usb: dwc3: dwc3-qcom: Fix typo in the dwc3 vbus override API
[linux-2.6-microblaze.git] / fs / btrfs / block-group.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 #include "zoned.h"
19
20 /*
21  * Return target flags in extended format or 0 if restripe for this chunk_type
22  * is not in progress
23  *
24  * Should be called with balance_lock held
25  */
26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 {
28         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29         u64 target = 0;
30
31         if (!bctl)
32                 return 0;
33
34         if (flags & BTRFS_BLOCK_GROUP_DATA &&
35             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43         }
44
45         return target;
46 }
47
48 /*
49  * @flags: available profiles in extended format (see ctree.h)
50  *
51  * Return reduced profile in chunk format.  If profile changing is in progress
52  * (either running or paused) picks the target profile (if it's already
53  * available), otherwise falls back to plain reducing.
54  */
55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 {
57         u64 num_devices = fs_info->fs_devices->rw_devices;
58         u64 target;
59         u64 raid_type;
60         u64 allowed = 0;
61
62         /*
63          * See if restripe for this chunk_type is in progress, if so try to
64          * reduce to the target profile
65          */
66         spin_lock(&fs_info->balance_lock);
67         target = get_restripe_target(fs_info, flags);
68         if (target) {
69                 spin_unlock(&fs_info->balance_lock);
70                 return extended_to_chunk(target);
71         }
72         spin_unlock(&fs_info->balance_lock);
73
74         /* First, mask out the RAID levels which aren't possible */
75         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77                         allowed |= btrfs_raid_array[raid_type].bg_flag;
78         }
79         allowed &= flags;
80
81         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82                 allowed = BTRFS_BLOCK_GROUP_RAID6;
83         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84                 allowed = BTRFS_BLOCK_GROUP_RAID5;
85         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86                 allowed = BTRFS_BLOCK_GROUP_RAID10;
87         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88                 allowed = BTRFS_BLOCK_GROUP_RAID1;
89         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90                 allowed = BTRFS_BLOCK_GROUP_RAID0;
91
92         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93
94         return extended_to_chunk(flags | allowed);
95 }
96
97 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
98 {
99         unsigned seq;
100         u64 flags;
101
102         do {
103                 flags = orig_flags;
104                 seq = read_seqbegin(&fs_info->profiles_lock);
105
106                 if (flags & BTRFS_BLOCK_GROUP_DATA)
107                         flags |= fs_info->avail_data_alloc_bits;
108                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109                         flags |= fs_info->avail_system_alloc_bits;
110                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111                         flags |= fs_info->avail_metadata_alloc_bits;
112         } while (read_seqretry(&fs_info->profiles_lock, seq));
113
114         return btrfs_reduce_alloc_profile(fs_info, flags);
115 }
116
117 void btrfs_get_block_group(struct btrfs_block_group *cache)
118 {
119         refcount_inc(&cache->refs);
120 }
121
122 void btrfs_put_block_group(struct btrfs_block_group *cache)
123 {
124         if (refcount_dec_and_test(&cache->refs)) {
125                 WARN_ON(cache->pinned > 0);
126                 WARN_ON(cache->reserved > 0);
127
128                 /*
129                  * A block_group shouldn't be on the discard_list anymore.
130                  * Remove the block_group from the discard_list to prevent us
131                  * from causing a panic due to NULL pointer dereference.
132                  */
133                 if (WARN_ON(!list_empty(&cache->discard_list)))
134                         btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135                                                   cache);
136
137                 /*
138                  * If not empty, someone is still holding mutex of
139                  * full_stripe_lock, which can only be released by caller.
140                  * And it will definitely cause use-after-free when caller
141                  * tries to release full stripe lock.
142                  *
143                  * No better way to resolve, but only to warn.
144                  */
145                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146                 kfree(cache->free_space_ctl);
147                 kfree(cache);
148         }
149 }
150
151 /*
152  * This adds the block group to the fs_info rb tree for the block group cache
153  */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155                                        struct btrfs_block_group *block_group)
156 {
157         struct rb_node **p;
158         struct rb_node *parent = NULL;
159         struct btrfs_block_group *cache;
160
161         ASSERT(block_group->length != 0);
162
163         spin_lock(&info->block_group_cache_lock);
164         p = &info->block_group_cache_tree.rb_node;
165
166         while (*p) {
167                 parent = *p;
168                 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
169                 if (block_group->start < cache->start) {
170                         p = &(*p)->rb_left;
171                 } else if (block_group->start > cache->start) {
172                         p = &(*p)->rb_right;
173                 } else {
174                         spin_unlock(&info->block_group_cache_lock);
175                         return -EEXIST;
176                 }
177         }
178
179         rb_link_node(&block_group->cache_node, parent, p);
180         rb_insert_color(&block_group->cache_node,
181                         &info->block_group_cache_tree);
182
183         if (info->first_logical_byte > block_group->start)
184                 info->first_logical_byte = block_group->start;
185
186         spin_unlock(&info->block_group_cache_lock);
187
188         return 0;
189 }
190
191 /*
192  * This will return the block group at or after bytenr if contains is 0, else
193  * it will return the block group that contains the bytenr
194  */
195 static struct btrfs_block_group *block_group_cache_tree_search(
196                 struct btrfs_fs_info *info, u64 bytenr, int contains)
197 {
198         struct btrfs_block_group *cache, *ret = NULL;
199         struct rb_node *n;
200         u64 end, start;
201
202         spin_lock(&info->block_group_cache_lock);
203         n = info->block_group_cache_tree.rb_node;
204
205         while (n) {
206                 cache = rb_entry(n, struct btrfs_block_group, cache_node);
207                 end = cache->start + cache->length - 1;
208                 start = cache->start;
209
210                 if (bytenr < start) {
211                         if (!contains && (!ret || start < ret->start))
212                                 ret = cache;
213                         n = n->rb_left;
214                 } else if (bytenr > start) {
215                         if (contains && bytenr <= end) {
216                                 ret = cache;
217                                 break;
218                         }
219                         n = n->rb_right;
220                 } else {
221                         ret = cache;
222                         break;
223                 }
224         }
225         if (ret) {
226                 btrfs_get_block_group(ret);
227                 if (bytenr == 0 && info->first_logical_byte > ret->start)
228                         info->first_logical_byte = ret->start;
229         }
230         spin_unlock(&info->block_group_cache_lock);
231
232         return ret;
233 }
234
235 /*
236  * Return the block group that starts at or after bytenr
237  */
238 struct btrfs_block_group *btrfs_lookup_first_block_group(
239                 struct btrfs_fs_info *info, u64 bytenr)
240 {
241         return block_group_cache_tree_search(info, bytenr, 0);
242 }
243
244 /*
245  * Return the block group that contains the given bytenr
246  */
247 struct btrfs_block_group *btrfs_lookup_block_group(
248                 struct btrfs_fs_info *info, u64 bytenr)
249 {
250         return block_group_cache_tree_search(info, bytenr, 1);
251 }
252
253 struct btrfs_block_group *btrfs_next_block_group(
254                 struct btrfs_block_group *cache)
255 {
256         struct btrfs_fs_info *fs_info = cache->fs_info;
257         struct rb_node *node;
258
259         spin_lock(&fs_info->block_group_cache_lock);
260
261         /* If our block group was removed, we need a full search. */
262         if (RB_EMPTY_NODE(&cache->cache_node)) {
263                 const u64 next_bytenr = cache->start + cache->length;
264
265                 spin_unlock(&fs_info->block_group_cache_lock);
266                 btrfs_put_block_group(cache);
267                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268         }
269         node = rb_next(&cache->cache_node);
270         btrfs_put_block_group(cache);
271         if (node) {
272                 cache = rb_entry(node, struct btrfs_block_group, cache_node);
273                 btrfs_get_block_group(cache);
274         } else
275                 cache = NULL;
276         spin_unlock(&fs_info->block_group_cache_lock);
277         return cache;
278 }
279
280 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281 {
282         struct btrfs_block_group *bg;
283         bool ret = true;
284
285         bg = btrfs_lookup_block_group(fs_info, bytenr);
286         if (!bg)
287                 return false;
288
289         spin_lock(&bg->lock);
290         if (bg->ro)
291                 ret = false;
292         else
293                 atomic_inc(&bg->nocow_writers);
294         spin_unlock(&bg->lock);
295
296         /* No put on block group, done by btrfs_dec_nocow_writers */
297         if (!ret)
298                 btrfs_put_block_group(bg);
299
300         return ret;
301 }
302
303 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304 {
305         struct btrfs_block_group *bg;
306
307         bg = btrfs_lookup_block_group(fs_info, bytenr);
308         ASSERT(bg);
309         if (atomic_dec_and_test(&bg->nocow_writers))
310                 wake_up_var(&bg->nocow_writers);
311         /*
312          * Once for our lookup and once for the lookup done by a previous call
313          * to btrfs_inc_nocow_writers()
314          */
315         btrfs_put_block_group(bg);
316         btrfs_put_block_group(bg);
317 }
318
319 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
320 {
321         wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322 }
323
324 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325                                         const u64 start)
326 {
327         struct btrfs_block_group *bg;
328
329         bg = btrfs_lookup_block_group(fs_info, start);
330         ASSERT(bg);
331         if (atomic_dec_and_test(&bg->reservations))
332                 wake_up_var(&bg->reservations);
333         btrfs_put_block_group(bg);
334 }
335
336 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
337 {
338         struct btrfs_space_info *space_info = bg->space_info;
339
340         ASSERT(bg->ro);
341
342         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343                 return;
344
345         /*
346          * Our block group is read only but before we set it to read only,
347          * some task might have had allocated an extent from it already, but it
348          * has not yet created a respective ordered extent (and added it to a
349          * root's list of ordered extents).
350          * Therefore wait for any task currently allocating extents, since the
351          * block group's reservations counter is incremented while a read lock
352          * on the groups' semaphore is held and decremented after releasing
353          * the read access on that semaphore and creating the ordered extent.
354          */
355         down_write(&space_info->groups_sem);
356         up_write(&space_info->groups_sem);
357
358         wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359 }
360
361 struct btrfs_caching_control *btrfs_get_caching_control(
362                 struct btrfs_block_group *cache)
363 {
364         struct btrfs_caching_control *ctl;
365
366         spin_lock(&cache->lock);
367         if (!cache->caching_ctl) {
368                 spin_unlock(&cache->lock);
369                 return NULL;
370         }
371
372         ctl = cache->caching_ctl;
373         refcount_inc(&ctl->count);
374         spin_unlock(&cache->lock);
375         return ctl;
376 }
377
378 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379 {
380         if (refcount_dec_and_test(&ctl->count))
381                 kfree(ctl);
382 }
383
384 /*
385  * When we wait for progress in the block group caching, its because our
386  * allocation attempt failed at least once.  So, we must sleep and let some
387  * progress happen before we try again.
388  *
389  * This function will sleep at least once waiting for new free space to show
390  * up, and then it will check the block group free space numbers for our min
391  * num_bytes.  Another option is to have it go ahead and look in the rbtree for
392  * a free extent of a given size, but this is a good start.
393  *
394  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395  * any of the information in this block group.
396  */
397 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
398                                            u64 num_bytes)
399 {
400         struct btrfs_caching_control *caching_ctl;
401
402         caching_ctl = btrfs_get_caching_control(cache);
403         if (!caching_ctl)
404                 return;
405
406         wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
407                    (cache->free_space_ctl->free_space >= num_bytes));
408
409         btrfs_put_caching_control(caching_ctl);
410 }
411
412 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
413 {
414         struct btrfs_caching_control *caching_ctl;
415         int ret = 0;
416
417         caching_ctl = btrfs_get_caching_control(cache);
418         if (!caching_ctl)
419                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420
421         wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
422         if (cache->cached == BTRFS_CACHE_ERROR)
423                 ret = -EIO;
424         btrfs_put_caching_control(caching_ctl);
425         return ret;
426 }
427
428 static bool space_cache_v1_done(struct btrfs_block_group *cache)
429 {
430         bool ret;
431
432         spin_lock(&cache->lock);
433         ret = cache->cached != BTRFS_CACHE_FAST;
434         spin_unlock(&cache->lock);
435
436         return ret;
437 }
438
439 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440                                 struct btrfs_caching_control *caching_ctl)
441 {
442         wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443 }
444
445 #ifdef CONFIG_BTRFS_DEBUG
446 static void fragment_free_space(struct btrfs_block_group *block_group)
447 {
448         struct btrfs_fs_info *fs_info = block_group->fs_info;
449         u64 start = block_group->start;
450         u64 len = block_group->length;
451         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452                 fs_info->nodesize : fs_info->sectorsize;
453         u64 step = chunk << 1;
454
455         while (len > chunk) {
456                 btrfs_remove_free_space(block_group, start, chunk);
457                 start += step;
458                 if (len < step)
459                         len = 0;
460                 else
461                         len -= step;
462         }
463 }
464 #endif
465
466 /*
467  * This is only called by btrfs_cache_block_group, since we could have freed
468  * extents we need to check the pinned_extents for any extents that can't be
469  * used yet since their free space will be released as soon as the transaction
470  * commits.
471  */
472 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
473 {
474         struct btrfs_fs_info *info = block_group->fs_info;
475         u64 extent_start, extent_end, size, total_added = 0;
476         int ret;
477
478         while (start < end) {
479                 ret = find_first_extent_bit(&info->excluded_extents, start,
480                                             &extent_start, &extent_end,
481                                             EXTENT_DIRTY | EXTENT_UPTODATE,
482                                             NULL);
483                 if (ret)
484                         break;
485
486                 if (extent_start <= start) {
487                         start = extent_end + 1;
488                 } else if (extent_start > start && extent_start < end) {
489                         size = extent_start - start;
490                         total_added += size;
491                         ret = btrfs_add_free_space_async_trimmed(block_group,
492                                                                  start, size);
493                         BUG_ON(ret); /* -ENOMEM or logic error */
494                         start = extent_end + 1;
495                 } else {
496                         break;
497                 }
498         }
499
500         if (start < end) {
501                 size = end - start;
502                 total_added += size;
503                 ret = btrfs_add_free_space_async_trimmed(block_group, start,
504                                                          size);
505                 BUG_ON(ret); /* -ENOMEM or logic error */
506         }
507
508         return total_added;
509 }
510
511 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512 {
513         struct btrfs_block_group *block_group = caching_ctl->block_group;
514         struct btrfs_fs_info *fs_info = block_group->fs_info;
515         struct btrfs_root *extent_root = fs_info->extent_root;
516         struct btrfs_path *path;
517         struct extent_buffer *leaf;
518         struct btrfs_key key;
519         u64 total_found = 0;
520         u64 last = 0;
521         u32 nritems;
522         int ret;
523         bool wakeup = true;
524
525         path = btrfs_alloc_path();
526         if (!path)
527                 return -ENOMEM;
528
529         last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
530
531 #ifdef CONFIG_BTRFS_DEBUG
532         /*
533          * If we're fragmenting we don't want to make anybody think we can
534          * allocate from this block group until we've had a chance to fragment
535          * the free space.
536          */
537         if (btrfs_should_fragment_free_space(block_group))
538                 wakeup = false;
539 #endif
540         /*
541          * We don't want to deadlock with somebody trying to allocate a new
542          * extent for the extent root while also trying to search the extent
543          * root to add free space.  So we skip locking and search the commit
544          * root, since its read-only
545          */
546         path->skip_locking = 1;
547         path->search_commit_root = 1;
548         path->reada = READA_FORWARD;
549
550         key.objectid = last;
551         key.offset = 0;
552         key.type = BTRFS_EXTENT_ITEM_KEY;
553
554 next:
555         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556         if (ret < 0)
557                 goto out;
558
559         leaf = path->nodes[0];
560         nritems = btrfs_header_nritems(leaf);
561
562         while (1) {
563                 if (btrfs_fs_closing(fs_info) > 1) {
564                         last = (u64)-1;
565                         break;
566                 }
567
568                 if (path->slots[0] < nritems) {
569                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570                 } else {
571                         ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572                         if (ret)
573                                 break;
574
575                         if (need_resched() ||
576                             rwsem_is_contended(&fs_info->commit_root_sem)) {
577                                 if (wakeup)
578                                         caching_ctl->progress = last;
579                                 btrfs_release_path(path);
580                                 up_read(&fs_info->commit_root_sem);
581                                 mutex_unlock(&caching_ctl->mutex);
582                                 cond_resched();
583                                 mutex_lock(&caching_ctl->mutex);
584                                 down_read(&fs_info->commit_root_sem);
585                                 goto next;
586                         }
587
588                         ret = btrfs_next_leaf(extent_root, path);
589                         if (ret < 0)
590                                 goto out;
591                         if (ret)
592                                 break;
593                         leaf = path->nodes[0];
594                         nritems = btrfs_header_nritems(leaf);
595                         continue;
596                 }
597
598                 if (key.objectid < last) {
599                         key.objectid = last;
600                         key.offset = 0;
601                         key.type = BTRFS_EXTENT_ITEM_KEY;
602
603                         if (wakeup)
604                                 caching_ctl->progress = last;
605                         btrfs_release_path(path);
606                         goto next;
607                 }
608
609                 if (key.objectid < block_group->start) {
610                         path->slots[0]++;
611                         continue;
612                 }
613
614                 if (key.objectid >= block_group->start + block_group->length)
615                         break;
616
617                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618                     key.type == BTRFS_METADATA_ITEM_KEY) {
619                         total_found += add_new_free_space(block_group, last,
620                                                           key.objectid);
621                         if (key.type == BTRFS_METADATA_ITEM_KEY)
622                                 last = key.objectid +
623                                         fs_info->nodesize;
624                         else
625                                 last = key.objectid + key.offset;
626
627                         if (total_found > CACHING_CTL_WAKE_UP) {
628                                 total_found = 0;
629                                 if (wakeup)
630                                         wake_up(&caching_ctl->wait);
631                         }
632                 }
633                 path->slots[0]++;
634         }
635         ret = 0;
636
637         total_found += add_new_free_space(block_group, last,
638                                 block_group->start + block_group->length);
639         caching_ctl->progress = (u64)-1;
640
641 out:
642         btrfs_free_path(path);
643         return ret;
644 }
645
646 static noinline void caching_thread(struct btrfs_work *work)
647 {
648         struct btrfs_block_group *block_group;
649         struct btrfs_fs_info *fs_info;
650         struct btrfs_caching_control *caching_ctl;
651         int ret;
652
653         caching_ctl = container_of(work, struct btrfs_caching_control, work);
654         block_group = caching_ctl->block_group;
655         fs_info = block_group->fs_info;
656
657         mutex_lock(&caching_ctl->mutex);
658         down_read(&fs_info->commit_root_sem);
659
660         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661                 ret = load_free_space_cache(block_group);
662                 if (ret == 1) {
663                         ret = 0;
664                         goto done;
665                 }
666
667                 /*
668                  * We failed to load the space cache, set ourselves to
669                  * CACHE_STARTED and carry on.
670                  */
671                 spin_lock(&block_group->lock);
672                 block_group->cached = BTRFS_CACHE_STARTED;
673                 spin_unlock(&block_group->lock);
674                 wake_up(&caching_ctl->wait);
675         }
676
677         /*
678          * If we are in the transaction that populated the free space tree we
679          * can't actually cache from the free space tree as our commit root and
680          * real root are the same, so we could change the contents of the blocks
681          * while caching.  Instead do the slow caching in this case, and after
682          * the transaction has committed we will be safe.
683          */
684         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685             !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
686                 ret = load_free_space_tree(caching_ctl);
687         else
688                 ret = load_extent_tree_free(caching_ctl);
689 done:
690         spin_lock(&block_group->lock);
691         block_group->caching_ctl = NULL;
692         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693         spin_unlock(&block_group->lock);
694
695 #ifdef CONFIG_BTRFS_DEBUG
696         if (btrfs_should_fragment_free_space(block_group)) {
697                 u64 bytes_used;
698
699                 spin_lock(&block_group->space_info->lock);
700                 spin_lock(&block_group->lock);
701                 bytes_used = block_group->length - block_group->used;
702                 block_group->space_info->bytes_used += bytes_used >> 1;
703                 spin_unlock(&block_group->lock);
704                 spin_unlock(&block_group->space_info->lock);
705                 fragment_free_space(block_group);
706         }
707 #endif
708
709         caching_ctl->progress = (u64)-1;
710
711         up_read(&fs_info->commit_root_sem);
712         btrfs_free_excluded_extents(block_group);
713         mutex_unlock(&caching_ctl->mutex);
714
715         wake_up(&caching_ctl->wait);
716
717         btrfs_put_caching_control(caching_ctl);
718         btrfs_put_block_group(block_group);
719 }
720
721 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
722 {
723         DEFINE_WAIT(wait);
724         struct btrfs_fs_info *fs_info = cache->fs_info;
725         struct btrfs_caching_control *caching_ctl = NULL;
726         int ret = 0;
727
728         /* Allocator for zoned filesystems does not use the cache at all */
729         if (btrfs_is_zoned(fs_info))
730                 return 0;
731
732         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733         if (!caching_ctl)
734                 return -ENOMEM;
735
736         INIT_LIST_HEAD(&caching_ctl->list);
737         mutex_init(&caching_ctl->mutex);
738         init_waitqueue_head(&caching_ctl->wait);
739         caching_ctl->block_group = cache;
740         caching_ctl->progress = cache->start;
741         refcount_set(&caching_ctl->count, 2);
742         btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
743
744         spin_lock(&cache->lock);
745         if (cache->cached != BTRFS_CACHE_NO) {
746                 kfree(caching_ctl);
747
748                 caching_ctl = cache->caching_ctl;
749                 if (caching_ctl)
750                         refcount_inc(&caching_ctl->count);
751                 spin_unlock(&cache->lock);
752                 goto out;
753         }
754         WARN_ON(cache->caching_ctl);
755         cache->caching_ctl = caching_ctl;
756         if (btrfs_test_opt(fs_info, SPACE_CACHE))
757                 cache->cached = BTRFS_CACHE_FAST;
758         else
759                 cache->cached = BTRFS_CACHE_STARTED;
760         cache->has_caching_ctl = 1;
761         spin_unlock(&cache->lock);
762
763         spin_lock(&fs_info->block_group_cache_lock);
764         refcount_inc(&caching_ctl->count);
765         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
766         spin_unlock(&fs_info->block_group_cache_lock);
767
768         btrfs_get_block_group(cache);
769
770         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
771 out:
772         if (load_cache_only && caching_ctl)
773                 btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774         if (caching_ctl)
775                 btrfs_put_caching_control(caching_ctl);
776
777         return ret;
778 }
779
780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781 {
782         u64 extra_flags = chunk_to_extended(flags) &
783                                 BTRFS_EXTENDED_PROFILE_MASK;
784
785         write_seqlock(&fs_info->profiles_lock);
786         if (flags & BTRFS_BLOCK_GROUP_DATA)
787                 fs_info->avail_data_alloc_bits &= ~extra_flags;
788         if (flags & BTRFS_BLOCK_GROUP_METADATA)
789                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791                 fs_info->avail_system_alloc_bits &= ~extra_flags;
792         write_sequnlock(&fs_info->profiles_lock);
793 }
794
795 /*
796  * Clear incompat bits for the following feature(s):
797  *
798  * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799  *            in the whole filesystem
800  *
801  * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
802  */
803 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804 {
805         bool found_raid56 = false;
806         bool found_raid1c34 = false;
807
808         if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809             (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810             (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
811                 struct list_head *head = &fs_info->space_info;
812                 struct btrfs_space_info *sinfo;
813
814                 list_for_each_entry_rcu(sinfo, head, list) {
815                         down_read(&sinfo->groups_sem);
816                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
817                                 found_raid56 = true;
818                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
819                                 found_raid56 = true;
820                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821                                 found_raid1c34 = true;
822                         if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823                                 found_raid1c34 = true;
824                         up_read(&sinfo->groups_sem);
825                 }
826                 if (!found_raid56)
827                         btrfs_clear_fs_incompat(fs_info, RAID56);
828                 if (!found_raid1c34)
829                         btrfs_clear_fs_incompat(fs_info, RAID1C34);
830         }
831 }
832
833 static int remove_block_group_item(struct btrfs_trans_handle *trans,
834                                    struct btrfs_path *path,
835                                    struct btrfs_block_group *block_group)
836 {
837         struct btrfs_fs_info *fs_info = trans->fs_info;
838         struct btrfs_root *root;
839         struct btrfs_key key;
840         int ret;
841
842         root = fs_info->extent_root;
843         key.objectid = block_group->start;
844         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845         key.offset = block_group->length;
846
847         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848         if (ret > 0)
849                 ret = -ENOENT;
850         if (ret < 0)
851                 return ret;
852
853         ret = btrfs_del_item(trans, root, path);
854         return ret;
855 }
856
857 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858                              u64 group_start, struct extent_map *em)
859 {
860         struct btrfs_fs_info *fs_info = trans->fs_info;
861         struct btrfs_path *path;
862         struct btrfs_block_group *block_group;
863         struct btrfs_free_cluster *cluster;
864         struct inode *inode;
865         struct kobject *kobj = NULL;
866         int ret;
867         int index;
868         int factor;
869         struct btrfs_caching_control *caching_ctl = NULL;
870         bool remove_em;
871         bool remove_rsv = false;
872
873         block_group = btrfs_lookup_block_group(fs_info, group_start);
874         BUG_ON(!block_group);
875         BUG_ON(!block_group->ro);
876
877         trace_btrfs_remove_block_group(block_group);
878         /*
879          * Free the reserved super bytes from this block group before
880          * remove it.
881          */
882         btrfs_free_excluded_extents(block_group);
883         btrfs_free_ref_tree_range(fs_info, block_group->start,
884                                   block_group->length);
885
886         index = btrfs_bg_flags_to_raid_index(block_group->flags);
887         factor = btrfs_bg_type_to_factor(block_group->flags);
888
889         /* make sure this block group isn't part of an allocation cluster */
890         cluster = &fs_info->data_alloc_cluster;
891         spin_lock(&cluster->refill_lock);
892         btrfs_return_cluster_to_free_space(block_group, cluster);
893         spin_unlock(&cluster->refill_lock);
894
895         /*
896          * make sure this block group isn't part of a metadata
897          * allocation cluster
898          */
899         cluster = &fs_info->meta_alloc_cluster;
900         spin_lock(&cluster->refill_lock);
901         btrfs_return_cluster_to_free_space(block_group, cluster);
902         spin_unlock(&cluster->refill_lock);
903
904         btrfs_clear_treelog_bg(block_group);
905
906         path = btrfs_alloc_path();
907         if (!path) {
908                 ret = -ENOMEM;
909                 goto out;
910         }
911
912         /*
913          * get the inode first so any iput calls done for the io_list
914          * aren't the final iput (no unlinks allowed now)
915          */
916         inode = lookup_free_space_inode(block_group, path);
917
918         mutex_lock(&trans->transaction->cache_write_mutex);
919         /*
920          * Make sure our free space cache IO is done before removing the
921          * free space inode
922          */
923         spin_lock(&trans->transaction->dirty_bgs_lock);
924         if (!list_empty(&block_group->io_list)) {
925                 list_del_init(&block_group->io_list);
926
927                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928
929                 spin_unlock(&trans->transaction->dirty_bgs_lock);
930                 btrfs_wait_cache_io(trans, block_group, path);
931                 btrfs_put_block_group(block_group);
932                 spin_lock(&trans->transaction->dirty_bgs_lock);
933         }
934
935         if (!list_empty(&block_group->dirty_list)) {
936                 list_del_init(&block_group->dirty_list);
937                 remove_rsv = true;
938                 btrfs_put_block_group(block_group);
939         }
940         spin_unlock(&trans->transaction->dirty_bgs_lock);
941         mutex_unlock(&trans->transaction->cache_write_mutex);
942
943         ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944         if (ret)
945                 goto out;
946
947         spin_lock(&fs_info->block_group_cache_lock);
948         rb_erase(&block_group->cache_node,
949                  &fs_info->block_group_cache_tree);
950         RB_CLEAR_NODE(&block_group->cache_node);
951
952         /* Once for the block groups rbtree */
953         btrfs_put_block_group(block_group);
954
955         if (fs_info->first_logical_byte == block_group->start)
956                 fs_info->first_logical_byte = (u64)-1;
957         spin_unlock(&fs_info->block_group_cache_lock);
958
959         down_write(&block_group->space_info->groups_sem);
960         /*
961          * we must use list_del_init so people can check to see if they
962          * are still on the list after taking the semaphore
963          */
964         list_del_init(&block_group->list);
965         if (list_empty(&block_group->space_info->block_groups[index])) {
966                 kobj = block_group->space_info->block_group_kobjs[index];
967                 block_group->space_info->block_group_kobjs[index] = NULL;
968                 clear_avail_alloc_bits(fs_info, block_group->flags);
969         }
970         up_write(&block_group->space_info->groups_sem);
971         clear_incompat_bg_bits(fs_info, block_group->flags);
972         if (kobj) {
973                 kobject_del(kobj);
974                 kobject_put(kobj);
975         }
976
977         if (block_group->has_caching_ctl)
978                 caching_ctl = btrfs_get_caching_control(block_group);
979         if (block_group->cached == BTRFS_CACHE_STARTED)
980                 btrfs_wait_block_group_cache_done(block_group);
981         if (block_group->has_caching_ctl) {
982                 spin_lock(&fs_info->block_group_cache_lock);
983                 if (!caching_ctl) {
984                         struct btrfs_caching_control *ctl;
985
986                         list_for_each_entry(ctl,
987                                     &fs_info->caching_block_groups, list)
988                                 if (ctl->block_group == block_group) {
989                                         caching_ctl = ctl;
990                                         refcount_inc(&caching_ctl->count);
991                                         break;
992                                 }
993                 }
994                 if (caching_ctl)
995                         list_del_init(&caching_ctl->list);
996                 spin_unlock(&fs_info->block_group_cache_lock);
997                 if (caching_ctl) {
998                         /* Once for the caching bgs list and once for us. */
999                         btrfs_put_caching_control(caching_ctl);
1000                         btrfs_put_caching_control(caching_ctl);
1001                 }
1002         }
1003
1004         spin_lock(&trans->transaction->dirty_bgs_lock);
1005         WARN_ON(!list_empty(&block_group->dirty_list));
1006         WARN_ON(!list_empty(&block_group->io_list));
1007         spin_unlock(&trans->transaction->dirty_bgs_lock);
1008
1009         btrfs_remove_free_space_cache(block_group);
1010
1011         spin_lock(&block_group->space_info->lock);
1012         list_del_init(&block_group->ro_list);
1013
1014         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015                 WARN_ON(block_group->space_info->total_bytes
1016                         < block_group->length);
1017                 WARN_ON(block_group->space_info->bytes_readonly
1018                         < block_group->length - block_group->zone_unusable);
1019                 WARN_ON(block_group->space_info->bytes_zone_unusable
1020                         < block_group->zone_unusable);
1021                 WARN_ON(block_group->space_info->disk_total
1022                         < block_group->length * factor);
1023         }
1024         block_group->space_info->total_bytes -= block_group->length;
1025         block_group->space_info->bytes_readonly -=
1026                 (block_group->length - block_group->zone_unusable);
1027         block_group->space_info->bytes_zone_unusable -=
1028                 block_group->zone_unusable;
1029         block_group->space_info->disk_total -= block_group->length * factor;
1030
1031         spin_unlock(&block_group->space_info->lock);
1032
1033         /*
1034          * Remove the free space for the block group from the free space tree
1035          * and the block group's item from the extent tree before marking the
1036          * block group as removed. This is to prevent races with tasks that
1037          * freeze and unfreeze a block group, this task and another task
1038          * allocating a new block group - the unfreeze task ends up removing
1039          * the block group's extent map before the task calling this function
1040          * deletes the block group item from the extent tree, allowing for
1041          * another task to attempt to create another block group with the same
1042          * item key (and failing with -EEXIST and a transaction abort).
1043          */
1044         ret = remove_block_group_free_space(trans, block_group);
1045         if (ret)
1046                 goto out;
1047
1048         ret = remove_block_group_item(trans, path, block_group);
1049         if (ret < 0)
1050                 goto out;
1051
1052         spin_lock(&block_group->lock);
1053         block_group->removed = 1;
1054         /*
1055          * At this point trimming or scrub can't start on this block group,
1056          * because we removed the block group from the rbtree
1057          * fs_info->block_group_cache_tree so no one can't find it anymore and
1058          * even if someone already got this block group before we removed it
1059          * from the rbtree, they have already incremented block_group->frozen -
1060          * if they didn't, for the trimming case they won't find any free space
1061          * entries because we already removed them all when we called
1062          * btrfs_remove_free_space_cache().
1063          *
1064          * And we must not remove the extent map from the fs_info->mapping_tree
1065          * to prevent the same logical address range and physical device space
1066          * ranges from being reused for a new block group. This is needed to
1067          * avoid races with trimming and scrub.
1068          *
1069          * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070          * completely transactionless, so while it is trimming a range the
1071          * currently running transaction might finish and a new one start,
1072          * allowing for new block groups to be created that can reuse the same
1073          * physical device locations unless we take this special care.
1074          *
1075          * There may also be an implicit trim operation if the file system
1076          * is mounted with -odiscard. The same protections must remain
1077          * in place until the extents have been discarded completely when
1078          * the transaction commit has completed.
1079          */
1080         remove_em = (atomic_read(&block_group->frozen) == 0);
1081         spin_unlock(&block_group->lock);
1082
1083         if (remove_em) {
1084                 struct extent_map_tree *em_tree;
1085
1086                 em_tree = &fs_info->mapping_tree;
1087                 write_lock(&em_tree->lock);
1088                 remove_extent_mapping(em_tree, em);
1089                 write_unlock(&em_tree->lock);
1090                 /* once for the tree */
1091                 free_extent_map(em);
1092         }
1093
1094 out:
1095         /* Once for the lookup reference */
1096         btrfs_put_block_group(block_group);
1097         if (remove_rsv)
1098                 btrfs_delayed_refs_rsv_release(fs_info, 1);
1099         btrfs_free_path(path);
1100         return ret;
1101 }
1102
1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104                 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105 {
1106         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107         struct extent_map *em;
1108         struct map_lookup *map;
1109         unsigned int num_items;
1110
1111         read_lock(&em_tree->lock);
1112         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113         read_unlock(&em_tree->lock);
1114         ASSERT(em && em->start == chunk_offset);
1115
1116         /*
1117          * We need to reserve 3 + N units from the metadata space info in order
1118          * to remove a block group (done at btrfs_remove_chunk() and at
1119          * btrfs_remove_block_group()), which are used for:
1120          *
1121          * 1 unit for adding the free space inode's orphan (located in the tree
1122          * of tree roots).
1123          * 1 unit for deleting the block group item (located in the extent
1124          * tree).
1125          * 1 unit for deleting the free space item (located in tree of tree
1126          * roots).
1127          * N units for deleting N device extent items corresponding to each
1128          * stripe (located in the device tree).
1129          *
1130          * In order to remove a block group we also need to reserve units in the
1131          * system space info in order to update the chunk tree (update one or
1132          * more device items and remove one chunk item), but this is done at
1133          * btrfs_remove_chunk() through a call to check_system_chunk().
1134          */
1135         map = em->map_lookup;
1136         num_items = 3 + map->num_stripes;
1137         free_extent_map(em);
1138
1139         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140                                                            num_items);
1141 }
1142
1143 /*
1144  * Mark block group @cache read-only, so later write won't happen to block
1145  * group @cache.
1146  *
1147  * If @force is not set, this function will only mark the block group readonly
1148  * if we have enough free space (1M) in other metadata/system block groups.
1149  * If @force is not set, this function will mark the block group readonly
1150  * without checking free space.
1151  *
1152  * NOTE: This function doesn't care if other block groups can contain all the
1153  * data in this block group. That check should be done by relocation routine,
1154  * not this function.
1155  */
1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157 {
1158         struct btrfs_space_info *sinfo = cache->space_info;
1159         u64 num_bytes;
1160         int ret = -ENOSPC;
1161
1162         spin_lock(&sinfo->lock);
1163         spin_lock(&cache->lock);
1164
1165         if (cache->swap_extents) {
1166                 ret = -ETXTBSY;
1167                 goto out;
1168         }
1169
1170         if (cache->ro) {
1171                 cache->ro++;
1172                 ret = 0;
1173                 goto out;
1174         }
1175
1176         num_bytes = cache->length - cache->reserved - cache->pinned -
1177                     cache->bytes_super - cache->zone_unusable - cache->used;
1178
1179         /*
1180          * Data never overcommits, even in mixed mode, so do just the straight
1181          * check of left over space in how much we have allocated.
1182          */
1183         if (force) {
1184                 ret = 0;
1185         } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186                 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187
1188                 /*
1189                  * Here we make sure if we mark this bg RO, we still have enough
1190                  * free space as buffer.
1191                  */
1192                 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193                         ret = 0;
1194         } else {
1195                 /*
1196                  * We overcommit metadata, so we need to do the
1197                  * btrfs_can_overcommit check here, and we need to pass in
1198                  * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199                  * leeway to allow us to mark this block group as read only.
1200                  */
1201                 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202                                          BTRFS_RESERVE_NO_FLUSH))
1203                         ret = 0;
1204         }
1205
1206         if (!ret) {
1207                 sinfo->bytes_readonly += num_bytes;
1208                 if (btrfs_is_zoned(cache->fs_info)) {
1209                         /* Migrate zone_unusable bytes to readonly */
1210                         sinfo->bytes_readonly += cache->zone_unusable;
1211                         sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212                         cache->zone_unusable = 0;
1213                 }
1214                 cache->ro++;
1215                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1216         }
1217 out:
1218         spin_unlock(&cache->lock);
1219         spin_unlock(&sinfo->lock);
1220         if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221                 btrfs_info(cache->fs_info,
1222                         "unable to make block group %llu ro", cache->start);
1223                 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224         }
1225         return ret;
1226 }
1227
1228 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229                                  struct btrfs_block_group *bg)
1230 {
1231         struct btrfs_fs_info *fs_info = bg->fs_info;
1232         struct btrfs_transaction *prev_trans = NULL;
1233         const u64 start = bg->start;
1234         const u64 end = start + bg->length - 1;
1235         int ret;
1236
1237         spin_lock(&fs_info->trans_lock);
1238         if (trans->transaction->list.prev != &fs_info->trans_list) {
1239                 prev_trans = list_last_entry(&trans->transaction->list,
1240                                              struct btrfs_transaction, list);
1241                 refcount_inc(&prev_trans->use_count);
1242         }
1243         spin_unlock(&fs_info->trans_lock);
1244
1245         /*
1246          * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247          * btrfs_finish_extent_commit(). If we are at transaction N, another
1248          * task might be running finish_extent_commit() for the previous
1249          * transaction N - 1, and have seen a range belonging to the block
1250          * group in pinned_extents before we were able to clear the whole block
1251          * group range from pinned_extents. This means that task can lookup for
1252          * the block group after we unpinned it from pinned_extents and removed
1253          * it, leading to a BUG_ON() at unpin_extent_range().
1254          */
1255         mutex_lock(&fs_info->unused_bg_unpin_mutex);
1256         if (prev_trans) {
1257                 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258                                         EXTENT_DIRTY);
1259                 if (ret)
1260                         goto out;
1261         }
1262
1263         ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1264                                 EXTENT_DIRTY);
1265 out:
1266         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1267         if (prev_trans)
1268                 btrfs_put_transaction(prev_trans);
1269
1270         return ret == 0;
1271 }
1272
1273 /*
1274  * Process the unused_bgs list and remove any that don't have any allocated
1275  * space inside of them.
1276  */
1277 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278 {
1279         struct btrfs_block_group *block_group;
1280         struct btrfs_space_info *space_info;
1281         struct btrfs_trans_handle *trans;
1282         const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1283         int ret = 0;
1284
1285         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286                 return;
1287
1288         /*
1289          * Long running balances can keep us blocked here for eternity, so
1290          * simply skip deletion if we're unable to get the mutex.
1291          */
1292         if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1293                 return;
1294
1295         spin_lock(&fs_info->unused_bgs_lock);
1296         while (!list_empty(&fs_info->unused_bgs)) {
1297                 int trimming;
1298
1299                 block_group = list_first_entry(&fs_info->unused_bgs,
1300                                                struct btrfs_block_group,
1301                                                bg_list);
1302                 list_del_init(&block_group->bg_list);
1303
1304                 space_info = block_group->space_info;
1305
1306                 if (ret || btrfs_mixed_space_info(space_info)) {
1307                         btrfs_put_block_group(block_group);
1308                         continue;
1309                 }
1310                 spin_unlock(&fs_info->unused_bgs_lock);
1311
1312                 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313
1314                 /* Don't want to race with allocators so take the groups_sem */
1315                 down_write(&space_info->groups_sem);
1316
1317                 /*
1318                  * Async discard moves the final block group discard to be prior
1319                  * to the unused_bgs code path.  Therefore, if it's not fully
1320                  * trimmed, punt it back to the async discard lists.
1321                  */
1322                 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323                     !btrfs_is_free_space_trimmed(block_group)) {
1324                         trace_btrfs_skip_unused_block_group(block_group);
1325                         up_write(&space_info->groups_sem);
1326                         /* Requeue if we failed because of async discard */
1327                         btrfs_discard_queue_work(&fs_info->discard_ctl,
1328                                                  block_group);
1329                         goto next;
1330                 }
1331
1332                 spin_lock(&block_group->lock);
1333                 if (block_group->reserved || block_group->pinned ||
1334                     block_group->used || block_group->ro ||
1335                     list_is_singular(&block_group->list)) {
1336                         /*
1337                          * We want to bail if we made new allocations or have
1338                          * outstanding allocations in this block group.  We do
1339                          * the ro check in case balance is currently acting on
1340                          * this block group.
1341                          */
1342                         trace_btrfs_skip_unused_block_group(block_group);
1343                         spin_unlock(&block_group->lock);
1344                         up_write(&space_info->groups_sem);
1345                         goto next;
1346                 }
1347                 spin_unlock(&block_group->lock);
1348
1349                 /* We don't want to force the issue, only flip if it's ok. */
1350                 ret = inc_block_group_ro(block_group, 0);
1351                 up_write(&space_info->groups_sem);
1352                 if (ret < 0) {
1353                         ret = 0;
1354                         goto next;
1355                 }
1356
1357                 /*
1358                  * Want to do this before we do anything else so we can recover
1359                  * properly if we fail to join the transaction.
1360                  */
1361                 trans = btrfs_start_trans_remove_block_group(fs_info,
1362                                                      block_group->start);
1363                 if (IS_ERR(trans)) {
1364                         btrfs_dec_block_group_ro(block_group);
1365                         ret = PTR_ERR(trans);
1366                         goto next;
1367                 }
1368
1369                 /*
1370                  * We could have pending pinned extents for this block group,
1371                  * just delete them, we don't care about them anymore.
1372                  */
1373                 if (!clean_pinned_extents(trans, block_group)) {
1374                         btrfs_dec_block_group_ro(block_group);
1375                         goto end_trans;
1376                 }
1377
1378                 /*
1379                  * At this point, the block_group is read only and should fail
1380                  * new allocations.  However, btrfs_finish_extent_commit() can
1381                  * cause this block_group to be placed back on the discard
1382                  * lists because now the block_group isn't fully discarded.
1383                  * Bail here and try again later after discarding everything.
1384                  */
1385                 spin_lock(&fs_info->discard_ctl.lock);
1386                 if (!list_empty(&block_group->discard_list)) {
1387                         spin_unlock(&fs_info->discard_ctl.lock);
1388                         btrfs_dec_block_group_ro(block_group);
1389                         btrfs_discard_queue_work(&fs_info->discard_ctl,
1390                                                  block_group);
1391                         goto end_trans;
1392                 }
1393                 spin_unlock(&fs_info->discard_ctl.lock);
1394
1395                 /* Reset pinned so btrfs_put_block_group doesn't complain */
1396                 spin_lock(&space_info->lock);
1397                 spin_lock(&block_group->lock);
1398
1399                 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400                                                      -block_group->pinned);
1401                 space_info->bytes_readonly += block_group->pinned;
1402                 block_group->pinned = 0;
1403
1404                 spin_unlock(&block_group->lock);
1405                 spin_unlock(&space_info->lock);
1406
1407                 /*
1408                  * The normal path here is an unused block group is passed here,
1409                  * then trimming is handled in the transaction commit path.
1410                  * Async discard interposes before this to do the trimming
1411                  * before coming down the unused block group path as trimming
1412                  * will no longer be done later in the transaction commit path.
1413                  */
1414                 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1415                         goto flip_async;
1416
1417                 /*
1418                  * DISCARD can flip during remount. On zoned filesystems, we
1419                  * need to reset sequential-required zones.
1420                  */
1421                 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1422                                 btrfs_is_zoned(fs_info);
1423
1424                 /* Implicit trim during transaction commit. */
1425                 if (trimming)
1426                         btrfs_freeze_block_group(block_group);
1427
1428                 /*
1429                  * Btrfs_remove_chunk will abort the transaction if things go
1430                  * horribly wrong.
1431                  */
1432                 ret = btrfs_remove_chunk(trans, block_group->start);
1433
1434                 if (ret) {
1435                         if (trimming)
1436                                 btrfs_unfreeze_block_group(block_group);
1437                         goto end_trans;
1438                 }
1439
1440                 /*
1441                  * If we're not mounted with -odiscard, we can just forget
1442                  * about this block group. Otherwise we'll need to wait
1443                  * until transaction commit to do the actual discard.
1444                  */
1445                 if (trimming) {
1446                         spin_lock(&fs_info->unused_bgs_lock);
1447                         /*
1448                          * A concurrent scrub might have added us to the list
1449                          * fs_info->unused_bgs, so use a list_move operation
1450                          * to add the block group to the deleted_bgs list.
1451                          */
1452                         list_move(&block_group->bg_list,
1453                                   &trans->transaction->deleted_bgs);
1454                         spin_unlock(&fs_info->unused_bgs_lock);
1455                         btrfs_get_block_group(block_group);
1456                 }
1457 end_trans:
1458                 btrfs_end_transaction(trans);
1459 next:
1460                 btrfs_put_block_group(block_group);
1461                 spin_lock(&fs_info->unused_bgs_lock);
1462         }
1463         spin_unlock(&fs_info->unused_bgs_lock);
1464         mutex_unlock(&fs_info->reclaim_bgs_lock);
1465         return;
1466
1467 flip_async:
1468         btrfs_end_transaction(trans);
1469         mutex_unlock(&fs_info->reclaim_bgs_lock);
1470         btrfs_put_block_group(block_group);
1471         btrfs_discard_punt_unused_bgs_list(fs_info);
1472 }
1473
1474 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1475 {
1476         struct btrfs_fs_info *fs_info = bg->fs_info;
1477
1478         spin_lock(&fs_info->unused_bgs_lock);
1479         if (list_empty(&bg->bg_list)) {
1480                 btrfs_get_block_group(bg);
1481                 trace_btrfs_add_unused_block_group(bg);
1482                 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1483         }
1484         spin_unlock(&fs_info->unused_bgs_lock);
1485 }
1486
1487 void btrfs_reclaim_bgs_work(struct work_struct *work)
1488 {
1489         struct btrfs_fs_info *fs_info =
1490                 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1491         struct btrfs_block_group *bg;
1492         struct btrfs_space_info *space_info;
1493         LIST_HEAD(again_list);
1494
1495         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1496                 return;
1497
1498         if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1499                 return;
1500
1501         mutex_lock(&fs_info->reclaim_bgs_lock);
1502         spin_lock(&fs_info->unused_bgs_lock);
1503         while (!list_empty(&fs_info->reclaim_bgs)) {
1504                 int ret = 0;
1505
1506                 bg = list_first_entry(&fs_info->reclaim_bgs,
1507                                       struct btrfs_block_group,
1508                                       bg_list);
1509                 list_del_init(&bg->bg_list);
1510
1511                 space_info = bg->space_info;
1512                 spin_unlock(&fs_info->unused_bgs_lock);
1513
1514                 /* Don't race with allocators so take the groups_sem */
1515                 down_write(&space_info->groups_sem);
1516
1517                 spin_lock(&bg->lock);
1518                 if (bg->reserved || bg->pinned || bg->ro) {
1519                         /*
1520                          * We want to bail if we made new allocations or have
1521                          * outstanding allocations in this block group.  We do
1522                          * the ro check in case balance is currently acting on
1523                          * this block group.
1524                          */
1525                         spin_unlock(&bg->lock);
1526                         up_write(&space_info->groups_sem);
1527                         goto next;
1528                 }
1529                 spin_unlock(&bg->lock);
1530
1531                 /* Get out fast, in case we're unmounting the filesystem */
1532                 if (btrfs_fs_closing(fs_info)) {
1533                         up_write(&space_info->groups_sem);
1534                         goto next;
1535                 }
1536
1537                 ret = inc_block_group_ro(bg, 0);
1538                 up_write(&space_info->groups_sem);
1539                 if (ret < 0)
1540                         goto next;
1541
1542                 btrfs_info(fs_info, "reclaiming chunk %llu with %llu%% used",
1543                                 bg->start, div_u64(bg->used * 100, bg->length));
1544                 trace_btrfs_reclaim_block_group(bg);
1545                 ret = btrfs_relocate_chunk(fs_info, bg->start);
1546                 if (ret)
1547                         btrfs_err(fs_info, "error relocating chunk %llu",
1548                                   bg->start);
1549
1550 next:
1551                 spin_lock(&fs_info->unused_bgs_lock);
1552                 if (ret == -EAGAIN && list_empty(&bg->bg_list))
1553                         list_add_tail(&bg->bg_list, &again_list);
1554                 else
1555                         btrfs_put_block_group(bg);
1556         }
1557         list_splice_tail(&again_list, &fs_info->reclaim_bgs);
1558         spin_unlock(&fs_info->unused_bgs_lock);
1559         mutex_unlock(&fs_info->reclaim_bgs_lock);
1560         btrfs_exclop_finish(fs_info);
1561 }
1562
1563 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1564 {
1565         spin_lock(&fs_info->unused_bgs_lock);
1566         if (!list_empty(&fs_info->reclaim_bgs))
1567                 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1568         spin_unlock(&fs_info->unused_bgs_lock);
1569 }
1570
1571 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1572 {
1573         struct btrfs_fs_info *fs_info = bg->fs_info;
1574
1575         spin_lock(&fs_info->unused_bgs_lock);
1576         if (list_empty(&bg->bg_list)) {
1577                 btrfs_get_block_group(bg);
1578                 trace_btrfs_add_reclaim_block_group(bg);
1579                 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1580         }
1581         spin_unlock(&fs_info->unused_bgs_lock);
1582 }
1583
1584 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1585                            struct btrfs_path *path)
1586 {
1587         struct extent_map_tree *em_tree;
1588         struct extent_map *em;
1589         struct btrfs_block_group_item bg;
1590         struct extent_buffer *leaf;
1591         int slot;
1592         u64 flags;
1593         int ret = 0;
1594
1595         slot = path->slots[0];
1596         leaf = path->nodes[0];
1597
1598         em_tree = &fs_info->mapping_tree;
1599         read_lock(&em_tree->lock);
1600         em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1601         read_unlock(&em_tree->lock);
1602         if (!em) {
1603                 btrfs_err(fs_info,
1604                           "logical %llu len %llu found bg but no related chunk",
1605                           key->objectid, key->offset);
1606                 return -ENOENT;
1607         }
1608
1609         if (em->start != key->objectid || em->len != key->offset) {
1610                 btrfs_err(fs_info,
1611                         "block group %llu len %llu mismatch with chunk %llu len %llu",
1612                         key->objectid, key->offset, em->start, em->len);
1613                 ret = -EUCLEAN;
1614                 goto out_free_em;
1615         }
1616
1617         read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1618                            sizeof(bg));
1619         flags = btrfs_stack_block_group_flags(&bg) &
1620                 BTRFS_BLOCK_GROUP_TYPE_MASK;
1621
1622         if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1623                 btrfs_err(fs_info,
1624 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1625                           key->objectid, key->offset, flags,
1626                           (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1627                 ret = -EUCLEAN;
1628         }
1629
1630 out_free_em:
1631         free_extent_map(em);
1632         return ret;
1633 }
1634
1635 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1636                                   struct btrfs_path *path,
1637                                   struct btrfs_key *key)
1638 {
1639         struct btrfs_root *root = fs_info->extent_root;
1640         int ret;
1641         struct btrfs_key found_key;
1642         struct extent_buffer *leaf;
1643         int slot;
1644
1645         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1646         if (ret < 0)
1647                 return ret;
1648
1649         while (1) {
1650                 slot = path->slots[0];
1651                 leaf = path->nodes[0];
1652                 if (slot >= btrfs_header_nritems(leaf)) {
1653                         ret = btrfs_next_leaf(root, path);
1654                         if (ret == 0)
1655                                 continue;
1656                         if (ret < 0)
1657                                 goto out;
1658                         break;
1659                 }
1660                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1661
1662                 if (found_key.objectid >= key->objectid &&
1663                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1664                         ret = read_bg_from_eb(fs_info, &found_key, path);
1665                         break;
1666                 }
1667
1668                 path->slots[0]++;
1669         }
1670 out:
1671         return ret;
1672 }
1673
1674 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1675 {
1676         u64 extra_flags = chunk_to_extended(flags) &
1677                                 BTRFS_EXTENDED_PROFILE_MASK;
1678
1679         write_seqlock(&fs_info->profiles_lock);
1680         if (flags & BTRFS_BLOCK_GROUP_DATA)
1681                 fs_info->avail_data_alloc_bits |= extra_flags;
1682         if (flags & BTRFS_BLOCK_GROUP_METADATA)
1683                 fs_info->avail_metadata_alloc_bits |= extra_flags;
1684         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1685                 fs_info->avail_system_alloc_bits |= extra_flags;
1686         write_sequnlock(&fs_info->profiles_lock);
1687 }
1688
1689 /**
1690  * Map a physical disk address to a list of logical addresses
1691  *
1692  * @fs_info:       the filesystem
1693  * @chunk_start:   logical address of block group
1694  * @bdev:          physical device to resolve, can be NULL to indicate any device
1695  * @physical:      physical address to map to logical addresses
1696  * @logical:       return array of logical addresses which map to @physical
1697  * @naddrs:        length of @logical
1698  * @stripe_len:    size of IO stripe for the given block group
1699  *
1700  * Maps a particular @physical disk address to a list of @logical addresses.
1701  * Used primarily to exclude those portions of a block group that contain super
1702  * block copies.
1703  */
1704 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1705                      struct block_device *bdev, u64 physical, u64 **logical,
1706                      int *naddrs, int *stripe_len)
1707 {
1708         struct extent_map *em;
1709         struct map_lookup *map;
1710         u64 *buf;
1711         u64 bytenr;
1712         u64 data_stripe_length;
1713         u64 io_stripe_size;
1714         int i, nr = 0;
1715         int ret = 0;
1716
1717         em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1718         if (IS_ERR(em))
1719                 return -EIO;
1720
1721         map = em->map_lookup;
1722         data_stripe_length = em->orig_block_len;
1723         io_stripe_size = map->stripe_len;
1724         chunk_start = em->start;
1725
1726         /* For RAID5/6 adjust to a full IO stripe length */
1727         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1728                 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1729
1730         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1731         if (!buf) {
1732                 ret = -ENOMEM;
1733                 goto out;
1734         }
1735
1736         for (i = 0; i < map->num_stripes; i++) {
1737                 bool already_inserted = false;
1738                 u64 stripe_nr;
1739                 u64 offset;
1740                 int j;
1741
1742                 if (!in_range(physical, map->stripes[i].physical,
1743                               data_stripe_length))
1744                         continue;
1745
1746                 if (bdev && map->stripes[i].dev->bdev != bdev)
1747                         continue;
1748
1749                 stripe_nr = physical - map->stripes[i].physical;
1750                 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1751
1752                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1753                         stripe_nr = stripe_nr * map->num_stripes + i;
1754                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1755                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1756                         stripe_nr = stripe_nr * map->num_stripes + i;
1757                 }
1758                 /*
1759                  * The remaining case would be for RAID56, multiply by
1760                  * nr_data_stripes().  Alternatively, just use rmap_len below
1761                  * instead of map->stripe_len
1762                  */
1763
1764                 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1765
1766                 /* Ensure we don't add duplicate addresses */
1767                 for (j = 0; j < nr; j++) {
1768                         if (buf[j] == bytenr) {
1769                                 already_inserted = true;
1770                                 break;
1771                         }
1772                 }
1773
1774                 if (!already_inserted)
1775                         buf[nr++] = bytenr;
1776         }
1777
1778         *logical = buf;
1779         *naddrs = nr;
1780         *stripe_len = io_stripe_size;
1781 out:
1782         free_extent_map(em);
1783         return ret;
1784 }
1785
1786 static int exclude_super_stripes(struct btrfs_block_group *cache)
1787 {
1788         struct btrfs_fs_info *fs_info = cache->fs_info;
1789         const bool zoned = btrfs_is_zoned(fs_info);
1790         u64 bytenr;
1791         u64 *logical;
1792         int stripe_len;
1793         int i, nr, ret;
1794
1795         if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1796                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1797                 cache->bytes_super += stripe_len;
1798                 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1799                                                 stripe_len);
1800                 if (ret)
1801                         return ret;
1802         }
1803
1804         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1805                 bytenr = btrfs_sb_offset(i);
1806                 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1807                                        bytenr, &logical, &nr, &stripe_len);
1808                 if (ret)
1809                         return ret;
1810
1811                 /* Shouldn't have super stripes in sequential zones */
1812                 if (zoned && nr) {
1813                         btrfs_err(fs_info,
1814                         "zoned: block group %llu must not contain super block",
1815                                   cache->start);
1816                         return -EUCLEAN;
1817                 }
1818
1819                 while (nr--) {
1820                         u64 len = min_t(u64, stripe_len,
1821                                 cache->start + cache->length - logical[nr]);
1822
1823                         cache->bytes_super += len;
1824                         ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1825                                                         len);
1826                         if (ret) {
1827                                 kfree(logical);
1828                                 return ret;
1829                         }
1830                 }
1831
1832                 kfree(logical);
1833         }
1834         return 0;
1835 }
1836
1837 static void link_block_group(struct btrfs_block_group *cache)
1838 {
1839         struct btrfs_space_info *space_info = cache->space_info;
1840         int index = btrfs_bg_flags_to_raid_index(cache->flags);
1841
1842         down_write(&space_info->groups_sem);
1843         list_add_tail(&cache->list, &space_info->block_groups[index]);
1844         up_write(&space_info->groups_sem);
1845 }
1846
1847 static struct btrfs_block_group *btrfs_create_block_group_cache(
1848                 struct btrfs_fs_info *fs_info, u64 start)
1849 {
1850         struct btrfs_block_group *cache;
1851
1852         cache = kzalloc(sizeof(*cache), GFP_NOFS);
1853         if (!cache)
1854                 return NULL;
1855
1856         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1857                                         GFP_NOFS);
1858         if (!cache->free_space_ctl) {
1859                 kfree(cache);
1860                 return NULL;
1861         }
1862
1863         cache->start = start;
1864
1865         cache->fs_info = fs_info;
1866         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1867
1868         cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1869
1870         refcount_set(&cache->refs, 1);
1871         spin_lock_init(&cache->lock);
1872         init_rwsem(&cache->data_rwsem);
1873         INIT_LIST_HEAD(&cache->list);
1874         INIT_LIST_HEAD(&cache->cluster_list);
1875         INIT_LIST_HEAD(&cache->bg_list);
1876         INIT_LIST_HEAD(&cache->ro_list);
1877         INIT_LIST_HEAD(&cache->discard_list);
1878         INIT_LIST_HEAD(&cache->dirty_list);
1879         INIT_LIST_HEAD(&cache->io_list);
1880         btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1881         atomic_set(&cache->frozen, 0);
1882         mutex_init(&cache->free_space_lock);
1883         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1884
1885         return cache;
1886 }
1887
1888 /*
1889  * Iterate all chunks and verify that each of them has the corresponding block
1890  * group
1891  */
1892 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1893 {
1894         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1895         struct extent_map *em;
1896         struct btrfs_block_group *bg;
1897         u64 start = 0;
1898         int ret = 0;
1899
1900         while (1) {
1901                 read_lock(&map_tree->lock);
1902                 /*
1903                  * lookup_extent_mapping will return the first extent map
1904                  * intersecting the range, so setting @len to 1 is enough to
1905                  * get the first chunk.
1906                  */
1907                 em = lookup_extent_mapping(map_tree, start, 1);
1908                 read_unlock(&map_tree->lock);
1909                 if (!em)
1910                         break;
1911
1912                 bg = btrfs_lookup_block_group(fs_info, em->start);
1913                 if (!bg) {
1914                         btrfs_err(fs_info,
1915         "chunk start=%llu len=%llu doesn't have corresponding block group",
1916                                      em->start, em->len);
1917                         ret = -EUCLEAN;
1918                         free_extent_map(em);
1919                         break;
1920                 }
1921                 if (bg->start != em->start || bg->length != em->len ||
1922                     (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1923                     (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1924                         btrfs_err(fs_info,
1925 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1926                                 em->start, em->len,
1927                                 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1928                                 bg->start, bg->length,
1929                                 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1930                         ret = -EUCLEAN;
1931                         free_extent_map(em);
1932                         btrfs_put_block_group(bg);
1933                         break;
1934                 }
1935                 start = em->start + em->len;
1936                 free_extent_map(em);
1937                 btrfs_put_block_group(bg);
1938         }
1939         return ret;
1940 }
1941
1942 static int read_one_block_group(struct btrfs_fs_info *info,
1943                                 struct btrfs_block_group_item *bgi,
1944                                 const struct btrfs_key *key,
1945                                 int need_clear)
1946 {
1947         struct btrfs_block_group *cache;
1948         struct btrfs_space_info *space_info;
1949         const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1950         int ret;
1951
1952         ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1953
1954         cache = btrfs_create_block_group_cache(info, key->objectid);
1955         if (!cache)
1956                 return -ENOMEM;
1957
1958         cache->length = key->offset;
1959         cache->used = btrfs_stack_block_group_used(bgi);
1960         cache->flags = btrfs_stack_block_group_flags(bgi);
1961
1962         set_free_space_tree_thresholds(cache);
1963
1964         if (need_clear) {
1965                 /*
1966                  * When we mount with old space cache, we need to
1967                  * set BTRFS_DC_CLEAR and set dirty flag.
1968                  *
1969                  * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1970                  *    truncate the old free space cache inode and
1971                  *    setup a new one.
1972                  * b) Setting 'dirty flag' makes sure that we flush
1973                  *    the new space cache info onto disk.
1974                  */
1975                 if (btrfs_test_opt(info, SPACE_CACHE))
1976                         cache->disk_cache_state = BTRFS_DC_CLEAR;
1977         }
1978         if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1979             (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1980                         btrfs_err(info,
1981 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
1982                                   cache->start);
1983                         ret = -EINVAL;
1984                         goto error;
1985         }
1986
1987         ret = btrfs_load_block_group_zone_info(cache, false);
1988         if (ret) {
1989                 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
1990                           cache->start);
1991                 goto error;
1992         }
1993
1994         /*
1995          * We need to exclude the super stripes now so that the space info has
1996          * super bytes accounted for, otherwise we'll think we have more space
1997          * than we actually do.
1998          */
1999         ret = exclude_super_stripes(cache);
2000         if (ret) {
2001                 /* We may have excluded something, so call this just in case. */
2002                 btrfs_free_excluded_extents(cache);
2003                 goto error;
2004         }
2005
2006         /*
2007          * For zoned filesystem, space after the allocation offset is the only
2008          * free space for a block group. So, we don't need any caching work.
2009          * btrfs_calc_zone_unusable() will set the amount of free space and
2010          * zone_unusable space.
2011          *
2012          * For regular filesystem, check for two cases, either we are full, and
2013          * therefore don't need to bother with the caching work since we won't
2014          * find any space, or we are empty, and we can just add all the space
2015          * in and be done with it.  This saves us _a_lot_ of time, particularly
2016          * in the full case.
2017          */
2018         if (btrfs_is_zoned(info)) {
2019                 btrfs_calc_zone_unusable(cache);
2020         } else if (cache->length == cache->used) {
2021                 cache->last_byte_to_unpin = (u64)-1;
2022                 cache->cached = BTRFS_CACHE_FINISHED;
2023                 btrfs_free_excluded_extents(cache);
2024         } else if (cache->used == 0) {
2025                 cache->last_byte_to_unpin = (u64)-1;
2026                 cache->cached = BTRFS_CACHE_FINISHED;
2027                 add_new_free_space(cache, cache->start,
2028                                    cache->start + cache->length);
2029                 btrfs_free_excluded_extents(cache);
2030         }
2031
2032         ret = btrfs_add_block_group_cache(info, cache);
2033         if (ret) {
2034                 btrfs_remove_free_space_cache(cache);
2035                 goto error;
2036         }
2037         trace_btrfs_add_block_group(info, cache, 0);
2038         btrfs_update_space_info(info, cache->flags, cache->length,
2039                                 cache->used, cache->bytes_super,
2040                                 cache->zone_unusable, &space_info);
2041
2042         cache->space_info = space_info;
2043
2044         link_block_group(cache);
2045
2046         set_avail_alloc_bits(info, cache->flags);
2047         if (btrfs_chunk_readonly(info, cache->start)) {
2048                 inc_block_group_ro(cache, 1);
2049         } else if (cache->used == 0) {
2050                 ASSERT(list_empty(&cache->bg_list));
2051                 if (btrfs_test_opt(info, DISCARD_ASYNC))
2052                         btrfs_discard_queue_work(&info->discard_ctl, cache);
2053                 else
2054                         btrfs_mark_bg_unused(cache);
2055         }
2056         return 0;
2057 error:
2058         btrfs_put_block_group(cache);
2059         return ret;
2060 }
2061
2062 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2063 {
2064         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2065         struct btrfs_space_info *space_info;
2066         struct rb_node *node;
2067         int ret = 0;
2068
2069         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2070                 struct extent_map *em;
2071                 struct map_lookup *map;
2072                 struct btrfs_block_group *bg;
2073
2074                 em = rb_entry(node, struct extent_map, rb_node);
2075                 map = em->map_lookup;
2076                 bg = btrfs_create_block_group_cache(fs_info, em->start);
2077                 if (!bg) {
2078                         ret = -ENOMEM;
2079                         break;
2080                 }
2081
2082                 /* Fill dummy cache as FULL */
2083                 bg->length = em->len;
2084                 bg->flags = map->type;
2085                 bg->last_byte_to_unpin = (u64)-1;
2086                 bg->cached = BTRFS_CACHE_FINISHED;
2087                 bg->used = em->len;
2088                 bg->flags = map->type;
2089                 ret = btrfs_add_block_group_cache(fs_info, bg);
2090                 if (ret) {
2091                         btrfs_remove_free_space_cache(bg);
2092                         btrfs_put_block_group(bg);
2093                         break;
2094                 }
2095                 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2096                                         0, 0, &space_info);
2097                 bg->space_info = space_info;
2098                 link_block_group(bg);
2099
2100                 set_avail_alloc_bits(fs_info, bg->flags);
2101         }
2102         if (!ret)
2103                 btrfs_init_global_block_rsv(fs_info);
2104         return ret;
2105 }
2106
2107 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2108 {
2109         struct btrfs_path *path;
2110         int ret;
2111         struct btrfs_block_group *cache;
2112         struct btrfs_space_info *space_info;
2113         struct btrfs_key key;
2114         int need_clear = 0;
2115         u64 cache_gen;
2116
2117         if (!info->extent_root)
2118                 return fill_dummy_bgs(info);
2119
2120         key.objectid = 0;
2121         key.offset = 0;
2122         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2123         path = btrfs_alloc_path();
2124         if (!path)
2125                 return -ENOMEM;
2126
2127         cache_gen = btrfs_super_cache_generation(info->super_copy);
2128         if (btrfs_test_opt(info, SPACE_CACHE) &&
2129             btrfs_super_generation(info->super_copy) != cache_gen)
2130                 need_clear = 1;
2131         if (btrfs_test_opt(info, CLEAR_CACHE))
2132                 need_clear = 1;
2133
2134         while (1) {
2135                 struct btrfs_block_group_item bgi;
2136                 struct extent_buffer *leaf;
2137                 int slot;
2138
2139                 ret = find_first_block_group(info, path, &key);
2140                 if (ret > 0)
2141                         break;
2142                 if (ret != 0)
2143                         goto error;
2144
2145                 leaf = path->nodes[0];
2146                 slot = path->slots[0];
2147
2148                 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2149                                    sizeof(bgi));
2150
2151                 btrfs_item_key_to_cpu(leaf, &key, slot);
2152                 btrfs_release_path(path);
2153                 ret = read_one_block_group(info, &bgi, &key, need_clear);
2154                 if (ret < 0)
2155                         goto error;
2156                 key.objectid += key.offset;
2157                 key.offset = 0;
2158         }
2159         btrfs_release_path(path);
2160
2161         list_for_each_entry(space_info, &info->space_info, list) {
2162                 int i;
2163
2164                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2165                         if (list_empty(&space_info->block_groups[i]))
2166                                 continue;
2167                         cache = list_first_entry(&space_info->block_groups[i],
2168                                                  struct btrfs_block_group,
2169                                                  list);
2170                         btrfs_sysfs_add_block_group_type(cache);
2171                 }
2172
2173                 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2174                       (BTRFS_BLOCK_GROUP_RAID10 |
2175                        BTRFS_BLOCK_GROUP_RAID1_MASK |
2176                        BTRFS_BLOCK_GROUP_RAID56_MASK |
2177                        BTRFS_BLOCK_GROUP_DUP)))
2178                         continue;
2179                 /*
2180                  * Avoid allocating from un-mirrored block group if there are
2181                  * mirrored block groups.
2182                  */
2183                 list_for_each_entry(cache,
2184                                 &space_info->block_groups[BTRFS_RAID_RAID0],
2185                                 list)
2186                         inc_block_group_ro(cache, 1);
2187                 list_for_each_entry(cache,
2188                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
2189                                 list)
2190                         inc_block_group_ro(cache, 1);
2191         }
2192
2193         btrfs_init_global_block_rsv(info);
2194         ret = check_chunk_block_group_mappings(info);
2195 error:
2196         btrfs_free_path(path);
2197         return ret;
2198 }
2199
2200 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2201                                    struct btrfs_block_group *block_group)
2202 {
2203         struct btrfs_fs_info *fs_info = trans->fs_info;
2204         struct btrfs_block_group_item bgi;
2205         struct btrfs_root *root;
2206         struct btrfs_key key;
2207
2208         spin_lock(&block_group->lock);
2209         btrfs_set_stack_block_group_used(&bgi, block_group->used);
2210         btrfs_set_stack_block_group_chunk_objectid(&bgi,
2211                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2212         btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2213         key.objectid = block_group->start;
2214         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2215         key.offset = block_group->length;
2216         spin_unlock(&block_group->lock);
2217
2218         root = fs_info->extent_root;
2219         return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2220 }
2221
2222 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2223 {
2224         struct btrfs_fs_info *fs_info = trans->fs_info;
2225         struct btrfs_block_group *block_group;
2226         int ret = 0;
2227
2228         if (!trans->can_flush_pending_bgs)
2229                 return;
2230
2231         while (!list_empty(&trans->new_bgs)) {
2232                 int index;
2233
2234                 block_group = list_first_entry(&trans->new_bgs,
2235                                                struct btrfs_block_group,
2236                                                bg_list);
2237                 if (ret)
2238                         goto next;
2239
2240                 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2241
2242                 ret = insert_block_group_item(trans, block_group);
2243                 if (ret)
2244                         btrfs_abort_transaction(trans, ret);
2245                 ret = btrfs_finish_chunk_alloc(trans, block_group->start,
2246                                         block_group->length);
2247                 if (ret)
2248                         btrfs_abort_transaction(trans, ret);
2249                 add_block_group_free_space(trans, block_group);
2250
2251                 /*
2252                  * If we restriped during balance, we may have added a new raid
2253                  * type, so now add the sysfs entries when it is safe to do so.
2254                  * We don't have to worry about locking here as it's handled in
2255                  * btrfs_sysfs_add_block_group_type.
2256                  */
2257                 if (block_group->space_info->block_group_kobjs[index] == NULL)
2258                         btrfs_sysfs_add_block_group_type(block_group);
2259
2260                 /* Already aborted the transaction if it failed. */
2261 next:
2262                 btrfs_delayed_refs_rsv_release(fs_info, 1);
2263                 list_del_init(&block_group->bg_list);
2264         }
2265         btrfs_trans_release_chunk_metadata(trans);
2266 }
2267
2268 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
2269                            u64 type, u64 chunk_offset, u64 size)
2270 {
2271         struct btrfs_fs_info *fs_info = trans->fs_info;
2272         struct btrfs_block_group *cache;
2273         int ret;
2274
2275         btrfs_set_log_full_commit(trans);
2276
2277         cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2278         if (!cache)
2279                 return -ENOMEM;
2280
2281         cache->length = size;
2282         set_free_space_tree_thresholds(cache);
2283         cache->used = bytes_used;
2284         cache->flags = type;
2285         cache->last_byte_to_unpin = (u64)-1;
2286         cache->cached = BTRFS_CACHE_FINISHED;
2287         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2288                 cache->needs_free_space = 1;
2289
2290         ret = btrfs_load_block_group_zone_info(cache, true);
2291         if (ret) {
2292                 btrfs_put_block_group(cache);
2293                 return ret;
2294         }
2295
2296         ret = exclude_super_stripes(cache);
2297         if (ret) {
2298                 /* We may have excluded something, so call this just in case */
2299                 btrfs_free_excluded_extents(cache);
2300                 btrfs_put_block_group(cache);
2301                 return ret;
2302         }
2303
2304         add_new_free_space(cache, chunk_offset, chunk_offset + size);
2305
2306         btrfs_free_excluded_extents(cache);
2307
2308 #ifdef CONFIG_BTRFS_DEBUG
2309         if (btrfs_should_fragment_free_space(cache)) {
2310                 u64 new_bytes_used = size - bytes_used;
2311
2312                 bytes_used += new_bytes_used >> 1;
2313                 fragment_free_space(cache);
2314         }
2315 #endif
2316         /*
2317          * Ensure the corresponding space_info object is created and
2318          * assigned to our block group. We want our bg to be added to the rbtree
2319          * with its ->space_info set.
2320          */
2321         cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2322         ASSERT(cache->space_info);
2323
2324         ret = btrfs_add_block_group_cache(fs_info, cache);
2325         if (ret) {
2326                 btrfs_remove_free_space_cache(cache);
2327                 btrfs_put_block_group(cache);
2328                 return ret;
2329         }
2330
2331         /*
2332          * Now that our block group has its ->space_info set and is inserted in
2333          * the rbtree, update the space info's counters.
2334          */
2335         trace_btrfs_add_block_group(fs_info, cache, 1);
2336         btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2337                                 cache->bytes_super, 0, &cache->space_info);
2338         btrfs_update_global_block_rsv(fs_info);
2339
2340         link_block_group(cache);
2341
2342         list_add_tail(&cache->bg_list, &trans->new_bgs);
2343         trans->delayed_ref_updates++;
2344         btrfs_update_delayed_refs_rsv(trans);
2345
2346         set_avail_alloc_bits(fs_info, type);
2347         return 0;
2348 }
2349
2350 /*
2351  * Mark one block group RO, can be called several times for the same block
2352  * group.
2353  *
2354  * @cache:              the destination block group
2355  * @do_chunk_alloc:     whether need to do chunk pre-allocation, this is to
2356  *                      ensure we still have some free space after marking this
2357  *                      block group RO.
2358  */
2359 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2360                              bool do_chunk_alloc)
2361 {
2362         struct btrfs_fs_info *fs_info = cache->fs_info;
2363         struct btrfs_trans_handle *trans;
2364         u64 alloc_flags;
2365         int ret;
2366         bool dirty_bg_running;
2367
2368         do {
2369                 trans = btrfs_join_transaction(fs_info->extent_root);
2370                 if (IS_ERR(trans))
2371                         return PTR_ERR(trans);
2372
2373                 dirty_bg_running = false;
2374
2375                 /*
2376                  * We're not allowed to set block groups readonly after the dirty
2377                  * block group cache has started writing.  If it already started,
2378                  * back off and let this transaction commit.
2379                  */
2380                 mutex_lock(&fs_info->ro_block_group_mutex);
2381                 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2382                         u64 transid = trans->transid;
2383
2384                         mutex_unlock(&fs_info->ro_block_group_mutex);
2385                         btrfs_end_transaction(trans);
2386
2387                         ret = btrfs_wait_for_commit(fs_info, transid);
2388                         if (ret)
2389                                 return ret;
2390                         dirty_bg_running = true;
2391                 }
2392         } while (dirty_bg_running);
2393
2394         if (do_chunk_alloc) {
2395                 /*
2396                  * If we are changing raid levels, try to allocate a
2397                  * corresponding block group with the new raid level.
2398                  */
2399                 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2400                 if (alloc_flags != cache->flags) {
2401                         ret = btrfs_chunk_alloc(trans, alloc_flags,
2402                                                 CHUNK_ALLOC_FORCE);
2403                         /*
2404                          * ENOSPC is allowed here, we may have enough space
2405                          * already allocated at the new raid level to carry on
2406                          */
2407                         if (ret == -ENOSPC)
2408                                 ret = 0;
2409                         if (ret < 0)
2410                                 goto out;
2411                 }
2412         }
2413
2414         ret = inc_block_group_ro(cache, 0);
2415         if (!do_chunk_alloc || ret == -ETXTBSY)
2416                 goto unlock_out;
2417         if (!ret)
2418                 goto out;
2419         alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2420         ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2421         if (ret < 0)
2422                 goto out;
2423         ret = inc_block_group_ro(cache, 0);
2424         if (ret == -ETXTBSY)
2425                 goto unlock_out;
2426 out:
2427         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2428                 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2429                 mutex_lock(&fs_info->chunk_mutex);
2430                 check_system_chunk(trans, alloc_flags);
2431                 mutex_unlock(&fs_info->chunk_mutex);
2432         }
2433 unlock_out:
2434         mutex_unlock(&fs_info->ro_block_group_mutex);
2435
2436         btrfs_end_transaction(trans);
2437         return ret;
2438 }
2439
2440 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2441 {
2442         struct btrfs_space_info *sinfo = cache->space_info;
2443         u64 num_bytes;
2444
2445         BUG_ON(!cache->ro);
2446
2447         spin_lock(&sinfo->lock);
2448         spin_lock(&cache->lock);
2449         if (!--cache->ro) {
2450                 if (btrfs_is_zoned(cache->fs_info)) {
2451                         /* Migrate zone_unusable bytes back */
2452                         cache->zone_unusable = cache->alloc_offset - cache->used;
2453                         sinfo->bytes_zone_unusable += cache->zone_unusable;
2454                         sinfo->bytes_readonly -= cache->zone_unusable;
2455                 }
2456                 num_bytes = cache->length - cache->reserved -
2457                             cache->pinned - cache->bytes_super -
2458                             cache->zone_unusable - cache->used;
2459                 sinfo->bytes_readonly -= num_bytes;
2460                 list_del_init(&cache->ro_list);
2461         }
2462         spin_unlock(&cache->lock);
2463         spin_unlock(&sinfo->lock);
2464 }
2465
2466 static int update_block_group_item(struct btrfs_trans_handle *trans,
2467                                    struct btrfs_path *path,
2468                                    struct btrfs_block_group *cache)
2469 {
2470         struct btrfs_fs_info *fs_info = trans->fs_info;
2471         int ret;
2472         struct btrfs_root *root = fs_info->extent_root;
2473         unsigned long bi;
2474         struct extent_buffer *leaf;
2475         struct btrfs_block_group_item bgi;
2476         struct btrfs_key key;
2477
2478         key.objectid = cache->start;
2479         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2480         key.offset = cache->length;
2481
2482         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2483         if (ret) {
2484                 if (ret > 0)
2485                         ret = -ENOENT;
2486                 goto fail;
2487         }
2488
2489         leaf = path->nodes[0];
2490         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2491         btrfs_set_stack_block_group_used(&bgi, cache->used);
2492         btrfs_set_stack_block_group_chunk_objectid(&bgi,
2493                         BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2494         btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2495         write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2496         btrfs_mark_buffer_dirty(leaf);
2497 fail:
2498         btrfs_release_path(path);
2499         return ret;
2500
2501 }
2502
2503 static int cache_save_setup(struct btrfs_block_group *block_group,
2504                             struct btrfs_trans_handle *trans,
2505                             struct btrfs_path *path)
2506 {
2507         struct btrfs_fs_info *fs_info = block_group->fs_info;
2508         struct btrfs_root *root = fs_info->tree_root;
2509         struct inode *inode = NULL;
2510         struct extent_changeset *data_reserved = NULL;
2511         u64 alloc_hint = 0;
2512         int dcs = BTRFS_DC_ERROR;
2513         u64 cache_size = 0;
2514         int retries = 0;
2515         int ret = 0;
2516
2517         if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2518                 return 0;
2519
2520         /*
2521          * If this block group is smaller than 100 megs don't bother caching the
2522          * block group.
2523          */
2524         if (block_group->length < (100 * SZ_1M)) {
2525                 spin_lock(&block_group->lock);
2526                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2527                 spin_unlock(&block_group->lock);
2528                 return 0;
2529         }
2530
2531         if (TRANS_ABORTED(trans))
2532                 return 0;
2533 again:
2534         inode = lookup_free_space_inode(block_group, path);
2535         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2536                 ret = PTR_ERR(inode);
2537                 btrfs_release_path(path);
2538                 goto out;
2539         }
2540
2541         if (IS_ERR(inode)) {
2542                 BUG_ON(retries);
2543                 retries++;
2544
2545                 if (block_group->ro)
2546                         goto out_free;
2547
2548                 ret = create_free_space_inode(trans, block_group, path);
2549                 if (ret)
2550                         goto out_free;
2551                 goto again;
2552         }
2553
2554         /*
2555          * We want to set the generation to 0, that way if anything goes wrong
2556          * from here on out we know not to trust this cache when we load up next
2557          * time.
2558          */
2559         BTRFS_I(inode)->generation = 0;
2560         ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2561         if (ret) {
2562                 /*
2563                  * So theoretically we could recover from this, simply set the
2564                  * super cache generation to 0 so we know to invalidate the
2565                  * cache, but then we'd have to keep track of the block groups
2566                  * that fail this way so we know we _have_ to reset this cache
2567                  * before the next commit or risk reading stale cache.  So to
2568                  * limit our exposure to horrible edge cases lets just abort the
2569                  * transaction, this only happens in really bad situations
2570                  * anyway.
2571                  */
2572                 btrfs_abort_transaction(trans, ret);
2573                 goto out_put;
2574         }
2575         WARN_ON(ret);
2576
2577         /* We've already setup this transaction, go ahead and exit */
2578         if (block_group->cache_generation == trans->transid &&
2579             i_size_read(inode)) {
2580                 dcs = BTRFS_DC_SETUP;
2581                 goto out_put;
2582         }
2583
2584         if (i_size_read(inode) > 0) {
2585                 ret = btrfs_check_trunc_cache_free_space(fs_info,
2586                                         &fs_info->global_block_rsv);
2587                 if (ret)
2588                         goto out_put;
2589
2590                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2591                 if (ret)
2592                         goto out_put;
2593         }
2594
2595         spin_lock(&block_group->lock);
2596         if (block_group->cached != BTRFS_CACHE_FINISHED ||
2597             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2598                 /*
2599                  * don't bother trying to write stuff out _if_
2600                  * a) we're not cached,
2601                  * b) we're with nospace_cache mount option,
2602                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
2603                  */
2604                 dcs = BTRFS_DC_WRITTEN;
2605                 spin_unlock(&block_group->lock);
2606                 goto out_put;
2607         }
2608         spin_unlock(&block_group->lock);
2609
2610         /*
2611          * We hit an ENOSPC when setting up the cache in this transaction, just
2612          * skip doing the setup, we've already cleared the cache so we're safe.
2613          */
2614         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2615                 ret = -ENOSPC;
2616                 goto out_put;
2617         }
2618
2619         /*
2620          * Try to preallocate enough space based on how big the block group is.
2621          * Keep in mind this has to include any pinned space which could end up
2622          * taking up quite a bit since it's not folded into the other space
2623          * cache.
2624          */
2625         cache_size = div_u64(block_group->length, SZ_256M);
2626         if (!cache_size)
2627                 cache_size = 1;
2628
2629         cache_size *= 16;
2630         cache_size *= fs_info->sectorsize;
2631
2632         ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2633                                           cache_size);
2634         if (ret)
2635                 goto out_put;
2636
2637         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2638                                               cache_size, cache_size,
2639                                               &alloc_hint);
2640         /*
2641          * Our cache requires contiguous chunks so that we don't modify a bunch
2642          * of metadata or split extents when writing the cache out, which means
2643          * we can enospc if we are heavily fragmented in addition to just normal
2644          * out of space conditions.  So if we hit this just skip setting up any
2645          * other block groups for this transaction, maybe we'll unpin enough
2646          * space the next time around.
2647          */
2648         if (!ret)
2649                 dcs = BTRFS_DC_SETUP;
2650         else if (ret == -ENOSPC)
2651                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2652
2653 out_put:
2654         iput(inode);
2655 out_free:
2656         btrfs_release_path(path);
2657 out:
2658         spin_lock(&block_group->lock);
2659         if (!ret && dcs == BTRFS_DC_SETUP)
2660                 block_group->cache_generation = trans->transid;
2661         block_group->disk_cache_state = dcs;
2662         spin_unlock(&block_group->lock);
2663
2664         extent_changeset_free(data_reserved);
2665         return ret;
2666 }
2667
2668 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2669 {
2670         struct btrfs_fs_info *fs_info = trans->fs_info;
2671         struct btrfs_block_group *cache, *tmp;
2672         struct btrfs_transaction *cur_trans = trans->transaction;
2673         struct btrfs_path *path;
2674
2675         if (list_empty(&cur_trans->dirty_bgs) ||
2676             !btrfs_test_opt(fs_info, SPACE_CACHE))
2677                 return 0;
2678
2679         path = btrfs_alloc_path();
2680         if (!path)
2681                 return -ENOMEM;
2682
2683         /* Could add new block groups, use _safe just in case */
2684         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2685                                  dirty_list) {
2686                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2687                         cache_save_setup(cache, trans, path);
2688         }
2689
2690         btrfs_free_path(path);
2691         return 0;
2692 }
2693
2694 /*
2695  * Transaction commit does final block group cache writeback during a critical
2696  * section where nothing is allowed to change the FS.  This is required in
2697  * order for the cache to actually match the block group, but can introduce a
2698  * lot of latency into the commit.
2699  *
2700  * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2701  * There's a chance we'll have to redo some of it if the block group changes
2702  * again during the commit, but it greatly reduces the commit latency by
2703  * getting rid of the easy block groups while we're still allowing others to
2704  * join the commit.
2705  */
2706 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2707 {
2708         struct btrfs_fs_info *fs_info = trans->fs_info;
2709         struct btrfs_block_group *cache;
2710         struct btrfs_transaction *cur_trans = trans->transaction;
2711         int ret = 0;
2712         int should_put;
2713         struct btrfs_path *path = NULL;
2714         LIST_HEAD(dirty);
2715         struct list_head *io = &cur_trans->io_bgs;
2716         int num_started = 0;
2717         int loops = 0;
2718
2719         spin_lock(&cur_trans->dirty_bgs_lock);
2720         if (list_empty(&cur_trans->dirty_bgs)) {
2721                 spin_unlock(&cur_trans->dirty_bgs_lock);
2722                 return 0;
2723         }
2724         list_splice_init(&cur_trans->dirty_bgs, &dirty);
2725         spin_unlock(&cur_trans->dirty_bgs_lock);
2726
2727 again:
2728         /* Make sure all the block groups on our dirty list actually exist */
2729         btrfs_create_pending_block_groups(trans);
2730
2731         if (!path) {
2732                 path = btrfs_alloc_path();
2733                 if (!path) {
2734                         ret = -ENOMEM;
2735                         goto out;
2736                 }
2737         }
2738
2739         /*
2740          * cache_write_mutex is here only to save us from balance or automatic
2741          * removal of empty block groups deleting this block group while we are
2742          * writing out the cache
2743          */
2744         mutex_lock(&trans->transaction->cache_write_mutex);
2745         while (!list_empty(&dirty)) {
2746                 bool drop_reserve = true;
2747
2748                 cache = list_first_entry(&dirty, struct btrfs_block_group,
2749                                          dirty_list);
2750                 /*
2751                  * This can happen if something re-dirties a block group that
2752                  * is already under IO.  Just wait for it to finish and then do
2753                  * it all again
2754                  */
2755                 if (!list_empty(&cache->io_list)) {
2756                         list_del_init(&cache->io_list);
2757                         btrfs_wait_cache_io(trans, cache, path);
2758                         btrfs_put_block_group(cache);
2759                 }
2760
2761
2762                 /*
2763                  * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2764                  * it should update the cache_state.  Don't delete until after
2765                  * we wait.
2766                  *
2767                  * Since we're not running in the commit critical section
2768                  * we need the dirty_bgs_lock to protect from update_block_group
2769                  */
2770                 spin_lock(&cur_trans->dirty_bgs_lock);
2771                 list_del_init(&cache->dirty_list);
2772                 spin_unlock(&cur_trans->dirty_bgs_lock);
2773
2774                 should_put = 1;
2775
2776                 cache_save_setup(cache, trans, path);
2777
2778                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2779                         cache->io_ctl.inode = NULL;
2780                         ret = btrfs_write_out_cache(trans, cache, path);
2781                         if (ret == 0 && cache->io_ctl.inode) {
2782                                 num_started++;
2783                                 should_put = 0;
2784
2785                                 /*
2786                                  * The cache_write_mutex is protecting the
2787                                  * io_list, also refer to the definition of
2788                                  * btrfs_transaction::io_bgs for more details
2789                                  */
2790                                 list_add_tail(&cache->io_list, io);
2791                         } else {
2792                                 /*
2793                                  * If we failed to write the cache, the
2794                                  * generation will be bad and life goes on
2795                                  */
2796                                 ret = 0;
2797                         }
2798                 }
2799                 if (!ret) {
2800                         ret = update_block_group_item(trans, path, cache);
2801                         /*
2802                          * Our block group might still be attached to the list
2803                          * of new block groups in the transaction handle of some
2804                          * other task (struct btrfs_trans_handle->new_bgs). This
2805                          * means its block group item isn't yet in the extent
2806                          * tree. If this happens ignore the error, as we will
2807                          * try again later in the critical section of the
2808                          * transaction commit.
2809                          */
2810                         if (ret == -ENOENT) {
2811                                 ret = 0;
2812                                 spin_lock(&cur_trans->dirty_bgs_lock);
2813                                 if (list_empty(&cache->dirty_list)) {
2814                                         list_add_tail(&cache->dirty_list,
2815                                                       &cur_trans->dirty_bgs);
2816                                         btrfs_get_block_group(cache);
2817                                         drop_reserve = false;
2818                                 }
2819                                 spin_unlock(&cur_trans->dirty_bgs_lock);
2820                         } else if (ret) {
2821                                 btrfs_abort_transaction(trans, ret);
2822                         }
2823                 }
2824
2825                 /* If it's not on the io list, we need to put the block group */
2826                 if (should_put)
2827                         btrfs_put_block_group(cache);
2828                 if (drop_reserve)
2829                         btrfs_delayed_refs_rsv_release(fs_info, 1);
2830                 /*
2831                  * Avoid blocking other tasks for too long. It might even save
2832                  * us from writing caches for block groups that are going to be
2833                  * removed.
2834                  */
2835                 mutex_unlock(&trans->transaction->cache_write_mutex);
2836                 if (ret)
2837                         goto out;
2838                 mutex_lock(&trans->transaction->cache_write_mutex);
2839         }
2840         mutex_unlock(&trans->transaction->cache_write_mutex);
2841
2842         /*
2843          * Go through delayed refs for all the stuff we've just kicked off
2844          * and then loop back (just once)
2845          */
2846         if (!ret)
2847                 ret = btrfs_run_delayed_refs(trans, 0);
2848         if (!ret && loops == 0) {
2849                 loops++;
2850                 spin_lock(&cur_trans->dirty_bgs_lock);
2851                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2852                 /*
2853                  * dirty_bgs_lock protects us from concurrent block group
2854                  * deletes too (not just cache_write_mutex).
2855                  */
2856                 if (!list_empty(&dirty)) {
2857                         spin_unlock(&cur_trans->dirty_bgs_lock);
2858                         goto again;
2859                 }
2860                 spin_unlock(&cur_trans->dirty_bgs_lock);
2861         }
2862 out:
2863         if (ret < 0) {
2864                 spin_lock(&cur_trans->dirty_bgs_lock);
2865                 list_splice_init(&dirty, &cur_trans->dirty_bgs);
2866                 spin_unlock(&cur_trans->dirty_bgs_lock);
2867                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
2868         }
2869
2870         btrfs_free_path(path);
2871         return ret;
2872 }
2873
2874 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
2875 {
2876         struct btrfs_fs_info *fs_info = trans->fs_info;
2877         struct btrfs_block_group *cache;
2878         struct btrfs_transaction *cur_trans = trans->transaction;
2879         int ret = 0;
2880         int should_put;
2881         struct btrfs_path *path;
2882         struct list_head *io = &cur_trans->io_bgs;
2883         int num_started = 0;
2884
2885         path = btrfs_alloc_path();
2886         if (!path)
2887                 return -ENOMEM;
2888
2889         /*
2890          * Even though we are in the critical section of the transaction commit,
2891          * we can still have concurrent tasks adding elements to this
2892          * transaction's list of dirty block groups. These tasks correspond to
2893          * endio free space workers started when writeback finishes for a
2894          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
2895          * allocate new block groups as a result of COWing nodes of the root
2896          * tree when updating the free space inode. The writeback for the space
2897          * caches is triggered by an earlier call to
2898          * btrfs_start_dirty_block_groups() and iterations of the following
2899          * loop.
2900          * Also we want to do the cache_save_setup first and then run the
2901          * delayed refs to make sure we have the best chance at doing this all
2902          * in one shot.
2903          */
2904         spin_lock(&cur_trans->dirty_bgs_lock);
2905         while (!list_empty(&cur_trans->dirty_bgs)) {
2906                 cache = list_first_entry(&cur_trans->dirty_bgs,
2907                                          struct btrfs_block_group,
2908                                          dirty_list);
2909
2910                 /*
2911                  * This can happen if cache_save_setup re-dirties a block group
2912                  * that is already under IO.  Just wait for it to finish and
2913                  * then do it all again
2914                  */
2915                 if (!list_empty(&cache->io_list)) {
2916                         spin_unlock(&cur_trans->dirty_bgs_lock);
2917                         list_del_init(&cache->io_list);
2918                         btrfs_wait_cache_io(trans, cache, path);
2919                         btrfs_put_block_group(cache);
2920                         spin_lock(&cur_trans->dirty_bgs_lock);
2921                 }
2922
2923                 /*
2924                  * Don't remove from the dirty list until after we've waited on
2925                  * any pending IO
2926                  */
2927                 list_del_init(&cache->dirty_list);
2928                 spin_unlock(&cur_trans->dirty_bgs_lock);
2929                 should_put = 1;
2930
2931                 cache_save_setup(cache, trans, path);
2932
2933                 if (!ret)
2934                         ret = btrfs_run_delayed_refs(trans,
2935                                                      (unsigned long) -1);
2936
2937                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
2938                         cache->io_ctl.inode = NULL;
2939                         ret = btrfs_write_out_cache(trans, cache, path);
2940                         if (ret == 0 && cache->io_ctl.inode) {
2941                                 num_started++;
2942                                 should_put = 0;
2943                                 list_add_tail(&cache->io_list, io);
2944                         } else {
2945                                 /*
2946                                  * If we failed to write the cache, the
2947                                  * generation will be bad and life goes on
2948                                  */
2949                                 ret = 0;
2950                         }
2951                 }
2952                 if (!ret) {
2953                         ret = update_block_group_item(trans, path, cache);
2954                         /*
2955                          * One of the free space endio workers might have
2956                          * created a new block group while updating a free space
2957                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
2958                          * and hasn't released its transaction handle yet, in
2959                          * which case the new block group is still attached to
2960                          * its transaction handle and its creation has not
2961                          * finished yet (no block group item in the extent tree
2962                          * yet, etc). If this is the case, wait for all free
2963                          * space endio workers to finish and retry. This is a
2964                          * very rare case so no need for a more efficient and
2965                          * complex approach.
2966                          */
2967                         if (ret == -ENOENT) {
2968                                 wait_event(cur_trans->writer_wait,
2969                                    atomic_read(&cur_trans->num_writers) == 1);
2970                                 ret = update_block_group_item(trans, path, cache);
2971                         }
2972                         if (ret)
2973                                 btrfs_abort_transaction(trans, ret);
2974                 }
2975
2976                 /* If its not on the io list, we need to put the block group */
2977                 if (should_put)
2978                         btrfs_put_block_group(cache);
2979                 btrfs_delayed_refs_rsv_release(fs_info, 1);
2980                 spin_lock(&cur_trans->dirty_bgs_lock);
2981         }
2982         spin_unlock(&cur_trans->dirty_bgs_lock);
2983
2984         /*
2985          * Refer to the definition of io_bgs member for details why it's safe
2986          * to use it without any locking
2987          */
2988         while (!list_empty(io)) {
2989                 cache = list_first_entry(io, struct btrfs_block_group,
2990                                          io_list);
2991                 list_del_init(&cache->io_list);
2992                 btrfs_wait_cache_io(trans, cache, path);
2993                 btrfs_put_block_group(cache);
2994         }
2995
2996         btrfs_free_path(path);
2997         return ret;
2998 }
2999
3000 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3001                              u64 bytenr, u64 num_bytes, int alloc)
3002 {
3003         struct btrfs_fs_info *info = trans->fs_info;
3004         struct btrfs_block_group *cache = NULL;
3005         u64 total = num_bytes;
3006         u64 old_val;
3007         u64 byte_in_group;
3008         int factor;
3009         int ret = 0;
3010
3011         /* Block accounting for super block */
3012         spin_lock(&info->delalloc_root_lock);
3013         old_val = btrfs_super_bytes_used(info->super_copy);
3014         if (alloc)
3015                 old_val += num_bytes;
3016         else
3017                 old_val -= num_bytes;
3018         btrfs_set_super_bytes_used(info->super_copy, old_val);
3019         spin_unlock(&info->delalloc_root_lock);
3020
3021         while (total) {
3022                 cache = btrfs_lookup_block_group(info, bytenr);
3023                 if (!cache) {
3024                         ret = -ENOENT;
3025                         break;
3026                 }
3027                 factor = btrfs_bg_type_to_factor(cache->flags);
3028
3029                 /*
3030                  * If this block group has free space cache written out, we
3031                  * need to make sure to load it if we are removing space.  This
3032                  * is because we need the unpinning stage to actually add the
3033                  * space back to the block group, otherwise we will leak space.
3034                  */
3035                 if (!alloc && !btrfs_block_group_done(cache))
3036                         btrfs_cache_block_group(cache, 1);
3037
3038                 byte_in_group = bytenr - cache->start;
3039                 WARN_ON(byte_in_group > cache->length);
3040
3041                 spin_lock(&cache->space_info->lock);
3042                 spin_lock(&cache->lock);
3043
3044                 if (btrfs_test_opt(info, SPACE_CACHE) &&
3045                     cache->disk_cache_state < BTRFS_DC_CLEAR)
3046                         cache->disk_cache_state = BTRFS_DC_CLEAR;
3047
3048                 old_val = cache->used;
3049                 num_bytes = min(total, cache->length - byte_in_group);
3050                 if (alloc) {
3051                         old_val += num_bytes;
3052                         cache->used = old_val;
3053                         cache->reserved -= num_bytes;
3054                         cache->space_info->bytes_reserved -= num_bytes;
3055                         cache->space_info->bytes_used += num_bytes;
3056                         cache->space_info->disk_used += num_bytes * factor;
3057                         spin_unlock(&cache->lock);
3058                         spin_unlock(&cache->space_info->lock);
3059                 } else {
3060                         old_val -= num_bytes;
3061                         cache->used = old_val;
3062                         cache->pinned += num_bytes;
3063                         btrfs_space_info_update_bytes_pinned(info,
3064                                         cache->space_info, num_bytes);
3065                         cache->space_info->bytes_used -= num_bytes;
3066                         cache->space_info->disk_used -= num_bytes * factor;
3067                         spin_unlock(&cache->lock);
3068                         spin_unlock(&cache->space_info->lock);
3069
3070                         set_extent_dirty(&trans->transaction->pinned_extents,
3071                                          bytenr, bytenr + num_bytes - 1,
3072                                          GFP_NOFS | __GFP_NOFAIL);
3073                 }
3074
3075                 spin_lock(&trans->transaction->dirty_bgs_lock);
3076                 if (list_empty(&cache->dirty_list)) {
3077                         list_add_tail(&cache->dirty_list,
3078                                       &trans->transaction->dirty_bgs);
3079                         trans->delayed_ref_updates++;
3080                         btrfs_get_block_group(cache);
3081                 }
3082                 spin_unlock(&trans->transaction->dirty_bgs_lock);
3083
3084                 /*
3085                  * No longer have used bytes in this block group, queue it for
3086                  * deletion. We do this after adding the block group to the
3087                  * dirty list to avoid races between cleaner kthread and space
3088                  * cache writeout.
3089                  */
3090                 if (!alloc && old_val == 0) {
3091                         if (!btrfs_test_opt(info, DISCARD_ASYNC))
3092                                 btrfs_mark_bg_unused(cache);
3093                 }
3094
3095                 btrfs_put_block_group(cache);
3096                 total -= num_bytes;
3097                 bytenr += num_bytes;
3098         }
3099
3100         /* Modified block groups are accounted for in the delayed_refs_rsv. */
3101         btrfs_update_delayed_refs_rsv(trans);
3102         return ret;
3103 }
3104
3105 /**
3106  * btrfs_add_reserved_bytes - update the block_group and space info counters
3107  * @cache:      The cache we are manipulating
3108  * @ram_bytes:  The number of bytes of file content, and will be same to
3109  *              @num_bytes except for the compress path.
3110  * @num_bytes:  The number of bytes in question
3111  * @delalloc:   The blocks are allocated for the delalloc write
3112  *
3113  * This is called by the allocator when it reserves space. If this is a
3114  * reservation and the block group has become read only we cannot make the
3115  * reservation and return -EAGAIN, otherwise this function always succeeds.
3116  */
3117 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3118                              u64 ram_bytes, u64 num_bytes, int delalloc)
3119 {
3120         struct btrfs_space_info *space_info = cache->space_info;
3121         int ret = 0;
3122
3123         spin_lock(&space_info->lock);
3124         spin_lock(&cache->lock);
3125         if (cache->ro) {
3126                 ret = -EAGAIN;
3127         } else {
3128                 cache->reserved += num_bytes;
3129                 space_info->bytes_reserved += num_bytes;
3130                 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3131                                               space_info->flags, num_bytes, 1);
3132                 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3133                                                       space_info, -ram_bytes);
3134                 if (delalloc)
3135                         cache->delalloc_bytes += num_bytes;
3136
3137                 /*
3138                  * Compression can use less space than we reserved, so wake
3139                  * tickets if that happens
3140                  */
3141                 if (num_bytes < ram_bytes)
3142                         btrfs_try_granting_tickets(cache->fs_info, space_info);
3143         }
3144         spin_unlock(&cache->lock);
3145         spin_unlock(&space_info->lock);
3146         return ret;
3147 }
3148
3149 /**
3150  * btrfs_free_reserved_bytes - update the block_group and space info counters
3151  * @cache:      The cache we are manipulating
3152  * @num_bytes:  The number of bytes in question
3153  * @delalloc:   The blocks are allocated for the delalloc write
3154  *
3155  * This is called by somebody who is freeing space that was never actually used
3156  * on disk.  For example if you reserve some space for a new leaf in transaction
3157  * A and before transaction A commits you free that leaf, you call this with
3158  * reserve set to 0 in order to clear the reservation.
3159  */
3160 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3161                                u64 num_bytes, int delalloc)
3162 {
3163         struct btrfs_space_info *space_info = cache->space_info;
3164
3165         spin_lock(&space_info->lock);
3166         spin_lock(&cache->lock);
3167         if (cache->ro)
3168                 space_info->bytes_readonly += num_bytes;
3169         cache->reserved -= num_bytes;
3170         space_info->bytes_reserved -= num_bytes;
3171         space_info->max_extent_size = 0;
3172
3173         if (delalloc)
3174                 cache->delalloc_bytes -= num_bytes;
3175         spin_unlock(&cache->lock);
3176
3177         btrfs_try_granting_tickets(cache->fs_info, space_info);
3178         spin_unlock(&space_info->lock);
3179 }
3180
3181 static void force_metadata_allocation(struct btrfs_fs_info *info)
3182 {
3183         struct list_head *head = &info->space_info;
3184         struct btrfs_space_info *found;
3185
3186         list_for_each_entry(found, head, list) {
3187                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3188                         found->force_alloc = CHUNK_ALLOC_FORCE;
3189         }
3190 }
3191
3192 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3193                               struct btrfs_space_info *sinfo, int force)
3194 {
3195         u64 bytes_used = btrfs_space_info_used(sinfo, false);
3196         u64 thresh;
3197
3198         if (force == CHUNK_ALLOC_FORCE)
3199                 return 1;
3200
3201         /*
3202          * in limited mode, we want to have some free space up to
3203          * about 1% of the FS size.
3204          */
3205         if (force == CHUNK_ALLOC_LIMITED) {
3206                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3207                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3208
3209                 if (sinfo->total_bytes - bytes_used < thresh)
3210                         return 1;
3211         }
3212
3213         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3214                 return 0;
3215         return 1;
3216 }
3217
3218 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3219 {
3220         u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3221
3222         return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3223 }
3224
3225 /*
3226  * If force is CHUNK_ALLOC_FORCE:
3227  *    - return 1 if it successfully allocates a chunk,
3228  *    - return errors including -ENOSPC otherwise.
3229  * If force is NOT CHUNK_ALLOC_FORCE:
3230  *    - return 0 if it doesn't need to allocate a new chunk,
3231  *    - return 1 if it successfully allocates a chunk,
3232  *    - return errors including -ENOSPC otherwise.
3233  */
3234 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3235                       enum btrfs_chunk_alloc_enum force)
3236 {
3237         struct btrfs_fs_info *fs_info = trans->fs_info;
3238         struct btrfs_space_info *space_info;
3239         bool wait_for_alloc = false;
3240         bool should_alloc = false;
3241         int ret = 0;
3242
3243         /* Don't re-enter if we're already allocating a chunk */
3244         if (trans->allocating_chunk)
3245                 return -ENOSPC;
3246
3247         space_info = btrfs_find_space_info(fs_info, flags);
3248         ASSERT(space_info);
3249
3250         do {
3251                 spin_lock(&space_info->lock);
3252                 if (force < space_info->force_alloc)
3253                         force = space_info->force_alloc;
3254                 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3255                 if (space_info->full) {
3256                         /* No more free physical space */
3257                         if (should_alloc)
3258                                 ret = -ENOSPC;
3259                         else
3260                                 ret = 0;
3261                         spin_unlock(&space_info->lock);
3262                         return ret;
3263                 } else if (!should_alloc) {
3264                         spin_unlock(&space_info->lock);
3265                         return 0;
3266                 } else if (space_info->chunk_alloc) {
3267                         /*
3268                          * Someone is already allocating, so we need to block
3269                          * until this someone is finished and then loop to
3270                          * recheck if we should continue with our allocation
3271                          * attempt.
3272                          */
3273                         wait_for_alloc = true;
3274                         spin_unlock(&space_info->lock);
3275                         mutex_lock(&fs_info->chunk_mutex);
3276                         mutex_unlock(&fs_info->chunk_mutex);
3277                 } else {
3278                         /* Proceed with allocation */
3279                         space_info->chunk_alloc = 1;
3280                         wait_for_alloc = false;
3281                         spin_unlock(&space_info->lock);
3282                 }
3283
3284                 cond_resched();
3285         } while (wait_for_alloc);
3286
3287         mutex_lock(&fs_info->chunk_mutex);
3288         trans->allocating_chunk = true;
3289
3290         /*
3291          * If we have mixed data/metadata chunks we want to make sure we keep
3292          * allocating mixed chunks instead of individual chunks.
3293          */
3294         if (btrfs_mixed_space_info(space_info))
3295                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3296
3297         /*
3298          * if we're doing a data chunk, go ahead and make sure that
3299          * we keep a reasonable number of metadata chunks allocated in the
3300          * FS as well.
3301          */
3302         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3303                 fs_info->data_chunk_allocations++;
3304                 if (!(fs_info->data_chunk_allocations %
3305                       fs_info->metadata_ratio))
3306                         force_metadata_allocation(fs_info);
3307         }
3308
3309         /*
3310          * Check if we have enough space in SYSTEM chunk because we may need
3311          * to update devices.
3312          */
3313         check_system_chunk(trans, flags);
3314
3315         ret = btrfs_alloc_chunk(trans, flags);
3316         trans->allocating_chunk = false;
3317
3318         spin_lock(&space_info->lock);
3319         if (ret < 0) {
3320                 if (ret == -ENOSPC)
3321                         space_info->full = 1;
3322                 else
3323                         goto out;
3324         } else {
3325                 ret = 1;
3326                 space_info->max_extent_size = 0;
3327         }
3328
3329         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3330 out:
3331         space_info->chunk_alloc = 0;
3332         spin_unlock(&space_info->lock);
3333         mutex_unlock(&fs_info->chunk_mutex);
3334         /*
3335          * When we allocate a new chunk we reserve space in the chunk block
3336          * reserve to make sure we can COW nodes/leafs in the chunk tree or
3337          * add new nodes/leafs to it if we end up needing to do it when
3338          * inserting the chunk item and updating device items as part of the
3339          * second phase of chunk allocation, performed by
3340          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
3341          * large number of new block groups to create in our transaction
3342          * handle's new_bgs list to avoid exhausting the chunk block reserve
3343          * in extreme cases - like having a single transaction create many new
3344          * block groups when starting to write out the free space caches of all
3345          * the block groups that were made dirty during the lifetime of the
3346          * transaction.
3347          */
3348         if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
3349                 btrfs_create_pending_block_groups(trans);
3350
3351         return ret;
3352 }
3353
3354 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3355 {
3356         u64 num_dev;
3357
3358         num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3359         if (!num_dev)
3360                 num_dev = fs_info->fs_devices->rw_devices;
3361
3362         return num_dev;
3363 }
3364
3365 /*
3366  * Reserve space in the system space for allocating or removing a chunk
3367  */
3368 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3369 {
3370         struct btrfs_transaction *cur_trans = trans->transaction;
3371         struct btrfs_fs_info *fs_info = trans->fs_info;
3372         struct btrfs_space_info *info;
3373         u64 left;
3374         u64 thresh;
3375         int ret = 0;
3376         u64 num_devs;
3377
3378         /*
3379          * Needed because we can end up allocating a system chunk and for an
3380          * atomic and race free space reservation in the chunk block reserve.
3381          */
3382         lockdep_assert_held(&fs_info->chunk_mutex);
3383
3384         info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3385 again:
3386         spin_lock(&info->lock);
3387         left = info->total_bytes - btrfs_space_info_used(info, true);
3388         spin_unlock(&info->lock);
3389
3390         num_devs = get_profile_num_devs(fs_info, type);
3391
3392         /* num_devs device items to update and 1 chunk item to add or remove */
3393         thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3394                 btrfs_calc_insert_metadata_size(fs_info, 1);
3395
3396         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3397                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3398                            left, thresh, type);
3399                 btrfs_dump_space_info(fs_info, info, 0, 0);
3400         }
3401
3402         if (left < thresh) {
3403                 u64 flags = btrfs_system_alloc_profile(fs_info);
3404                 u64 reserved = atomic64_read(&cur_trans->chunk_bytes_reserved);
3405
3406                 /*
3407                  * If there's not available space for the chunk tree (system
3408                  * space) and there are other tasks that reserved space for
3409                  * creating a new system block group, wait for them to complete
3410                  * the creation of their system block group and release excess
3411                  * reserved space. We do this because:
3412                  *
3413                  * *) We can end up allocating more system chunks than necessary
3414                  *    when there are multiple tasks that are concurrently
3415                  *    allocating block groups, which can lead to exhaustion of
3416                  *    the system array in the superblock;
3417                  *
3418                  * *) If we allocate extra and unnecessary system block groups,
3419                  *    despite being empty for a long time, and possibly forever,
3420                  *    they end not being added to the list of unused block groups
3421                  *    because that typically happens only when deallocating the
3422                  *    last extent from a block group - which never happens since
3423                  *    we never allocate from them in the first place. The few
3424                  *    exceptions are when mounting a filesystem or running scrub,
3425                  *    which add unused block groups to the list of unused block
3426                  *    groups, to be deleted by the cleaner kthread.
3427                  *    And even when they are added to the list of unused block
3428                  *    groups, it can take a long time until they get deleted,
3429                  *    since the cleaner kthread might be sleeping or busy with
3430                  *    other work (deleting subvolumes, running delayed iputs,
3431                  *    defrag scheduling, etc);
3432                  *
3433                  * This is rare in practice, but can happen when too many tasks
3434                  * are allocating blocks groups in parallel (via fallocate())
3435                  * and before the one that reserved space for a new system block
3436                  * group finishes the block group creation and releases the space
3437                  * reserved in excess (at btrfs_create_pending_block_groups()),
3438                  * other tasks end up here and see free system space temporarily
3439                  * not enough for updating the chunk tree.
3440                  *
3441                  * We unlock the chunk mutex before waiting for such tasks and
3442                  * lock it again after the wait, otherwise we would deadlock.
3443                  * It is safe to do so because allocating a system chunk is the
3444                  * first thing done while allocating a new block group.
3445                  */
3446                 if (reserved > trans->chunk_bytes_reserved) {
3447                         const u64 min_needed = reserved - thresh;
3448
3449                         mutex_unlock(&fs_info->chunk_mutex);
3450                         wait_event(cur_trans->chunk_reserve_wait,
3451                            atomic64_read(&cur_trans->chunk_bytes_reserved) <=
3452                            min_needed);
3453                         mutex_lock(&fs_info->chunk_mutex);
3454                         goto again;
3455                 }
3456
3457                 /*
3458                  * Ignore failure to create system chunk. We might end up not
3459                  * needing it, as we might not need to COW all nodes/leafs from
3460                  * the paths we visit in the chunk tree (they were already COWed
3461                  * or created in the current transaction for example).
3462                  */
3463                 ret = btrfs_alloc_chunk(trans, flags);
3464         }
3465
3466         if (!ret) {
3467                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3468                                           &fs_info->chunk_block_rsv,
3469                                           thresh, BTRFS_RESERVE_NO_FLUSH);
3470                 if (!ret) {
3471                         atomic64_add(thresh, &cur_trans->chunk_bytes_reserved);
3472                         trans->chunk_bytes_reserved += thresh;
3473                 }
3474         }
3475 }
3476
3477 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3478 {
3479         struct btrfs_block_group *block_group;
3480         u64 last = 0;
3481
3482         while (1) {
3483                 struct inode *inode;
3484
3485                 block_group = btrfs_lookup_first_block_group(info, last);
3486                 while (block_group) {
3487                         btrfs_wait_block_group_cache_done(block_group);
3488                         spin_lock(&block_group->lock);
3489                         if (block_group->iref)
3490                                 break;
3491                         spin_unlock(&block_group->lock);
3492                         block_group = btrfs_next_block_group(block_group);
3493                 }
3494                 if (!block_group) {
3495                         if (last == 0)
3496                                 break;
3497                         last = 0;
3498                         continue;
3499                 }
3500
3501                 inode = block_group->inode;
3502                 block_group->iref = 0;
3503                 block_group->inode = NULL;
3504                 spin_unlock(&block_group->lock);
3505                 ASSERT(block_group->io_ctl.inode == NULL);
3506                 iput(inode);
3507                 last = block_group->start + block_group->length;
3508                 btrfs_put_block_group(block_group);
3509         }
3510 }
3511
3512 /*
3513  * Must be called only after stopping all workers, since we could have block
3514  * group caching kthreads running, and therefore they could race with us if we
3515  * freed the block groups before stopping them.
3516  */
3517 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3518 {
3519         struct btrfs_block_group *block_group;
3520         struct btrfs_space_info *space_info;
3521         struct btrfs_caching_control *caching_ctl;
3522         struct rb_node *n;
3523
3524         spin_lock(&info->block_group_cache_lock);
3525         while (!list_empty(&info->caching_block_groups)) {
3526                 caching_ctl = list_entry(info->caching_block_groups.next,
3527                                          struct btrfs_caching_control, list);
3528                 list_del(&caching_ctl->list);
3529                 btrfs_put_caching_control(caching_ctl);
3530         }
3531         spin_unlock(&info->block_group_cache_lock);
3532
3533         spin_lock(&info->unused_bgs_lock);
3534         while (!list_empty(&info->unused_bgs)) {
3535                 block_group = list_first_entry(&info->unused_bgs,
3536                                                struct btrfs_block_group,
3537                                                bg_list);
3538                 list_del_init(&block_group->bg_list);
3539                 btrfs_put_block_group(block_group);
3540         }
3541         spin_unlock(&info->unused_bgs_lock);
3542
3543         spin_lock(&info->unused_bgs_lock);
3544         while (!list_empty(&info->reclaim_bgs)) {
3545                 block_group = list_first_entry(&info->reclaim_bgs,
3546                                                struct btrfs_block_group,
3547                                                bg_list);
3548                 list_del_init(&block_group->bg_list);
3549                 btrfs_put_block_group(block_group);
3550         }
3551         spin_unlock(&info->unused_bgs_lock);
3552
3553         spin_lock(&info->block_group_cache_lock);
3554         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3555                 block_group = rb_entry(n, struct btrfs_block_group,
3556                                        cache_node);
3557                 rb_erase(&block_group->cache_node,
3558                          &info->block_group_cache_tree);
3559                 RB_CLEAR_NODE(&block_group->cache_node);
3560                 spin_unlock(&info->block_group_cache_lock);
3561
3562                 down_write(&block_group->space_info->groups_sem);
3563                 list_del(&block_group->list);
3564                 up_write(&block_group->space_info->groups_sem);
3565
3566                 /*
3567                  * We haven't cached this block group, which means we could
3568                  * possibly have excluded extents on this block group.
3569                  */
3570                 if (block_group->cached == BTRFS_CACHE_NO ||
3571                     block_group->cached == BTRFS_CACHE_ERROR)
3572                         btrfs_free_excluded_extents(block_group);
3573
3574                 btrfs_remove_free_space_cache(block_group);
3575                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3576                 ASSERT(list_empty(&block_group->dirty_list));
3577                 ASSERT(list_empty(&block_group->io_list));
3578                 ASSERT(list_empty(&block_group->bg_list));
3579                 ASSERT(refcount_read(&block_group->refs) == 1);
3580                 ASSERT(block_group->swap_extents == 0);
3581                 btrfs_put_block_group(block_group);
3582
3583                 spin_lock(&info->block_group_cache_lock);
3584         }
3585         spin_unlock(&info->block_group_cache_lock);
3586
3587         btrfs_release_global_block_rsv(info);
3588
3589         while (!list_empty(&info->space_info)) {
3590                 space_info = list_entry(info->space_info.next,
3591                                         struct btrfs_space_info,
3592                                         list);
3593
3594                 /*
3595                  * Do not hide this behind enospc_debug, this is actually
3596                  * important and indicates a real bug if this happens.
3597                  */
3598                 if (WARN_ON(space_info->bytes_pinned > 0 ||
3599                             space_info->bytes_reserved > 0 ||
3600                             space_info->bytes_may_use > 0))
3601                         btrfs_dump_space_info(info, space_info, 0, 0);
3602                 WARN_ON(space_info->reclaim_size > 0);
3603                 list_del(&space_info->list);
3604                 btrfs_sysfs_remove_space_info(space_info);
3605         }
3606         return 0;
3607 }
3608
3609 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3610 {
3611         atomic_inc(&cache->frozen);
3612 }
3613
3614 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3615 {
3616         struct btrfs_fs_info *fs_info = block_group->fs_info;
3617         struct extent_map_tree *em_tree;
3618         struct extent_map *em;
3619         bool cleanup;
3620
3621         spin_lock(&block_group->lock);
3622         cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3623                    block_group->removed);
3624         spin_unlock(&block_group->lock);
3625
3626         if (cleanup) {
3627                 em_tree = &fs_info->mapping_tree;
3628                 write_lock(&em_tree->lock);
3629                 em = lookup_extent_mapping(em_tree, block_group->start,
3630                                            1);
3631                 BUG_ON(!em); /* logic error, can't happen */
3632                 remove_extent_mapping(em_tree, em);
3633                 write_unlock(&em_tree->lock);
3634
3635                 /* once for us and once for the tree */
3636                 free_extent_map(em);
3637                 free_extent_map(em);
3638
3639                 /*
3640                  * We may have left one free space entry and other possible
3641                  * tasks trimming this block group have left 1 entry each one.
3642                  * Free them if any.
3643                  */
3644                 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3645         }
3646 }
3647
3648 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3649 {
3650         bool ret = true;
3651
3652         spin_lock(&bg->lock);
3653         if (bg->ro)
3654                 ret = false;
3655         else
3656                 bg->swap_extents++;
3657         spin_unlock(&bg->lock);
3658
3659         return ret;
3660 }
3661
3662 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3663 {
3664         spin_lock(&bg->lock);
3665         ASSERT(!bg->ro);
3666         ASSERT(bg->swap_extents >= amount);
3667         bg->swap_extents -= amount;
3668         spin_unlock(&bg->lock);
3669 }