Merge tag 'pm-5.12-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-microblaze.git] / fs / btrfs / block-rsv.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9
10 /*
11  * HOW DO BLOCK RESERVES WORK
12  *
13  *   Think of block_rsv's as buckets for logically grouped metadata
14  *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
15  *   how large we want our block rsv to be, ->reserved is how much space is
16  *   currently reserved for this block reserve.
17  *
18  *   ->failfast exists for the truncate case, and is described below.
19  *
20  * NORMAL OPERATION
21  *
22  *   -> Reserve
23  *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
24  *
25  *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
26  *     accounted for in space_info->bytes_may_use, and then add the bytes to
27  *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
28  *
29  *     ->size is an over-estimation of how much we may use for a particular
30  *     operation.
31  *
32  *   -> Use
33  *     Entrance: btrfs_use_block_rsv
34  *
35  *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
36  *     to determine the appropriate block_rsv to use, and then verify that
37  *     ->reserved has enough space for our tree block allocation.  Once
38  *     successful we subtract fs_info->nodesize from ->reserved.
39  *
40  *   -> Finish
41  *     Entrance: btrfs_block_rsv_release
42  *
43  *     We are finished with our operation, subtract our individual reservation
44  *     from ->size, and then subtract ->size from ->reserved and free up the
45  *     excess if there is any.
46  *
47  *     There is some logic here to refill the delayed refs rsv or the global rsv
48  *     as needed, otherwise the excess is subtracted from
49  *     space_info->bytes_may_use.
50  *
51  * TYPES OF BLOCK RESERVES
52  *
53  * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
54  *   These behave normally, as described above, just within the confines of the
55  *   lifetime of their particular operation (transaction for the whole trans
56  *   handle lifetime, for example).
57  *
58  * BLOCK_RSV_GLOBAL
59  *   It is impossible to properly account for all the space that may be required
60  *   to make our extent tree updates.  This block reserve acts as an overflow
61  *   buffer in case our delayed refs reserve does not reserve enough space to
62  *   update the extent tree.
63  *
64  *   We can steal from this in some cases as well, notably on evict() or
65  *   truncate() in order to help users recover from ENOSPC conditions.
66  *
67  * BLOCK_RSV_DELALLOC
68  *   The individual item sizes are determined by the per-inode size
69  *   calculations, which are described with the delalloc code.  This is pretty
70  *   straightforward, it's just the calculation of ->size encodes a lot of
71  *   different items, and thus it gets used when updating inodes, inserting file
72  *   extents, and inserting checksums.
73  *
74  * BLOCK_RSV_DELREFS
75  *   We keep a running tally of how many delayed refs we have on the system.
76  *   We assume each one of these delayed refs are going to use a full
77  *   reservation.  We use the transaction items and pre-reserve space for every
78  *   operation, and use this reservation to refill any gap between ->size and
79  *   ->reserved that may exist.
80  *
81  *   From there it's straightforward, removing a delayed ref means we remove its
82  *   count from ->size and free up reservations as necessary.  Since this is
83  *   the most dynamic block reserve in the system, we will try to refill this
84  *   block reserve first with any excess returned by any other block reserve.
85  *
86  * BLOCK_RSV_EMPTY
87  *   This is the fallback block reserve to make us try to reserve space if we
88  *   don't have a specific bucket for this allocation.  It is mostly used for
89  *   updating the device tree and such, since that is a separate pool we're
90  *   content to just reserve space from the space_info on demand.
91  *
92  * BLOCK_RSV_TEMP
93  *   This is used by things like truncate and iput.  We will temporarily
94  *   allocate a block reserve, set it to some size, and then truncate bytes
95  *   until we have no space left.  With ->failfast set we'll simply return
96  *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
97  *   to make a new reservation.  This is because these operations are
98  *   unbounded, so we want to do as much work as we can, and then back off and
99  *   re-reserve.
100  */
101
102 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
103                                     struct btrfs_block_rsv *block_rsv,
104                                     struct btrfs_block_rsv *dest, u64 num_bytes,
105                                     u64 *qgroup_to_release_ret)
106 {
107         struct btrfs_space_info *space_info = block_rsv->space_info;
108         u64 qgroup_to_release = 0;
109         u64 ret;
110
111         spin_lock(&block_rsv->lock);
112         if (num_bytes == (u64)-1) {
113                 num_bytes = block_rsv->size;
114                 qgroup_to_release = block_rsv->qgroup_rsv_size;
115         }
116         block_rsv->size -= num_bytes;
117         if (block_rsv->reserved >= block_rsv->size) {
118                 num_bytes = block_rsv->reserved - block_rsv->size;
119                 block_rsv->reserved = block_rsv->size;
120                 block_rsv->full = 1;
121         } else {
122                 num_bytes = 0;
123         }
124         if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
125                 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
126                                     block_rsv->qgroup_rsv_size;
127                 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
128         } else {
129                 qgroup_to_release = 0;
130         }
131         spin_unlock(&block_rsv->lock);
132
133         ret = num_bytes;
134         if (num_bytes > 0) {
135                 if (dest) {
136                         spin_lock(&dest->lock);
137                         if (!dest->full) {
138                                 u64 bytes_to_add;
139
140                                 bytes_to_add = dest->size - dest->reserved;
141                                 bytes_to_add = min(num_bytes, bytes_to_add);
142                                 dest->reserved += bytes_to_add;
143                                 if (dest->reserved >= dest->size)
144                                         dest->full = 1;
145                                 num_bytes -= bytes_to_add;
146                         }
147                         spin_unlock(&dest->lock);
148                 }
149                 if (num_bytes)
150                         btrfs_space_info_free_bytes_may_use(fs_info,
151                                                             space_info,
152                                                             num_bytes);
153         }
154         if (qgroup_to_release_ret)
155                 *qgroup_to_release_ret = qgroup_to_release;
156         return ret;
157 }
158
159 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
160                             struct btrfs_block_rsv *dst, u64 num_bytes,
161                             bool update_size)
162 {
163         int ret;
164
165         ret = btrfs_block_rsv_use_bytes(src, num_bytes);
166         if (ret)
167                 return ret;
168
169         btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
170         return 0;
171 }
172
173 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
174 {
175         memset(rsv, 0, sizeof(*rsv));
176         spin_lock_init(&rsv->lock);
177         rsv->type = type;
178 }
179
180 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
181                                    struct btrfs_block_rsv *rsv,
182                                    unsigned short type)
183 {
184         btrfs_init_block_rsv(rsv, type);
185         rsv->space_info = btrfs_find_space_info(fs_info,
186                                             BTRFS_BLOCK_GROUP_METADATA);
187 }
188
189 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
190                                               unsigned short type)
191 {
192         struct btrfs_block_rsv *block_rsv;
193
194         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
195         if (!block_rsv)
196                 return NULL;
197
198         btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
199         return block_rsv;
200 }
201
202 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
203                           struct btrfs_block_rsv *rsv)
204 {
205         if (!rsv)
206                 return;
207         btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
208         kfree(rsv);
209 }
210
211 int btrfs_block_rsv_add(struct btrfs_root *root,
212                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
213                         enum btrfs_reserve_flush_enum flush)
214 {
215         int ret;
216
217         if (num_bytes == 0)
218                 return 0;
219
220         ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
221         if (!ret)
222                 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
223
224         return ret;
225 }
226
227 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
228 {
229         u64 num_bytes = 0;
230         int ret = -ENOSPC;
231
232         if (!block_rsv)
233                 return 0;
234
235         spin_lock(&block_rsv->lock);
236         num_bytes = div_factor(block_rsv->size, min_factor);
237         if (block_rsv->reserved >= num_bytes)
238                 ret = 0;
239         spin_unlock(&block_rsv->lock);
240
241         return ret;
242 }
243
244 int btrfs_block_rsv_refill(struct btrfs_root *root,
245                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
246                            enum btrfs_reserve_flush_enum flush)
247 {
248         u64 num_bytes = 0;
249         int ret = -ENOSPC;
250
251         if (!block_rsv)
252                 return 0;
253
254         spin_lock(&block_rsv->lock);
255         num_bytes = min_reserved;
256         if (block_rsv->reserved >= num_bytes)
257                 ret = 0;
258         else
259                 num_bytes -= block_rsv->reserved;
260         spin_unlock(&block_rsv->lock);
261
262         if (!ret)
263                 return 0;
264
265         ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
266         if (!ret) {
267                 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
268                 return 0;
269         }
270
271         return ret;
272 }
273
274 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
275                             struct btrfs_block_rsv *block_rsv, u64 num_bytes,
276                             u64 *qgroup_to_release)
277 {
278         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
279         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
280         struct btrfs_block_rsv *target = NULL;
281
282         /*
283          * If we are the delayed_rsv then push to the global rsv, otherwise dump
284          * into the delayed rsv if it is not full.
285          */
286         if (block_rsv == delayed_rsv)
287                 target = global_rsv;
288         else if (block_rsv != global_rsv && !delayed_rsv->full)
289                 target = delayed_rsv;
290
291         if (target && block_rsv->space_info != target->space_info)
292                 target = NULL;
293
294         return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
295                                        qgroup_to_release);
296 }
297
298 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
299 {
300         int ret = -ENOSPC;
301
302         spin_lock(&block_rsv->lock);
303         if (block_rsv->reserved >= num_bytes) {
304                 block_rsv->reserved -= num_bytes;
305                 if (block_rsv->reserved < block_rsv->size)
306                         block_rsv->full = 0;
307                 ret = 0;
308         }
309         spin_unlock(&block_rsv->lock);
310         return ret;
311 }
312
313 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
314                                u64 num_bytes, bool update_size)
315 {
316         spin_lock(&block_rsv->lock);
317         block_rsv->reserved += num_bytes;
318         if (update_size)
319                 block_rsv->size += num_bytes;
320         else if (block_rsv->reserved >= block_rsv->size)
321                 block_rsv->full = 1;
322         spin_unlock(&block_rsv->lock);
323 }
324
325 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
326                              struct btrfs_block_rsv *dest, u64 num_bytes,
327                              int min_factor)
328 {
329         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
330         u64 min_bytes;
331
332         if (global_rsv->space_info != dest->space_info)
333                 return -ENOSPC;
334
335         spin_lock(&global_rsv->lock);
336         min_bytes = div_factor(global_rsv->size, min_factor);
337         if (global_rsv->reserved < min_bytes + num_bytes) {
338                 spin_unlock(&global_rsv->lock);
339                 return -ENOSPC;
340         }
341         global_rsv->reserved -= num_bytes;
342         if (global_rsv->reserved < global_rsv->size)
343                 global_rsv->full = 0;
344         spin_unlock(&global_rsv->lock);
345
346         btrfs_block_rsv_add_bytes(dest, num_bytes, true);
347         return 0;
348 }
349
350 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
351 {
352         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
353         struct btrfs_space_info *sinfo = block_rsv->space_info;
354         u64 num_bytes;
355         unsigned min_items;
356
357         /*
358          * The global block rsv is based on the size of the extent tree, the
359          * checksum tree and the root tree.  If the fs is empty we want to set
360          * it to a minimal amount for safety.
361          */
362         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
363                 btrfs_root_used(&fs_info->csum_root->root_item) +
364                 btrfs_root_used(&fs_info->tree_root->root_item);
365
366         /*
367          * We at a minimum are going to modify the csum root, the tree root, and
368          * the extent root.
369          */
370         min_items = 3;
371
372         /*
373          * But we also want to reserve enough space so we can do the fallback
374          * global reserve for an unlink, which is an additional 5 items (see the
375          * comment in __unlink_start_trans for what we're modifying.)
376          *
377          * But we also need space for the delayed ref updates from the unlink,
378          * so its 10, 5 for the actual operation, and 5 for the delayed ref
379          * updates.
380          */
381         min_items += 10;
382
383         num_bytes = max_t(u64, num_bytes,
384                           btrfs_calc_insert_metadata_size(fs_info, min_items));
385
386         spin_lock(&sinfo->lock);
387         spin_lock(&block_rsv->lock);
388
389         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
390
391         if (block_rsv->reserved < block_rsv->size) {
392                 num_bytes = block_rsv->size - block_rsv->reserved;
393                 btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
394                                                       num_bytes);
395                 block_rsv->reserved = block_rsv->size;
396         } else if (block_rsv->reserved > block_rsv->size) {
397                 num_bytes = block_rsv->reserved - block_rsv->size;
398                 btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
399                                                       -num_bytes);
400                 block_rsv->reserved = block_rsv->size;
401                 btrfs_try_granting_tickets(fs_info, sinfo);
402         }
403
404         if (block_rsv->reserved == block_rsv->size)
405                 block_rsv->full = 1;
406         else
407                 block_rsv->full = 0;
408
409         if (block_rsv->size >= sinfo->total_bytes)
410                 sinfo->force_alloc = CHUNK_ALLOC_FORCE;
411         spin_unlock(&block_rsv->lock);
412         spin_unlock(&sinfo->lock);
413 }
414
415 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
416 {
417         struct btrfs_space_info *space_info;
418
419         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
420         fs_info->chunk_block_rsv.space_info = space_info;
421
422         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
423         fs_info->global_block_rsv.space_info = space_info;
424         fs_info->trans_block_rsv.space_info = space_info;
425         fs_info->empty_block_rsv.space_info = space_info;
426         fs_info->delayed_block_rsv.space_info = space_info;
427         fs_info->delayed_refs_rsv.space_info = space_info;
428
429         /*
430          * Our various recovery options can leave us with NULL roots, so check
431          * here and just bail before we go dereferencing NULLs everywhere.
432          */
433         if (!fs_info->extent_root || !fs_info->csum_root ||
434             !fs_info->dev_root || !fs_info->chunk_root || !fs_info->tree_root)
435                 return;
436
437         fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
438         fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
439         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
440         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
441         if (fs_info->quota_root)
442                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
443         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
444
445         btrfs_update_global_block_rsv(fs_info);
446 }
447
448 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
449 {
450         btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
451                                 NULL);
452         WARN_ON(fs_info->trans_block_rsv.size > 0);
453         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
454         WARN_ON(fs_info->chunk_block_rsv.size > 0);
455         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
456         WARN_ON(fs_info->delayed_block_rsv.size > 0);
457         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
458         WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
459         WARN_ON(fs_info->delayed_refs_rsv.size > 0);
460 }
461
462 static struct btrfs_block_rsv *get_block_rsv(
463                                         const struct btrfs_trans_handle *trans,
464                                         const struct btrfs_root *root)
465 {
466         struct btrfs_fs_info *fs_info = root->fs_info;
467         struct btrfs_block_rsv *block_rsv = NULL;
468
469         if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
470             (root == fs_info->csum_root && trans->adding_csums) ||
471             (root == fs_info->uuid_root))
472                 block_rsv = trans->block_rsv;
473
474         if (!block_rsv)
475                 block_rsv = root->block_rsv;
476
477         if (!block_rsv)
478                 block_rsv = &fs_info->empty_block_rsv;
479
480         return block_rsv;
481 }
482
483 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
484                                             struct btrfs_root *root,
485                                             u32 blocksize)
486 {
487         struct btrfs_fs_info *fs_info = root->fs_info;
488         struct btrfs_block_rsv *block_rsv;
489         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
490         int ret;
491         bool global_updated = false;
492
493         block_rsv = get_block_rsv(trans, root);
494
495         if (unlikely(block_rsv->size == 0))
496                 goto try_reserve;
497 again:
498         ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
499         if (!ret)
500                 return block_rsv;
501
502         if (block_rsv->failfast)
503                 return ERR_PTR(ret);
504
505         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
506                 global_updated = true;
507                 btrfs_update_global_block_rsv(fs_info);
508                 goto again;
509         }
510
511         /*
512          * The global reserve still exists to save us from ourselves, so don't
513          * warn_on if we are short on our delayed refs reserve.
514          */
515         if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
516             btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
517                 static DEFINE_RATELIMIT_STATE(_rs,
518                                 DEFAULT_RATELIMIT_INTERVAL * 10,
519                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
520                 if (__ratelimit(&_rs))
521                         WARN(1, KERN_DEBUG
522                                 "BTRFS: block rsv %d returned %d\n",
523                                 block_rsv->type, ret);
524         }
525 try_reserve:
526         ret = btrfs_reserve_metadata_bytes(root, block_rsv, blocksize,
527                                            BTRFS_RESERVE_NO_FLUSH);
528         if (!ret)
529                 return block_rsv;
530         /*
531          * If we couldn't reserve metadata bytes try and use some from
532          * the global reserve if its space type is the same as the global
533          * reservation.
534          */
535         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
536             block_rsv->space_info == global_rsv->space_info) {
537                 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
538                 if (!ret)
539                         return global_rsv;
540         }
541         return ERR_PTR(ret);
542 }