tools headers UAPI: Sync drm/i915_drm.h with the kernel sources
[linux-2.6-microblaze.git] / fs / btrfs / block-group.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2
3 #ifndef BTRFS_BLOCK_GROUP_H
4 #define BTRFS_BLOCK_GROUP_H
5
6 #include "free-space-cache.h"
7
8 enum btrfs_disk_cache_state {
9         BTRFS_DC_WRITTEN,
10         BTRFS_DC_ERROR,
11         BTRFS_DC_CLEAR,
12         BTRFS_DC_SETUP,
13 };
14
15 /*
16  * This describes the state of the block_group for async discard.  This is due
17  * to the two pass nature of it where extent discarding is prioritized over
18  * bitmap discarding.  BTRFS_DISCARD_RESET_CURSOR is set when we are resetting
19  * between lists to prevent contention for discard state variables
20  * (eg. discard_cursor).
21  */
22 enum btrfs_discard_state {
23         BTRFS_DISCARD_EXTENTS,
24         BTRFS_DISCARD_BITMAPS,
25         BTRFS_DISCARD_RESET_CURSOR,
26 };
27
28 /*
29  * Control flags for do_chunk_alloc's force field CHUNK_ALLOC_NO_FORCE means to
30  * only allocate a chunk if we really need one.
31  *
32  * CHUNK_ALLOC_LIMITED means to only try and allocate one if we have very few
33  * chunks already allocated.  This is used as part of the clustering code to
34  * help make sure we have a good pool of storage to cluster in, without filling
35  * the FS with empty chunks
36  *
37  * CHUNK_ALLOC_FORCE means it must try to allocate one
38  */
39 enum btrfs_chunk_alloc_enum {
40         CHUNK_ALLOC_NO_FORCE,
41         CHUNK_ALLOC_LIMITED,
42         CHUNK_ALLOC_FORCE,
43 };
44
45 struct btrfs_caching_control {
46         struct list_head list;
47         struct mutex mutex;
48         wait_queue_head_t wait;
49         struct btrfs_work work;
50         struct btrfs_block_group *block_group;
51         u64 progress;
52         refcount_t count;
53 };
54
55 /* Once caching_thread() finds this much free space, it will wake up waiters. */
56 #define CACHING_CTL_WAKE_UP SZ_2M
57
58 struct btrfs_block_group {
59         struct btrfs_fs_info *fs_info;
60         struct inode *inode;
61         spinlock_t lock;
62         u64 start;
63         u64 length;
64         u64 pinned;
65         u64 reserved;
66         u64 used;
67         u64 delalloc_bytes;
68         u64 bytes_super;
69         u64 flags;
70         u64 cache_generation;
71
72         /*
73          * If the free space extent count exceeds this number, convert the block
74          * group to bitmaps.
75          */
76         u32 bitmap_high_thresh;
77
78         /*
79          * If the free space extent count drops below this number, convert the
80          * block group back to extents.
81          */
82         u32 bitmap_low_thresh;
83
84         /*
85          * It is just used for the delayed data space allocation because
86          * only the data space allocation and the relative metadata update
87          * can be done cross the transaction.
88          */
89         struct rw_semaphore data_rwsem;
90
91         /* For raid56, this is a full stripe, without parity */
92         unsigned long full_stripe_len;
93
94         unsigned int ro;
95         unsigned int iref:1;
96         unsigned int has_caching_ctl:1;
97         unsigned int removed:1;
98         unsigned int to_copy:1;
99         unsigned int relocating_repair:1;
100
101         int disk_cache_state;
102
103         /* Cache tracking stuff */
104         int cached;
105         struct btrfs_caching_control *caching_ctl;
106         u64 last_byte_to_unpin;
107
108         struct btrfs_space_info *space_info;
109
110         /* Free space cache stuff */
111         struct btrfs_free_space_ctl *free_space_ctl;
112
113         /* Block group cache stuff */
114         struct rb_node cache_node;
115
116         /* For block groups in the same raid type */
117         struct list_head list;
118
119         refcount_t refs;
120
121         /*
122          * List of struct btrfs_free_clusters for this block group.
123          * Today it will only have one thing on it, but that may change
124          */
125         struct list_head cluster_list;
126
127         /* For delayed block group creation or deletion of empty block groups */
128         struct list_head bg_list;
129
130         /* For read-only block groups */
131         struct list_head ro_list;
132
133         /*
134          * When non-zero it means the block group's logical address and its
135          * device extents can not be reused for future block group allocations
136          * until the counter goes down to 0. This is to prevent them from being
137          * reused while some task is still using the block group after it was
138          * deleted - we want to make sure they can only be reused for new block
139          * groups after that task is done with the deleted block group.
140          */
141         atomic_t frozen;
142
143         /* For discard operations */
144         struct list_head discard_list;
145         int discard_index;
146         u64 discard_eligible_time;
147         u64 discard_cursor;
148         enum btrfs_discard_state discard_state;
149
150         /* For dirty block groups */
151         struct list_head dirty_list;
152         struct list_head io_list;
153
154         struct btrfs_io_ctl io_ctl;
155
156         /*
157          * Incremented when doing extent allocations and holding a read lock
158          * on the space_info's groups_sem semaphore.
159          * Decremented when an ordered extent that represents an IO against this
160          * block group's range is created (after it's added to its inode's
161          * root's list of ordered extents) or immediately after the allocation
162          * if it's a metadata extent or fallocate extent (for these cases we
163          * don't create ordered extents).
164          */
165         atomic_t reservations;
166
167         /*
168          * Incremented while holding the spinlock *lock* by a task checking if
169          * it can perform a nocow write (incremented if the value for the *ro*
170          * field is 0). Decremented by such tasks once they create an ordered
171          * extent or before that if some error happens before reaching that step.
172          * This is to prevent races between block group relocation and nocow
173          * writes through direct IO.
174          */
175         atomic_t nocow_writers;
176
177         /* Lock for free space tree operations. */
178         struct mutex free_space_lock;
179
180         /*
181          * Does the block group need to be added to the free space tree?
182          * Protected by free_space_lock.
183          */
184         int needs_free_space;
185
186         /* Flag indicating this block group is placed on a sequential zone */
187         bool seq_zone;
188
189         /* Record locked full stripes for RAID5/6 block group */
190         struct btrfs_full_stripe_locks_tree full_stripe_locks_root;
191
192         /*
193          * Allocation offset for the block group to implement sequential
194          * allocation. This is used only on a zoned filesystem.
195          */
196         u64 alloc_offset;
197         u64 zone_unusable;
198         u64 meta_write_pointer;
199 };
200
201 static inline u64 btrfs_block_group_end(struct btrfs_block_group *block_group)
202 {
203         return (block_group->start + block_group->length);
204 }
205
206 static inline bool btrfs_is_block_group_data_only(
207                                         struct btrfs_block_group *block_group)
208 {
209         /*
210          * In mixed mode the fragmentation is expected to be high, lowering the
211          * efficiency, so only proper data block groups are considered.
212          */
213         return (block_group->flags & BTRFS_BLOCK_GROUP_DATA) &&
214                !(block_group->flags & BTRFS_BLOCK_GROUP_METADATA);
215 }
216
217 #ifdef CONFIG_BTRFS_DEBUG
218 static inline int btrfs_should_fragment_free_space(
219                 struct btrfs_block_group *block_group)
220 {
221         struct btrfs_fs_info *fs_info = block_group->fs_info;
222
223         return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
224                 block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
225                (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
226                 block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
227 }
228 #endif
229
230 struct btrfs_block_group *btrfs_lookup_first_block_group(
231                 struct btrfs_fs_info *info, u64 bytenr);
232 struct btrfs_block_group *btrfs_lookup_block_group(
233                 struct btrfs_fs_info *info, u64 bytenr);
234 struct btrfs_block_group *btrfs_next_block_group(
235                 struct btrfs_block_group *cache);
236 void btrfs_get_block_group(struct btrfs_block_group *cache);
237 void btrfs_put_block_group(struct btrfs_block_group *cache);
238 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
239                                         const u64 start);
240 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg);
241 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
242 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
243 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg);
244 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
245                                            u64 num_bytes);
246 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache);
247 int btrfs_cache_block_group(struct btrfs_block_group *cache,
248                             int load_cache_only);
249 void btrfs_put_caching_control(struct btrfs_caching_control *ctl);
250 struct btrfs_caching_control *btrfs_get_caching_control(
251                 struct btrfs_block_group *cache);
252 u64 add_new_free_space(struct btrfs_block_group *block_group,
253                        u64 start, u64 end);
254 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
255                                 struct btrfs_fs_info *fs_info,
256                                 const u64 chunk_offset);
257 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
258                              u64 group_start, struct extent_map *em);
259 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
260 void btrfs_mark_bg_unused(struct btrfs_block_group *bg);
261 int btrfs_read_block_groups(struct btrfs_fs_info *info);
262 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
263                            u64 type, u64 chunk_offset, u64 size);
264 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans);
265 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
266                              bool do_chunk_alloc);
267 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache);
268 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans);
269 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans);
270 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans);
271 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
272                              u64 bytenr, u64 num_bytes, int alloc);
273 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
274                              u64 ram_bytes, u64 num_bytes, int delalloc);
275 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
276                                u64 num_bytes, int delalloc);
277 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
278                       enum btrfs_chunk_alloc_enum force);
279 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type);
280 void check_system_chunk(struct btrfs_trans_handle *trans, const u64 type);
281 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags);
282 void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
283 int btrfs_free_block_groups(struct btrfs_fs_info *info);
284 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
285                                 struct btrfs_caching_control *caching_ctl);
286 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
287                        struct block_device *bdev, u64 physical, u64 **logical,
288                        int *naddrs, int *stripe_len);
289
290 static inline u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
291 {
292         return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
293 }
294
295 static inline u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
296 {
297         return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
298 }
299
300 static inline u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
301 {
302         return btrfs_get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
303 }
304
305 static inline int btrfs_block_group_done(struct btrfs_block_group *cache)
306 {
307         smp_mb();
308         return cache->cached == BTRFS_CACHE_FINISHED ||
309                 cache->cached == BTRFS_CACHE_ERROR;
310 }
311
312 void btrfs_freeze_block_group(struct btrfs_block_group *cache);
313 void btrfs_unfreeze_block_group(struct btrfs_block_group *cache);
314
315 #endif /* BTRFS_BLOCK_GROUP_H */