list)) {
4748                         spin_unlock(&cur_trans->dirty_bgs_lock);
4749                         list_del_init(&cache->io_list);
4750                         btrfs_cleanup_bg_io(cache);
4751                         spin_lock(&cur_trans->dirty_bgs_lock);
4752                 }
4753
4754                 list_del_init(&cache->dirty_list);
4755                 spin_lock(&cache->lock);
4756                 cache->disk_cache_state = BTRFS_DC_ERROR;
4757                 spin_unlock(&cache->lock);
4758
4759                 spin_unlock(&cur_trans->dirty_bgs_lock);
4760                 btrfs_put_block_group(cache);
4761                 btrfs_delayed_refs_rsv_release(fs_info, 1);
4762                 spin_lock(&cur_trans->dirty_bgs_lock);
4763         }
4764         spin_unlock(&cur_trans->dirty_bgs_lock);
4765
4766         /*
4767          * Refer to the definition of io_bgs member for details why it's safe
4768          * to use it without any locking
4769          */
4770         while (!list_empty(&cur_trans->io_bgs)) {
4771                 cache = list_first_entry(&cur_trans->io_bgs,
4772                                          struct btrfs_block_group,
4773                                          io_list);
4774
4775                 list_del_init(&cache->io_list);
4776                 spin_lock(&cache->lock);
4777                 cache->disk_cache_state = BTRFS_DC_ERROR;
4778                 spin_unlock(&cache->lock);
4779                 btrfs_cleanup_bg_io(cache);
4780         }
4781 }
4782
4783 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4784                                    struct btrfs_fs_info *fs_info)
4785 {
4786         struct btrfs_device *dev, *tmp;
4787
4788         btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4789         ASSERT(list_empty(&cur_trans->dirty_bgs));
4790         ASSERT(list_empty(&cur_trans->io_bgs));
4791
4792         list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4793                                  post_commit_list) {
4794                 list_del_init(&dev->post_commit_list);
4795         }
4796
4797         btrfs_destroy_delayed_refs(cur_trans, fs_info);
4798
4799         cur_trans->state = TRANS_STATE_COMMIT_START;
4800         wake_up(&fs_info->transaction_blocked_wait);
4801
4802         cur_trans->state = TRANS_STATE_UNBLOCKED;
4803         wake_up(&fs_info->transaction_wait);
4804
4805         btrfs_destroy_delayed_inodes(fs_info);
4806
4807         btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4808                                      EXTENT_DIRTY);
4809         btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
4810
4811         btrfs_free_redirty_list(cur_trans);
4812
4813         cur_trans->state =TRANS_STATE_COMPLETED;
4814         wake_up(&cur_trans->commit_wait);
4815 }
4816
4817 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4818 {
4819         struct btrfs_transaction *t;
4820
4821         mutex_lock(&fs_info->transaction_kthread_mutex);
4822
4823         spin_lock(&fs_info->trans_lock);
4824         while (!list_empty(&fs_info->trans_list)) {
4825                 t = list_first_entry(&fs_info->trans_list,
4826                                      struct btrfs_transaction, list);
4827                 if (t->state >= TRANS_STATE_COMMIT_START) {
4828                         refcount_inc(&t->use_count);
4829                         spin_unlock(&fs_info->trans_lock);
4830                         btrfs_wait_for_commit(fs_info, t->transid);
4831                         btrfs_put_transaction(t);
4832                         spin_lock(&fs_info->trans_lock);
4833                         continue;
4834                 }
4835                 if (t == fs_info->running_transaction) {
4836                         t->state = TRANS_STATE_COMMIT_DOING;
4837                         spin_unlock(&fs_info->trans_lock);
4838                         /*
4839                          * We wait for 0 num_writers since we don't hold a trans
4840                          * handle open currently for this transaction.
4841                          */
4842                         wait_event(t->writer_wait,
4843                                    atomic_read(&t->num_writers) == 0);
4844                 } else {
4845                         spin_unlock(&fs_info->trans_lock);
4846                 }
4847                 btrfs_cleanup_one_transaction(t, fs_info);
4848
4849                 spin_lock(&fs_info->trans_lock);
4850                 if (t == fs_info->running_transaction)
4851                         fs_info->running_transaction = NULL;
4852                 list_del_init(&t->list);
4853                 spin_unlock(&fs_info->trans_lock);
4854
4855                 btrfs_put_transaction(t);
4856                 trace_btrfs_transaction_commit(fs_info->tree_root);
4857                 spin_lock(&fs_info->trans_lock);
4858         }
4859         spin_unlock(&fs_info->trans_lock);
4860         btrfs_destroy_all_ordered_extents(fs_info);
4861         btrfs_destroy_delayed_inodes(fs_info);
4862         btrfs_assert_delayed_root_empty(fs_info);
4863         btrfs_destroy_all_delalloc_inodes(fs_info);
4864         btrfs_drop_all_logs(fs_info);
4865         mutex_unlock(&fs_info->transaction_kthread_mutex);
4866
4867         return 0;
4868 }
4869
4870 int btrfs_init_root_free_objectid(struct btrfs_root *root)
4871 {
4872         struct btrfs_path *path;
4873         int ret;
4874         struct extent_buffer *l;
4875         struct btrfs_key search_key;
4876         struct btrfs_key found_key;
4877         int slot;
4878
4879         path = btrfs_alloc_path();
4880         if (!path)
4881                 return -ENOMEM;
4882
4883         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4884         search_key.type = -1;
4885         search_key.offset = (u64)-1;
4886         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4887         if (ret < 0)
4888                 goto error;
4889         BUG_ON(ret == 0); /* Corruption */
4890         if (path->slots[0] > 0) {
4891                 slot = path->slots[0] - 1;
4892                 l = path->nodes[0];
4893                 btrfs_item_key_to_cpu(l, &found_key, slot);
4894                 root->free_objectid = max_t(u64, found_key.objectid + 1,
4895                                             BTRFS_FIRST_FREE_OBJECTID);
4896         } else {
4897                 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
4898         }
4899         ret = 0;
4900 error:
4901         btrfs_free_path(path);
4902         return ret;
4903 }
4904
4905 int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
4906 {
4907         int ret;
4908         mutex_lock(&root->objectid_mutex);
4909
4910         if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
4911                 btrfs_warn(root->fs_info,
4912                            "the objectid of root %llu reaches its highest value",
4913                            root->root_key.objectid);
4914                 ret = -ENOSPC;
4915                 goto out;
4916         }
4917
4918         *objectid = root->free_objectid++;
4919         ret = 0;
4920 out:
4921         mutex_unlock(&root->objectid_mutex);
4922         return ret;
4923 }