Merge branch 'fixes-rc1' into fixes
[linux-2.6-microblaze.git] / fs / btrfs / block-group.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 #include "zoned.h"
19
20 /*
21  * Return target flags in extended format or 0 if restripe for this chunk_type
22  * is not in progress
23  *
24  * Should be called with balance_lock held
25  */
26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 {
28         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29         u64 target = 0;
30
31         if (!bctl)
32                 return 0;
33
34         if (flags & BTRFS_BLOCK_GROUP_DATA &&
35             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43         }
44
45         return target;
46 }
47
48 /*
49  * @flags: available profiles in extended format (see ctree.h)
50  *
51  * Return reduced profile in chunk format.  If profile changing is in progress
52  * (either running or paused) picks the target profile (if it's already
53  * available), otherwise falls back to plain reducing.
54  */
55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 {
57         u64 num_devices = fs_info->fs_devices->rw_devices;
58         u64 target;
59         u64 raid_type;
60         u64 allowed = 0;
61
62         /*
63          * See if restripe for this chunk_type is in progress, if so try to
64          * reduce to the target profile
65          */
66         spin_lock(&fs_info->balance_lock);
67         target = get_restripe_target(fs_info, flags);
68         if (target) {
69                 spin_unlock(&fs_info->balance_lock);
70                 return extended_to_chunk(target);
71         }
72         spin_unlock(&fs_info->balance_lock);
73
74         /* First, mask out the RAID levels which aren't possible */
75         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77                         allowed |= btrfs_raid_array[raid_type].bg_flag;
78         }
79         allowed &= flags;
80
81         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82                 allowed = BTRFS_BLOCK_GROUP_RAID6;
83         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84                 allowed = BTRFS_BLOCK_GROUP_RAID5;
85         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86                 allowed = BTRFS_BLOCK_GROUP_RAID10;
87         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88                 allowed = BTRFS_BLOCK_GROUP_RAID1;
89         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90                 allowed = BTRFS_BLOCK_GROUP_RAID0;
91
92         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93
94         return extended_to_chunk(flags | allowed);
95 }
96
97 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
98 {
99         unsigned seq;
100         u64 flags;
101
102         do {
103                 flags = orig_flags;
104                 seq = read_seqbegin(&fs_info->profiles_lock);
105
106                 if (flags & BTRFS_BLOCK_GROUP_DATA)
107                         flags |= fs_info->avail_data_alloc_bits;
108                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109                         flags |= fs_info->avail_system_alloc_bits;
110                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111                         flags |= fs_info->avail_metadata_alloc_bits;
112         } while (read_seqretry(&fs_info->profiles_lock, seq));
113
114         return btrfs_reduce_alloc_profile(fs_info, flags);
115 }
116
117 void btrfs_get_block_group(struct btrfs_block_group *cache)
118 {
119         refcount_inc(&cache->refs);
120 }
121
122 void btrfs_put_block_group(struct btrfs_block_group *cache)
123 {
124         if (refcount_dec_and_test(&cache->refs)) {
125                 WARN_ON(cache->pinned > 0);
126                 WARN_ON(cache->reserved > 0);
127
128                 /*
129                  * A block_group shouldn't be on the discard_list anymore.
130                  * Remove the block_group from the discard_list to prevent us
131                  * from causing a panic due to NULL pointer dereference.
132                  */
133                 if (WARN_ON(!list_empty(&cache->discard_list)))
134                         btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135                                                   cache);
136
137                 /*
138                  * If not empty, someone is still holding mutex of
139                  * full_stripe_lock, which can only be released by caller.
140                  * And it will definitely cause use-after-free when caller
141                  * tries to release full stripe lock.
142                  *
143                  * No better way to resolve, but only to warn.
144                  */
145                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146                 kfree(cache->free_space_ctl);
147                 kfree(cache);
148         }
149 }
150
151 /*
152  * This adds the block group to the fs_info rb tree for the block group cache
153  */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155                                        struct btrfs_block_group *block_group)
156 {
157         struct rb_node **p;
158         struct rb_node *parent = NULL;
159         struct btrfs_block_group *cache;
160
161         ASSERT(block_group->length != 0);
162
163         spin_lock(&info->block_group_cache_lock);
164         p = &info->block_group_cache_tree.rb_node;
165
166         while (*p) {
167                 parent = *p;
168                 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
169                 if (block_group->start < cache->start) {
170                         p = &(*p)->rb_left;
171                 } else if (block_group->start > cache->start) {
172                         p = &(*p)->rb_right;
173                 } else {
174                         spin_unlock(&info->block_group_cache_lock);
175                         return -EEXIST;
176                 }
177         }
178
179         rb_link_node(&block_group->cache_node, parent, p);
180         rb_insert_color(&block_group->cache_node,
181                         &info->block_group_cache_tree);
182
183         if (info->first_logical_byte > block_group->start)
184                 info->first_logical_byte = block_group->start;
185
186         spin_unlock(&info->block_group_cache_lock);
187
188         return 0;
189 }
190
191 /*
192  * This will return the block group at or after bytenr if contains is 0, else
193  * it will return the block group that contains the bytenr
194  */
195 static struct btrfs_block_group *block_group_cache_tree_search(
196                 struct btrfs_fs_info *info, u64 bytenr, int contains)
197 {
198         struct btrfs_block_group *cache, *ret = NULL;
199         struct rb_node *n;
200         u64 end, start;
201
202         spin_lock(&info->block_group_cache_lock);
203         n = info->block_group_cache_tree.rb_node;
204
205         while (n) {
206                 cache = rb_entry(n, struct btrfs_block_group, cache_node);
207                 end = cache->start + cache->length - 1;
208                 start = cache->start;
209
210                 if (bytenr < start) {
211                         if (!contains && (!ret || start < ret->start))
212                                 ret = cache;
213                         n = n->rb_left;
214                 } else if (bytenr > start) {
215                         if (contains && bytenr <= end) {
216                                 ret = cache;
217                                 break;
218                         }
219                         n = n->rb_right;
220                 } else {
221                         ret = cache;
222                         break;
223                 }
224         }
225         if (ret) {
226                 btrfs_get_block_group(ret);
227                 if (bytenr == 0 && info->first_logical_byte > ret->start)
228                         info->first_logical_byte = ret->start;
229         }
230         spin_unlock(&info->block_group_cache_lock);
231
232         return ret;
233 }
234
235 /*
236  * Return the block group that starts at or after bytenr
237  */
238 struct btrfs_block_group *btrfs_lookup_first_block_group(
239                 struct btrfs_fs_info *info, u64 bytenr)
240 {
241         return block_group_cache_tree_search(info, bytenr, 0);
242 }
243
244 /*
245  * Return the block group that contains the given bytenr
246  */
247 struct btrfs_block_group *btrfs_lookup_block_group(
248                 struct btrfs_fs_info *info, u64 bytenr)
249 {
250         return block_group_cache_tree_search(info, bytenr, 1);
251 }
252
253 struct btrfs_block_group *btrfs_next_block_group(
254                 struct btrfs_block_group *cache)
255 {
256         struct btrfs_fs_info *fs_info = cache->fs_info;
257         struct rb_node *node;
258
259         spin_lock(&fs_info->block_group_cache_lock);
260
261         /* If our block group was removed, we need a full search. */
262         if (RB_EMPTY_NODE(&cache->cache_node)) {
263                 const u64 next_bytenr = cache->start + cache->length;
264
265                 spin_unlock(&fs_info->block_group_cache_lock);
266                 btrfs_put_block_group(cache);
267                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268         }
269         node = rb_next(&cache->cache_node);
270         btrfs_put_block_group(cache);
271         if (node) {
272                 cache = rb_entry(node, struct btrfs_block_group, cache_node);
273                 btrfs_get_block_group(cache);
274         } else
275                 cache = NULL;
276         spin_unlock(&fs_info->block_group_cache_lock);
277         return cache;
278 }
279
280 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281 {
282         struct btrfs_block_group *bg;
283         bool ret = true;
284
285         bg = btrfs_lookup_block_group(fs_info, bytenr);
286         if (!bg)
287                 return false;
288
289         spin_lock(&bg->lock);
290         if (bg->ro)
291                 ret = false;
292         else
293                 atomic_inc(&bg->nocow_writers);
294         spin_unlock(&bg->lock);
295
296         /* No put on block group, done by btrfs_dec_nocow_writers */
297         if (!ret)
298                 btrfs_put_block_group(bg);
299
300         return ret;
301 }
302
303 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304 {
305         struct btrfs_block_group *bg;
306
307         bg = btrfs_lookup_block_group(fs_info, bytenr);
308         ASSERT(bg);
309         if (atomic_dec_and_test(&bg->nocow_writers))
310                 wake_up_var(&bg->nocow_writers);
311         /*
312          * Once for our lookup and once for the lookup done by a previous call
313          * to btrfs_inc_nocow_writers()
314          */
315         btrfs_put_block_group(bg);
316         btrfs_put_block_group(bg);
317 }
318
319 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
320 {
321         wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322 }
323
324 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325                                         const u64 start)
326 {
327         struct btrfs_block_group *bg;
328
329         bg = btrfs_lookup_block_group(fs_info, start);
330         ASSERT(bg);
331         if (atomic_dec_and_test(&bg->reservations))
332                 wake_up_var(&bg->reservations);
333         btrfs_put_block_group(bg);
334 }
335
336 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
337 {
338         struct btrfs_space_info *space_info = bg->space_info;
339
340         ASSERT(bg->ro);
341
342         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343                 return;
344
345         /*
346          * Our block group is read only but before we set it to read only,
347          * some task might have had allocated an extent from it already, but it
348          * has not yet created a respective ordered extent (and added it to a
349          * root's list of ordered extents).
350          * Therefore wait for any task currently allocating extents, since the
351          * block group's reservations counter is incremented while a read lock
352          * on the groups' semaphore is held and decremented after releasing
353          * the read access on that semaphore and creating the ordered extent.
354          */
355         down_write(&space_info->groups_sem);
356         up_write(&space_info->groups_sem);
357
358         wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359 }
360
361 struct btrfs_caching_control *btrfs_get_caching_control(
362                 struct btrfs_block_group *cache)
363 {
364         struct btrfs_caching_control *ctl;
365
366         spin_lock(&cache->lock);
367         if (!cache->caching_ctl) {
368                 spin_unlock(&cache->lock);
369                 return NULL;
370         }
371
372         ctl = cache->caching_ctl;
373         refcount_inc(&ctl->count);
374         spin_unlock(&cache->lock);
375         return ctl;
376 }
377
378 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379 {
380         if (refcount_dec_and_test(&ctl->count))
381                 kfree(ctl);
382 }
383
384 /*
385  * When we wait for progress in the block group caching, its because our
386  * allocation attempt failed at least once.  So, we must sleep and let some
387  * progress happen before we try again.
388  *
389  * This function will sleep at least once waiting for new free space to show
390  * up, and then it will check the block group free space numbers for our min
391  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
392  * a free extent of a given size, but this is a good start.
393  *
394  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395  * any of the information in this block group.
396  */
397 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
398                                            u64 num_bytes)
399 {
400         struct btrfs_caching_control *caching_ctl;
401
402         caching_ctl = btrfs_get_caching_control(cache);
403         if (!caching_ctl)
404                 return;
405
406         wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
407                    (cache->free_space_ctl->free_space >= num_bytes));
408
409         btrfs_put_caching_control(caching_ctl);
410 }
411
412 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
413 {
414         struct btrfs_caching_control *caching_ctl;
415         int ret = 0;
416
417         caching_ctl = btrfs_get_caching_control(cache);
418         if (!caching_ctl)
419                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420
421         wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
422         if (cache->cached == BTRFS_CACHE_ERROR)
423                 ret = -EIO;
424         btrfs_put_caching_control(caching_ctl);
425         return ret;
426 }
427
428 static bool space_cache_v1_done(struct btrfs_block_group *cache)
429 {
430         bool ret;
431
432         spin_lock(&cache->lock);
433         ret = cache->cached != BTRFS_CACHE_FAST;
434         spin_unlock(&cache->lock);
435
436         return ret;
437 }
438
439 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440                                 struct btrfs_caching_control *caching_ctl)
441 {
442         wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443 }
444
445 #ifdef CONFIG_BTRFS_DEBUG
446 static void fragment_free_space(struct btrfs_block_group *block_group)
447 {
448         struct btrfs_fs_info *fs_info = block_group->fs_info;
449         u64 start = block_group->start;
450         u64 len = block_group->length;
451         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452                 fs_info->nodesize : fs_info->sectorsize;
453         u64 step = chunk << 1;
454
455         while (len > chunk) {
456                 btrfs_remove_free_space(block_group, start, chunk);
457                 start += step;
458                 if (len < step)
459                         len = 0;
460                 else
461                         len -= step;
462         }
463 }
464 #endif
465
466 /*
467  * This is only called by btrfs_cache_block_group, since we could have freed
468  * extents we need to check the pinned_extents for any extents that can't be
469  * used yet since their free space will be released as soon as the transaction
470  * commits.
471  */
472 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
473 {
474         struct btrfs_fs_info *info = block_group->fs_info;
475         u64 extent_start, extent_end, size, total_added = 0;
476         int ret;
477
478         while (start < end) {
479                 ret = find_first_extent_bit(&info->excluded_extents, start,
480                                             &extent_start, &extent_end,
481                                             EXTENT_DIRTY | EXTENT_UPTODATE,
482                                             NULL);
483                 if (ret)
484                         break;
485
486                 if (extent_start <= start) {
487                         start = extent_end + 1;
488                 } else if (extent_start > start && extent_start < end) {
489                         size = extent_start - start;
490                         total_added += size;
491                         ret = btrfs_add_free_space_async_trimmed(block_group,
492                                                                  start, size);
493                         BUG_ON(ret); /* -ENOMEM or logic error */
494                         start = extent_end + 1;
495                 } else {
496                         break;
497                 }
498         }
499
500         if (start < end) {
501                 size = end - start;
502                 total_added += size;
503                 ret = btrfs_add_free_space_async_trimmed(block_group, start,
504                                                          size);
505                 BUG_ON(ret); /* -ENOMEM or logic error */
506         }
507
508         return total_added;
509 }
510
511 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512 {
513         struct btrfs_block_group *block_group = caching_ctl->block_group;
514         struct btrfs_fs_info *fs_info = block_group->fs_info;
515         struct btrfs_root *extent_root = fs_info->extent_root;
516         struct btrfs_path *path;
517         struct extent_buffer *leaf;
518         struct btrfs_key key;
519         u64 total_found = 0;
520         u64 last = 0;
521         u32 nritems;
522         int ret;
523         bool wakeup = true;
524
525         path = btrfs_alloc_path();
526         if (!path)
527                 return -ENOMEM;
528
529         last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
530
531 #ifdef CONFIG_BTRFS_DEBUG
532         /*
533          * If we're fragmenting we don't want to make anybody think we can
534          * allocate from this block group until we've had a chance to fragment
535          * the free space.
536          */
537         if (btrfs_should_fragment_free_space(block_group))
538                 wakeup = false;
539 #endif
540         /*
541          * We don't want to deadlock with somebody trying to allocate a new
542          * extent for the extent root while also trying to search the extent
543          * root to add free space.  So we skip locking and search the commit
544          * root, since its read-only
545          */
546         path->skip_locking = 1;
547         path->search_commit_root = 1;
548         path->reada = READA_FORWARD;
549
550         key.objectid = last;
551         key.offset = 0;
552         key.type = BTRFS_EXTENT_ITEM_KEY;
553
554 next:
555         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556         if (ret < 0)
557                 goto out;
558
559         leaf = path->nodes[0];
560         nritems = btrfs_header_nritems(leaf);
561
562         while (1) {
563                 if (btrfs_fs_closing(fs_info) > 1) {
564                         last = (u64)-1;
565                         break;
566                 }
567
568                 if (path->slots[0] < nritems) {
569                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570                 } else {
571                         ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572                         if (ret)
573                                 break;
574
575                         if (need_resched() ||
576                             rwsem_is_contended(&fs_info->commit_root_sem)) {
577                                 if (wakeup)
578                                         caching_ctl->progress = last;
579                                 btrfs_release_path(path);
580                                 up_read(&fs_info->commit_root_sem);
581                                 mutex_unlock(&caching_ctl->mutex);
582                                 cond_resched();
583                                 mutex_lock(&caching_ctl->mutex);
584                                 down_read(&fs_info->commit_root_sem);
585                                 goto next;
586                         }
587
588                         ret = btrfs_next_leaf(extent_root, path);
589                         if (ret < 0)
590                                 goto out;
591                         if (ret)
592                                 break;
593                         leaf = path->nodes[0];
594                         nritems = btrfs_header_nritems(leaf);
595                         continue;
596                 }
597
598                 if (key.objectid < last) {
599                         key.objectid = last;
600                         key.offset = 0;
601                         key.type = BTRFS_EXTENT_ITEM_KEY;
602
603                         if (wakeup)
604                                 caching_ctl->progress = last;
605                         btrfs_release_path(path);
606                         goto next;
607                 }
608
609                 if (key.objectid < block_group->start) {
610                         path->slots[0]++;
611                         continue;
612                 }
613
614                 if (key.objectid >= block_group->start + block_group->length)
615                         break;
616
617                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618                     key.type == BTRFS_METADATA_ITEM_KEY) {
619                         total_found += add_new_free_space(block_group, last,
620                                                           key.objectid);
621                         if (key.type == BTRFS_METADATA_ITEM_KEY)
622                                 last = key.objectid +
623                                         fs_info->nodesize;
624                         else
625                                 last = key.objectid + key.offset;
626
627                         if (total_found > CACHING_CTL_WAKE_UP) {
628                                 total_found = 0;
629                                 if (wakeup)
630                                         wake_up(&caching_ctl->wait);
631                         }
632                 }
633                 path->slots[0]++;
634         }
635         ret = 0;
636
637         total_found += add_new_free_space(block_group, last,
638                                 block_group->start + block_group->length);
639         caching_ctl->progress = (u64)-1;
640
641 out:
642         btrfs_free_path(path);
643         return ret;
644 }
645
646 static noinline void caching_thread(struct btrfs_work *work)
647 {
648         struct btrfs_block_group *block_group;
649         struct btrfs_fs_info *fs_info;
650         struct btrfs_caching_control *caching_ctl;
651         int ret;
652
653         caching_ctl = container_of(work, struct btrfs_caching_control, work);
654         block_group = caching_ctl->block_group;
655         fs_info = block_group->fs_info;
656
657         mutex_lock(&caching_ctl->mutex);
658         down_read(&fs_info->commit_root_sem);
659
660         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661                 ret = load_free_space_cache(block_group);
662                 if (ret == 1) {
663                         ret = 0;
664                         goto done;
665                 }
666
667                 /*
668                  * We failed to load the space cache, set ourselves to
669                  * CACHE_STARTED and carry on.
670                  */
671                 spin_lock(&block_group->lock);
672                 block_group->cached = BTRFS_CACHE_STARTED;
673                 spin_unlock(&block_group->lock);
674                 wake_up(&caching_ctl->wait);
675         }
676
677         /*
678          * If we are in the transaction that populated the free space tree we
679          * can't actually cache from the free space tree as our commit root and
680          * real root are the same, so we could change the contents of the blocks
681          * while caching.  Instead do the slow caching in this case, and after
682          * the transaction has committed we will be safe.
683          */
684         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685             !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
686                 ret = load_free_space_tree(caching_ctl);
687         else
688                 ret = load_extent_tree_free(caching_ctl);
689 done:
690         spin_lock(&block_group->lock);
691         block_group->caching_ctl = NULL;
692         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693         spin_unlock(&block_group->lock);
694
695 #ifdef CONFIG_BTRFS_DEBUG
696         if (btrfs_should_fragment_free_space(block_group)) {
697                 u64 bytes_used;
698
699                 spin_lock(&block_group->space_info->lock);
700                 spin_lock(&block_group->lock);
701                 bytes_used = block_group->length - block_group->used;
702                 block_group->space_info->bytes_used += bytes_used >> 1;
703                 spin_unlock(&block_group->lock);
704                 spin_unlock(&block_group->space_info->lock);
705                 fragment_free_space(block_group);
706         }
707 #endif
708
709         caching_ctl->progress = (u64)-1;
710
711         up_read(&fs_info->commit_root_sem);
712         btrfs_free_excluded_extents(block_group);
713         mutex_unlock(&caching_ctl->mutex);
714
715         wake_up(&caching_ctl->wait);
716
717         btrfs_put_caching_control(caching_ctl);
718         btrfs_put_block_group(block_group);
719 }
720
721 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
722 {
723         DEFINE_WAIT(wait);
724         struct btrfs_fs_info *fs_info = cache->fs_info;
725         struct btrfs_caching_control *caching_ctl = NULL;
726         int ret = 0;
727
728         /* Allocator for zoned filesystems does not use the cache at all */
729         if (btrfs_is_zoned(fs_info))
730                 return 0;
731
732         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733         if (!caching_ctl)
734                 return -ENOMEM;
735
736         INIT_LIST_HEAD(&caching_ctl->list);
737         mutex_init(&caching_ctl->mutex);
738         init_waitqueue_head(&caching_ctl->wait);
739         caching_ctl->block_group = cache;
740         caching_ctl->progress = cache->start;
741         refcount_set(&caching_ctl->count, 2);
742         btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
743
744         spin_lock(&cache->lock);
745         if (cache->cached != BTRFS_CACHE_NO) {
746                 kfree(caching_ctl);
747
748                 caching_ctl = cache->caching_ctl;
749                 if (caching_ctl)
750                         refcount_inc(&caching_ctl->count);
751                 spin_unlock(&cache->lock);
752                 goto out;
753         }
754         WARN_ON(cache->caching_ctl);
755         cache->caching_ctl = caching_ctl;
756         if (btrfs_test_opt(fs_info, SPACE_CACHE))
757                 cache->cached = BTRFS_CACHE_FAST;
758         else
759                 cache->cached = BTRFS_CACHE_STARTED;
760         cache->has_caching_ctl = 1;
761         spin_unlock(&cache->lock);
762
763         spin_lock(&fs_info->block_group_cache_lock);
764         refcount_inc(&caching_ctl->count);
765         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
766         spin_unlock(&fs_info->block_group_cache_lock);
767
768         btrfs_get_block_group(cache);
769
770         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
771 out:
772         if (load_cache_only && caching_ctl)
773                 btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774         if (caching_ctl)
775                 btrfs_put_caching_control(caching_ctl);
776
777         return ret;
778 }
779
780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781 {
782         u64 extra_flags = chunk_to_extended(flags) &
783                                 BTRFS_EXTENDED_PROFILE_MASK;
784
785         write_seqlock(&fs_info->profiles_lock);
786         if (flags & BTRFS_BLOCK_GROUP_DATA)
787                 fs_info->avail_data_alloc_bits &= ~extra_flags;
788         if (flags & BTRFS_BLOCK_GROUP_METADATA)
789                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791                 fs_info->avail_system_alloc_bits &= ~extra_flags;
792         write_sequnlock(&fs_info->profiles_lock);
793 }
794
795 /*
796  * Clear incompat bits for the following feature(s):
797  *
798  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799  *            in the whole filesystem
800  *
801  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
802  */
803 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804 {
805         bool found_raid56 = false;
806         bool found_raid1c34 = false;
807
808         if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809             (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810             (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
811                 struct list_head *head = &fs_info->space_info;
812                 struct btrfs_space_info *sinfo;
813
814                 list_for_each_entry_rcu(sinfo, head, list) {
815                         down_read(&sinfo->groups_sem);
816                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
817                                 found_raid56 = true;
818                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
819                                 found_raid56 = true;
820                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821                                 found_raid1c34 = true;
822                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823                                 found_raid1c34 = true;
824                         up_read(&sinfo->groups_sem);
825                 }
826                 if (!found_raid56)
827                         btrfs_clear_fs_incompat(fs_info, RAID56);
828                 if (!found_raid1c34)
829                         btrfs_clear_fs_incompat(fs_info, RAID1C34);
830         }
831 }
832
833 static int remove_block_group_item(struct btrfs_trans_handle *trans,
834                                    struct btrfs_path *path,
835                                    struct btrfs_block_group *block_group)
836 {
837         struct btrfs_fs_info *fs_info = trans->fs_info;
838         struct btrfs_root *root;
839         struct btrfs_key key;
840         int ret;
841
842         root = fs_info->extent_root;
843         key.objectid = block_group->start;
844         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845         key.offset = block_group->length;
846
847         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848         if (ret > 0)
849                 ret = -ENOENT;
850         if (ret < 0)
851                 return ret;
852
853         ret = btrfs_del_item(trans, root, path);
854         return ret;
855 }
856
857 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858                              u64 group_start, struct extent_map *em)
859 {
860         struct btrfs_fs_info *fs_info = trans->fs_info;
861         struct btrfs_path *path;
862         struct btrfs_block_group *block_group;
863         struct btrfs_free_cluster *cluster;
864         struct inode *inode;
865         struct kobject *kobj = NULL;
866         int ret;
867         int index;
868         int factor;
869         struct btrfs_caching_control *caching_ctl = NULL;
870         bool remove_em;
871         bool remove_rsv = false;
872
873         block_group = btrfs_lookup_block_group(fs_info, group_start);
874         BUG_ON(!block_group);
875         BUG_ON(!block_group->ro);
876
877         trace_btrfs_remove_block_group(block_group);
878         /*
879          * Free the reserved super bytes from this block group before
880          * remove it.
881          */
882         btrfs_free_excluded_extents(block_group);
883         btrfs_free_ref_tree_range(fs_info, block_group->start,
884                                   block_group->length);
885
886         index = btrfs_bg_flags_to_raid_index(block_group->flags);
887         factor = btrfs_bg_type_to_factor(block_group->flags);
888
889         /* make sure this block group isn't part of an allocation cluster */
890         cluster = &fs_info->data_alloc_cluster;
891         spin_lock(&cluster->refill_lock);
892         btrfs_return_cluster_to_free_space(block_group, cluster);
893         spin_unlock(&cluster->refill_lock);
894
895         /*
896          * make sure this block group isn't part of a metadata
897          * allocation cluster
898          */
899         cluster = &fs_info->meta_alloc_cluster;
900         spin_lock(&cluster->refill_lock);
901         btrfs_return_cluster_to_free_space(block_group, cluster);
902         spin_unlock(&cluster->refill_lock);
903
904         btrfs_clear_treelog_bg(block_group);
905
906         path = btrfs_alloc_path();
907         if (!path) {
908                 ret = -ENOMEM;
909                 goto out;
910         }
911
912         /*
913          * get the inode first so any iput calls done for the io_list
914          * aren't the final iput (no unlinks allowed now)
915          */
916         inode = lookup_free_space_inode(block_group, path);
917
918         mutex_lock(&trans->transaction->cache_write_mutex);
919         /*
920          * Make sure our free space cache IO is done before removing the
921          * free space inode
922          */
923         spin_lock(&trans->transaction->dirty_bgs_lock);
924         if (!list_empty(&block_group->io_list)) {
925                 list_del_init(&block_group->io_list);
926
927                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928
929                 spin_unlock(&trans->transaction->dirty_bgs_lock);
930                 btrfs_wait_cache_io(trans, block_group, path);
931                 btrfs_put_block_group(block_group);
932                 spin_lock(&trans->transaction->dirty_bgs_lock);
933         }
934
935         if (!list_empty(&block_group->dirty_list)) {
936                 list_del_init(&block_group->dirty_list);
937                 remove_rsv = true;
938                 btrfs_put_block_group(block_group);
939         }
940         spin_unlock(&trans->transaction->dirty_bgs_lock);
941         mutex_unlock(&trans->transaction->cache_write_mutex);
942
943         ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944         if (ret)
945                 goto out;
946
947         spin_lock(&fs_info->block_group_cache_lock);
948         rb_erase(&block_group->cache_node,
949                  &fs_info->block_group_cache_tree);
950         RB_CLEAR_NODE(&block_group->cache_node);
951
952         /* Once for the block groups rbtree */
953         btrfs_put_block_group(block_group);
954
955         if (fs_info->first_logical_byte == block_group->start)
956                 fs_info->first_logical_byte = (u64)-1;
957         spin_unlock(&fs_info->block_group_cache_lock);
958
959         down_write(&block_group->space_info->groups_sem);
960         /*
961          * we must use list_del_init so people can check to see if they
962          * are still on the list after taking the semaphore
963          */
964         list_del_init(&block_group->list);
965         if (list_empty(&block_group->space_info->block_groups[index])) {
966                 kobj = block_group->space_info->block_group_kobjs[index];
967                 block_group->space_info->block_group_kobjs[index] = NULL;
968                 clear_avail_alloc_bits(fs_info, block_group->flags);
969         }
970         up_write(&block_group->space_info->groups_sem);
971         clear_incompat_bg_bits(fs_info, block_group->flags);
972         if (kobj) {
973                 kobject_del(kobj);
974                 kobject_put(kobj);
975         }
976
977         if (block_group->has_caching_ctl)
978                 caching_ctl = btrfs_get_caching_control(block_group);
979         if (block_group->cached == BTRFS_CACHE_STARTED)
980                 btrfs_wait_block_group_cache_done(block_group);
981         if (block_group->has_caching_ctl) {
982                 spin_lock(&fs_info->block_group_cache_lock);
983                 if (!caching_ctl) {
984                         struct btrfs_caching_control *ctl;
985
986                         list_for_each_entry(ctl,
987                                     &fs_info->caching_block_groups, list)
988                                 if (ctl->block_group == block_group) {
989                                         caching_ctl = ctl;
990                                         refcount_inc(&caching_ctl->count);
991                                         break;
992                                 }
993                 }
994                 if (caching_ctl)
995                         list_del_init(&caching_ctl->list);
996                 spin_unlock(&fs_info->block_group_cache_lock);
997                 if (caching_ctl) {
998                         /* Once for the caching bgs list and once for us. */
999                         btrfs_put_caching_control(caching_ctl);
1000                         btrfs_put_caching_control(caching_ctl);
1001                 }
1002         }
1003
1004         spin_lock(&trans->transaction->dirty_bgs_lock);
1005         WARN_ON(!list_empty(&block_group->dirty_list));
1006         WARN_ON(!list_empty(&block_group->io_list));
1007         spin_unlock(&trans->transaction->dirty_bgs_lock);
1008
1009         btrfs_remove_free_space_cache(block_group);
1010
1011         spin_lock(&block_group->space_info->lock);
1012         list_del_init(&block_group->ro_list);
1013
1014         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015                 WARN_ON(block_group->space_info->total_bytes
1016                         < block_group->length);
1017                 WARN_ON(block_group->space_info->bytes_readonly
1018                         < block_group->length - block_group->zone_unusable);
1019                 WARN_ON(block_group->space_info->bytes_zone_unusable
1020                         < block_group->zone_unusable);
1021                 WARN_ON(block_group->space_info->disk_total
1022                         < block_group->length * factor);
1023         }
1024         block_group->space_info->total_bytes -= block_group->length;
1025         block_group->space_info->bytes_readonly -=
1026                 (block_group->length - block_group->zone_unusable);
1027         block_group->space_info->bytes_zone_unusable -=
1028                 block_group->zone_unusable;
1029         block_group->space_info->disk_total -= block_group->length * factor;
1030
1031         spin_unlock(&block_group->space_info->lock);
1032
1033         /*
1034          * Remove the free space for the block group from the free space tree
1035          * and the block group's item from the extent tree before marking the
1036          * block group as removed. This is to prevent races with tasks that
1037          * freeze and unfreeze a block group, this task and another task
1038          * allocating a new block group - the unfreeze task ends up removing
1039          * the block group's extent map before the task calling this function
1040          * deletes the block group item from the extent tree, allowing for
1041          * another task to attempt to create another block group with the same
1042          * item key (and failing with -EEXIST and a transaction abort).
1043          */
1044         ret = remove_block_group_free_space(trans, block_group);
1045         if (ret)
1046                 goto out;
1047
1048         ret = remove_block_group_item(trans, path, block_group);
1049         if (ret < 0)
1050                 goto out;
1051
1052         spin_lock(&block_group->lock);
1053         block_group->removed = 1;
1054         /*
1055          * At this point trimming or scrub can't start on this block group,
1056          * because we removed the block group from the rbtree
1057          * fs_info->block_group_cache_tree so no one can't find it anymore and
1058          * even if someone already got this block group before we removed it
1059          * from the rbtree, they have already incremented block_group->frozen -
1060          * if they didn't, for the trimming case they won't find any free space
1061          * entries because we already removed them all when we called
1062          * btrfs_remove_free_space_cache().
1063          *
1064          * And we must not remove the extent map from the fs_info->mapping_tree
1065          * to prevent the same logical address range and physical device space
1066          * ranges from being reused for a new block group. This is needed to
1067          * avoid races with trimming and scrub.
1068          *
1069          * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070          * completely transactionless, so while it is trimming a range the
1071          * currently running transaction might finish and a new one start,
1072          * allowing for new block groups to be created that can reuse the same
1073          * physical device locations unless we take this special care.
1074          *
1075          * There may also be an implicit trim operation if the file system
1076          * is mounted with -odiscard. The same protections must remain
1077          * in place until the extents have been discarded completely when
1078          * the transaction commit has completed.
1079          */
1080         remove_em = (atomic_read(&block_group->frozen) == 0);
1081         spin_unlock(&block_group->lock);
1082
1083         if (remove_em) {
1084                 struct extent_map_tree *em_tree;
1085
1086                 em_tree = &fs_info->mapping_tree;
1087                 write_lock(&em_tree->lock);
1088                 remove_extent_mapping(em_tree, em);
1089                 write_unlock(&em_tree->lock);
1090                 /* once for the tree */
1091                 free_extent_map(em);
1092         }
1093
1094 out:
1095         /* Once for the lookup reference */
1096         btrfs_put_block_group(block_group);
1097         if (remove_rsv)
1098                 btrfs_delayed_refs_rsv_release(fs_info, 1);
1099         btrfs_free_path(path);
1100         return ret;
1101 }
1102
1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104                 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105 {
1106         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107         struct extent_map *em;
1108         struct map_lookup *map;
1109         unsigned int num_items;
1110
1111         read_lock(&em_tree->lock);
1112         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113         read_unlock(&em_tree->lock);
1114         ASSERT(em && em->start == chunk_offset);
1115
1116         /*
1117          * We need to reserve 3 + N units from the metadata space info in order
1118          * to remove a block group (done at btrfs_remove_chunk() and at
1119          * btrfs_remove_block_group()), which are used for:
1120          *
1121          * 1 unit for adding the free space inode's orphan (located in the tree
1122          * of tree roots).
1123          * 1 unit for deleting the block group item (located in the extent
1124          * tree).
1125          * 1 unit for deleting the free space item (located in tree of tree
1126          * roots).
1127          * N units for deleting N device extent items corresponding to each
1128          * stripe (located in the device tree).
1129          *
1130          * In order to remove a block group we also need to reserve units in the
1131          * system space info in order to update the chunk tree (update one or
1132          * more device items and remove one chunk item), but this is done at
1133          * btrfs_remove_chunk() through a call to check_system_chunk().
1134          */
1135         map = em->map_lookup;
1136         num_items = 3 + map->num_stripes;
1137         free_extent_map(em);
1138
1139         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140                                                            num_items);
1141 }
1142
1143 /*
1144  * Mark block group @cache read-only, so later write won't happen to block
1145  * group @cache.
1146  *
1147  * If @force is not set, this function will only mark the block group readonly
1148  * if we have enough free space (1M) in other metadata/system block groups.
1149  * If @force is not set, this function will mark the block group readonly
1150  * without checking free space.
1151  *
1152  * NOTE: This function doesn't care if other block groups can contain all the
1153  * data in this block group. That check should be done by relocation routine,
1154  * not this function.
1155  */
1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157 {
1158         struct btrfs_space_info *sinfo = cache->space_info;
1159         u64 num_bytes;
1160         int ret = -ENOSPC;
1161
1162         spin_lock(&sinfo->lock);
1163         spin_lock(&cache->lock);
1164
1165         if (cache->swap_extents) {
1166                 ret = -ETXTBSY;
1167                 goto out;
1168         }
1169
1170         if (cache->ro) {
1171                 cache->ro++;
1172                 ret = 0;
1173                 goto out;
1174         }
1175
1176         num_bytes = cache->length - cache->reserved - cache->pinned -
1177                     cache->bytes_super - cache->zone_unusable - cache->used;
1178
1179         /*
1180          * Data never overcommits, even in mixed mode, so do just the straight
1181          * check of left over space in how much we have allocated.
1182          */
1183         if (force) {
1184                 ret = 0;
1185         } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186                 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187
1188                 /*
1189                  * Here we make sure if we mark this bg RO, we still have enough
1190                  * free space as buffer.
1191                  */
1192                 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193                         ret = 0;
1194         } else {
1195                 /*
1196                  * We overcommit metadata, so we need to do the
1197                  * btrfs_can_overcommit check here, and we need to pass in
1198                  * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199                  * leeway to allow us to mark this block group as read only.
1200                  */
1201                 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202                                          BTRFS_RESERVE_NO_FLUSH))
1203                         ret = 0;
1204         }
1205
1206         if (!ret) {
1207                 sinfo->bytes_readonly += num_bytes;
1208                 if (btrfs_is_zoned(cache->fs_info)) {
1209                         /* Migrate zone_unusable bytes to readonly */
1210                         sinfo->bytes_readonly += cache->zone_unusable;
1211                         sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212                         cache->zone_unusable = 0;
1213                 }
1214                 cache->ro++;
1215                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1216         }
1217 out:
1218         spin_unlock(&cache->lock);
1219         spin_unlock(&sinfo->lock);
1220         if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221                 btrfs_info(cache->fs_info,
1222                         "unable to make block group %llu ro", cache->start);
1223                 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224         }
1225         return ret;
1226 }
1227
1228 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229                                  struct btrfs_block_group *bg)
1230 {
1231         struct btrfs_fs_info *fs_info = bg->fs_info;
1232         struct btrfs_transaction *prev_trans = NULL;
1233         const u64 start = bg->start;
1234         const u64 end = start + bg->length - 1;
1235         int ret;
1236
1237         spin_lock(&fs_info->trans_lock);
1238         if (trans->transaction->list.prev != &fs_info->trans_list) {
1239                 prev_trans = list_last_entry(&trans->transaction->list,
1240                                              struct btrfs_transaction, list);
1241                 refcount_inc(&prev_trans->use_count);
1242         }
1243         spin_unlock(&fs_info->trans_lock);
1244
1245         /*
1246          * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247          * btrfs_finish_extent_commit(). If we are at transaction N, another
1248          * task might be running finish_extent_commit() for the previous
1249          * transaction N - 1, and have seen a range belonging to the block
1250          * group in pinned_extents before we were able to clear the whole block
1251          * group range from pinned_extents. This means that task can lookup for
1252          * the block group after we unpinned it from pinned_extents and removed
1253          * it, leading to a BUG_ON() at unpin_extent_range().
1254          */
1255         mutex_lock(&fs_info->unused_bg_unpin_mutex);
1256         if (prev_trans) {
1257                 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258                                         EXTENT_DIRTY);
1259                 if (ret)
1260                         goto out;
1261         }
1262
1263         ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1264                                 EXTENT_DIRTY);
1265 out:
1266         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1267         if (prev_trans)
1268                 btrfs_put_transaction(prev_trans);
1269
1270         return ret == 0;
1271 }
1272
1273 /*
1274  * Process the unused_bgs list and remove any that don't have any allocated
1275  * space inside of them.
1276  */
1277 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278 {
1279         struct btrfs_block_group *block_group;
1280         struct btrfs_space_info *space_info;
1281         struct btrfs_trans_handle *trans;
1282         const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1283         int ret = 0;
1284
1285         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286                 return;
1287
1288         /*
1289          * Long running balances can keep us blocked here for eternity, so
1290          * simply skip deletion if we're unable to get the mutex.
1291          */
1292         if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1293                 return;
1294
1295         spin_lock(&fs_info->unused_bgs_lock);
1296         while (!list_empty(&fs_info->unused_bgs)) {
1297                 int trimming;
1298
1299                 block_group = list_first_entry(&fs_info->unused_bgs,
1300                                                struct btrfs_block_group,
1301                                                bg_list);
1302                 list_del_init(&block_group->bg_list);
1303
1304                 space_info = block_group->space_info;
1305
1306                 if (ret || btrfs_mixed_space_info(space_info)) {
1307                         btrfs_put_block_group(block_group);
1308                         continue;
1309                 }
1310                 spin_unlock(&fs_info->unused_bgs_lock);
1311
1312                 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313
1314                 /* Don't want to race with allocators so take the groups_sem */
1315                 down_write(&space_info->groups_sem);
1316
1317                 /*
1318                  * Async discard moves the final block group discard to be prior
1319                  * to the unused_bgs code path.  Therefore, if it's not fully
1320                  * trimmed, punt it back to the async discard lists.
1321                  */
1322                 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323                     !btrfs_is_free_space_trimmed(block_group)) {
1324                         trace_btrfs_skip_unused_block_group(block_group);
1325                         up_write(&space_info->groups_sem);
1326                         /* Requeue if we failed because of async discard */
1327                         btrfs_discard_queue_work(&fs_info->discard_ctl,
1328                                                  block_group);
1329                         goto next;
1330                 }
1331
1332                 spin_lock(&block_group->lock);
1333                 if (block_group->reserved || block_group->pinned ||
1334                     block_group->used || block_group->ro ||
1335                     list_is_singular(&block_group->list)) {
1336                         /*
1337                          * We want to bail if we made new allocations or have
1338                          * outstanding allocations in this block group.  We do
1339                          * the ro check in case balance is currently acting on
1340                          * this block group.
1341                          */
1342                         trace_btrfs_skip_unused_block_group(block_group);
1343                         spin_unlock(&block_group->lock);
1344                         up_write(&space_info->groups_sem);
1345                         goto next;
1346                 }
1347                 spin_unlock(&block_group->lock);
1348
1349                 /* We don't want to force the issue, only flip if it's ok. */
1350                 ret = inc_block_group_ro(block_group, 0);
1351                 up_write(&space_info->groups_sem);
1352                 if (ret < 0) {
1353                         ret = 0;
1354                         goto next;
1355                 }
1356
1357                 /*
1358                  * Want to do this before we do anything else so we can recover
1359                  * properly if we fail to join the transaction.
1360                  */
1361                 trans = btrfs_start_trans_remove_block_group(fs_info,
1362                                                      block_group->start);
1363                 if (IS_ERR(trans)) {
1364                         btrfs_dec_block_group_ro(block_group);
1365                         ret = PTR_ERR(trans);
1366                         goto next;
1367                 }
1368
1369                 /*
1370                  * We could have pending pinned extents for this block group,
1371                  * just delete them, we don't care about them anymore.
1372                  */
1373                 if (!clean_pinned_extents(trans, block_group)) {
1374                         btrfs_dec_block_group_ro(block_group);
1375                         goto end_trans;
1376                 }
1377
1378                 /*
1379                  * At this point, the block_group is read only and should fail
1380                  * new allocations.  However, btrfs_finish_extent_commit() can
1381                  * cause this block_group to be placed back on the discard
1382                  * lists because now the block_group isn't fully discarded.
1383                  * Bail here and try again later after discarding everything.
1384                  */
1385                 spin_lock(&fs_info->discard_ctl.lock);
1386                 if (!list_empty(&block_group->discard_list)) {
1387                         spin_unlock(&fs_info->discard_ctl.lock);
1388                         btrfs_dec_block_group_ro(block_group);
1389                         btrfs_discard_queue_work(&fs_info->discard_ctl,
1390                                                  block_group);
1391                         goto end_trans;
1392                 }
1393                 spin_unlock(&fs_info->discard_ctl.lock);
1394
1395                 /* Reset pinned so btrfs_put_block_group doesn't complain */
1396                 spin_lock(&space_info->lock);
1397                 spin_lock(&block_group->lock);
1398
1399                 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400                                                      -block_group->pinned);
1401                 space_info->bytes_readonly += block_group->pinned;
1402                 __btrfs_mod_total_bytes_pinned(space_info, -block_group->pinned);
1403                 block_group->pinned = 0;
1404
1405                 spin_unlock(&block_group->lock);
1406                 spin_unlock(&space_info->lock);
1407
1408                 /*
1409                  * The normal path here is an unused block group is passed here,
1410                  * then trimming is handled in the transaction commit path.
1411                  * Async discard interposes before this to do the trimming
1412                  * before coming down the unused block group path as trimming
1413                  * will no longer be done later in the transaction commit path.
1414                  */
1415                 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1416                         goto flip_async;
1417
1418                 /*
1419                  * DISCARD can flip during remount. On zoned filesystems, we
1420                  * need to reset sequential-required zones.
1421                  */
1422                 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1423                                 btrfs_is_zoned(fs_info);
1424
1425                 /* Implicit trim during transaction commit. */
1426                 if (trimming)
1427                         btrfs_freeze_block_group(block_group);
1428
1429                 /*
1430                  * Btrfs_remove_chunk will abort the transaction if things go
1431                  * horribly wrong.
1432                  */
1433                 ret = btrfs_remove_chunk(trans, block_group->start);
1434
1435                 if (ret) {
1436                         if (trimming)
1437                                 btrfs_unfreeze_block_group(block_group);
1438                         goto end_trans;
1439                 }
1440
1441                 /*
1442                  * If we're not mounted with -odiscard, we can just forget
1443                  * about this block group. Otherwise we'll need to wait
1444                  * until transaction commit to do the actual discard.
1445                  */
1446                 if (trimming) {
1447                         spin_lock(&fs_info->unused_bgs_lock);
1448                         /*
1449                          * A concurrent scrub might have added us to the list
1450                          * fs_info->unused_bgs, so use a list_move operation
1451                          * to add the block group to the deleted_bgs list.
1452                          */
1453                         list_move(&block_group->bg_list,
1454                                   &trans->transaction->deleted_bgs);
1455                         spin_unlock(&fs_info->unused_bgs_lock);
1456                         btrfs_get_block_group(block_group);
1457                 }
1458 end_trans:
1459                 btrfs_end_transaction(trans);
1460 next:
1461                 btrfs_put_block_group(block_group);
1462                 spin_lock(&fs_info->unused_bgs_lock);
1463         }
1464         spin_unlock(&fs_info->unused_bgs_lock);
1465         mutex_unlock(&fs_info->reclaim_bgs_lock);
1466         return;
1467
1468 flip_async:
1469         btrfs_end_transaction(trans);
1470         mutex_unlock(&fs_info->reclaim_bgs_lock);
1471         btrfs_put_block_group(block_group);
1472         btrfs_discard_punt_unused_bgs_list(fs_info);
1473 }
1474
1475 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1476 {
1477         struct btrfs_fs_info *fs_info = bg->fs_info;
1478
1479         spin_lock(&fs_info->unused_bgs_lock);
1480         if (list_empty(&bg->bg_list)) {
1481                 btrfs_get_block_group(bg);
1482                 trace_btrfs_add_unused_block_group(bg);
1483                 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1484         }
1485         spin_unlock(&fs_info->unused_bgs_lock);
1486 }
1487
1488 void btrfs_reclaim_bgs_work(struct work_struct *work)
1489 {
1490         struct btrfs_fs_info *fs_info =
1491                 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1492         struct btrfs_block_group *bg;
1493         struct btrfs_space_info *space_info;
1494         int ret;
1495
1496         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1497                 return;
1498
1499         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1500                 return;
1501
1502         mutex_lock(&fs_info->reclaim_bgs_lock);
1503         spin_lock(&fs_info->unused_bgs_lock);
1504         while (!list_empty(&fs_info->reclaim_bgs)) {
1505                 bg = list_first_entry(&fs_info->reclaim_bgs,
1506                                       struct btrfs_block_group,
1507                                       bg_list);
1508                 list_del_init(&bg->bg_list);
1509
1510                 space_info = bg->space_info;
1511                 spin_unlock(&fs_info->unused_bgs_lock);
1512
1513                 /* Don't race with allocators so take the groups_sem */
1514                 down_write(&space_info->groups_sem);
1515
1516                 spin_lock(&bg->lock);
1517                 if (bg->reserved || bg->pinned || bg->ro) {
1518                         /*
1519                          * We want to bail if we made new allocations or have
1520                          * outstanding allocations in this block group.  We do
1521                          * the ro check in case balance is currently acting on
1522                          * this block group.
1523                          */
1524                         spin_unlock(&bg->lock);
1525                         up_write(&space_info->groups_sem);
1526                         goto next;
1527                 }
1528                 spin_unlock(&bg->lock);
1529
1530                 /* Get out fast, in case we're unmounting the filesystem */
1531                 if (btrfs_fs_closing(fs_info)) {
1532                         up_write(&space_info->groups_sem);
1533                         goto next;
1534                 }
1535
1536                 ret = inc_block_group_ro(bg, 0);
1537                 up_write(&space_info->groups_sem);
1538                 if (ret < 0)
1539                         goto next;
1540
1541                 btrfs_info(fs_info, "reclaiming chunk %llu with %llu%% used",
1542                                 bg->start, div_u64(bg->used * 100, bg->length));
1543                 trace_btrfs_reclaim_block_group(bg);
1544                 ret = btrfs_relocate_chunk(fs_info, bg->start);
1545                 if (ret)
1546                         btrfs_err(fs_info, "error relocating chunk %llu",
1547                                   bg->start);
1548
1549 next:
1550                 btrfs_put_block_group(bg);
1551                 spin_lock(&fs_info->unused_bgs_lock);
1552         }
1553         spin_unlock(&fs_info->unused_bgs_lock);
1554         mutex_unlock(&fs_info->reclaim_bgs_lock);
1555         btrfs_exclop_finish(fs_info);
1556 }
1557
1558 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1559 {
1560         spin_lock(&fs_info->unused_bgs_lock);
1561         if (!list_empty(&fs_info->reclaim_bgs))
1562                 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1563         spin_unlock(&fs_info->unused_bgs_lock);
1564 }
1565
1566 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1567 {
1568         struct btrfs_fs_info *fs_info = bg->fs_info;
1569
1570         spin_lock(&fs_info->unused_bgs_lock);
1571         if (list_empty(&bg->bg_list)) {
1572                 btrfs_get_block_group(bg);
1573                 trace_btrfs_add_reclaim_block_group(bg);
1574                 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1575         }
1576         spin_unlock(&fs_info->unused_bgs_lock);
1577 }
1578
1579 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1580                            struct btrfs_path *path)
1581 {
1582         struct extent_map_tree *em_tree;
1583         struct extent_map *em;
1584         struct btrfs_block_group_item bg;
1585         struct extent_buffer *leaf;
1586         int slot;
1587         u64 flags;
1588         int ret = 0;
1589
1590         slot = path->slots[0];
1591         leaf = path->nodes[0];
1592
1593         em_tree = &fs_info->mapping_tree;
1594         read_lock(&em_tree->lock);
1595         em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1596         read_unlock(&em_tree->lock);
1597         if (!em) {
1598                 btrfs_err(fs_info,
1599                           "logical %llu len %llu found bg but no related chunk",
1600                           key->objectid, key->offset);
1601                 return -ENOENT;
1602         }
1603
1604         if (em->start != key->objectid || em->len != key->offset) {
1605                 btrfs_err(fs_info,
1606                         "block group %llu len %llu mismatch with chunk %llu len %llu",
1607                         key->objectid, key->offset, em->start, em->len);
1608                 ret = -EUCLEAN;
1609                 goto out_free_em;
1610         }
1611
1612         read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1613                            sizeof(bg));
1614         flags = btrfs_stack_block_group_flags(&bg) &
1615                 BTRFS_BLOCK_GROUP_TYPE_MASK;
1616
1617         if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1618                 btrfs_err(fs_info,
1619 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1620                           key->objectid, key->offset, flags,
1621                           (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1622                 ret = -EUCLEAN;
1623         }
1624
1625 out_free_em:
1626         free_extent_map(em);
1627         return ret;
1628 }
1629
1630 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1631                                   struct btrfs_path *path,
1632                                   struct btrfs_key *key)
1633 {
1634         struct btrfs_root *root = fs_info->extent_root;
1635         int ret;
1636         struct btrfs_key found_key;
1637         struct extent_buffer *leaf;
1638         int slot;
1639
1640         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1641         if (ret < 0)
1642                 return ret;
1643
1644         while (1) {
1645                 slot = path->slots[0];
1646                 leaf = path->nodes[0];
1647                 if (slot >= btrfs_header_nritems(leaf)) {
1648                         ret = btrfs_next_leaf(root, path);
1649                         if (ret == 0)
1650                                 continue;
1651                         if (ret < 0)
1652                                 goto out;
1653                         break;
1654                 }
1655                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1656
1657                 if (found_key.objectid >= key->objectid &&
1658                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1659                         ret = read_bg_from_eb(fs_info, &found_key, path);
1660                         break;
1661                 }
1662
1663                 path->slots[0]++;
1664         }
1665 out:
1666         return ret;
1667 }
1668
1669 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1670 {
1671         u64 extra_flags = chunk_to_extended(flags) &
1672                                 BTRFS_EXTENDED_PROFILE_MASK;
1673
1674         write_seqlock(&fs_info->profiles_lock);
1675         if (flags & BTRFS_BLOCK_GROUP_DATA)
1676                 fs_info->avail_data_alloc_bits |= extra_flags;
1677         if (flags & BTRFS_BLOCK_GROUP_METADATA)
1678                 fs_info->avail_metadata_alloc_bits |= extra_flags;
1679         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1680                 fs_info->avail_system_alloc_bits |= extra_flags;
1681         write_sequnlock(&fs_info->profiles_lock);
1682 }
1683
1684 /**
1685  * Map a physical disk address to a list of logical addresses
1686  *
1687  * @fs_info:       the filesystem
1688  * @chunk_start:   logical address of block group
1689  * @bdev:          physical device to resolve, can be NULL to indicate any device
1690  * @physical:      physical address to map to logical addresses
1691  * @logical:       return array of logical addresses which map to @physical
1692  * @naddrs:        length of @logical
1693  * @stripe_len:    size of IO stripe for the given block group
1694  *
1695  * Maps a particular @physical disk address to a list of @logical addresses.
1696  * Used primarily to exclude those portions of a block group that contain super
1697  * block copies.
1698  */
1699 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1700                      struct block_device *bdev, u64 physical, u64 **logical,
1701                      int *naddrs, int *stripe_len)
1702 {
1703         struct extent_map *em;
1704         struct map_lookup *map;
1705         u64 *buf;
1706         u64 bytenr;
1707         u64 data_stripe_length;
1708         u64 io_stripe_size;
1709         int i, nr = 0;
1710         int ret = 0;
1711
1712         em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1713         if (IS_ERR(em))
1714                 return -EIO;
1715
1716         map = em->map_lookup;
1717         data_stripe_length = em->orig_block_len;
1718         io_stripe_size = map->stripe_len;
1719         chunk_start = em->start;
1720
1721         /* For RAID5/6 adjust to a full IO stripe length */
1722         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1723                 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1724
1725         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1726         if (!buf) {
1727                 ret = -ENOMEM;
1728                 goto out;
1729         }
1730
1731         for (i = 0; i < map->num_stripes; i++) {
1732                 bool already_inserted = false;
1733                 u64 stripe_nr;
1734                 u64 offset;
1735                 int j;
1736
1737                 if (!in_range(physical, map->stripes[i].physical,
1738                               data_stripe_length))
1739                         continue;
1740
1741                 if (bdev && map->stripes[i].dev->bdev != bdev)
1742                         continue;
1743
1744                 stripe_nr = physical - map->stripes[i].physical;
1745                 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1746
1747                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1748                         stripe_nr = stripe_nr * map->num_stripes + i;
1749                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1750                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1751                         stripe_nr = stripe_nr * map->num_stripes + i;
1752                 }
1753                 /*
1754                  * The remaining case would be for RAID56, multiply by
1755                  * nr_data_stripes().  Alternatively, just use rmap_len below
1756                  * instead of map->stripe_len
1757                  */
1758
1759                 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1760
1761                 /* Ensure we don't add duplicate addresses */
1762                 for (j = 0; j < nr; j++) {
1763                         if (buf[j] == bytenr) {
1764                                 already_inserted = true;
1765                                 break;
1766                         }
1767                 }
1768
1769                 if (!already_inserted)
1770                         buf[nr++] = bytenr;
1771         }
1772
1773         *logical = buf;
1774         *naddrs = nr;
1775         *stripe_len = io_stripe_size;
1776 out:
1777         free_extent_map(em);
1778         return ret;
1779 }
1780
1781 static int exclude_super_stripes(struct btrfs_block_group *cache)
1782 {
1783         struct btrfs_fs_info *fs_info = cache->fs_info;
1784         const bool zoned = btrfs_is_zoned(fs_info);
1785         u64 bytenr;
1786         u64 *logical;
1787         int stripe_len;
1788         int i, nr, ret;
1789
1790         if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1791                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1792                 cache->bytes_super += stripe_len;
1793                 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1794                                                 stripe_len);
1795                 if (ret)
1796                         return ret;
1797         }
1798
1799         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1800                 bytenr = btrfs_sb_offset(i);
1801                 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1802                                        bytenr, &logical, &nr, &stripe_len);
1803                 if (ret)
1804                         return ret;
1805
1806                 /* Shouldn't have super stripes in sequential zones */
1807                 if (zoned && nr) {
1808                         btrfs_err(fs_info,
1809                         "zoned: block group %llu must not contain super block",
1810                                   cache->start);
1811                         return -EUCLEAN;
1812                 }
1813
1814                 while (nr--) {
1815                         u64 len = min_t(u64, stripe_len,
1816                                 cache->start + cache->length - logical[nr]);
1817
1818                         cache->bytes_super += len;
1819                         ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1820                                                         len);
1821                         if (ret) {
1822                                 kfree(logical);
1823                                 return ret;
1824                         }
1825                 }
1826
1827                 kfree(logical);
1828         }
1829         return 0;
1830 }
1831
1832 static void link_block_group(struct btrfs_block_group *cache)
1833 {
1834         struct btrfs_space_info *space_info = cache->space_info;
1835         int index = btrfs_bg_flags_to_raid_index(cache->flags);
1836
1837         down_write(&space_info->groups_sem);
1838         list_add_tail(&cache->list, &space_info->block_groups[index]);
1839         up_write(&space_info->groups_sem);
1840 }
1841
1842 static struct btrfs_block_group *btrfs_create_block_group_cache(
1843                 struct btrfs_fs_info *fs_info, u64 start)
1844 {
1845         struct btrfs_block_group *cache;
1846
1847         cache = kzalloc(sizeof(*cache), GFP_NOFS);
1848         if (!cache)
1849                 return NULL;
1850
1851         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1852                                         GFP_NOFS);
1853         if (!cache->free_space_ctl) {
1854                 kfree(cache);
1855                 return NULL;
1856         }
1857
1858         cache->start = start;
1859
1860         cache->fs_info = fs_info;
1861         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1862
1863         cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1864
1865         refcount_set(&cache->refs, 1);
1866         spin_lock_init(&cache->lock);
1867         init_rwsem(&cache->data_rwsem);
1868         INIT_LIST_HEAD(&cache->list);
1869         INIT_LIST_HEAD(&cache->cluster_list);
1870         INIT_LIST_HEAD(&cache->bg_list);
1871         INIT_LIST_HEAD(&cache->ro_list);
1872         INIT_LIST_HEAD(&cache->discard_list);
1873         INIT_LIST_HEAD(&cache->dirty_list);
1874         INIT_LIST_HEAD(&cache->io_list);
1875         btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1876         atomic_set(&cache->frozen, 0);
1877         mutex_init(&cache->free_space_lock);
1878         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1879
1880         return cache;
1881 }
1882
1883 /*
1884  * Iterate all chunks and verify that each of them has the corresponding block
1885  * group
1886  */
1887 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1888 {
1889         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1890         struct extent_map *em;
1891         struct btrfs_block_group *bg;
1892         u64 start = 0;
1893         int ret = 0;
1894
1895         while (1) {
1896                 read_lock(&map_tree->lock);
1897                 /*
1898                  * lookup_extent_mapping will return the first extent map
1899                  * intersecting the range, so setting @len to 1 is enough to
1900                  * get the first chunk.
1901                  */
1902                 em = lookup_extent_mapping(map_tree, start, 1);
1903                 read_unlock(&map_tree->lock);
1904                 if (!em)
1905                         break;
1906
1907                 bg = btrfs_lookup_block_group(fs_info, em->start);
1908                 if (!bg) {
1909                         btrfs_err(fs_info,
1910         "chunk start=%llu len=%llu doesn't have corresponding block group",
1911                                      em->start, em->len);
1912                         ret = -EUCLEAN;
1913                         free_extent_map(em);
1914                         break;
1915                 }
1916                 if (bg->start != em->start || bg->length != em->len ||
1917                     (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1918                     (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1919                         btrfs_err(fs_info,
1920 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1921                                 em->start, em->len,
1922                                 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1923                                 bg->start, bg->length,
1924                                 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1925                         ret = -EUCLEAN;
1926                         free_extent_map(em);
1927                         btrfs_put_block_group(bg);
1928                         break;
1929                 }
1930                 start = em->start + em->len;
1931                 free_extent_map(em);
1932                 btrfs_put_block_group(bg);
1933         }
1934         return ret;
1935 }
1936
1937 static int read_one_block_group(struct btrfs_fs_info *info,
1938                                 struct btrfs_block_group_item *bgi,
1939                                 const struct btrfs_key *key,
1940                                 int need_clear)
1941 {
1942         struct btrfs_block_group *cache;
1943         struct btrfs_space_info *space_info;
1944         const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1945         int ret;
1946
1947         ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1948
1949         cache = btrfs_create_block_group_cache(info, key->objectid);
1950         if (!cache)
1951                 return -ENOMEM;
1952
1953         cache->length = key->offset;
1954         cache->used = btrfs_stack_block_group_used(bgi);
1955         cache->flags = btrfs_stack_block_group_flags(bgi);
1956
1957         set_free_space_tree_thresholds(cache);
1958
1959         if (need_clear) {
1960                 /*
1961                  * When we mount with old space cache, we need to
1962                  * set BTRFS_DC_CLEAR and set dirty flag.
1963                  *
1964                  * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1965                  *    truncate the old free space cache inode and
1966                  *    setup a new one.
1967                  * b) Setting 'dirty flag' makes sure that we flush
1968                  *    the new space cache info onto disk.
1969                  */
1970                 if (btrfs_test_opt(info, SPACE_CACHE))
1971                         cache->disk_cache_state = BTRFS_DC_CLEAR;
1972         }
1973         if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1974             (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1975                         btrfs_err(info,
1976 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1977                                   cache->start);
1978                         ret = -EINVAL;
1979                         goto error;
1980         }
1981
1982         ret = btrfs_load_block_group_zone_info(cache, false);
1983         if (ret) {
1984                 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
1985                           cache->start);
1986                 goto error;
1987         }
1988
1989         /*
1990          * We need to exclude the super stripes now so that the space info has
1991          * super bytes accounted for, otherwise we'll think we have more space
1992          * than we actually do.
1993          */
1994         ret = exclude_super_stripes(cache);
1995         if (ret) {
1996                 /* We may have excluded something, so call this just in case. */
1997                 btrfs_free_excluded_extents(cache);
1998                 goto error;
1999         }
2000
2001         /*
2002          * For zoned filesystem, space after the allocation offset is the only
2003          * free space for a block group. So, we don't need any caching work.
2004          * btrfs_calc_zone_unusable() will set the amount of free space and
2005          * zone_unusable space.
2006          *
2007          * For regular filesystem, check for two cases, either we are full, and
2008          * therefore don't need to bother with the caching work since we won't
2009          * find any space, or we are empty, and we can just add all the space
2010          * in and be done with it.  This saves us _a_lot_ of time, particularly
2011          * in the full case.
2012          */
2013         if (btrfs_is_zoned(info)) {
2014                 btrfs_calc_zone_unusable(cache);
2015         } else if (cache->length == cache->used) {
2016                 cache->last_byte_to_unpin = (u64)-1;
2017                 cache->cached = BTRFS_CACHE_FINISHED;
2018                 btrfs_free_excluded_extents(cache);
2019         } else if (cache->used == 0) {
2020                 cache->last_byte_to_unpin = (u64)-1;
2021                 cache->cached = BTRFS_CACHE_FINISHED;
2022                 add_new_free_space(cache, cache->start,
2023                                    cache->start + cache->length);
2024                 btrfs_free_excluded_extents(cache);
2025         }
2026
2027         ret = btrfs_add_block_group_cache(info, cache);
2028         if (ret) {
2029                 btrfs_remove_free_space_cache(cache);
2030                 goto error;
2031         }
2032         trace_btrfs_add_block_group(info, cache, 0);
2033         btrfs_update_space_info(info, cache->flags, cache->length,
2034                                 cache->used, cache->bytes_super,
2035                                 cache->zone_unusable, &space_info);
2036
2037         cache->space_info = space_info;
2038
2039         link_block_group(cache);
2040
2041         set_avail_alloc_bits(info, cache->flags);
2042         if (btrfs_chunk_readonly(info, cache->start)) {
2043                 inc_block_group_ro(cache, 1);
2044         } else if (cache->used == 0) {
2045                 ASSERT(list_empty(&cache->bg_list));
2046                 if (btrfs_test_opt(info, DISCARD_ASYNC))
2047                         btrfs_discard_queue_work(&info->discard_ctl, cache);
2048                 else
2049                         btrfs_mark_bg_unused(cache);
2050         }
2051         return 0;
2052 error:
2053         btrfs_put_block_group(cache);
2054         return ret;
2055 }
2056
2057 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2058 {
2059         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2060         struct btrfs_space_info *space_info;
2061         struct rb_node *node;
2062         int ret = 0;
2063
2064         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2065                 struct extent_map *em;
2066                 struct map_lookup *map;
2067                 struct btrfs_block_group *bg;
2068
2069                 em = rb_entry(node, struct extent_map, rb_node);
2070                 map = em->map_lookup;
2071                 bg = btrfs_create_block_group_cache(fs_info, em->start);
2072                 if (!bg) {
2073                         ret = -ENOMEM;
2074                         break;
2075                 }
2076
2077                 /* Fill dummy cache as FULL */
2078                 bg->length = em->len;
2079                 bg->flags = map->type;
2080                 bg->last_byte_to_unpin = (u64)-1;
2081                 bg->cached = BTRFS_CACHE_FINISHED;
2082                 bg->used = em->len;
2083                 bg->flags = map->type;
2084                 ret = btrfs_add_block_group_cache(fs_info, bg);
2085                 if (ret) {
2086                         btrfs_remove_free_space_cache(bg);
2087                         btrfs_put_block_group(bg);
2088                         break;
2089                 }
2090                 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2091                                         0, 0, &space_info);
2092                 bg->space_info = space_info;
2093                 link_block_group(bg);
2094
2095                 set_avail_alloc_bits(fs_info, bg->flags);
2096         }
2097         if (!ret)
2098                 btrfs_init_global_block_rsv(fs_info);
2099         return ret;
2100 }
2101
2102 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2103 {
2104         struct btrfs_path *path;
2105         int ret;
2106         struct btrfs_block_group *cache;
2107         struct btrfs_space_info *space_info;
2108         struct btrfs_key key;
2109         int need_clear = 0;
2110         u64 cache_gen;
2111
2112         if (!info->extent_root)
2113                 return fill_dummy_bgs(info);
2114
2115         key.objectid = 0;
2116         key.offset = 0;
2117         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2118         path = btrfs_alloc_path();
2119         if (!path)
2120                 return -ENOMEM;
2121
2122         cache_gen = btrfs_super_cache_generation(info->super_copy);
2123         if (btrfs_test_opt(info, SPACE_CACHE) &&
2124             btrfs_super_generation(info->super_copy) != cache_gen)
2125                 need_clear = 1;
2126         if (btrfs_test_opt(info, CLEAR_CACHE))
2127                 need_clear = 1;
2128
2129         while (1) {
2130                 struct btrfs_block_group_item bgi;
2131                 struct extent_buffer *leaf;
2132                 int slot;
2133
2134                 ret = find_first_block_group(info, path, &key);
2135                 if (ret > 0)
2136                         break;
2137                 if (ret != 0)
2138                         goto error;
2139
2140                 leaf = path->nodes[0];
2141                 slot = path->slots[0];
2142
2143                 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2144                                    sizeof(bgi));
2145
2146                 btrfs_item_key_to_cpu(leaf, &key, slot);
2147                 btrfs_release_path(path);
2148                 ret = read_one_block_group(info, &bgi, &key, need_clear);
2149                 if (ret < 0)
2150                         goto error;
2151                 key.objectid += key.offset;
2152                 key.offset = 0;
2153         }
2154         btrfs_release_path(path);
2155
2156         list_for_each_entry(space_info, &info->space_info, list) {
2157                 int i;
2158
2159                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2160                         if (list_empty(&space_info->block_groups[i]))
2161                                 continue;
2162                         cache = list_first_entry(&space_info->block_groups[i],
2163                                                  struct btrfs_block_group,
2164                                                  list);
2165                         btrfs_sysfs_add_block_group_type(cache);
2166                 }
2167
2168                 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2169                       (BTRFS_BLOCK_GROUP_RAID10 |
2170                        BTRFS_BLOCK_GROUP_RAID1_MASK |
2171                        BTRFS_BLOCK_GROUP_RAID56_MASK |
2172                        BTRFS_BLOCK_GROUP_DUP)))
2173                         continue;
2174                 /*
2175                  * Avoid allocating from un-mirrored block group if there are
2176                  * mirrored block groups.
2177                  */
2178                 list_for_each_entry(cache,
2179                                 &space_info->block_groups[BTRFS_RAID_RAID0],
2180                                 list)
2181                         inc_block_group_ro(cache, 1);
2182                 list_for_each_entry(cache,
2183                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
2184                                 list)
2185                         inc_block_group_ro(cache, 1);
2186         }
2187
2188         btrfs_init_global_block_rsv(info);
2189         ret = check_chunk_block_group_mappings(info);
2190 error:
2191         btrfs_free_path(path);
2192         return ret;
2193 }
2194
2195 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2196                                    struct btrfs_block_group *block_group)
2197 {
2198         struct btrfs_fs_info *fs_info = trans->fs_info;
2199         struct btrfs_block_group_item bgi;
2200         struct btrfs_root *root;
2201         struct btrfs_key key;
2202
2203         spin_lock(&block_group->lock);
2204         btrfs_set_stack_block_group_used(&bgi, block_group->used);
2205         btrfs_set_stack_block_group_chunk_objectid(&bgi,
2206                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2207         btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2208         key.objectid = block_group->start;
2209         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2210         key.offset = block_group->length;
2211         spin_unlock(&block_group->lock);
2212
2213         root = fs_info->extent_root;
2214         return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2215 }
2216
2217 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2218 {
2219         struct btrfs_fs_info *fs_info = trans->fs_info;
2220         struct btrfs_block_group *block_group;
2221         int ret = 0;
2222
2223         if (!trans->can_flush_pending_bgs)
2224                 return;
2225
2226         while (!list_empty(&trans->new_bgs)) {
2227                 int index;
2228
2229                 block_group = list_first_entry(&trans->new_bgs,
2230                                                struct btrfs_block_group,
2231                                                bg_list);
2232                 if (ret)
2233                         goto next;
2234
2235                 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2236
2237                 ret = insert_block_group_item(trans, block_group);
2238                 if (ret)
2239                         btrfs_abort_transaction(trans, ret);
2240                 ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2241                                         block_group->length);
2242                 if (ret)
2243                         btrfs_abort_transaction(trans, ret);
2244                 add_block_group_free_space(trans, block_group);
2245
2246                 /*
2247                  * If we restriped during balance, we may have added a new raid
2248                  * type, so now add the sysfs entries when it is safe to do so.
2249                  * We don't have to worry about locking here as it's handled in
2250                  * btrfs_sysfs_add_block_group_type.
2251                  */
2252                 if (block_group->space_info->block_group_kobjs[index] == NULL)
2253                         btrfs_sysfs_add_block_group_type(block_group);
2254
2255                 /* Already aborted the transaction if it failed. */
2256 next:
2257                 btrfs_delayed_refs_rsv_release(fs_info, 1);
2258                 list_del_init(&block_group->bg_list);
2259         }
2260         btrfs_trans_release_chunk_metadata(trans);
2261 }
2262
2263 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2264                            u64 type, u64 chunk_offset, u64 size)
2265 {
2266         struct btrfs_fs_info *fs_info = trans->fs_info;
2267         struct btrfs_block_group *cache;
2268         int ret;
2269
2270         btrfs_set_log_full_commit(trans);
2271
2272         cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2273         if (!cache)
2274                 return -ENOMEM;
2275
2276         cache->length = size;
2277         set_free_space_tree_thresholds(cache);
2278         cache->used = bytes_used;
2279         cache->flags = type;
2280         cache->last_byte_to_unpin = (u64)-1;
2281         cache->cached = BTRFS_CACHE_FINISHED;
2282         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2283                 cache->needs_free_space = 1;
2284
2285         ret = btrfs_load_block_group_zone_info(cache, true);
2286         if (ret) {
2287                 btrfs_put_block_group(cache);
2288                 return ret;
2289         }
2290
2291         ret = exclude_super_stripes(cache);
2292         if (ret) {
2293                 /* We may have excluded something, so call this just in case */
2294                 btrfs_free_excluded_extents(cache);
2295                 btrfs_put_block_group(cache);
2296                 return ret;
2297         }
2298
2299         add_new_free_space(cache, chunk_offset, chunk_offset + size);
2300
2301         btrfs_free_excluded_extents(cache);
2302
2303 #ifdef CONFIG_BTRFS_DEBUG
2304         if (btrfs_should_fragment_free_space(cache)) {
2305                 u64 new_bytes_used = size - bytes_used;
2306
2307                 bytes_used += new_bytes_used >> 1;
2308                 fragment_free_space(cache);
2309         }
2310 #endif
2311         /*
2312          * Ensure the corresponding space_info object is created and
2313          * assigned to our block group. We want our bg to be added to the rbtree
2314          * with its ->space_info set.
2315          */
2316         cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2317         ASSERT(cache->space_info);
2318
2319         ret = btrfs_add_block_group_cache(fs_info, cache);
2320         if (ret) {
2321                 btrfs_remove_free_space_cache(cache);
2322                 btrfs_put_block_group(cache);
2323                 return ret;
2324         }
2325
2326         /*
2327          * Now that our block group has its ->space_info set and is inserted in
2328          * the rbtree, update the space info's counters.
2329          */
2330         trace_btrfs_add_block_group(fs_info, cache, 1);
2331         btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2332                                 cache->bytes_super, 0, &cache->space_info);
2333         btrfs_update_global_block_rsv(fs_info);
2334
2335         link_block_group(cache);
2336
2337         list_add_tail(&cache->bg_list, &trans->new_bgs);
2338         trans->delayed_ref_updates++;
2339         btrfs_update_delayed_refs_rsv(trans);
2340
2341         set_avail_alloc_bits(fs_info, type);
2342         return 0;
2343 }
2344
2345 /*
2346  * Mark one block group RO, can be called several times for the same block
2347  * group.
2348  *
2349  * @cache:              the destination block group
2350  * @do_chunk_alloc:     whether need to do chunk pre-allocation, this is to
2351  *                      ensure we still have some free space after marking this
2352  *                      block group RO.
2353  */
2354 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2355                              bool do_chunk_alloc)
2356 {
2357         struct btrfs_fs_info *fs_info = cache->fs_info;
2358         struct btrfs_trans_handle *trans;
2359         u64 alloc_flags;
2360         int ret;
2361         bool dirty_bg_running;
2362
2363         do {
2364                 trans = btrfs_join_transaction(fs_info->extent_root);
2365                 if (IS_ERR(trans))
2366                         return PTR_ERR(trans);
2367
2368                 dirty_bg_running = false;
2369
2370                 /*
2371                  * We're not allowed to set block groups readonly after the dirty
2372                  * block group cache has started writing.  If it already started,
2373                  * back off and let this transaction commit.
2374                  */
2375                 mutex_lock(&fs_info->ro_block_group_mutex);
2376                 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2377                         u64 transid = trans->transid;
2378
2379                         mutex_unlock(&fs_info->ro_block_group_mutex);
2380                         btrfs_end_transaction(trans);
2381
2382                         ret = btrfs_wait_for_commit(fs_info, transid);
2383                         if (ret)
2384                                 return ret;
2385                         dirty_bg_running = true;
2386                 }
2387         } while (dirty_bg_running);
2388
2389         if (do_chunk_alloc) {
2390                 /*
2391                  * If we are changing raid levels, try to allocate a
2392                  * corresponding block group with the new raid level.
2393                  */
2394                 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2395                 if (alloc_flags != cache->flags) {
2396                         ret = btrfs_chunk_alloc(trans, alloc_flags,
2397                                                 CHUNK_ALLOC_FORCE);
2398                         /*
2399                          * ENOSPC is allowed here, we may have enough space
2400                          * already allocated at the new raid level to carry on
2401                          */
2402                         if (ret == -ENOSPC)
2403                                 ret = 0;
2404                         if (ret < 0)
2405                                 goto out;
2406                 }
2407         }
2408
2409         ret = inc_block_group_ro(cache, 0);
2410         if (!do_chunk_alloc || ret == -ETXTBSY)
2411                 goto unlock_out;
2412         if (!ret)
2413                 goto out;
2414         alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2415         ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2416         if (ret < 0)
2417                 goto out;
2418         ret = inc_block_group_ro(cache, 0);
2419         if (ret == -ETXTBSY)
2420                 goto unlock_out;
2421 out:
2422         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2423                 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2424                 mutex_lock(&fs_info->chunk_mutex);
2425                 check_system_chunk(trans, alloc_flags);
2426                 mutex_unlock(&fs_info->chunk_mutex);
2427         }
2428 unlock_out:
2429         mutex_unlock(&fs_info->ro_block_group_mutex);
2430
2431         btrfs_end_transaction(trans);
2432         return ret;
2433 }
2434
2435 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2436 {
2437         struct btrfs_space_info *sinfo = cache->space_info;
2438         u64 num_bytes;
2439
2440         BUG_ON(!cache->ro);
2441
2442         spin_lock(&sinfo->lock);
2443         spin_lock(&cache->lock);
2444         if (!--cache->ro) {
2445                 num_bytes = cache->length - cache->reserved -
2446                             cache->pinned - cache->bytes_super -
2447                             cache->zone_unusable - cache->used;
2448                 sinfo->bytes_readonly -= num_bytes;
2449                 if (btrfs_is_zoned(cache->fs_info)) {
2450                         /* Migrate zone_unusable bytes back */
2451                         cache->zone_unusable = cache->alloc_offset - cache->used;
2452                         sinfo->bytes_zone_unusable += cache->zone_unusable;
2453                         sinfo->bytes_readonly -= cache->zone_unusable;
2454                 }
2455                 list_del_init(&cache->ro_list);
2456         }
2457         spin_unlock(&cache->lock);
2458         spin_unlock(&sinfo->lock);
2459 }
2460
2461 static int update_block_group_item(struct btrfs_trans_handle *trans,
2462                                    struct btrfs_path *path,
2463                                    struct btrfs_block_group *cache)
2464 {
2465         struct btrfs_fs_info *fs_info = trans->fs_info;
2466         int ret;
2467         struct btrfs_root *root = fs_info->extent_root;
2468         unsigned long bi;
2469         struct extent_buffer *leaf;
2470         struct btrfs_block_group_item bgi;
2471         struct btrfs_key key;
2472
2473         key.objectid = cache->start;
2474         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2475         key.offset = cache->length;
2476
2477         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2478         if (ret) {
2479                 if (ret > 0)
2480                         ret = -ENOENT;
2481                 goto fail;
2482         }
2483
2484         leaf = path->nodes[0];
2485         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2486         btrfs_set_stack_block_group_used(&bgi, cache->used);
2487         btrfs_set_stack_block_group_chunk_objectid(&bgi,
2488                         BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2489         btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2490         write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2491         btrfs_mark_buffer_dirty(leaf);
2492 fail:
2493         btrfs_release_path(path);
2494         return ret;
2495
2496 }
2497
2498 static int cache_save_setup(struct btrfs_block_group *block_group,
2499                             struct btrfs_trans_handle *trans,
2500                             struct btrfs_path *path)
2501 {
2502         struct btrfs_fs_info *fs_info = block_group->fs_info;
2503         struct btrfs_root *root = fs_info->tree_root;
2504         struct inode *inode = NULL;
2505         struct extent_changeset *data_reserved = NULL;
2506         u64 alloc_hint = 0;
2507         int dcs = BTRFS_DC_ERROR;
2508         u64 num_pages = 0;
2509         int retries = 0;
2510         int ret = 0;
2511
2512         if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2513                 return 0;
2514
2515         /*
2516          * If this block group is smaller than 100 megs don't bother caching the
2517          * block group.
2518          */
2519         if (block_group->length < (100 * SZ_1M)) {
2520                 spin_lock(&block_group->lock);
2521                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2522                 spin_unlock(&block_group->lock);
2523                 return 0;
2524         }
2525
2526         if (TRANS_ABORTED(trans))
2527                 return 0;
2528 again:
2529         inode = lookup_free_space_inode(block_group, path);
2530         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2531                 ret = PTR_ERR(inode);
2532                 btrfs_release_path(path);
2533                 goto out;
2534         }
2535
2536         if (IS_ERR(inode)) {
2537                 BUG_ON(retries);
2538                 retries++;
2539
2540                 if (block_group->ro)
2541                         goto out_free;
2542
2543                 ret = create_free_space_inode(trans, block_group, path);
2544                 if (ret)
2545                         goto out_free;
2546                 goto again;
2547         }
2548
2549         /*
2550          * We want to set the generation to 0, that way if anything goes wrong
2551          * from here on out we know not to trust this cache when we load up next
2552          * time.
2553          */
2554         BTRFS_I(inode)->generation = 0;
2555         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2556         if (ret) {
2557                 /*
2558                  * So theoretically we could recover from this, simply set the
2559                  * super cache generation to 0 so we know to invalidate the
2560                  * cache, but then we'd have to keep track of the block groups
2561                  * that fail this way so we know we _have_ to reset this cache
2562                  * before the next commit or risk reading stale cache.  So to
2563                  * limit our exposure to horrible edge cases lets just abort the
2564                  * transaction, this only happens in really bad situations
2565                  * anyway.
2566                  */
2567                 btrfs_abort_transaction(trans, ret);
2568                 goto out_put;
2569         }
2570         WARN_ON(ret);
2571
2572         /* We've already setup this transaction, go ahead and exit */
2573         if (block_group->cache_generation == trans->transid &&
2574             i_size_read(inode)) {
2575                 dcs = BTRFS_DC_SETUP;
2576                 goto out_put;
2577         }
2578
2579         if (i_size_read(inode) > 0) {
2580                 ret = btrfs_check_trunc_cache_free_space(fs_info,
2581                                         &fs_info->global_block_rsv);
2582                 if (ret)
2583                         goto out_put;
2584
2585                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2586                 if (ret)
2587                         goto out_put;
2588         }
2589
2590         spin_lock(&block_group->lock);
2591         if (block_group->cached != BTRFS_CACHE_FINISHED ||
2592             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2593                 /*
2594                  * don't bother trying to write stuff out _if_
2595                  * a) we're not cached,
2596                  * b) we're with nospace_cache mount option,
2597                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
2598                  */
2599                 dcs = BTRFS_DC_WRITTEN;
2600                 spin_unlock(&block_group->lock);
2601                 goto out_put;
2602         }
2603         spin_unlock(&block_group->lock);
2604
2605         /*
2606          * We hit an ENOSPC when setting up the cache in this transaction, just
2607          * skip doing the setup, we've already cleared the cache so we're safe.
2608          */
2609         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2610                 ret = -ENOSPC;
2611                 goto out_put;
2612         }
2613
2614         /*
2615          * Try to preallocate enough space based on how big the block group is.
2616          * Keep in mind this has to include any pinned space which could end up
2617          * taking up quite a bit since it's not folded into the other space
2618          * cache.
2619          */
2620         num_pages = div_u64(block_group->length, SZ_256M);
2621         if (!num_pages)
2622                 num_pages = 1;
2623
2624         num_pages *= 16;
2625         num_pages *= PAGE_SIZE;
2626
2627         ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2628                                           num_pages);
2629         if (ret)
2630                 goto out_put;
2631
2632         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2633                                               num_pages, num_pages,
2634                                               &alloc_hint);
2635         /*
2636          * Our cache requires contiguous chunks so that we don't modify a bunch
2637          * of metadata or split extents when writing the cache out, which means
2638          * we can enospc if we are heavily fragmented in addition to just normal
2639          * out of space conditions.  So if we hit this just skip setting up any
2640          * other block groups for this transaction, maybe we'll unpin enough
2641          * space the next time around.
2642          */
2643         if (!ret)
2644                 dcs = BTRFS_DC_SETUP;
2645         else if (ret == -ENOSPC)
2646                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2647
2648 out_put:
2649         iput(inode);
2650 out_free:
2651         btrfs_release_path(path);
2652 out:
2653         spin_lock(&block_group->lock);
2654         if (!ret && dcs == BTRFS_DC_SETUP)
2655                 block_group->cache_generation = trans->transid;
2656         block_group->disk_cache_state = dcs;
2657         spin_unlock(&block_group->lock);
2658
2659         extent_changeset_free(data_reserved);
2660         return ret;
2661 }
2662
2663 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2664 {
2665         struct btrfs_fs_info *fs_info = trans->fs_info;
2666         struct btrfs_block_group *cache, *tmp;
2667         struct btrfs_transaction *cur_trans = trans->transaction;
2668         struct btrfs_path *path;
2669
2670         if (list_empty(&cur_trans->dirty_bgs) ||
2671             !btrfs_test_opt(fs_info, SPACE_CACHE))
2672                 return 0;
2673
2674         path = btrfs_alloc_path();
2675         if (!path)
2676                 return -ENOMEM;
2677
2678         /* Could add new block groups, use _safe just in case */
2679         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2680                                  dirty_list) {
2681                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2682                         cache_save_setup(cache, trans, path);
2683         }
2684
2685         btrfs_free_path(path);
2686         return 0;
2687 }
2688
2689 /*
2690  * Transaction commit does final block group cache writeback during a critical
2691  * section where nothing is allowed to change the FS.  This is required in
2692  * order for the cache to actually match the block group, but can introduce a
2693  * lot of latency into the commit.
2694  *
2695  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2696  * There's a chance we'll have to redo some of it if the block group changes
2697  * again during the commit, but it greatly reduces the commit latency by
2698  * getting rid of the easy block groups while we're still allowing others to
2699  * join the commit.
2700  */
2701 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2702 {
2703         struct btrfs_fs_info *fs_info = trans->fs_info;
2704         struct btrfs_block_group *cache;
2705         struct btrfs_transaction *cur_trans = trans->transaction;
2706         int ret = 0;
2707         int should_put;
2708         struct btrfs_path *path = NULL;
2709         LIST_HEAD(dirty);
2710         struct list_head *io = &cur_trans->io_bgs;
2711         int num_started = 0;
2712         int loops = 0;
2713
2714         spin_lock(&cur_trans->dirty_bgs_lock);
2715         if (list_empty(&cur_trans->dirty_bgs)) {
2716                 spin_unlock(&cur_trans->dirty_bgs_lock);
2717                 return 0;
2718         }
2719         list_splice_init(&cur_trans->dirty_bgs, &dirty);
2720         spin_unlock(&cur_trans->dirty_bgs_lock);
2721
2722 again:
2723         /* Make sure all the block groups on our dirty list actually exist */
2724         btrfs_create_pending_block_groups(trans);
2725
2726         if (!path) {
2727                 path = btrfs_alloc_path();
2728                 if (!path) {
2729                         ret = -ENOMEM;
2730                         goto out;
2731                 }
2732         }
2733
2734         /*
2735          * cache_write_mutex is here only to save us from balance or automatic
2736          * removal of empty block groups deleting this block group while we are
2737          * writing out the cache
2738          */
2739         mutex_lock(&trans->transaction->cache_write_mutex);
2740         while (!list_empty(&dirty)) {
2741                 bool drop_reserve = true;
2742
2743                 cache = list_first_entry(&dirty, struct btrfs_block_group,
2744                                          dirty_list);
2745                 /*
2746                  * This can happen if something re-dirties a block group that
2747                  * is already under IO.  Just wait for it to finish and then do
2748                  * it all again
2749                  */
2750                 if (!list_empty(&cache->io_list)) {
2751                         list_del_init(&cache->io_list);
2752                         btrfs_wait_cache_io(trans, cache, path);
2753                         btrfs_put_block_group(cache);
2754                 }
2755
2756
2757                 /*
2758                  * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2759                  * it should update the cache_state.  Don't delete until after
2760                  * we wait.
2761                  *
2762                  * Since we're not running in the commit critical section
2763                  * we need the dirty_bgs_lock to protect from update_block_group
2764                  */
2765                 spin_lock(&cur_trans->dirty_bgs_lock);
2766                 list_del_init(&cache->dirty_list);
2767                 spin_unlock(&cur_trans->dirty_bgs_lock);
2768
2769                 should_put = 1;
2770
2771                 cache_save_setup(cache, trans, path);
2772
2773                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2774                         cache->io_ctl.inode = NULL;
2775                         ret = btrfs_write_out_cache(trans, cache, path);
2776                         if (ret == 0 && cache->io_ctl.inode) {
2777                                 num_started++;
2778                                 should_put = 0;
2779
2780                                 /*
2781                                  * The cache_write_mutex is protecting the
2782                                  * io_list, also refer to the definition of
2783                                  * btrfs_transaction::io_bgs for more details
2784                                  */
2785                                 list_add_tail(&cache->io_list, io);
2786                         } else {
2787                                 /*
2788                                  * If we failed to write the cache, the
2789                                  * generation will be bad and life goes on
2790                                  */
2791                                 ret = 0;
2792                         }
2793                 }
2794                 if (!ret) {
2795                         ret = update_block_group_item(trans, path, cache);
2796                         /*
2797                          * Our block group might still be attached to the list
2798                          * of new block groups in the transaction handle of some
2799                          * other task (struct btrfs_trans_handle->new_bgs). This
2800                          * means its block group item isn't yet in the extent
2801                          * tree. If this happens ignore the error, as we will
2802                          * try again later in the critical section of the
2803                          * transaction commit.
2804                          */
2805                         if (ret == -ENOENT) {
2806                                 ret = 0;
2807                                 spin_lock(&cur_trans->dirty_bgs_lock);
2808                                 if (list_empty(&cache->dirty_list)) {
2809                                         list_add_tail(&cache->dirty_list,
2810                                                       &cur_trans->dirty_bgs);
2811                                         btrfs_get_block_group(cache);
2812                                         drop_reserve = false;
2813                                 }
2814                                 spin_unlock(&cur_trans->dirty_bgs_lock);
2815                         } else if (ret) {
2816                                 btrfs_abort_transaction(trans, ret);
2817                         }
2818                 }
2819
2820                 /* If it's not on the io list, we need to put the block group */
2821                 if (should_put)
2822                         btrfs_put_block_group(cache);
2823                 if (drop_reserve)
2824                         btrfs_delayed_refs_rsv_release(fs_info, 1);
2825                 /*
2826                  * Avoid blocking other tasks for too long. It might even save
2827                  * us from writing caches for block groups that are going to be
2828                  * removed.
2829                  */
2830                 mutex_unlock(&trans->transaction->cache_write_mutex);
2831                 if (ret)
2832                         goto out;
2833                 mutex_lock(&trans->transaction->cache_write_mutex);
2834         }
2835         mutex_unlock(&trans->transaction->cache_write_mutex);
2836
2837         /*
2838          * Go through delayed refs for all the stuff we've just kicked off
2839          * and then loop back (just once)
2840          */
2841         if (!ret)
2842                 ret = btrfs_run_delayed_refs(trans, 0);
2843         if (!ret && loops == 0) {
2844                 loops++;
2845                 spin_lock(&cur_trans->dirty_bgs_lock);
2846                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2847                 /*
2848                  * dirty_bgs_lock protects us from concurrent block group
2849                  * deletes too (not just cache_write_mutex).
2850                  */
2851                 if (!list_empty(&dirty)) {
2852                         spin_unlock(&cur_trans->dirty_bgs_lock);
2853                         goto again;
2854                 }
2855                 spin_unlock(&cur_trans->dirty_bgs_lock);
2856         }
2857 out:
2858         if (ret < 0) {
2859                 spin_lock(&cur_trans->dirty_bgs_lock);
2860                 list_splice_init(&dirty, &cur_trans->dirty_bgs);
2861                 spin_unlock(&cur_trans->dirty_bgs_lock);
2862                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2863         }
2864
2865         btrfs_free_path(path);
2866         return ret;
2867 }
2868
2869 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2870 {
2871         struct btrfs_fs_info *fs_info = trans->fs_info;
2872         struct btrfs_block_group *cache;
2873         struct btrfs_transaction *cur_trans = trans->transaction;
2874         int ret = 0;
2875         int should_put;
2876         struct btrfs_path *path;
2877         struct list_head *io = &cur_trans->io_bgs;
2878         int num_started = 0;
2879
2880         path = btrfs_alloc_path();
2881         if (!path)
2882                 return -ENOMEM;
2883
2884         /*
2885          * Even though we are in the critical section of the transaction commit,
2886          * we can still have concurrent tasks adding elements to this
2887          * transaction's list of dirty block groups. These tasks correspond to
2888          * endio free space workers started when writeback finishes for a
2889          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2890          * allocate new block groups as a result of COWing nodes of the root
2891          * tree when updating the free space inode. The writeback for the space
2892          * caches is triggered by an earlier call to
2893          * btrfs_start_dirty_block_groups() and iterations of the following
2894          * loop.
2895          * Also we want to do the cache_save_setup first and then run the
2896          * delayed refs to make sure we have the best chance at doing this all
2897          * in one shot.
2898          */
2899         spin_lock(&cur_trans->dirty_bgs_lock);
2900         while (!list_empty(&cur_trans->dirty_bgs)) {
2901                 cache = list_first_entry(&cur_trans->dirty_bgs,
2902                                          struct btrfs_block_group,
2903                                          dirty_list);
2904
2905                 /*
2906                  * This can happen if cache_save_setup re-dirties a block group
2907                  * that is already under IO.  Just wait for it to finish and
2908                  * then do it all again
2909                  */
2910                 if (!list_empty(&cache->io_list)) {
2911                         spin_unlock(&cur_trans->dirty_bgs_lock);
2912                         list_del_init(&cache->io_list);
2913                         btrfs_wait_cache_io(trans, cache, path);
2914                         btrfs_put_block_group(cache);
2915                         spin_lock(&cur_trans->dirty_bgs_lock);
2916                 }
2917
2918                 /*
2919                  * Don't remove from the dirty list until after we've waited on
2920                  * any pending IO
2921                  */
2922                 list_del_init(&cache->dirty_list);
2923                 spin_unlock(&cur_trans->dirty_bgs_lock);
2924                 should_put = 1;
2925
2926                 cache_save_setup(cache, trans, path);
2927
2928                 if (!ret)
2929                         ret = btrfs_run_delayed_refs(trans,
2930                                                      (unsigned long) -1);
2931
2932                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2933                         cache->io_ctl.inode = NULL;
2934                         ret = btrfs_write_out_cache(trans, cache, path);
2935                         if (ret == 0 && cache->io_ctl.inode) {
2936                                 num_started++;
2937                                 should_put = 0;
2938                                 list_add_tail(&cache->io_list, io);
2939                         } else {
2940                                 /*
2941                                  * If we failed to write the cache, the
2942                                  * generation will be bad and life goes on
2943                                  */
2944                                 ret = 0;
2945                         }
2946                 }
2947                 if (!ret) {
2948                         ret = update_block_group_item(trans, path, cache);
2949                         /*
2950                          * One of the free space endio workers might have
2951                          * created a new block group while updating a free space
2952                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
2953                          * and hasn't released its transaction handle yet, in
2954                          * which case the new block group is still attached to
2955                          * its transaction handle and its creation has not
2956                          * finished yet (no block group item in the extent tree
2957                          * yet, etc). If this is the case, wait for all free
2958                          * space endio workers to finish and retry. This is a
2959                          * very rare case so no need for a more efficient and
2960                          * complex approach.
2961                          */
2962                         if (ret == -ENOENT) {
2963                                 wait_event(cur_trans->writer_wait,
2964                                    atomic_read(&cur_trans->num_writers) == 1);
2965                                 ret = update_block_group_item(trans, path, cache);
2966                         }
2967                         if (ret)
2968                                 btrfs_abort_transaction(trans, ret);
2969                 }
2970
2971                 /* If its not on the io list, we need to put the block group */
2972                 if (should_put)
2973                         btrfs_put_block_group(cache);
2974                 btrfs_delayed_refs_rsv_release(fs_info, 1);
2975                 spin_lock(&cur_trans->dirty_bgs_lock);
2976         }
2977         spin_unlock(&cur_trans->dirty_bgs_lock);
2978
2979         /*
2980          * Refer to the definition of io_bgs member for details why it's safe
2981          * to use it without any locking
2982          */
2983         while (!list_empty(io)) {
2984                 cache = list_first_entry(io, struct btrfs_block_group,
2985                                          io_list);
2986                 list_del_init(&cache->io_list);
2987                 btrfs_wait_cache_io(trans, cache, path);
2988                 btrfs_put_block_group(cache);
2989         }
2990
2991         btrfs_free_path(path);
2992         return ret;
2993 }
2994
2995 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
2996                              u64 bytenr, u64 num_bytes, int alloc)
2997 {
2998         struct btrfs_fs_info *info = trans->fs_info;
2999         struct btrfs_block_group *cache = NULL;
3000         u64 total = num_bytes;
3001         u64 old_val;
3002         u64 byte_in_group;
3003         int factor;
3004         int ret = 0;
3005
3006         /* Block accounting for super block */
3007         spin_lock(&info->delalloc_root_lock);
3008         old_val = btrfs_super_bytes_used(info->super_copy);
3009         if (alloc)
3010                 old_val += num_bytes;
3011         else
3012                 old_val -= num_bytes;
3013         btrfs_set_super_bytes_used(info->super_copy, old_val);
3014         spin_unlock(&info->delalloc_root_lock);
3015
3016         while (total) {
3017                 cache = btrfs_lookup_block_group(info, bytenr);
3018                 if (!cache) {
3019                         ret = -ENOENT;
3020                         break;
3021                 }
3022                 factor = btrfs_bg_type_to_factor(cache->flags);
3023
3024                 /*
3025                  * If this block group has free space cache written out, we
3026                  * need to make sure to load it if we are removing space.  This
3027                  * is because we need the unpinning stage to actually add the
3028                  * space back to the block group, otherwise we will leak space.
3029                  */
3030                 if (!alloc && !btrfs_block_group_done(cache))
3031                         btrfs_cache_block_group(cache, 1);
3032
3033                 byte_in_group = bytenr - cache->start;
3034                 WARN_ON(byte_in_group > cache->length);
3035
3036                 spin_lock(&cache->space_info->lock);
3037                 spin_lock(&cache->lock);
3038
3039                 if (btrfs_test_opt(info, SPACE_CACHE) &&
3040                     cache->disk_cache_state < BTRFS_DC_CLEAR)
3041                         cache->disk_cache_state = BTRFS_DC_CLEAR;
3042
3043                 old_val = cache->used;
3044                 num_bytes = min(total, cache->length - byte_in_group);
3045                 if (alloc) {
3046                         old_val += num_bytes;
3047                         cache->used = old_val;
3048                         cache->reserved -= num_bytes;
3049                         cache->space_info->bytes_reserved -= num_bytes;
3050                         cache->space_info->bytes_used += num_bytes;
3051                         cache->space_info->disk_used += num_bytes * factor;
3052                         spin_unlock(&cache->lock);
3053                         spin_unlock(&cache->space_info->lock);
3054                 } else {
3055                         old_val -= num_bytes;
3056                         cache->used = old_val;
3057                         cache->pinned += num_bytes;
3058                         btrfs_space_info_update_bytes_pinned(info,
3059                                         cache->space_info, num_bytes);
3060                         cache->space_info->bytes_used -= num_bytes;
3061                         cache->space_info->disk_used -= num_bytes * factor;
3062                         spin_unlock(&cache->lock);
3063                         spin_unlock(&cache->space_info->lock);
3064
3065                         __btrfs_mod_total_bytes_pinned(cache->space_info,
3066                                                        num_bytes);
3067                         set_extent_dirty(&trans->transaction->pinned_extents,
3068                                          bytenr, bytenr + num_bytes - 1,
3069                                          GFP_NOFS | __GFP_NOFAIL);
3070                 }
3071
3072                 spin_lock(&trans->transaction->dirty_bgs_lock);
3073                 if (list_empty(&cache->dirty_list)) {
3074                         list_add_tail(&cache->dirty_list,
3075                                       &trans->transaction->dirty_bgs);
3076                         trans->delayed_ref_updates++;
3077                         btrfs_get_block_group(cache);
3078                 }
3079                 spin_unlock(&trans->transaction->dirty_bgs_lock);
3080
3081                 /*
3082                  * No longer have used bytes in this block group, queue it for
3083                  * deletion. We do this after adding the block group to the
3084                  * dirty list to avoid races between cleaner kthread and space
3085                  * cache writeout.
3086                  */
3087                 if (!alloc && old_val == 0) {
3088                         if (!btrfs_test_opt(info, DISCARD_ASYNC))
3089                                 btrfs_mark_bg_unused(cache);
3090                 }
3091
3092                 btrfs_put_block_group(cache);
3093                 total -= num_bytes;
3094                 bytenr += num_bytes;
3095         }
3096
3097         /* Modified block groups are accounted for in the delayed_refs_rsv. */
3098         btrfs_update_delayed_refs_rsv(trans);
3099         return ret;
3100 }
3101
3102 /**
3103  * btrfs_add_reserved_bytes - update the block_group and space info counters
3104  * @cache:      The cache we are manipulating
3105  * @ram_bytes:  The number of bytes of file content, and will be same to
3106  *              @num_bytes except for the compress path.
3107  * @num_bytes:  The number of bytes in question
3108  * @delalloc:   The blocks are allocated for the delalloc write
3109  *
3110  * This is called by the allocator when it reserves space. If this is a
3111  * reservation and the block group has become read only we cannot make the
3112  * reservation and return -EAGAIN, otherwise this function always succeeds.
3113  */
3114 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3115                              u64 ram_bytes, u64 num_bytes, int delalloc)
3116 {
3117         struct btrfs_space_info *space_info = cache->space_info;
3118         int ret = 0;
3119
3120         spin_lock(&space_info->lock);
3121         spin_lock(&cache->lock);
3122         if (cache->ro) {
3123                 ret = -EAGAIN;
3124         } else {
3125                 cache->reserved += num_bytes;
3126                 space_info->bytes_reserved += num_bytes;
3127                 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3128                                               space_info->flags, num_bytes, 1);
3129                 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3130                                                       space_info, -ram_bytes);
3131                 if (delalloc)
3132                         cache->delalloc_bytes += num_bytes;
3133
3134                 /*
3135                  * Compression can use less space than we reserved, so wake
3136                  * tickets if that happens
3137                  */
3138                 if (num_bytes < ram_bytes)
3139                         btrfs_try_granting_tickets(cache->fs_info, space_info);
3140         }
3141         spin_unlock(&cache->lock);
3142         spin_unlock(&space_info->lock);
3143         return ret;
3144 }
3145
3146 /**
3147  * btrfs_free_reserved_bytes - update the block_group and space info counters
3148  * @cache:      The cache we are manipulating
3149  * @num_bytes:  The number of bytes in question
3150  * @delalloc:   The blocks are allocated for the delalloc write
3151  *
3152  * This is called by somebody who is freeing space that was never actually used
3153  * on disk.  For example if you reserve some space for a new leaf in transaction
3154  * A and before transaction A commits you free that leaf, you call this with
3155  * reserve set to 0 in order to clear the reservation.
3156  */
3157 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3158                                u64 num_bytes, int delalloc)
3159 {
3160         struct btrfs_space_info *space_info = cache->space_info;
3161
3162         spin_lock(&space_info->lock);
3163         spin_lock(&cache->lock);
3164         if (cache->ro)
3165                 space_info->bytes_readonly += num_bytes;
3166         cache->reserved -= num_bytes;
3167         space_info->bytes_reserved -= num_bytes;
3168         space_info->max_extent_size = 0;
3169
3170         if (delalloc)
3171                 cache->delalloc_bytes -= num_bytes;
3172         spin_unlock(&cache->lock);
3173
3174         btrfs_try_granting_tickets(cache->fs_info, space_info);
3175         spin_unlock(&space_info->lock);
3176 }
3177
3178 static void force_metadata_allocation(struct btrfs_fs_info *info)
3179 {
3180         struct list_head *head = &info->space_info;
3181         struct btrfs_space_info *found;
3182
3183         list_for_each_entry(found, head, list) {
3184                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3185                         found->force_alloc = CHUNK_ALLOC_FORCE;
3186         }
3187 }
3188
3189 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3190                               struct btrfs_space_info *sinfo, int force)
3191 {
3192         u64 bytes_used = btrfs_space_info_used(sinfo, false);
3193         u64 thresh;
3194
3195         if (force == CHUNK_ALLOC_FORCE)
3196                 return 1;
3197
3198         /*
3199          * in limited mode, we want to have some free space up to
3200          * about 1% of the FS size.
3201          */
3202         if (force == CHUNK_ALLOC_LIMITED) {
3203                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3204                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3205
3206                 if (sinfo->total_bytes - bytes_used < thresh)
3207                         return 1;
3208         }
3209
3210         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3211                 return 0;
3212         return 1;
3213 }
3214
3215 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3216 {
3217         u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3218
3219         return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3220 }
3221
3222 /*
3223  * If force is CHUNK_ALLOC_FORCE:
3224  *    - return 1 if it successfully allocates a chunk,
3225  *    - return errors including -ENOSPC otherwise.
3226  * If force is NOT CHUNK_ALLOC_FORCE:
3227  *    - return 0 if it doesn't need to allocate a new chunk,
3228  *    - return 1 if it successfully allocates a chunk,
3229  *    - return errors including -ENOSPC otherwise.
3230  */
3231 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3232                       enum btrfs_chunk_alloc_enum force)
3233 {
3234         struct btrfs_fs_info *fs_info = trans->fs_info;
3235         struct btrfs_space_info *space_info;
3236         bool wait_for_alloc = false;
3237         bool should_alloc = false;
3238         int ret = 0;
3239
3240         /* Don't re-enter if we're already allocating a chunk */
3241         if (trans->allocating_chunk)
3242                 return -ENOSPC;
3243
3244         space_info = btrfs_find_space_info(fs_info, flags);
3245         ASSERT(space_info);
3246
3247         do {
3248                 spin_lock(&space_info->lock);
3249                 if (force < space_info->force_alloc)
3250                         force = space_info->force_alloc;
3251                 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3252                 if (space_info->full) {
3253                         /* No more free physical space */
3254                         if (should_alloc)
3255                                 ret = -ENOSPC;
3256                         else
3257                                 ret = 0;
3258                         spin_unlock(&space_info->lock);
3259                         return ret;
3260                 } else if (!should_alloc) {
3261                         spin_unlock(&space_info->lock);
3262                         return 0;
3263                 } else if (space_info->chunk_alloc) {
3264                         /*
3265                          * Someone is already allocating, so we need to block
3266                          * until this someone is finished and then loop to
3267                          * recheck if we should continue with our allocation
3268                          * attempt.
3269                          */
3270                         wait_for_alloc = true;
3271                         spin_unlock(&space_info->lock);
3272                         mutex_lock(&fs_info->chunk_mutex);
3273                         mutex_unlock(&fs_info->chunk_mutex);
3274                 } else {
3275                         /* Proceed with allocation */
3276                         space_info->chunk_alloc = 1;
3277                         wait_for_alloc = false;
3278                         spin_unlock(&space_info->lock);
3279                 }
3280
3281                 cond_resched();
3282         } while (wait_for_alloc);
3283
3284         mutex_lock(&fs_info->chunk_mutex);
3285         trans->allocating_chunk = true;
3286
3287         /*
3288          * If we have mixed data/metadata chunks we want to make sure we keep
3289          * allocating mixed chunks instead of individual chunks.
3290          */
3291         if (btrfs_mixed_space_info(space_info))
3292                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3293
3294         /*
3295          * if we're doing a data chunk, go ahead and make sure that
3296          * we keep a reasonable number of metadata chunks allocated in the
3297          * FS as well.
3298          */
3299         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3300                 fs_info->data_chunk_allocations++;
3301                 if (!(fs_info->data_chunk_allocations %
3302                       fs_info->metadata_ratio))
3303                         force_metadata_allocation(fs_info);
3304         }
3305
3306         /*
3307          * Check if we have enough space in SYSTEM chunk because we may need
3308          * to update devices.
3309          */
3310         check_system_chunk(trans, flags);
3311
3312         ret = btrfs_alloc_chunk(trans, flags);
3313         trans->allocating_chunk = false;
3314
3315         spin_lock(&space_info->lock);
3316         if (ret < 0) {
3317                 if (ret == -ENOSPC)
3318                         space_info->full = 1;
3319                 else
3320                         goto out;
3321         } else {
3322                 ret = 1;
3323                 space_info->max_extent_size = 0;
3324         }
3325
3326         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3327 out:
3328         space_info->chunk_alloc = 0;
3329         spin_unlock(&space_info->lock);
3330         mutex_unlock(&fs_info->chunk_mutex);
3331         /*
3332          * When we allocate a new chunk we reserve space in the chunk block
3333          * reserve to make sure we can COW nodes/leafs in the chunk tree or
3334          * add new nodes/leafs to it if we end up needing to do it when
3335          * inserting the chunk item and updating device items as part of the
3336          * second phase of chunk allocation, performed by
3337          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3338          * large number of new block groups to create in our transaction
3339          * handle's new_bgs list to avoid exhausting the chunk block reserve
3340          * in extreme cases - like having a single transaction create many new
3341          * block groups when starting to write out the free space caches of all
3342          * the block groups that were made dirty during the lifetime of the
3343          * transaction.
3344          */
3345         if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3346                 btrfs_create_pending_block_groups(trans);
3347
3348         return ret;
3349 }
3350
3351 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3352 {
3353         u64 num_dev;
3354
3355         num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3356         if (!num_dev)
3357                 num_dev = fs_info->fs_devices->rw_devices;
3358
3359         return num_dev;
3360 }
3361
3362 /*
3363  * Reserve space in the system space for allocating or removing a chunk
3364  */
3365 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3366 {
3367         struct btrfs_transaction *cur_trans = trans->transaction;
3368         struct btrfs_fs_info *fs_info = trans->fs_info;
3369         struct btrfs_space_info *info;
3370         u64 left;
3371         u64 thresh;
3372         int ret = 0;
3373         u64 num_devs;
3374
3375         /*
3376          * Needed because we can end up allocating a system chunk and for an
3377          * atomic and race free space reservation in the chunk block reserve.
3378          */
3379         lockdep_assert_held(&fs_info->chunk_mutex);
3380
3381         info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3382 again:
3383         spin_lock(&info->lock);
3384         left = info->total_bytes - btrfs_space_info_used(info, true);
3385         spin_unlock(&info->lock);
3386
3387         num_devs = get_profile_num_devs(fs_info, type);
3388
3389         /* num_devs device items to update and 1 chunk item to add or remove */
3390         thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3391                 btrfs_calc_insert_metadata_size(fs_info, 1);
3392
3393         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3394                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3395                            left, thresh, type);
3396                 btrfs_dump_space_info(fs_info, info, 0, 0);
3397         }
3398
3399         if (left < thresh) {
3400                 u64 flags = btrfs_system_alloc_profile(fs_info);
3401                 u64 reserved = atomic64_read(&cur_trans->chunk_bytes_reserved);
3402
3403                 /*
3404                  * If there's not available space for the chunk tree (system
3405                  * space) and there are other tasks that reserved space for
3406                  * creating a new system block group, wait for them to complete
3407                  * the creation of their system block group and release excess
3408                  * reserved space. We do this because:
3409                  *
3410                  * *) We can end up allocating more system chunks than necessary
3411                  *    when there are multiple tasks that are concurrently
3412                  *    allocating block groups, which can lead to exhaustion of
3413                  *    the system array in the superblock;
3414                  *
3415                  * *) If we allocate extra and unnecessary system block groups,
3416                  *    despite being empty for a long time, and possibly forever,
3417                  *    they end not being added to the list of unused block groups
3418                  *    because that typically happens only when deallocating the
3419                  *    last extent from a block group - which never happens since
3420                  *    we never allocate from them in the first place. The few
3421                  *    exceptions are when mounting a filesystem or running scrub,
3422                  *    which add unused block groups to the list of unused block
3423                  *    groups, to be deleted by the cleaner kthread.
3424                  *    And even when they are added to the list of unused block
3425                  *    groups, it can take a long time until they get deleted,
3426                  *    since the cleaner kthread might be sleeping or busy with
3427                  *    other work (deleting subvolumes, running delayed iputs,
3428                  *    defrag scheduling, etc);
3429                  *
3430                  * This is rare in practice, but can happen when too many tasks
3431                  * are allocating blocks groups in parallel (via fallocate())
3432                  * and before the one that reserved space for a new system block
3433                  * group finishes the block group creation and releases the space
3434                  * reserved in excess (at btrfs_create_pending_block_groups()),
3435                  * other tasks end up here and see free system space temporarily
3436                  * not enough for updating the chunk tree.
3437                  *
3438                  * We unlock the chunk mutex before waiting for such tasks and
3439                  * lock it again after the wait, otherwise we would deadlock.
3440                  * It is safe to do so because allocating a system chunk is the
3441                  * first thing done while allocating a new block group.
3442                  */
3443                 if (reserved > trans->chunk_bytes_reserved) {
3444                         const u64 min_needed = reserved - thresh;
3445
3446                         mutex_unlock(&fs_info->chunk_mutex);
3447                         wait_event(cur_trans->chunk_reserve_wait,
3448                            atomic64_read(&cur_trans->chunk_bytes_reserved) <=
3449                            min_needed);
3450                         mutex_lock(&fs_info->chunk_mutex);
3451                         goto again;
3452                 }
3453
3454                 /*
3455                  * Ignore failure to create system chunk. We might end up not
3456                  * needing it, as we might not need to COW all nodes/leafs from
3457                  * the paths we visit in the chunk tree (they were already COWed
3458                  * or created in the current transaction for example).
3459                  */
3460                 ret = btrfs_alloc_chunk(trans, flags);
3461         }
3462
3463         if (!ret) {
3464                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3465                                           &fs_info->chunk_block_rsv,
3466                                           thresh, BTRFS_RESERVE_NO_FLUSH);
3467                 if (!ret) {
3468                         atomic64_add(thresh, &cur_trans->chunk_bytes_reserved);
3469                         trans->chunk_bytes_reserved += thresh;
3470                 }
3471         }
3472 }
3473
3474 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3475 {
3476         struct btrfs_block_group *block_group;
3477         u64 last = 0;
3478
3479         while (1) {
3480                 struct inode *inode;
3481
3482                 block_group = btrfs_lookup_first_block_group(info, last);
3483                 while (block_group) {
3484                         btrfs_wait_block_group_cache_done(block_group);
3485                         spin_lock(&block_group->lock);
3486                         if (block_group->iref)
3487                                 break;
3488                         spin_unlock(&block_group->lock);
3489                         block_group = btrfs_next_block_group(block_group);
3490                 }
3491                 if (!block_group) {
3492                         if (last == 0)
3493                                 break;
3494                         last = 0;
3495                         continue;
3496                 }
3497
3498                 inode = block_group->inode;
3499                 block_group->iref = 0;
3500                 block_group->inode = NULL;
3501                 spin_unlock(&block_group->lock);
3502                 ASSERT(block_group->io_ctl.inode == NULL);
3503                 iput(inode);
3504                 last = block_group->start + block_group->length;
3505                 btrfs_put_block_group(block_group);
3506         }
3507 }
3508
3509 /*
3510  * Must be called only after stopping all workers, since we could have block
3511  * group caching kthreads running, and therefore they could race with us if we
3512  * freed the block groups before stopping them.
3513  */
3514 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3515 {
3516         struct btrfs_block_group *block_group;
3517         struct btrfs_space_info *space_info;
3518         struct btrfs_caching_control *caching_ctl;
3519         struct rb_node *n;
3520
3521         spin_lock(&info->block_group_cache_lock);
3522         while (!list_empty(&info->caching_block_groups)) {
3523                 caching_ctl = list_entry(info->caching_block_groups.next,
3524                                          struct btrfs_caching_control, list);
3525                 list_del(&caching_ctl->list);
3526                 btrfs_put_caching_control(caching_ctl);
3527         }
3528         spin_unlock(&info->block_group_cache_lock);
3529
3530         spin_lock(&info->unused_bgs_lock);
3531         while (!list_empty(&info->unused_bgs)) {
3532                 block_group = list_first_entry(&info->unused_bgs,
3533                                                struct btrfs_block_group,
3534                                                bg_list);
3535                 list_del_init(&block_group->bg_list);
3536                 btrfs_put_block_group(block_group);
3537         }
3538         spin_unlock(&info->unused_bgs_lock);
3539
3540         spin_lock(&info->unused_bgs_lock);
3541         while (!list_empty(&info->reclaim_bgs)) {
3542                 block_group = list_first_entry(&info->reclaim_bgs,
3543                                                struct btrfs_block_group,
3544                                                bg_list);
3545                 list_del_init(&block_group->bg_list);
3546                 btrfs_put_block_group(block_group);
3547         }
3548         spin_unlock(&info->unused_bgs_lock);
3549
3550         spin_lock(&info->block_group_cache_lock);
3551         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3552                 block_group = rb_entry(n, struct btrfs_block_group,
3553                                        cache_node);
3554                 rb_erase(&block_group->cache_node,
3555                          &info->block_group_cache_tree);
3556                 RB_CLEAR_NODE(&block_group->cache_node);
3557                 spin_unlock(&info->block_group_cache_lock);
3558
3559                 down_write(&block_group->space_info->groups_sem);
3560                 list_del(&block_group->list);
3561                 up_write(&block_group->space_info->groups_sem);
3562
3563                 /*
3564                  * We haven't cached this block group, which means we could
3565                  * possibly have excluded extents on this block group.
3566                  */
3567                 if (block_group->cached == BTRFS_CACHE_NO ||
3568                     block_group->cached == BTRFS_CACHE_ERROR)
3569                         btrfs_free_excluded_extents(block_group);
3570
3571                 btrfs_remove_free_space_cache(block_group);
3572                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3573                 ASSERT(list_empty(&block_group->dirty_list));
3574                 ASSERT(list_empty(&block_group->io_list));
3575                 ASSERT(list_empty(&block_group->bg_list));
3576                 ASSERT(refcount_read(&block_group->refs) == 1);
3577                 ASSERT(block_group->swap_extents == 0);
3578                 btrfs_put_block_group(block_group);
3579
3580                 spin_lock(&info->block_group_cache_lock);
3581         }
3582         spin_unlock(&info->block_group_cache_lock);
3583
3584         btrfs_release_global_block_rsv(info);
3585
3586         while (!list_empty(&info->space_info)) {
3587                 space_info = list_entry(info->space_info.next,
3588                                         struct btrfs_space_info,
3589                                         list);
3590
3591                 /*
3592                  * Do not hide this behind enospc_debug, this is actually
3593                  * important and indicates a real bug if this happens.
3594                  */
3595                 if (WARN_ON(space_info->bytes_pinned > 0 ||
3596                             space_info->bytes_reserved > 0 ||
3597                             space_info->bytes_may_use > 0))
3598                         btrfs_dump_space_info(info, space_info, 0, 0);
3599                 WARN_ON(space_info->reclaim_size > 0);
3600                 list_del(&space_info->list);
3601                 btrfs_sysfs_remove_space_info(space_info);
3602         }
3603         return 0;
3604 }
3605
3606 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3607 {
3608         atomic_inc(&cache->frozen);
3609 }
3610
3611 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3612 {
3613         struct btrfs_fs_info *fs_info = block_group->fs_info;
3614         struct extent_map_tree *em_tree;
3615         struct extent_map *em;
3616         bool cleanup;
3617
3618         spin_lock(&block_group->lock);
3619         cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3620                    block_group->removed);
3621         spin_unlock(&block_group->lock);
3622
3623         if (cleanup) {
3624                 em_tree = &fs_info->mapping_tree;
3625                 write_lock(&em_tree->lock);
3626                 em = lookup_extent_mapping(em_tree, block_group->start,
3627                                            1);
3628                 BUG_ON(!em); /* logic error, can't happen */
3629                 remove_extent_mapping(em_tree, em);
3630                 write_unlock(&em_tree->lock);
3631
3632                 /* once for us and once for the tree */
3633                 free_extent_map(em);
3634                 free_extent_map(em);
3635
3636                 /*
3637                  * We may have left one free space entry and other possible
3638                  * tasks trimming this block group have left 1 entry each one.
3639                  * Free them if any.
3640                  */
3641                 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3642         }
3643 }
3644
3645 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3646 {
3647         bool ret = true;
3648
3649         spin_lock(&bg->lock);
3650         if (bg->ro)
3651                 ret = false;
3652         else
3653                 bg->swap_extents++;
3654         spin_unlock(&bg->lock);
3655
3656         return ret;
3657 }
3658
3659 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3660 {
3661         spin_lock(&bg->lock);
3662         ASSERT(!bg->ro);
3663         ASSERT(bg->swap_extents >= amount);
3664         bg->swap_extents -= amount;
3665         spin_unlock(&bg->lock);
3666 }