x86/sev-es: Do not support MMIO to/from encrypted memory
[linux-2.6-microblaze.git] / fs / btrfs / backref.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011 STRATO.  All rights reserved.
4  */
5
6 #include <linux/mm.h>
7 #include <linux/rbtree.h>
8 #include <trace/events/btrfs.h>
9 #include "ctree.h"
10 #include "disk-io.h"
11 #include "backref.h"
12 #include "ulist.h"
13 #include "transaction.h"
14 #include "delayed-ref.h"
15 #include "locking.h"
16 #include "misc.h"
17
18 /* Just an arbitrary number so we can be sure this happened */
19 #define BACKREF_FOUND_SHARED 6
20
21 struct extent_inode_elem {
22         u64 inum;
23         u64 offset;
24         struct extent_inode_elem *next;
25 };
26
27 static int check_extent_in_eb(const struct btrfs_key *key,
28                               const struct extent_buffer *eb,
29                               const struct btrfs_file_extent_item *fi,
30                               u64 extent_item_pos,
31                               struct extent_inode_elem **eie,
32                               bool ignore_offset)
33 {
34         u64 offset = 0;
35         struct extent_inode_elem *e;
36
37         if (!ignore_offset &&
38             !btrfs_file_extent_compression(eb, fi) &&
39             !btrfs_file_extent_encryption(eb, fi) &&
40             !btrfs_file_extent_other_encoding(eb, fi)) {
41                 u64 data_offset;
42                 u64 data_len;
43
44                 data_offset = btrfs_file_extent_offset(eb, fi);
45                 data_len = btrfs_file_extent_num_bytes(eb, fi);
46
47                 if (extent_item_pos < data_offset ||
48                     extent_item_pos >= data_offset + data_len)
49                         return 1;
50                 offset = extent_item_pos - data_offset;
51         }
52
53         e = kmalloc(sizeof(*e), GFP_NOFS);
54         if (!e)
55                 return -ENOMEM;
56
57         e->next = *eie;
58         e->inum = key->objectid;
59         e->offset = key->offset + offset;
60         *eie = e;
61
62         return 0;
63 }
64
65 static void free_inode_elem_list(struct extent_inode_elem *eie)
66 {
67         struct extent_inode_elem *eie_next;
68
69         for (; eie; eie = eie_next) {
70                 eie_next = eie->next;
71                 kfree(eie);
72         }
73 }
74
75 static int find_extent_in_eb(const struct extent_buffer *eb,
76                              u64 wanted_disk_byte, u64 extent_item_pos,
77                              struct extent_inode_elem **eie,
78                              bool ignore_offset)
79 {
80         u64 disk_byte;
81         struct btrfs_key key;
82         struct btrfs_file_extent_item *fi;
83         int slot;
84         int nritems;
85         int extent_type;
86         int ret;
87
88         /*
89          * from the shared data ref, we only have the leaf but we need
90          * the key. thus, we must look into all items and see that we
91          * find one (some) with a reference to our extent item.
92          */
93         nritems = btrfs_header_nritems(eb);
94         for (slot = 0; slot < nritems; ++slot) {
95                 btrfs_item_key_to_cpu(eb, &key, slot);
96                 if (key.type != BTRFS_EXTENT_DATA_KEY)
97                         continue;
98                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
99                 extent_type = btrfs_file_extent_type(eb, fi);
100                 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
101                         continue;
102                 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
103                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
104                 if (disk_byte != wanted_disk_byte)
105                         continue;
106
107                 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
108                 if (ret < 0)
109                         return ret;
110         }
111
112         return 0;
113 }
114
115 struct preftree {
116         struct rb_root_cached root;
117         unsigned int count;
118 };
119
120 #define PREFTREE_INIT   { .root = RB_ROOT_CACHED, .count = 0 }
121
122 struct preftrees {
123         struct preftree direct;    /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
124         struct preftree indirect;  /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
125         struct preftree indirect_missing_keys;
126 };
127
128 /*
129  * Checks for a shared extent during backref search.
130  *
131  * The share_count tracks prelim_refs (direct and indirect) having a
132  * ref->count >0:
133  *  - incremented when a ref->count transitions to >0
134  *  - decremented when a ref->count transitions to <1
135  */
136 struct share_check {
137         u64 root_objectid;
138         u64 inum;
139         int share_count;
140 };
141
142 static inline int extent_is_shared(struct share_check *sc)
143 {
144         return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
145 }
146
147 static struct kmem_cache *btrfs_prelim_ref_cache;
148
149 int __init btrfs_prelim_ref_init(void)
150 {
151         btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
152                                         sizeof(struct prelim_ref),
153                                         0,
154                                         SLAB_MEM_SPREAD,
155                                         NULL);
156         if (!btrfs_prelim_ref_cache)
157                 return -ENOMEM;
158         return 0;
159 }
160
161 void __cold btrfs_prelim_ref_exit(void)
162 {
163         kmem_cache_destroy(btrfs_prelim_ref_cache);
164 }
165
166 static void free_pref(struct prelim_ref *ref)
167 {
168         kmem_cache_free(btrfs_prelim_ref_cache, ref);
169 }
170
171 /*
172  * Return 0 when both refs are for the same block (and can be merged).
173  * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
174  * indicates a 'higher' block.
175  */
176 static int prelim_ref_compare(struct prelim_ref *ref1,
177                               struct prelim_ref *ref2)
178 {
179         if (ref1->level < ref2->level)
180                 return -1;
181         if (ref1->level > ref2->level)
182                 return 1;
183         if (ref1->root_id < ref2->root_id)
184                 return -1;
185         if (ref1->root_id > ref2->root_id)
186                 return 1;
187         if (ref1->key_for_search.type < ref2->key_for_search.type)
188                 return -1;
189         if (ref1->key_for_search.type > ref2->key_for_search.type)
190                 return 1;
191         if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
192                 return -1;
193         if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
194                 return 1;
195         if (ref1->key_for_search.offset < ref2->key_for_search.offset)
196                 return -1;
197         if (ref1->key_for_search.offset > ref2->key_for_search.offset)
198                 return 1;
199         if (ref1->parent < ref2->parent)
200                 return -1;
201         if (ref1->parent > ref2->parent)
202                 return 1;
203
204         return 0;
205 }
206
207 static void update_share_count(struct share_check *sc, int oldcount,
208                                int newcount)
209 {
210         if ((!sc) || (oldcount == 0 && newcount < 1))
211                 return;
212
213         if (oldcount > 0 && newcount < 1)
214                 sc->share_count--;
215         else if (oldcount < 1 && newcount > 0)
216                 sc->share_count++;
217 }
218
219 /*
220  * Add @newref to the @root rbtree, merging identical refs.
221  *
222  * Callers should assume that newref has been freed after calling.
223  */
224 static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
225                               struct preftree *preftree,
226                               struct prelim_ref *newref,
227                               struct share_check *sc)
228 {
229         struct rb_root_cached *root;
230         struct rb_node **p;
231         struct rb_node *parent = NULL;
232         struct prelim_ref *ref;
233         int result;
234         bool leftmost = true;
235
236         root = &preftree->root;
237         p = &root->rb_root.rb_node;
238
239         while (*p) {
240                 parent = *p;
241                 ref = rb_entry(parent, struct prelim_ref, rbnode);
242                 result = prelim_ref_compare(ref, newref);
243                 if (result < 0) {
244                         p = &(*p)->rb_left;
245                 } else if (result > 0) {
246                         p = &(*p)->rb_right;
247                         leftmost = false;
248                 } else {
249                         /* Identical refs, merge them and free @newref */
250                         struct extent_inode_elem *eie = ref->inode_list;
251
252                         while (eie && eie->next)
253                                 eie = eie->next;
254
255                         if (!eie)
256                                 ref->inode_list = newref->inode_list;
257                         else
258                                 eie->next = newref->inode_list;
259                         trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
260                                                      preftree->count);
261                         /*
262                          * A delayed ref can have newref->count < 0.
263                          * The ref->count is updated to follow any
264                          * BTRFS_[ADD|DROP]_DELAYED_REF actions.
265                          */
266                         update_share_count(sc, ref->count,
267                                            ref->count + newref->count);
268                         ref->count += newref->count;
269                         free_pref(newref);
270                         return;
271                 }
272         }
273
274         update_share_count(sc, 0, newref->count);
275         preftree->count++;
276         trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
277         rb_link_node(&newref->rbnode, parent, p);
278         rb_insert_color_cached(&newref->rbnode, root, leftmost);
279 }
280
281 /*
282  * Release the entire tree.  We don't care about internal consistency so
283  * just free everything and then reset the tree root.
284  */
285 static void prelim_release(struct preftree *preftree)
286 {
287         struct prelim_ref *ref, *next_ref;
288
289         rbtree_postorder_for_each_entry_safe(ref, next_ref,
290                                              &preftree->root.rb_root, rbnode)
291                 free_pref(ref);
292
293         preftree->root = RB_ROOT_CACHED;
294         preftree->count = 0;
295 }
296
297 /*
298  * the rules for all callers of this function are:
299  * - obtaining the parent is the goal
300  * - if you add a key, you must know that it is a correct key
301  * - if you cannot add the parent or a correct key, then we will look into the
302  *   block later to set a correct key
303  *
304  * delayed refs
305  * ============
306  *        backref type | shared | indirect | shared | indirect
307  * information         |   tree |     tree |   data |     data
308  * --------------------+--------+----------+--------+----------
309  *      parent logical |    y   |     -    |    -   |     -
310  *      key to resolve |    -   |     y    |    y   |     y
311  *  tree block logical |    -   |     -    |    -   |     -
312  *  root for resolving |    y   |     y    |    y   |     y
313  *
314  * - column 1:       we've the parent -> done
315  * - column 2, 3, 4: we use the key to find the parent
316  *
317  * on disk refs (inline or keyed)
318  * ==============================
319  *        backref type | shared | indirect | shared | indirect
320  * information         |   tree |     tree |   data |     data
321  * --------------------+--------+----------+--------+----------
322  *      parent logical |    y   |     -    |    y   |     -
323  *      key to resolve |    -   |     -    |    -   |     y
324  *  tree block logical |    y   |     y    |    y   |     y
325  *  root for resolving |    -   |     y    |    y   |     y
326  *
327  * - column 1, 3: we've the parent -> done
328  * - column 2:    we take the first key from the block to find the parent
329  *                (see add_missing_keys)
330  * - column 4:    we use the key to find the parent
331  *
332  * additional information that's available but not required to find the parent
333  * block might help in merging entries to gain some speed.
334  */
335 static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
336                           struct preftree *preftree, u64 root_id,
337                           const struct btrfs_key *key, int level, u64 parent,
338                           u64 wanted_disk_byte, int count,
339                           struct share_check *sc, gfp_t gfp_mask)
340 {
341         struct prelim_ref *ref;
342
343         if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
344                 return 0;
345
346         ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
347         if (!ref)
348                 return -ENOMEM;
349
350         ref->root_id = root_id;
351         if (key)
352                 ref->key_for_search = *key;
353         else
354                 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
355
356         ref->inode_list = NULL;
357         ref->level = level;
358         ref->count = count;
359         ref->parent = parent;
360         ref->wanted_disk_byte = wanted_disk_byte;
361         prelim_ref_insert(fs_info, preftree, ref, sc);
362         return extent_is_shared(sc);
363 }
364
365 /* direct refs use root == 0, key == NULL */
366 static int add_direct_ref(const struct btrfs_fs_info *fs_info,
367                           struct preftrees *preftrees, int level, u64 parent,
368                           u64 wanted_disk_byte, int count,
369                           struct share_check *sc, gfp_t gfp_mask)
370 {
371         return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
372                               parent, wanted_disk_byte, count, sc, gfp_mask);
373 }
374
375 /* indirect refs use parent == 0 */
376 static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
377                             struct preftrees *preftrees, u64 root_id,
378                             const struct btrfs_key *key, int level,
379                             u64 wanted_disk_byte, int count,
380                             struct share_check *sc, gfp_t gfp_mask)
381 {
382         struct preftree *tree = &preftrees->indirect;
383
384         if (!key)
385                 tree = &preftrees->indirect_missing_keys;
386         return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
387                               wanted_disk_byte, count, sc, gfp_mask);
388 }
389
390 static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
391 {
392         struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
393         struct rb_node *parent = NULL;
394         struct prelim_ref *ref = NULL;
395         struct prelim_ref target = {};
396         int result;
397
398         target.parent = bytenr;
399
400         while (*p) {
401                 parent = *p;
402                 ref = rb_entry(parent, struct prelim_ref, rbnode);
403                 result = prelim_ref_compare(ref, &target);
404
405                 if (result < 0)
406                         p = &(*p)->rb_left;
407                 else if (result > 0)
408                         p = &(*p)->rb_right;
409                 else
410                         return 1;
411         }
412         return 0;
413 }
414
415 static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
416                            struct ulist *parents,
417                            struct preftrees *preftrees, struct prelim_ref *ref,
418                            int level, u64 time_seq, const u64 *extent_item_pos,
419                            bool ignore_offset)
420 {
421         int ret = 0;
422         int slot;
423         struct extent_buffer *eb;
424         struct btrfs_key key;
425         struct btrfs_key *key_for_search = &ref->key_for_search;
426         struct btrfs_file_extent_item *fi;
427         struct extent_inode_elem *eie = NULL, *old = NULL;
428         u64 disk_byte;
429         u64 wanted_disk_byte = ref->wanted_disk_byte;
430         u64 count = 0;
431         u64 data_offset;
432
433         if (level != 0) {
434                 eb = path->nodes[level];
435                 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
436                 if (ret < 0)
437                         return ret;
438                 return 0;
439         }
440
441         /*
442          * 1. We normally enter this function with the path already pointing to
443          *    the first item to check. But sometimes, we may enter it with
444          *    slot == nritems.
445          * 2. We are searching for normal backref but bytenr of this leaf
446          *    matches shared data backref
447          * 3. The leaf owner is not equal to the root we are searching
448          *
449          * For these cases, go to the next leaf before we continue.
450          */
451         eb = path->nodes[0];
452         if (path->slots[0] >= btrfs_header_nritems(eb) ||
453             is_shared_data_backref(preftrees, eb->start) ||
454             ref->root_id != btrfs_header_owner(eb)) {
455                 if (time_seq == SEQ_LAST)
456                         ret = btrfs_next_leaf(root, path);
457                 else
458                         ret = btrfs_next_old_leaf(root, path, time_seq);
459         }
460
461         while (!ret && count < ref->count) {
462                 eb = path->nodes[0];
463                 slot = path->slots[0];
464
465                 btrfs_item_key_to_cpu(eb, &key, slot);
466
467                 if (key.objectid != key_for_search->objectid ||
468                     key.type != BTRFS_EXTENT_DATA_KEY)
469                         break;
470
471                 /*
472                  * We are searching for normal backref but bytenr of this leaf
473                  * matches shared data backref, OR
474                  * the leaf owner is not equal to the root we are searching for
475                  */
476                 if (slot == 0 &&
477                     (is_shared_data_backref(preftrees, eb->start) ||
478                      ref->root_id != btrfs_header_owner(eb))) {
479                         if (time_seq == SEQ_LAST)
480                                 ret = btrfs_next_leaf(root, path);
481                         else
482                                 ret = btrfs_next_old_leaf(root, path, time_seq);
483                         continue;
484                 }
485                 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
486                 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
487                 data_offset = btrfs_file_extent_offset(eb, fi);
488
489                 if (disk_byte == wanted_disk_byte) {
490                         eie = NULL;
491                         old = NULL;
492                         if (ref->key_for_search.offset == key.offset - data_offset)
493                                 count++;
494                         else
495                                 goto next;
496                         if (extent_item_pos) {
497                                 ret = check_extent_in_eb(&key, eb, fi,
498                                                 *extent_item_pos,
499                                                 &eie, ignore_offset);
500                                 if (ret < 0)
501                                         break;
502                         }
503                         if (ret > 0)
504                                 goto next;
505                         ret = ulist_add_merge_ptr(parents, eb->start,
506                                                   eie, (void **)&old, GFP_NOFS);
507                         if (ret < 0)
508                                 break;
509                         if (!ret && extent_item_pos) {
510                                 while (old->next)
511                                         old = old->next;
512                                 old->next = eie;
513                         }
514                         eie = NULL;
515                 }
516 next:
517                 if (time_seq == SEQ_LAST)
518                         ret = btrfs_next_item(root, path);
519                 else
520                         ret = btrfs_next_old_item(root, path, time_seq);
521         }
522
523         if (ret > 0)
524                 ret = 0;
525         else if (ret < 0)
526                 free_inode_elem_list(eie);
527         return ret;
528 }
529
530 /*
531  * resolve an indirect backref in the form (root_id, key, level)
532  * to a logical address
533  */
534 static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
535                                 struct btrfs_path *path, u64 time_seq,
536                                 struct preftrees *preftrees,
537                                 struct prelim_ref *ref, struct ulist *parents,
538                                 const u64 *extent_item_pos, bool ignore_offset)
539 {
540         struct btrfs_root *root;
541         struct extent_buffer *eb;
542         int ret = 0;
543         int root_level;
544         int level = ref->level;
545         struct btrfs_key search_key = ref->key_for_search;
546
547         root = btrfs_get_fs_root(fs_info, ref->root_id, false);
548         if (IS_ERR(root)) {
549                 ret = PTR_ERR(root);
550                 goto out_free;
551         }
552
553         if (!path->search_commit_root &&
554             test_bit(BTRFS_ROOT_DELETING, &root->state)) {
555                 ret = -ENOENT;
556                 goto out;
557         }
558
559         if (btrfs_is_testing(fs_info)) {
560                 ret = -ENOENT;
561                 goto out;
562         }
563
564         if (path->search_commit_root)
565                 root_level = btrfs_header_level(root->commit_root);
566         else if (time_seq == SEQ_LAST)
567                 root_level = btrfs_header_level(root->node);
568         else
569                 root_level = btrfs_old_root_level(root, time_seq);
570
571         if (root_level + 1 == level)
572                 goto out;
573
574         /*
575          * We can often find data backrefs with an offset that is too large
576          * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
577          * subtracting a file's offset with the data offset of its
578          * corresponding extent data item. This can happen for example in the
579          * clone ioctl.
580          *
581          * So if we detect such case we set the search key's offset to zero to
582          * make sure we will find the matching file extent item at
583          * add_all_parents(), otherwise we will miss it because the offset
584          * taken form the backref is much larger then the offset of the file
585          * extent item. This can make us scan a very large number of file
586          * extent items, but at least it will not make us miss any.
587          *
588          * This is an ugly workaround for a behaviour that should have never
589          * existed, but it does and a fix for the clone ioctl would touch a lot
590          * of places, cause backwards incompatibility and would not fix the
591          * problem for extents cloned with older kernels.
592          */
593         if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
594             search_key.offset >= LLONG_MAX)
595                 search_key.offset = 0;
596         path->lowest_level = level;
597         if (time_seq == SEQ_LAST)
598                 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
599         else
600                 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
601
602         btrfs_debug(fs_info,
603                 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
604                  ref->root_id, level, ref->count, ret,
605                  ref->key_for_search.objectid, ref->key_for_search.type,
606                  ref->key_for_search.offset);
607         if (ret < 0)
608                 goto out;
609
610         eb = path->nodes[level];
611         while (!eb) {
612                 if (WARN_ON(!level)) {
613                         ret = 1;
614                         goto out;
615                 }
616                 level--;
617                 eb = path->nodes[level];
618         }
619
620         ret = add_all_parents(root, path, parents, preftrees, ref, level,
621                               time_seq, extent_item_pos, ignore_offset);
622 out:
623         btrfs_put_root(root);
624 out_free:
625         path->lowest_level = 0;
626         btrfs_release_path(path);
627         return ret;
628 }
629
630 static struct extent_inode_elem *
631 unode_aux_to_inode_list(struct ulist_node *node)
632 {
633         if (!node)
634                 return NULL;
635         return (struct extent_inode_elem *)(uintptr_t)node->aux;
636 }
637
638 /*
639  * We maintain three separate rbtrees: one for direct refs, one for
640  * indirect refs which have a key, and one for indirect refs which do not
641  * have a key. Each tree does merge on insertion.
642  *
643  * Once all of the references are located, we iterate over the tree of
644  * indirect refs with missing keys. An appropriate key is located and
645  * the ref is moved onto the tree for indirect refs. After all missing
646  * keys are thus located, we iterate over the indirect ref tree, resolve
647  * each reference, and then insert the resolved reference onto the
648  * direct tree (merging there too).
649  *
650  * New backrefs (i.e., for parent nodes) are added to the appropriate
651  * rbtree as they are encountered. The new backrefs are subsequently
652  * resolved as above.
653  */
654 static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
655                                  struct btrfs_path *path, u64 time_seq,
656                                  struct preftrees *preftrees,
657                                  const u64 *extent_item_pos,
658                                  struct share_check *sc, bool ignore_offset)
659 {
660         int err;
661         int ret = 0;
662         struct ulist *parents;
663         struct ulist_node *node;
664         struct ulist_iterator uiter;
665         struct rb_node *rnode;
666
667         parents = ulist_alloc(GFP_NOFS);
668         if (!parents)
669                 return -ENOMEM;
670
671         /*
672          * We could trade memory usage for performance here by iterating
673          * the tree, allocating new refs for each insertion, and then
674          * freeing the entire indirect tree when we're done.  In some test
675          * cases, the tree can grow quite large (~200k objects).
676          */
677         while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
678                 struct prelim_ref *ref;
679
680                 ref = rb_entry(rnode, struct prelim_ref, rbnode);
681                 if (WARN(ref->parent,
682                          "BUG: direct ref found in indirect tree")) {
683                         ret = -EINVAL;
684                         goto out;
685                 }
686
687                 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
688                 preftrees->indirect.count--;
689
690                 if (ref->count == 0) {
691                         free_pref(ref);
692                         continue;
693                 }
694
695                 if (sc && sc->root_objectid &&
696                     ref->root_id != sc->root_objectid) {
697                         free_pref(ref);
698                         ret = BACKREF_FOUND_SHARED;
699                         goto out;
700                 }
701                 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
702                                            ref, parents, extent_item_pos,
703                                            ignore_offset);
704                 /*
705                  * we can only tolerate ENOENT,otherwise,we should catch error
706                  * and return directly.
707                  */
708                 if (err == -ENOENT) {
709                         prelim_ref_insert(fs_info, &preftrees->direct, ref,
710                                           NULL);
711                         continue;
712                 } else if (err) {
713                         free_pref(ref);
714                         ret = err;
715                         goto out;
716                 }
717
718                 /* we put the first parent into the ref at hand */
719                 ULIST_ITER_INIT(&uiter);
720                 node = ulist_next(parents, &uiter);
721                 ref->parent = node ? node->val : 0;
722                 ref->inode_list = unode_aux_to_inode_list(node);
723
724                 /* Add a prelim_ref(s) for any other parent(s). */
725                 while ((node = ulist_next(parents, &uiter))) {
726                         struct prelim_ref *new_ref;
727
728                         new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
729                                                    GFP_NOFS);
730                         if (!new_ref) {
731                                 free_pref(ref);
732                                 ret = -ENOMEM;
733                                 goto out;
734                         }
735                         memcpy(new_ref, ref, sizeof(*ref));
736                         new_ref->parent = node->val;
737                         new_ref->inode_list = unode_aux_to_inode_list(node);
738                         prelim_ref_insert(fs_info, &preftrees->direct,
739                                           new_ref, NULL);
740                 }
741
742                 /*
743                  * Now it's a direct ref, put it in the direct tree. We must
744                  * do this last because the ref could be merged/freed here.
745                  */
746                 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
747
748                 ulist_reinit(parents);
749                 cond_resched();
750         }
751 out:
752         ulist_free(parents);
753         return ret;
754 }
755
756 /*
757  * read tree blocks and add keys where required.
758  */
759 static int add_missing_keys(struct btrfs_fs_info *fs_info,
760                             struct preftrees *preftrees, bool lock)
761 {
762         struct prelim_ref *ref;
763         struct extent_buffer *eb;
764         struct preftree *tree = &preftrees->indirect_missing_keys;
765         struct rb_node *node;
766
767         while ((node = rb_first_cached(&tree->root))) {
768                 ref = rb_entry(node, struct prelim_ref, rbnode);
769                 rb_erase_cached(node, &tree->root);
770
771                 BUG_ON(ref->parent);    /* should not be a direct ref */
772                 BUG_ON(ref->key_for_search.type);
773                 BUG_ON(!ref->wanted_disk_byte);
774
775                 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0,
776                                      ref->level - 1, NULL);
777                 if (IS_ERR(eb)) {
778                         free_pref(ref);
779                         return PTR_ERR(eb);
780                 } else if (!extent_buffer_uptodate(eb)) {
781                         free_pref(ref);
782                         free_extent_buffer(eb);
783                         return -EIO;
784                 }
785                 if (lock)
786                         btrfs_tree_read_lock(eb);
787                 if (btrfs_header_level(eb) == 0)
788                         btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
789                 else
790                         btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
791                 if (lock)
792                         btrfs_tree_read_unlock(eb);
793                 free_extent_buffer(eb);
794                 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
795                 cond_resched();
796         }
797         return 0;
798 }
799
800 /*
801  * add all currently queued delayed refs from this head whose seq nr is
802  * smaller or equal that seq to the list
803  */
804 static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
805                             struct btrfs_delayed_ref_head *head, u64 seq,
806                             struct preftrees *preftrees, struct share_check *sc)
807 {
808         struct btrfs_delayed_ref_node *node;
809         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
810         struct btrfs_key key;
811         struct btrfs_key tmp_op_key;
812         struct rb_node *n;
813         int count;
814         int ret = 0;
815
816         if (extent_op && extent_op->update_key)
817                 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
818
819         spin_lock(&head->lock);
820         for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
821                 node = rb_entry(n, struct btrfs_delayed_ref_node,
822                                 ref_node);
823                 if (node->seq > seq)
824                         continue;
825
826                 switch (node->action) {
827                 case BTRFS_ADD_DELAYED_EXTENT:
828                 case BTRFS_UPDATE_DELAYED_HEAD:
829                         WARN_ON(1);
830                         continue;
831                 case BTRFS_ADD_DELAYED_REF:
832                         count = node->ref_mod;
833                         break;
834                 case BTRFS_DROP_DELAYED_REF:
835                         count = node->ref_mod * -1;
836                         break;
837                 default:
838                         BUG();
839                 }
840                 switch (node->type) {
841                 case BTRFS_TREE_BLOCK_REF_KEY: {
842                         /* NORMAL INDIRECT METADATA backref */
843                         struct btrfs_delayed_tree_ref *ref;
844
845                         ref = btrfs_delayed_node_to_tree_ref(node);
846                         ret = add_indirect_ref(fs_info, preftrees, ref->root,
847                                                &tmp_op_key, ref->level + 1,
848                                                node->bytenr, count, sc,
849                                                GFP_ATOMIC);
850                         break;
851                 }
852                 case BTRFS_SHARED_BLOCK_REF_KEY: {
853                         /* SHARED DIRECT METADATA backref */
854                         struct btrfs_delayed_tree_ref *ref;
855
856                         ref = btrfs_delayed_node_to_tree_ref(node);
857
858                         ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
859                                              ref->parent, node->bytenr, count,
860                                              sc, GFP_ATOMIC);
861                         break;
862                 }
863                 case BTRFS_EXTENT_DATA_REF_KEY: {
864                         /* NORMAL INDIRECT DATA backref */
865                         struct btrfs_delayed_data_ref *ref;
866                         ref = btrfs_delayed_node_to_data_ref(node);
867
868                         key.objectid = ref->objectid;
869                         key.type = BTRFS_EXTENT_DATA_KEY;
870                         key.offset = ref->offset;
871
872                         /*
873                          * Found a inum that doesn't match our known inum, we
874                          * know it's shared.
875                          */
876                         if (sc && sc->inum && ref->objectid != sc->inum) {
877                                 ret = BACKREF_FOUND_SHARED;
878                                 goto out;
879                         }
880
881                         ret = add_indirect_ref(fs_info, preftrees, ref->root,
882                                                &key, 0, node->bytenr, count, sc,
883                                                GFP_ATOMIC);
884                         break;
885                 }
886                 case BTRFS_SHARED_DATA_REF_KEY: {
887                         /* SHARED DIRECT FULL backref */
888                         struct btrfs_delayed_data_ref *ref;
889
890                         ref = btrfs_delayed_node_to_data_ref(node);
891
892                         ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
893                                              node->bytenr, count, sc,
894                                              GFP_ATOMIC);
895                         break;
896                 }
897                 default:
898                         WARN_ON(1);
899                 }
900                 /*
901                  * We must ignore BACKREF_FOUND_SHARED until all delayed
902                  * refs have been checked.
903                  */
904                 if (ret && (ret != BACKREF_FOUND_SHARED))
905                         break;
906         }
907         if (!ret)
908                 ret = extent_is_shared(sc);
909 out:
910         spin_unlock(&head->lock);
911         return ret;
912 }
913
914 /*
915  * add all inline backrefs for bytenr to the list
916  *
917  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
918  */
919 static int add_inline_refs(const struct btrfs_fs_info *fs_info,
920                            struct btrfs_path *path, u64 bytenr,
921                            int *info_level, struct preftrees *preftrees,
922                            struct share_check *sc)
923 {
924         int ret = 0;
925         int slot;
926         struct extent_buffer *leaf;
927         struct btrfs_key key;
928         struct btrfs_key found_key;
929         unsigned long ptr;
930         unsigned long end;
931         struct btrfs_extent_item *ei;
932         u64 flags;
933         u64 item_size;
934
935         /*
936          * enumerate all inline refs
937          */
938         leaf = path->nodes[0];
939         slot = path->slots[0];
940
941         item_size = btrfs_item_size_nr(leaf, slot);
942         BUG_ON(item_size < sizeof(*ei));
943
944         ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
945         flags = btrfs_extent_flags(leaf, ei);
946         btrfs_item_key_to_cpu(leaf, &found_key, slot);
947
948         ptr = (unsigned long)(ei + 1);
949         end = (unsigned long)ei + item_size;
950
951         if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
952             flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
953                 struct btrfs_tree_block_info *info;
954
955                 info = (struct btrfs_tree_block_info *)ptr;
956                 *info_level = btrfs_tree_block_level(leaf, info);
957                 ptr += sizeof(struct btrfs_tree_block_info);
958                 BUG_ON(ptr > end);
959         } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
960                 *info_level = found_key.offset;
961         } else {
962                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
963         }
964
965         while (ptr < end) {
966                 struct btrfs_extent_inline_ref *iref;
967                 u64 offset;
968                 int type;
969
970                 iref = (struct btrfs_extent_inline_ref *)ptr;
971                 type = btrfs_get_extent_inline_ref_type(leaf, iref,
972                                                         BTRFS_REF_TYPE_ANY);
973                 if (type == BTRFS_REF_TYPE_INVALID)
974                         return -EUCLEAN;
975
976                 offset = btrfs_extent_inline_ref_offset(leaf, iref);
977
978                 switch (type) {
979                 case BTRFS_SHARED_BLOCK_REF_KEY:
980                         ret = add_direct_ref(fs_info, preftrees,
981                                              *info_level + 1, offset,
982                                              bytenr, 1, NULL, GFP_NOFS);
983                         break;
984                 case BTRFS_SHARED_DATA_REF_KEY: {
985                         struct btrfs_shared_data_ref *sdref;
986                         int count;
987
988                         sdref = (struct btrfs_shared_data_ref *)(iref + 1);
989                         count = btrfs_shared_data_ref_count(leaf, sdref);
990
991                         ret = add_direct_ref(fs_info, preftrees, 0, offset,
992                                              bytenr, count, sc, GFP_NOFS);
993                         break;
994                 }
995                 case BTRFS_TREE_BLOCK_REF_KEY:
996                         ret = add_indirect_ref(fs_info, preftrees, offset,
997                                                NULL, *info_level + 1,
998                                                bytenr, 1, NULL, GFP_NOFS);
999                         break;
1000                 case BTRFS_EXTENT_DATA_REF_KEY: {
1001                         struct btrfs_extent_data_ref *dref;
1002                         int count;
1003                         u64 root;
1004
1005                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1006                         count = btrfs_extent_data_ref_count(leaf, dref);
1007                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
1008                                                                       dref);
1009                         key.type = BTRFS_EXTENT_DATA_KEY;
1010                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1011
1012                         if (sc && sc->inum && key.objectid != sc->inum) {
1013                                 ret = BACKREF_FOUND_SHARED;
1014                                 break;
1015                         }
1016
1017                         root = btrfs_extent_data_ref_root(leaf, dref);
1018
1019                         ret = add_indirect_ref(fs_info, preftrees, root,
1020                                                &key, 0, bytenr, count,
1021                                                sc, GFP_NOFS);
1022                         break;
1023                 }
1024                 default:
1025                         WARN_ON(1);
1026                 }
1027                 if (ret)
1028                         return ret;
1029                 ptr += btrfs_extent_inline_ref_size(type);
1030         }
1031
1032         return 0;
1033 }
1034
1035 /*
1036  * add all non-inline backrefs for bytenr to the list
1037  *
1038  * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1039  */
1040 static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1041                           struct btrfs_path *path, u64 bytenr,
1042                           int info_level, struct preftrees *preftrees,
1043                           struct share_check *sc)
1044 {
1045         struct btrfs_root *extent_root = fs_info->extent_root;
1046         int ret;
1047         int slot;
1048         struct extent_buffer *leaf;
1049         struct btrfs_key key;
1050
1051         while (1) {
1052                 ret = btrfs_next_item(extent_root, path);
1053                 if (ret < 0)
1054                         break;
1055                 if (ret) {
1056                         ret = 0;
1057                         break;
1058                 }
1059
1060                 slot = path->slots[0];
1061                 leaf = path->nodes[0];
1062                 btrfs_item_key_to_cpu(leaf, &key, slot);
1063
1064                 if (key.objectid != bytenr)
1065                         break;
1066                 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1067                         continue;
1068                 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1069                         break;
1070
1071                 switch (key.type) {
1072                 case BTRFS_SHARED_BLOCK_REF_KEY:
1073                         /* SHARED DIRECT METADATA backref */
1074                         ret = add_direct_ref(fs_info, preftrees,
1075                                              info_level + 1, key.offset,
1076                                              bytenr, 1, NULL, GFP_NOFS);
1077                         break;
1078                 case BTRFS_SHARED_DATA_REF_KEY: {
1079                         /* SHARED DIRECT FULL backref */
1080                         struct btrfs_shared_data_ref *sdref;
1081                         int count;
1082
1083                         sdref = btrfs_item_ptr(leaf, slot,
1084                                               struct btrfs_shared_data_ref);
1085                         count = btrfs_shared_data_ref_count(leaf, sdref);
1086                         ret = add_direct_ref(fs_info, preftrees, 0,
1087                                              key.offset, bytenr, count,
1088                                              sc, GFP_NOFS);
1089                         break;
1090                 }
1091                 case BTRFS_TREE_BLOCK_REF_KEY:
1092                         /* NORMAL INDIRECT METADATA backref */
1093                         ret = add_indirect_ref(fs_info, preftrees, key.offset,
1094                                                NULL, info_level + 1, bytenr,
1095                                                1, NULL, GFP_NOFS);
1096                         break;
1097                 case BTRFS_EXTENT_DATA_REF_KEY: {
1098                         /* NORMAL INDIRECT DATA backref */
1099                         struct btrfs_extent_data_ref *dref;
1100                         int count;
1101                         u64 root;
1102
1103                         dref = btrfs_item_ptr(leaf, slot,
1104                                               struct btrfs_extent_data_ref);
1105                         count = btrfs_extent_data_ref_count(leaf, dref);
1106                         key.objectid = btrfs_extent_data_ref_objectid(leaf,
1107                                                                       dref);
1108                         key.type = BTRFS_EXTENT_DATA_KEY;
1109                         key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1110
1111                         if (sc && sc->inum && key.objectid != sc->inum) {
1112                                 ret = BACKREF_FOUND_SHARED;
1113                                 break;
1114                         }
1115
1116                         root = btrfs_extent_data_ref_root(leaf, dref);
1117                         ret = add_indirect_ref(fs_info, preftrees, root,
1118                                                &key, 0, bytenr, count,
1119                                                sc, GFP_NOFS);
1120                         break;
1121                 }
1122                 default:
1123                         WARN_ON(1);
1124                 }
1125                 if (ret)
1126                         return ret;
1127
1128         }
1129
1130         return ret;
1131 }
1132
1133 /*
1134  * this adds all existing backrefs (inline backrefs, backrefs and delayed
1135  * refs) for the given bytenr to the refs list, merges duplicates and resolves
1136  * indirect refs to their parent bytenr.
1137  * When roots are found, they're added to the roots list
1138  *
1139  * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1140  * much like trans == NULL case, the difference only lies in it will not
1141  * commit root.
1142  * The special case is for qgroup to search roots in commit_transaction().
1143  *
1144  * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1145  * shared extent is detected.
1146  *
1147  * Otherwise this returns 0 for success and <0 for an error.
1148  *
1149  * If ignore_offset is set to false, only extent refs whose offsets match
1150  * extent_item_pos are returned.  If true, every extent ref is returned
1151  * and extent_item_pos is ignored.
1152  *
1153  * FIXME some caching might speed things up
1154  */
1155 static int find_parent_nodes(struct btrfs_trans_handle *trans,
1156                              struct btrfs_fs_info *fs_info, u64 bytenr,
1157                              u64 time_seq, struct ulist *refs,
1158                              struct ulist *roots, const u64 *extent_item_pos,
1159                              struct share_check *sc, bool ignore_offset)
1160 {
1161         struct btrfs_key key;
1162         struct btrfs_path *path;
1163         struct btrfs_delayed_ref_root *delayed_refs = NULL;
1164         struct btrfs_delayed_ref_head *head;
1165         int info_level = 0;
1166         int ret;
1167         struct prelim_ref *ref;
1168         struct rb_node *node;
1169         struct extent_inode_elem *eie = NULL;
1170         struct preftrees preftrees = {
1171                 .direct = PREFTREE_INIT,
1172                 .indirect = PREFTREE_INIT,
1173                 .indirect_missing_keys = PREFTREE_INIT
1174         };
1175
1176         key.objectid = bytenr;
1177         key.offset = (u64)-1;
1178         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1179                 key.type = BTRFS_METADATA_ITEM_KEY;
1180         else
1181                 key.type = BTRFS_EXTENT_ITEM_KEY;
1182
1183         path = btrfs_alloc_path();
1184         if (!path)
1185                 return -ENOMEM;
1186         if (!trans) {
1187                 path->search_commit_root = 1;
1188                 path->skip_locking = 1;
1189         }
1190
1191         if (time_seq == SEQ_LAST)
1192                 path->skip_locking = 1;
1193
1194         /*
1195          * grab both a lock on the path and a lock on the delayed ref head.
1196          * We need both to get a consistent picture of how the refs look
1197          * at a specified point in time
1198          */
1199 again:
1200         head = NULL;
1201
1202         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1203         if (ret < 0)
1204                 goto out;
1205         BUG_ON(ret == 0);
1206
1207 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1208         if (trans && likely(trans->type != __TRANS_DUMMY) &&
1209             time_seq != SEQ_LAST) {
1210 #else
1211         if (trans && time_seq != SEQ_LAST) {
1212 #endif
1213                 /*
1214                  * look if there are updates for this ref queued and lock the
1215                  * head
1216                  */
1217                 delayed_refs = &trans->transaction->delayed_refs;
1218                 spin_lock(&delayed_refs->lock);
1219                 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1220                 if (head) {
1221                         if (!mutex_trylock(&head->mutex)) {
1222                                 refcount_inc(&head->refs);
1223                                 spin_unlock(&delayed_refs->lock);
1224
1225                                 btrfs_release_path(path);
1226
1227                                 /*
1228                                  * Mutex was contended, block until it's
1229                                  * released and try again
1230                                  */
1231                                 mutex_lock(&head->mutex);
1232                                 mutex_unlock(&head->mutex);
1233                                 btrfs_put_delayed_ref_head(head);
1234                                 goto again;
1235                         }
1236                         spin_unlock(&delayed_refs->lock);
1237                         ret = add_delayed_refs(fs_info, head, time_seq,
1238                                                &preftrees, sc);
1239                         mutex_unlock(&head->mutex);
1240                         if (ret)
1241                                 goto out;
1242                 } else {
1243                         spin_unlock(&delayed_refs->lock);
1244                 }
1245         }
1246
1247         if (path->slots[0]) {
1248                 struct extent_buffer *leaf;
1249                 int slot;
1250
1251                 path->slots[0]--;
1252                 leaf = path->nodes[0];
1253                 slot = path->slots[0];
1254                 btrfs_item_key_to_cpu(leaf, &key, slot);
1255                 if (key.objectid == bytenr &&
1256                     (key.type == BTRFS_EXTENT_ITEM_KEY ||
1257                      key.type == BTRFS_METADATA_ITEM_KEY)) {
1258                         ret = add_inline_refs(fs_info, path, bytenr,
1259                                               &info_level, &preftrees, sc);
1260                         if (ret)
1261                                 goto out;
1262                         ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1263                                              &preftrees, sc);
1264                         if (ret)
1265                                 goto out;
1266                 }
1267         }
1268
1269         btrfs_release_path(path);
1270
1271         ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1272         if (ret)
1273                 goto out;
1274
1275         WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1276
1277         ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1278                                     extent_item_pos, sc, ignore_offset);
1279         if (ret)
1280                 goto out;
1281
1282         WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1283
1284         /*
1285          * This walks the tree of merged and resolved refs. Tree blocks are
1286          * read in as needed. Unique entries are added to the ulist, and
1287          * the list of found roots is updated.
1288          *
1289          * We release the entire tree in one go before returning.
1290          */
1291         node = rb_first_cached(&preftrees.direct.root);
1292         while (node) {
1293                 ref = rb_entry(node, struct prelim_ref, rbnode);
1294                 node = rb_next(&ref->rbnode);
1295                 /*
1296                  * ref->count < 0 can happen here if there are delayed
1297                  * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1298                  * prelim_ref_insert() relies on this when merging
1299                  * identical refs to keep the overall count correct.
1300                  * prelim_ref_insert() will merge only those refs
1301                  * which compare identically.  Any refs having
1302                  * e.g. different offsets would not be merged,
1303                  * and would retain their original ref->count < 0.
1304                  */
1305                 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1306                         if (sc && sc->root_objectid &&
1307                             ref->root_id != sc->root_objectid) {
1308                                 ret = BACKREF_FOUND_SHARED;
1309                                 goto out;
1310                         }
1311
1312                         /* no parent == root of tree */
1313                         ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1314                         if (ret < 0)
1315                                 goto out;
1316                 }
1317                 if (ref->count && ref->parent) {
1318                         if (extent_item_pos && !ref->inode_list &&
1319                             ref->level == 0) {
1320                                 struct extent_buffer *eb;
1321
1322                                 eb = read_tree_block(fs_info, ref->parent, 0,
1323                                                      ref->level, NULL);
1324                                 if (IS_ERR(eb)) {
1325                                         ret = PTR_ERR(eb);
1326                                         goto out;
1327                                 } else if (!extent_buffer_uptodate(eb)) {
1328                                         free_extent_buffer(eb);
1329                                         ret = -EIO;
1330                                         goto out;
1331                                 }
1332
1333                                 if (!path->skip_locking) {
1334                                         btrfs_tree_read_lock(eb);
1335                                         btrfs_set_lock_blocking_read(eb);
1336                                 }
1337                                 ret = find_extent_in_eb(eb, bytenr,
1338                                                         *extent_item_pos, &eie, ignore_offset);
1339                                 if (!path->skip_locking)
1340                                         btrfs_tree_read_unlock_blocking(eb);
1341                                 free_extent_buffer(eb);
1342                                 if (ret < 0)
1343                                         goto out;
1344                                 ref->inode_list = eie;
1345                         }
1346                         ret = ulist_add_merge_ptr(refs, ref->parent,
1347                                                   ref->inode_list,
1348                                                   (void **)&eie, GFP_NOFS);
1349                         if (ret < 0)
1350                                 goto out;
1351                         if (!ret && extent_item_pos) {
1352                                 /*
1353                                  * we've recorded that parent, so we must extend
1354                                  * its inode list here
1355                                  */
1356                                 BUG_ON(!eie);
1357                                 while (eie->next)
1358                                         eie = eie->next;
1359                                 eie->next = ref->inode_list;
1360                         }
1361                         eie = NULL;
1362                 }
1363                 cond_resched();
1364         }
1365
1366 out:
1367         btrfs_free_path(path);
1368
1369         prelim_release(&preftrees.direct);
1370         prelim_release(&preftrees.indirect);
1371         prelim_release(&preftrees.indirect_missing_keys);
1372
1373         if (ret < 0)
1374                 free_inode_elem_list(eie);
1375         return ret;
1376 }
1377
1378 static void free_leaf_list(struct ulist *blocks)
1379 {
1380         struct ulist_node *node = NULL;
1381         struct extent_inode_elem *eie;
1382         struct ulist_iterator uiter;
1383
1384         ULIST_ITER_INIT(&uiter);
1385         while ((node = ulist_next(blocks, &uiter))) {
1386                 if (!node->aux)
1387                         continue;
1388                 eie = unode_aux_to_inode_list(node);
1389                 free_inode_elem_list(eie);
1390                 node->aux = 0;
1391         }
1392
1393         ulist_free(blocks);
1394 }
1395
1396 /*
1397  * Finds all leafs with a reference to the specified combination of bytenr and
1398  * offset. key_list_head will point to a list of corresponding keys (caller must
1399  * free each list element). The leafs will be stored in the leafs ulist, which
1400  * must be freed with ulist_free.
1401  *
1402  * returns 0 on success, <0 on error
1403  */
1404 int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1405                          struct btrfs_fs_info *fs_info, u64 bytenr,
1406                          u64 time_seq, struct ulist **leafs,
1407                          const u64 *extent_item_pos, bool ignore_offset)
1408 {
1409         int ret;
1410
1411         *leafs = ulist_alloc(GFP_NOFS);
1412         if (!*leafs)
1413                 return -ENOMEM;
1414
1415         ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1416                                 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1417         if (ret < 0 && ret != -ENOENT) {
1418                 free_leaf_list(*leafs);
1419                 return ret;
1420         }
1421
1422         return 0;
1423 }
1424
1425 /*
1426  * walk all backrefs for a given extent to find all roots that reference this
1427  * extent. Walking a backref means finding all extents that reference this
1428  * extent and in turn walk the backrefs of those, too. Naturally this is a
1429  * recursive process, but here it is implemented in an iterative fashion: We
1430  * find all referencing extents for the extent in question and put them on a
1431  * list. In turn, we find all referencing extents for those, further appending
1432  * to the list. The way we iterate the list allows adding more elements after
1433  * the current while iterating. The process stops when we reach the end of the
1434  * list. Found roots are added to the roots list.
1435  *
1436  * returns 0 on success, < 0 on error.
1437  */
1438 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1439                                      struct btrfs_fs_info *fs_info, u64 bytenr,
1440                                      u64 time_seq, struct ulist **roots,
1441                                      bool ignore_offset)
1442 {
1443         struct ulist *tmp;
1444         struct ulist_node *node = NULL;
1445         struct ulist_iterator uiter;
1446         int ret;
1447
1448         tmp = ulist_alloc(GFP_NOFS);
1449         if (!tmp)
1450                 return -ENOMEM;
1451         *roots = ulist_alloc(GFP_NOFS);
1452         if (!*roots) {
1453                 ulist_free(tmp);
1454                 return -ENOMEM;
1455         }
1456
1457         ULIST_ITER_INIT(&uiter);
1458         while (1) {
1459                 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1460                                         tmp, *roots, NULL, NULL, ignore_offset);
1461                 if (ret < 0 && ret != -ENOENT) {
1462                         ulist_free(tmp);
1463                         ulist_free(*roots);
1464                         *roots = NULL;
1465                         return ret;
1466                 }
1467                 node = ulist_next(tmp, &uiter);
1468                 if (!node)
1469                         break;
1470                 bytenr = node->val;
1471                 cond_resched();
1472         }
1473
1474         ulist_free(tmp);
1475         return 0;
1476 }
1477
1478 int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1479                          struct btrfs_fs_info *fs_info, u64 bytenr,
1480                          u64 time_seq, struct ulist **roots,
1481                          bool ignore_offset)
1482 {
1483         int ret;
1484
1485         if (!trans)
1486                 down_read(&fs_info->commit_root_sem);
1487         ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1488                                         time_seq, roots, ignore_offset);
1489         if (!trans)
1490                 up_read(&fs_info->commit_root_sem);
1491         return ret;
1492 }
1493
1494 /**
1495  * btrfs_check_shared - tell us whether an extent is shared
1496  *
1497  * btrfs_check_shared uses the backref walking code but will short
1498  * circuit as soon as it finds a root or inode that doesn't match the
1499  * one passed in. This provides a significant performance benefit for
1500  * callers (such as fiemap) which want to know whether the extent is
1501  * shared but do not need a ref count.
1502  *
1503  * This attempts to attach to the running transaction in order to account for
1504  * delayed refs, but continues on even when no running transaction exists.
1505  *
1506  * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1507  */
1508 int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1509                 struct ulist *roots, struct ulist *tmp)
1510 {
1511         struct btrfs_fs_info *fs_info = root->fs_info;
1512         struct btrfs_trans_handle *trans;
1513         struct ulist_iterator uiter;
1514         struct ulist_node *node;
1515         struct seq_list elem = SEQ_LIST_INIT(elem);
1516         int ret = 0;
1517         struct share_check shared = {
1518                 .root_objectid = root->root_key.objectid,
1519                 .inum = inum,
1520                 .share_count = 0,
1521         };
1522
1523         ulist_init(roots);
1524         ulist_init(tmp);
1525
1526         trans = btrfs_join_transaction_nostart(root);
1527         if (IS_ERR(trans)) {
1528                 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1529                         ret = PTR_ERR(trans);
1530                         goto out;
1531                 }
1532                 trans = NULL;
1533                 down_read(&fs_info->commit_root_sem);
1534         } else {
1535                 btrfs_get_tree_mod_seq(fs_info, &elem);
1536         }
1537
1538         ULIST_ITER_INIT(&uiter);
1539         while (1) {
1540                 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1541                                         roots, NULL, &shared, false);
1542                 if (ret == BACKREF_FOUND_SHARED) {
1543                         /* this is the only condition under which we return 1 */
1544                         ret = 1;
1545                         break;
1546                 }
1547                 if (ret < 0 && ret != -ENOENT)
1548                         break;
1549                 ret = 0;
1550                 node = ulist_next(tmp, &uiter);
1551                 if (!node)
1552                         break;
1553                 bytenr = node->val;
1554                 shared.share_count = 0;
1555                 cond_resched();
1556         }
1557
1558         if (trans) {
1559                 btrfs_put_tree_mod_seq(fs_info, &elem);
1560                 btrfs_end_transaction(trans);
1561         } else {
1562                 up_read(&fs_info->commit_root_sem);
1563         }
1564 out:
1565         ulist_release(roots);
1566         ulist_release(tmp);
1567         return ret;
1568 }
1569
1570 int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1571                           u64 start_off, struct btrfs_path *path,
1572                           struct btrfs_inode_extref **ret_extref,
1573                           u64 *found_off)
1574 {
1575         int ret, slot;
1576         struct btrfs_key key;
1577         struct btrfs_key found_key;
1578         struct btrfs_inode_extref *extref;
1579         const struct extent_buffer *leaf;
1580         unsigned long ptr;
1581
1582         key.objectid = inode_objectid;
1583         key.type = BTRFS_INODE_EXTREF_KEY;
1584         key.offset = start_off;
1585
1586         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1587         if (ret < 0)
1588                 return ret;
1589
1590         while (1) {
1591                 leaf = path->nodes[0];
1592                 slot = path->slots[0];
1593                 if (slot >= btrfs_header_nritems(leaf)) {
1594                         /*
1595                          * If the item at offset is not found,
1596                          * btrfs_search_slot will point us to the slot
1597                          * where it should be inserted. In our case
1598                          * that will be the slot directly before the
1599                          * next INODE_REF_KEY_V2 item. In the case
1600                          * that we're pointing to the last slot in a
1601                          * leaf, we must move one leaf over.
1602                          */
1603                         ret = btrfs_next_leaf(root, path);
1604                         if (ret) {
1605                                 if (ret >= 1)
1606                                         ret = -ENOENT;
1607                                 break;
1608                         }
1609                         continue;
1610                 }
1611
1612                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1613
1614                 /*
1615                  * Check that we're still looking at an extended ref key for
1616                  * this particular objectid. If we have different
1617                  * objectid or type then there are no more to be found
1618                  * in the tree and we can exit.
1619                  */
1620                 ret = -ENOENT;
1621                 if (found_key.objectid != inode_objectid)
1622                         break;
1623                 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1624                         break;
1625
1626                 ret = 0;
1627                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1628                 extref = (struct btrfs_inode_extref *)ptr;
1629                 *ret_extref = extref;
1630                 if (found_off)
1631                         *found_off = found_key.offset;
1632                 break;
1633         }
1634
1635         return ret;
1636 }
1637
1638 /*
1639  * this iterates to turn a name (from iref/extref) into a full filesystem path.
1640  * Elements of the path are separated by '/' and the path is guaranteed to be
1641  * 0-terminated. the path is only given within the current file system.
1642  * Therefore, it never starts with a '/'. the caller is responsible to provide
1643  * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1644  * the start point of the resulting string is returned. this pointer is within
1645  * dest, normally.
1646  * in case the path buffer would overflow, the pointer is decremented further
1647  * as if output was written to the buffer, though no more output is actually
1648  * generated. that way, the caller can determine how much space would be
1649  * required for the path to fit into the buffer. in that case, the returned
1650  * value will be smaller than dest. callers must check this!
1651  */
1652 char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1653                         u32 name_len, unsigned long name_off,
1654                         struct extent_buffer *eb_in, u64 parent,
1655                         char *dest, u32 size)
1656 {
1657         int slot;
1658         u64 next_inum;
1659         int ret;
1660         s64 bytes_left = ((s64)size) - 1;
1661         struct extent_buffer *eb = eb_in;
1662         struct btrfs_key found_key;
1663         int leave_spinning = path->leave_spinning;
1664         struct btrfs_inode_ref *iref;
1665
1666         if (bytes_left >= 0)
1667                 dest[bytes_left] = '\0';
1668
1669         path->leave_spinning = 1;
1670         while (1) {
1671                 bytes_left -= name_len;
1672                 if (bytes_left >= 0)
1673                         read_extent_buffer(eb, dest + bytes_left,
1674                                            name_off, name_len);
1675                 if (eb != eb_in) {
1676                         if (!path->skip_locking)
1677                                 btrfs_tree_read_unlock_blocking(eb);
1678                         free_extent_buffer(eb);
1679                 }
1680                 ret = btrfs_find_item(fs_root, path, parent, 0,
1681                                 BTRFS_INODE_REF_KEY, &found_key);
1682                 if (ret > 0)
1683                         ret = -ENOENT;
1684                 if (ret)
1685                         break;
1686
1687                 next_inum = found_key.offset;
1688
1689                 /* regular exit ahead */
1690                 if (parent == next_inum)
1691                         break;
1692
1693                 slot = path->slots[0];
1694                 eb = path->nodes[0];
1695                 /* make sure we can use eb after releasing the path */
1696                 if (eb != eb_in) {
1697                         if (!path->skip_locking)
1698                                 btrfs_set_lock_blocking_read(eb);
1699                         path->nodes[0] = NULL;
1700                         path->locks[0] = 0;
1701                 }
1702                 btrfs_release_path(path);
1703                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1704
1705                 name_len = btrfs_inode_ref_name_len(eb, iref);
1706                 name_off = (unsigned long)(iref + 1);
1707
1708                 parent = next_inum;
1709                 --bytes_left;
1710                 if (bytes_left >= 0)
1711                         dest[bytes_left] = '/';
1712         }
1713
1714         btrfs_release_path(path);
1715         path->leave_spinning = leave_spinning;
1716
1717         if (ret)
1718                 return ERR_PTR(ret);
1719
1720         return dest + bytes_left;
1721 }
1722
1723 /*
1724  * this makes the path point to (logical EXTENT_ITEM *)
1725  * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1726  * tree blocks and <0 on error.
1727  */
1728 int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1729                         struct btrfs_path *path, struct btrfs_key *found_key,
1730                         u64 *flags_ret)
1731 {
1732         int ret;
1733         u64 flags;
1734         u64 size = 0;
1735         u32 item_size;
1736         const struct extent_buffer *eb;
1737         struct btrfs_extent_item *ei;
1738         struct btrfs_key key;
1739
1740         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1741                 key.type = BTRFS_METADATA_ITEM_KEY;
1742         else
1743                 key.type = BTRFS_EXTENT_ITEM_KEY;
1744         key.objectid = logical;
1745         key.offset = (u64)-1;
1746
1747         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1748         if (ret < 0)
1749                 return ret;
1750
1751         ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1752         if (ret) {
1753                 if (ret > 0)
1754                         ret = -ENOENT;
1755                 return ret;
1756         }
1757         btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1758         if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1759                 size = fs_info->nodesize;
1760         else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1761                 size = found_key->offset;
1762
1763         if (found_key->objectid > logical ||
1764             found_key->objectid + size <= logical) {
1765                 btrfs_debug(fs_info,
1766                         "logical %llu is not within any extent", logical);
1767                 return -ENOENT;
1768         }
1769
1770         eb = path->nodes[0];
1771         item_size = btrfs_item_size_nr(eb, path->slots[0]);
1772         BUG_ON(item_size < sizeof(*ei));
1773
1774         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1775         flags = btrfs_extent_flags(eb, ei);
1776
1777         btrfs_debug(fs_info,
1778                 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1779                  logical, logical - found_key->objectid, found_key->objectid,
1780                  found_key->offset, flags, item_size);
1781
1782         WARN_ON(!flags_ret);
1783         if (flags_ret) {
1784                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1785                         *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1786                 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1787                         *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1788                 else
1789                         BUG();
1790                 return 0;
1791         }
1792
1793         return -EIO;
1794 }
1795
1796 /*
1797  * helper function to iterate extent inline refs. ptr must point to a 0 value
1798  * for the first call and may be modified. it is used to track state.
1799  * if more refs exist, 0 is returned and the next call to
1800  * get_extent_inline_ref must pass the modified ptr parameter to get the
1801  * next ref. after the last ref was processed, 1 is returned.
1802  * returns <0 on error
1803  */
1804 static int get_extent_inline_ref(unsigned long *ptr,
1805                                  const struct extent_buffer *eb,
1806                                  const struct btrfs_key *key,
1807                                  const struct btrfs_extent_item *ei,
1808                                  u32 item_size,
1809                                  struct btrfs_extent_inline_ref **out_eiref,
1810                                  int *out_type)
1811 {
1812         unsigned long end;
1813         u64 flags;
1814         struct btrfs_tree_block_info *info;
1815
1816         if (!*ptr) {
1817                 /* first call */
1818                 flags = btrfs_extent_flags(eb, ei);
1819                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1820                         if (key->type == BTRFS_METADATA_ITEM_KEY) {
1821                                 /* a skinny metadata extent */
1822                                 *out_eiref =
1823                                      (struct btrfs_extent_inline_ref *)(ei + 1);
1824                         } else {
1825                                 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1826                                 info = (struct btrfs_tree_block_info *)(ei + 1);
1827                                 *out_eiref =
1828                                    (struct btrfs_extent_inline_ref *)(info + 1);
1829                         }
1830                 } else {
1831                         *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1832                 }
1833                 *ptr = (unsigned long)*out_eiref;
1834                 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1835                         return -ENOENT;
1836         }
1837
1838         end = (unsigned long)ei + item_size;
1839         *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1840         *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1841                                                      BTRFS_REF_TYPE_ANY);
1842         if (*out_type == BTRFS_REF_TYPE_INVALID)
1843                 return -EUCLEAN;
1844
1845         *ptr += btrfs_extent_inline_ref_size(*out_type);
1846         WARN_ON(*ptr > end);
1847         if (*ptr == end)
1848                 return 1; /* last */
1849
1850         return 0;
1851 }
1852
1853 /*
1854  * reads the tree block backref for an extent. tree level and root are returned
1855  * through out_level and out_root. ptr must point to a 0 value for the first
1856  * call and may be modified (see get_extent_inline_ref comment).
1857  * returns 0 if data was provided, 1 if there was no more data to provide or
1858  * <0 on error.
1859  */
1860 int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1861                             struct btrfs_key *key, struct btrfs_extent_item *ei,
1862                             u32 item_size, u64 *out_root, u8 *out_level)
1863 {
1864         int ret;
1865         int type;
1866         struct btrfs_extent_inline_ref *eiref;
1867
1868         if (*ptr == (unsigned long)-1)
1869                 return 1;
1870
1871         while (1) {
1872                 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1873                                               &eiref, &type);
1874                 if (ret < 0)
1875                         return ret;
1876
1877                 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1878                     type == BTRFS_SHARED_BLOCK_REF_KEY)
1879                         break;
1880
1881                 if (ret == 1)
1882                         return 1;
1883         }
1884
1885         /* we can treat both ref types equally here */
1886         *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1887
1888         if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1889                 struct btrfs_tree_block_info *info;
1890
1891                 info = (struct btrfs_tree_block_info *)(ei + 1);
1892                 *out_level = btrfs_tree_block_level(eb, info);
1893         } else {
1894                 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1895                 *out_level = (u8)key->offset;
1896         }
1897
1898         if (ret == 1)
1899                 *ptr = (unsigned long)-1;
1900
1901         return 0;
1902 }
1903
1904 static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1905                              struct extent_inode_elem *inode_list,
1906                              u64 root, u64 extent_item_objectid,
1907                              iterate_extent_inodes_t *iterate, void *ctx)
1908 {
1909         struct extent_inode_elem *eie;
1910         int ret = 0;
1911
1912         for (eie = inode_list; eie; eie = eie->next) {
1913                 btrfs_debug(fs_info,
1914                             "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1915                             extent_item_objectid, eie->inum,
1916                             eie->offset, root);
1917                 ret = iterate(eie->inum, eie->offset, root, ctx);
1918                 if (ret) {
1919                         btrfs_debug(fs_info,
1920                                     "stopping iteration for %llu due to ret=%d",
1921                                     extent_item_objectid, ret);
1922                         break;
1923                 }
1924         }
1925
1926         return ret;
1927 }
1928
1929 /*
1930  * calls iterate() for every inode that references the extent identified by
1931  * the given parameters.
1932  * when the iterator function returns a non-zero value, iteration stops.
1933  */
1934 int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1935                                 u64 extent_item_objectid, u64 extent_item_pos,
1936                                 int search_commit_root,
1937                                 iterate_extent_inodes_t *iterate, void *ctx,
1938                                 bool ignore_offset)
1939 {
1940         int ret;
1941         struct btrfs_trans_handle *trans = NULL;
1942         struct ulist *refs = NULL;
1943         struct ulist *roots = NULL;
1944         struct ulist_node *ref_node = NULL;
1945         struct ulist_node *root_node = NULL;
1946         struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1947         struct ulist_iterator ref_uiter;
1948         struct ulist_iterator root_uiter;
1949
1950         btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1951                         extent_item_objectid);
1952
1953         if (!search_commit_root) {
1954                 trans = btrfs_attach_transaction(fs_info->extent_root);
1955                 if (IS_ERR(trans)) {
1956                         if (PTR_ERR(trans) != -ENOENT &&
1957                             PTR_ERR(trans) != -EROFS)
1958                                 return PTR_ERR(trans);
1959                         trans = NULL;
1960                 }
1961         }
1962
1963         if (trans)
1964                 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1965         else
1966                 down_read(&fs_info->commit_root_sem);
1967
1968         ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1969                                    tree_mod_seq_elem.seq, &refs,
1970                                    &extent_item_pos, ignore_offset);
1971         if (ret)
1972                 goto out;
1973
1974         ULIST_ITER_INIT(&ref_uiter);
1975         while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1976                 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1977                                                 tree_mod_seq_elem.seq, &roots,
1978                                                 ignore_offset);
1979                 if (ret)
1980                         break;
1981                 ULIST_ITER_INIT(&root_uiter);
1982                 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1983                         btrfs_debug(fs_info,
1984                                     "root %llu references leaf %llu, data list %#llx",
1985                                     root_node->val, ref_node->val,
1986                                     ref_node->aux);
1987                         ret = iterate_leaf_refs(fs_info,
1988                                                 (struct extent_inode_elem *)
1989                                                 (uintptr_t)ref_node->aux,
1990                                                 root_node->val,
1991                                                 extent_item_objectid,
1992                                                 iterate, ctx);
1993                 }
1994                 ulist_free(roots);
1995         }
1996
1997         free_leaf_list(refs);
1998 out:
1999         if (trans) {
2000                 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2001                 btrfs_end_transaction(trans);
2002         } else {
2003                 up_read(&fs_info->commit_root_sem);
2004         }
2005
2006         return ret;
2007 }
2008
2009 int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2010                                 struct btrfs_path *path,
2011                                 iterate_extent_inodes_t *iterate, void *ctx,
2012                                 bool ignore_offset)
2013 {
2014         int ret;
2015         u64 extent_item_pos;
2016         u64 flags = 0;
2017         struct btrfs_key found_key;
2018         int search_commit_root = path->search_commit_root;
2019
2020         ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2021         btrfs_release_path(path);
2022         if (ret < 0)
2023                 return ret;
2024         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2025                 return -EINVAL;
2026
2027         extent_item_pos = logical - found_key.objectid;
2028         ret = iterate_extent_inodes(fs_info, found_key.objectid,
2029                                         extent_item_pos, search_commit_root,
2030                                         iterate, ctx, ignore_offset);
2031
2032         return ret;
2033 }
2034
2035 typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2036                               struct extent_buffer *eb, void *ctx);
2037
2038 static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2039                               struct btrfs_path *path,
2040                               iterate_irefs_t *iterate, void *ctx)
2041 {
2042         int ret = 0;
2043         int slot;
2044         u32 cur;
2045         u32 len;
2046         u32 name_len;
2047         u64 parent = 0;
2048         int found = 0;
2049         struct extent_buffer *eb;
2050         struct btrfs_item *item;
2051         struct btrfs_inode_ref *iref;
2052         struct btrfs_key found_key;
2053
2054         while (!ret) {
2055                 ret = btrfs_find_item(fs_root, path, inum,
2056                                 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2057                                 &found_key);
2058
2059                 if (ret < 0)
2060                         break;
2061                 if (ret) {
2062                         ret = found ? 0 : -ENOENT;
2063                         break;
2064                 }
2065                 ++found;
2066
2067                 parent = found_key.offset;
2068                 slot = path->slots[0];
2069                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2070                 if (!eb) {
2071                         ret = -ENOMEM;
2072                         break;
2073                 }
2074                 btrfs_release_path(path);
2075
2076                 item = btrfs_item_nr(slot);
2077                 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2078
2079                 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2080                         name_len = btrfs_inode_ref_name_len(eb, iref);
2081                         /* path must be released before calling iterate()! */
2082                         btrfs_debug(fs_root->fs_info,
2083                                 "following ref at offset %u for inode %llu in tree %llu",
2084                                 cur, found_key.objectid,
2085                                 fs_root->root_key.objectid);
2086                         ret = iterate(parent, name_len,
2087                                       (unsigned long)(iref + 1), eb, ctx);
2088                         if (ret)
2089                                 break;
2090                         len = sizeof(*iref) + name_len;
2091                         iref = (struct btrfs_inode_ref *)((char *)iref + len);
2092                 }
2093                 free_extent_buffer(eb);
2094         }
2095
2096         btrfs_release_path(path);
2097
2098         return ret;
2099 }
2100
2101 static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2102                                  struct btrfs_path *path,
2103                                  iterate_irefs_t *iterate, void *ctx)
2104 {
2105         int ret;
2106         int slot;
2107         u64 offset = 0;
2108         u64 parent;
2109         int found = 0;
2110         struct extent_buffer *eb;
2111         struct btrfs_inode_extref *extref;
2112         u32 item_size;
2113         u32 cur_offset;
2114         unsigned long ptr;
2115
2116         while (1) {
2117                 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2118                                             &offset);
2119                 if (ret < 0)
2120                         break;
2121                 if (ret) {
2122                         ret = found ? 0 : -ENOENT;
2123                         break;
2124                 }
2125                 ++found;
2126
2127                 slot = path->slots[0];
2128                 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2129                 if (!eb) {
2130                         ret = -ENOMEM;
2131                         break;
2132                 }
2133                 btrfs_release_path(path);
2134
2135                 item_size = btrfs_item_size_nr(eb, slot);
2136                 ptr = btrfs_item_ptr_offset(eb, slot);
2137                 cur_offset = 0;
2138
2139                 while (cur_offset < item_size) {
2140                         u32 name_len;
2141
2142                         extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2143                         parent = btrfs_inode_extref_parent(eb, extref);
2144                         name_len = btrfs_inode_extref_name_len(eb, extref);
2145                         ret = iterate(parent, name_len,
2146                                       (unsigned long)&extref->name, eb, ctx);
2147                         if (ret)
2148                                 break;
2149
2150                         cur_offset += btrfs_inode_extref_name_len(eb, extref);
2151                         cur_offset += sizeof(*extref);
2152                 }
2153                 free_extent_buffer(eb);
2154
2155                 offset++;
2156         }
2157
2158         btrfs_release_path(path);
2159
2160         return ret;
2161 }
2162
2163 static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2164                          struct btrfs_path *path, iterate_irefs_t *iterate,
2165                          void *ctx)
2166 {
2167         int ret;
2168         int found_refs = 0;
2169
2170         ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2171         if (!ret)
2172                 ++found_refs;
2173         else if (ret != -ENOENT)
2174                 return ret;
2175
2176         ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2177         if (ret == -ENOENT && found_refs)
2178                 return 0;
2179
2180         return ret;
2181 }
2182
2183 /*
2184  * returns 0 if the path could be dumped (probably truncated)
2185  * returns <0 in case of an error
2186  */
2187 static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2188                          struct extent_buffer *eb, void *ctx)
2189 {
2190         struct inode_fs_paths *ipath = ctx;
2191         char *fspath;
2192         char *fspath_min;
2193         int i = ipath->fspath->elem_cnt;
2194         const int s_ptr = sizeof(char *);
2195         u32 bytes_left;
2196
2197         bytes_left = ipath->fspath->bytes_left > s_ptr ?
2198                                         ipath->fspath->bytes_left - s_ptr : 0;
2199
2200         fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2201         fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2202                                    name_off, eb, inum, fspath_min, bytes_left);
2203         if (IS_ERR(fspath))
2204                 return PTR_ERR(fspath);
2205
2206         if (fspath > fspath_min) {
2207                 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2208                 ++ipath->fspath->elem_cnt;
2209                 ipath->fspath->bytes_left = fspath - fspath_min;
2210         } else {
2211                 ++ipath->fspath->elem_missed;
2212                 ipath->fspath->bytes_missing += fspath_min - fspath;
2213                 ipath->fspath->bytes_left = 0;
2214         }
2215
2216         return 0;
2217 }
2218
2219 /*
2220  * this dumps all file system paths to the inode into the ipath struct, provided
2221  * is has been created large enough. each path is zero-terminated and accessed
2222  * from ipath->fspath->val[i].
2223  * when it returns, there are ipath->fspath->elem_cnt number of paths available
2224  * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2225  * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2226  * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2227  * have been needed to return all paths.
2228  */
2229 int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2230 {
2231         return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2232                              inode_to_path, ipath);
2233 }
2234
2235 struct btrfs_data_container *init_data_container(u32 total_bytes)
2236 {
2237         struct btrfs_data_container *data;
2238         size_t alloc_bytes;
2239
2240         alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2241         data = kvmalloc(alloc_bytes, GFP_KERNEL);
2242         if (!data)
2243                 return ERR_PTR(-ENOMEM);
2244
2245         if (total_bytes >= sizeof(*data)) {
2246                 data->bytes_left = total_bytes - sizeof(*data);
2247                 data->bytes_missing = 0;
2248         } else {
2249                 data->bytes_missing = sizeof(*data) - total_bytes;
2250                 data->bytes_left = 0;
2251         }
2252
2253         data->elem_cnt = 0;
2254         data->elem_missed = 0;
2255
2256         return data;
2257 }
2258
2259 /*
2260  * allocates space to return multiple file system paths for an inode.
2261  * total_bytes to allocate are passed, note that space usable for actual path
2262  * information will be total_bytes - sizeof(struct inode_fs_paths).
2263  * the returned pointer must be freed with free_ipath() in the end.
2264  */
2265 struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2266                                         struct btrfs_path *path)
2267 {
2268         struct inode_fs_paths *ifp;
2269         struct btrfs_data_container *fspath;
2270
2271         fspath = init_data_container(total_bytes);
2272         if (IS_ERR(fspath))
2273                 return ERR_CAST(fspath);
2274
2275         ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2276         if (!ifp) {
2277                 kvfree(fspath);
2278                 return ERR_PTR(-ENOMEM);
2279         }
2280
2281         ifp->btrfs_path = path;
2282         ifp->fspath = fspath;
2283         ifp->fs_root = fs_root;
2284
2285         return ifp;
2286 }
2287
2288 void free_ipath(struct inode_fs_paths *ipath)
2289 {
2290         if (!ipath)
2291                 return;
2292         kvfree(ipath->fspath);
2293         kfree(ipath);
2294 }
2295
2296 struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2297                 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2298 {
2299         struct btrfs_backref_iter *ret;
2300
2301         ret = kzalloc(sizeof(*ret), gfp_flag);
2302         if (!ret)
2303                 return NULL;
2304
2305         ret->path = btrfs_alloc_path();
2306         if (!ret->path) {
2307                 kfree(ret);
2308                 return NULL;
2309         }
2310
2311         /* Current backref iterator only supports iteration in commit root */
2312         ret->path->search_commit_root = 1;
2313         ret->path->skip_locking = 1;
2314         ret->fs_info = fs_info;
2315
2316         return ret;
2317 }
2318
2319 int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2320 {
2321         struct btrfs_fs_info *fs_info = iter->fs_info;
2322         struct btrfs_path *path = iter->path;
2323         struct btrfs_extent_item *ei;
2324         struct btrfs_key key;
2325         int ret;
2326
2327         key.objectid = bytenr;
2328         key.type = BTRFS_METADATA_ITEM_KEY;
2329         key.offset = (u64)-1;
2330         iter->bytenr = bytenr;
2331
2332         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2333         if (ret < 0)
2334                 return ret;
2335         if (ret == 0) {
2336                 ret = -EUCLEAN;
2337                 goto release;
2338         }
2339         if (path->slots[0] == 0) {
2340                 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2341                 ret = -EUCLEAN;
2342                 goto release;
2343         }
2344         path->slots[0]--;
2345
2346         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2347         if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2348              key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2349                 ret = -ENOENT;
2350                 goto release;
2351         }
2352         memcpy(&iter->cur_key, &key, sizeof(key));
2353         iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2354                                                     path->slots[0]);
2355         iter->end_ptr = (u32)(iter->item_ptr +
2356                         btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2357         ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2358                             struct btrfs_extent_item);
2359
2360         /*
2361          * Only support iteration on tree backref yet.
2362          *
2363          * This is an extra precaution for non skinny-metadata, where
2364          * EXTENT_ITEM is also used for tree blocks, that we can only use
2365          * extent flags to determine if it's a tree block.
2366          */
2367         if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2368                 ret = -ENOTSUPP;
2369                 goto release;
2370         }
2371         iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2372
2373         /* If there is no inline backref, go search for keyed backref */
2374         if (iter->cur_ptr >= iter->end_ptr) {
2375                 ret = btrfs_next_item(fs_info->extent_root, path);
2376
2377                 /* No inline nor keyed ref */
2378                 if (ret > 0) {
2379                         ret = -ENOENT;
2380                         goto release;
2381                 }
2382                 if (ret < 0)
2383                         goto release;
2384
2385                 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2386                                 path->slots[0]);
2387                 if (iter->cur_key.objectid != bytenr ||
2388                     (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2389                      iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2390                         ret = -ENOENT;
2391                         goto release;
2392                 }
2393                 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2394                                                            path->slots[0]);
2395                 iter->item_ptr = iter->cur_ptr;
2396                 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2397                                       path->nodes[0], path->slots[0]));
2398         }
2399
2400         return 0;
2401 release:
2402         btrfs_backref_iter_release(iter);
2403         return ret;
2404 }
2405
2406 /*
2407  * Go to the next backref item of current bytenr, can be either inlined or
2408  * keyed.
2409  *
2410  * Caller needs to check whether it's inline ref or not by iter->cur_key.
2411  *
2412  * Return 0 if we get next backref without problem.
2413  * Return >0 if there is no extra backref for this bytenr.
2414  * Return <0 if there is something wrong happened.
2415  */
2416 int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2417 {
2418         struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2419         struct btrfs_path *path = iter->path;
2420         struct btrfs_extent_inline_ref *iref;
2421         int ret;
2422         u32 size;
2423
2424         if (btrfs_backref_iter_is_inline_ref(iter)) {
2425                 /* We're still inside the inline refs */
2426                 ASSERT(iter->cur_ptr < iter->end_ptr);
2427
2428                 if (btrfs_backref_has_tree_block_info(iter)) {
2429                         /* First tree block info */
2430                         size = sizeof(struct btrfs_tree_block_info);
2431                 } else {
2432                         /* Use inline ref type to determine the size */
2433                         int type;
2434
2435                         iref = (struct btrfs_extent_inline_ref *)
2436                                 ((unsigned long)iter->cur_ptr);
2437                         type = btrfs_extent_inline_ref_type(eb, iref);
2438
2439                         size = btrfs_extent_inline_ref_size(type);
2440                 }
2441                 iter->cur_ptr += size;
2442                 if (iter->cur_ptr < iter->end_ptr)
2443                         return 0;
2444
2445                 /* All inline items iterated, fall through */
2446         }
2447
2448         /* We're at keyed items, there is no inline item, go to the next one */
2449         ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2450         if (ret)
2451                 return ret;
2452
2453         btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2454         if (iter->cur_key.objectid != iter->bytenr ||
2455             (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2456              iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2457                 return 1;
2458         iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2459                                         path->slots[0]);
2460         iter->cur_ptr = iter->item_ptr;
2461         iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2462                                                 path->slots[0]);
2463         return 0;
2464 }
2465
2466 void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2467                               struct btrfs_backref_cache *cache, int is_reloc)
2468 {
2469         int i;
2470
2471         cache->rb_root = RB_ROOT;
2472         for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2473                 INIT_LIST_HEAD(&cache->pending[i]);
2474         INIT_LIST_HEAD(&cache->changed);
2475         INIT_LIST_HEAD(&cache->detached);
2476         INIT_LIST_HEAD(&cache->leaves);
2477         INIT_LIST_HEAD(&cache->pending_edge);
2478         INIT_LIST_HEAD(&cache->useless_node);
2479         cache->fs_info = fs_info;
2480         cache->is_reloc = is_reloc;
2481 }
2482
2483 struct btrfs_backref_node *btrfs_backref_alloc_node(
2484                 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2485 {
2486         struct btrfs_backref_node *node;
2487
2488         ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2489         node = kzalloc(sizeof(*node), GFP_NOFS);
2490         if (!node)
2491                 return node;
2492
2493         INIT_LIST_HEAD(&node->list);
2494         INIT_LIST_HEAD(&node->upper);
2495         INIT_LIST_HEAD(&node->lower);
2496         RB_CLEAR_NODE(&node->rb_node);
2497         cache->nr_nodes++;
2498         node->level = level;
2499         node->bytenr = bytenr;
2500
2501         return node;
2502 }
2503
2504 struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2505                 struct btrfs_backref_cache *cache)
2506 {
2507         struct btrfs_backref_edge *edge;
2508
2509         edge = kzalloc(sizeof(*edge), GFP_NOFS);
2510         if (edge)
2511                 cache->nr_edges++;
2512         return edge;
2513 }
2514
2515 /*
2516  * Drop the backref node from cache, also cleaning up all its
2517  * upper edges and any uncached nodes in the path.
2518  *
2519  * This cleanup happens bottom up, thus the node should either
2520  * be the lowest node in the cache or a detached node.
2521  */
2522 void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2523                                 struct btrfs_backref_node *node)
2524 {
2525         struct btrfs_backref_node *upper;
2526         struct btrfs_backref_edge *edge;
2527
2528         if (!node)
2529                 return;
2530
2531         BUG_ON(!node->lowest && !node->detached);
2532         while (!list_empty(&node->upper)) {
2533                 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2534                                   list[LOWER]);
2535                 upper = edge->node[UPPER];
2536                 list_del(&edge->list[LOWER]);
2537                 list_del(&edge->list[UPPER]);
2538                 btrfs_backref_free_edge(cache, edge);
2539
2540                 if (RB_EMPTY_NODE(&upper->rb_node)) {
2541                         BUG_ON(!list_empty(&node->upper));
2542                         btrfs_backref_drop_node(cache, node);
2543                         node = upper;
2544                         node->lowest = 1;
2545                         continue;
2546                 }
2547                 /*
2548                  * Add the node to leaf node list if no other child block
2549                  * cached.
2550                  */
2551                 if (list_empty(&upper->lower)) {
2552                         list_add_tail(&upper->lower, &cache->leaves);
2553                         upper->lowest = 1;
2554                 }
2555         }
2556
2557         btrfs_backref_drop_node(cache, node);
2558 }
2559
2560 /*
2561  * Release all nodes/edges from current cache
2562  */
2563 void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2564 {
2565         struct btrfs_backref_node *node;
2566         int i;
2567
2568         while (!list_empty(&cache->detached)) {
2569                 node = list_entry(cache->detached.next,
2570                                   struct btrfs_backref_node, list);
2571                 btrfs_backref_cleanup_node(cache, node);
2572         }
2573
2574         while (!list_empty(&cache->leaves)) {
2575                 node = list_entry(cache->leaves.next,
2576                                   struct btrfs_backref_node, lower);
2577                 btrfs_backref_cleanup_node(cache, node);
2578         }
2579
2580         cache->last_trans = 0;
2581
2582         for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2583                 ASSERT(list_empty(&cache->pending[i]));
2584         ASSERT(list_empty(&cache->pending_edge));
2585         ASSERT(list_empty(&cache->useless_node));
2586         ASSERT(list_empty(&cache->changed));
2587         ASSERT(list_empty(&cache->detached));
2588         ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2589         ASSERT(!cache->nr_nodes);
2590         ASSERT(!cache->nr_edges);
2591 }
2592
2593 /*
2594  * Handle direct tree backref
2595  *
2596  * Direct tree backref means, the backref item shows its parent bytenr
2597  * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2598  *
2599  * @ref_key:    The converted backref key.
2600  *              For keyed backref, it's the item key.
2601  *              For inlined backref, objectid is the bytenr,
2602  *              type is btrfs_inline_ref_type, offset is
2603  *              btrfs_inline_ref_offset.
2604  */
2605 static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2606                                       struct btrfs_key *ref_key,
2607                                       struct btrfs_backref_node *cur)
2608 {
2609         struct btrfs_backref_edge *edge;
2610         struct btrfs_backref_node *upper;
2611         struct rb_node *rb_node;
2612
2613         ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2614
2615         /* Only reloc root uses backref pointing to itself */
2616         if (ref_key->objectid == ref_key->offset) {
2617                 struct btrfs_root *root;
2618
2619                 cur->is_reloc_root = 1;
2620                 /* Only reloc backref cache cares about a specific root */
2621                 if (cache->is_reloc) {
2622                         root = find_reloc_root(cache->fs_info, cur->bytenr);
2623                         if (WARN_ON(!root))
2624                                 return -ENOENT;
2625                         cur->root = root;
2626                 } else {
2627                         /*
2628                          * For generic purpose backref cache, reloc root node
2629                          * is useless.
2630                          */
2631                         list_add(&cur->list, &cache->useless_node);
2632                 }
2633                 return 0;
2634         }
2635
2636         edge = btrfs_backref_alloc_edge(cache);
2637         if (!edge)
2638                 return -ENOMEM;
2639
2640         rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2641         if (!rb_node) {
2642                 /* Parent node not yet cached */
2643                 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2644                                            cur->level + 1);
2645                 if (!upper) {
2646                         btrfs_backref_free_edge(cache, edge);
2647                         return -ENOMEM;
2648                 }
2649
2650                 /*
2651                  *  Backrefs for the upper level block isn't cached, add the
2652                  *  block to pending list
2653                  */
2654                 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2655         } else {
2656                 /* Parent node already cached */
2657                 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2658                 ASSERT(upper->checked);
2659                 INIT_LIST_HEAD(&edge->list[UPPER]);
2660         }
2661         btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2662         return 0;
2663 }
2664
2665 /*
2666  * Handle indirect tree backref
2667  *
2668  * Indirect tree backref means, we only know which tree the node belongs to.
2669  * We still need to do a tree search to find out the parents. This is for
2670  * TREE_BLOCK_REF backref (keyed or inlined).
2671  *
2672  * @ref_key:    The same as @ref_key in  handle_direct_tree_backref()
2673  * @tree_key:   The first key of this tree block.
2674  * @path:       A clean (released) path, to avoid allocating path everytime
2675  *              the function get called.
2676  */
2677 static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2678                                         struct btrfs_path *path,
2679                                         struct btrfs_key *ref_key,
2680                                         struct btrfs_key *tree_key,
2681                                         struct btrfs_backref_node *cur)
2682 {
2683         struct btrfs_fs_info *fs_info = cache->fs_info;
2684         struct btrfs_backref_node *upper;
2685         struct btrfs_backref_node *lower;
2686         struct btrfs_backref_edge *edge;
2687         struct extent_buffer *eb;
2688         struct btrfs_root *root;
2689         struct rb_node *rb_node;
2690         int level;
2691         bool need_check = true;
2692         int ret;
2693
2694         root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2695         if (IS_ERR(root))
2696                 return PTR_ERR(root);
2697         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2698                 cur->cowonly = 1;
2699
2700         if (btrfs_root_level(&root->root_item) == cur->level) {
2701                 /* Tree root */
2702                 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2703                 /*
2704                  * For reloc backref cache, we may ignore reloc root.  But for
2705                  * general purpose backref cache, we can't rely on
2706                  * btrfs_should_ignore_reloc_root() as it may conflict with
2707                  * current running relocation and lead to missing root.
2708                  *
2709                  * For general purpose backref cache, reloc root detection is
2710                  * completely relying on direct backref (key->offset is parent
2711                  * bytenr), thus only do such check for reloc cache.
2712                  */
2713                 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2714                         btrfs_put_root(root);
2715                         list_add(&cur->list, &cache->useless_node);
2716                 } else {
2717                         cur->root = root;
2718                 }
2719                 return 0;
2720         }
2721
2722         level = cur->level + 1;
2723
2724         /* Search the tree to find parent blocks referring to the block */
2725         path->search_commit_root = 1;
2726         path->skip_locking = 1;
2727         path->lowest_level = level;
2728         ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2729         path->lowest_level = 0;
2730         if (ret < 0) {
2731                 btrfs_put_root(root);
2732                 return ret;
2733         }
2734         if (ret > 0 && path->slots[level] > 0)
2735                 path->slots[level]--;
2736
2737         eb = path->nodes[level];
2738         if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2739                 btrfs_err(fs_info,
2740 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2741                           cur->bytenr, level - 1, root->root_key.objectid,
2742                           tree_key->objectid, tree_key->type, tree_key->offset);
2743                 btrfs_put_root(root);
2744                 ret = -ENOENT;
2745                 goto out;
2746         }
2747         lower = cur;
2748
2749         /* Add all nodes and edges in the path */
2750         for (; level < BTRFS_MAX_LEVEL; level++) {
2751                 if (!path->nodes[level]) {
2752                         ASSERT(btrfs_root_bytenr(&root->root_item) ==
2753                                lower->bytenr);
2754                         /* Same as previous should_ignore_reloc_root() call */
2755                         if (btrfs_should_ignore_reloc_root(root) &&
2756                             cache->is_reloc) {
2757                                 btrfs_put_root(root);
2758                                 list_add(&lower->list, &cache->useless_node);
2759                         } else {
2760                                 lower->root = root;
2761                         }
2762                         break;
2763                 }
2764
2765                 edge = btrfs_backref_alloc_edge(cache);
2766                 if (!edge) {
2767                         btrfs_put_root(root);
2768                         ret = -ENOMEM;
2769                         goto out;
2770                 }
2771
2772                 eb = path->nodes[level];
2773                 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2774                 if (!rb_node) {
2775                         upper = btrfs_backref_alloc_node(cache, eb->start,
2776                                                          lower->level + 1);
2777                         if (!upper) {
2778                                 btrfs_put_root(root);
2779                                 btrfs_backref_free_edge(cache, edge);
2780                                 ret = -ENOMEM;
2781                                 goto out;
2782                         }
2783                         upper->owner = btrfs_header_owner(eb);
2784                         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2785                                 upper->cowonly = 1;
2786
2787                         /*
2788                          * If we know the block isn't shared we can avoid
2789                          * checking its backrefs.
2790                          */
2791                         if (btrfs_block_can_be_shared(root, eb))
2792                                 upper->checked = 0;
2793                         else
2794                                 upper->checked = 1;
2795
2796                         /*
2797                          * Add the block to pending list if we need to check its
2798                          * backrefs, we only do this once while walking up a
2799                          * tree as we will catch anything else later on.
2800                          */
2801                         if (!upper->checked && need_check) {
2802                                 need_check = false;
2803                                 list_add_tail(&edge->list[UPPER],
2804                                               &cache->pending_edge);
2805                         } else {
2806                                 if (upper->checked)
2807                                         need_check = true;
2808                                 INIT_LIST_HEAD(&edge->list[UPPER]);
2809                         }
2810                 } else {
2811                         upper = rb_entry(rb_node, struct btrfs_backref_node,
2812                                          rb_node);
2813                         ASSERT(upper->checked);
2814                         INIT_LIST_HEAD(&edge->list[UPPER]);
2815                         if (!upper->owner)
2816                                 upper->owner = btrfs_header_owner(eb);
2817                 }
2818                 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2819
2820                 if (rb_node) {
2821                         btrfs_put_root(root);
2822                         break;
2823                 }
2824                 lower = upper;
2825                 upper = NULL;
2826         }
2827 out:
2828         btrfs_release_path(path);
2829         return ret;
2830 }
2831
2832 /*
2833  * Add backref node @cur into @cache.
2834  *
2835  * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2836  *       links aren't yet bi-directional. Needs to finish such links.
2837  *       Use btrfs_backref_finish_upper_links() to finish such linkage.
2838  *
2839  * @path:       Released path for indirect tree backref lookup
2840  * @iter:       Released backref iter for extent tree search
2841  * @node_key:   The first key of the tree block
2842  */
2843 int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2844                                 struct btrfs_path *path,
2845                                 struct btrfs_backref_iter *iter,
2846                                 struct btrfs_key *node_key,
2847                                 struct btrfs_backref_node *cur)
2848 {
2849         struct btrfs_fs_info *fs_info = cache->fs_info;
2850         struct btrfs_backref_edge *edge;
2851         struct btrfs_backref_node *exist;
2852         int ret;
2853
2854         ret = btrfs_backref_iter_start(iter, cur->bytenr);
2855         if (ret < 0)
2856                 return ret;
2857         /*
2858          * We skip the first btrfs_tree_block_info, as we don't use the key
2859          * stored in it, but fetch it from the tree block
2860          */
2861         if (btrfs_backref_has_tree_block_info(iter)) {
2862                 ret = btrfs_backref_iter_next(iter);
2863                 if (ret < 0)
2864                         goto out;
2865                 /* No extra backref? This means the tree block is corrupted */
2866                 if (ret > 0) {
2867                         ret = -EUCLEAN;
2868                         goto out;
2869                 }
2870         }
2871         WARN_ON(cur->checked);
2872         if (!list_empty(&cur->upper)) {
2873                 /*
2874                  * The backref was added previously when processing backref of
2875                  * type BTRFS_TREE_BLOCK_REF_KEY
2876                  */
2877                 ASSERT(list_is_singular(&cur->upper));
2878                 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2879                                   list[LOWER]);
2880                 ASSERT(list_empty(&edge->list[UPPER]));
2881                 exist = edge->node[UPPER];
2882                 /*
2883                  * Add the upper level block to pending list if we need check
2884                  * its backrefs
2885                  */
2886                 if (!exist->checked)
2887                         list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2888         } else {
2889                 exist = NULL;
2890         }
2891
2892         for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2893                 struct extent_buffer *eb;
2894                 struct btrfs_key key;
2895                 int type;
2896
2897                 cond_resched();
2898                 eb = btrfs_backref_get_eb(iter);
2899
2900                 key.objectid = iter->bytenr;
2901                 if (btrfs_backref_iter_is_inline_ref(iter)) {
2902                         struct btrfs_extent_inline_ref *iref;
2903
2904                         /* Update key for inline backref */
2905                         iref = (struct btrfs_extent_inline_ref *)
2906                                 ((unsigned long)iter->cur_ptr);
2907                         type = btrfs_get_extent_inline_ref_type(eb, iref,
2908                                                         BTRFS_REF_TYPE_BLOCK);
2909                         if (type == BTRFS_REF_TYPE_INVALID) {
2910                                 ret = -EUCLEAN;
2911                                 goto out;
2912                         }
2913                         key.type = type;
2914                         key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2915                 } else {
2916                         key.type = iter->cur_key.type;
2917                         key.offset = iter->cur_key.offset;
2918                 }
2919
2920                 /*
2921                  * Parent node found and matches current inline ref, no need to
2922                  * rebuild this node for this inline ref
2923                  */
2924                 if (exist &&
2925                     ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2926                       exist->owner == key.offset) ||
2927                      (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2928                       exist->bytenr == key.offset))) {
2929                         exist = NULL;
2930                         continue;
2931                 }
2932
2933                 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2934                 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2935                         ret = handle_direct_tree_backref(cache, &key, cur);
2936                         if (ret < 0)
2937                                 goto out;
2938                         continue;
2939                 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2940                         ret = -EINVAL;
2941                         btrfs_print_v0_err(fs_info);
2942                         btrfs_handle_fs_error(fs_info, ret, NULL);
2943                         goto out;
2944                 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2945                         continue;
2946                 }
2947
2948                 /*
2949                  * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2950                  * means the root objectid. We need to search the tree to get
2951                  * its parent bytenr.
2952                  */
2953                 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2954                                                    cur);
2955                 if (ret < 0)
2956                         goto out;
2957         }
2958         ret = 0;
2959         cur->checked = 1;
2960         WARN_ON(exist);
2961 out:
2962         btrfs_backref_iter_release(iter);
2963         return ret;
2964 }
2965
2966 /*
2967  * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2968  */
2969 int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2970                                      struct btrfs_backref_node *start)
2971 {
2972         struct list_head *useless_node = &cache->useless_node;
2973         struct btrfs_backref_edge *edge;
2974         struct rb_node *rb_node;
2975         LIST_HEAD(pending_edge);
2976
2977         ASSERT(start->checked);
2978
2979         /* Insert this node to cache if it's not COW-only */
2980         if (!start->cowonly) {
2981                 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2982                                            &start->rb_node);
2983                 if (rb_node)
2984                         btrfs_backref_panic(cache->fs_info, start->bytenr,
2985                                             -EEXIST);
2986                 list_add_tail(&start->lower, &cache->leaves);
2987         }
2988
2989         /*
2990          * Use breadth first search to iterate all related edges.
2991          *
2992          * The starting points are all the edges of this node
2993          */
2994         list_for_each_entry(edge, &start->upper, list[LOWER])
2995                 list_add_tail(&edge->list[UPPER], &pending_edge);
2996
2997         while (!list_empty(&pending_edge)) {
2998                 struct btrfs_backref_node *upper;
2999                 struct btrfs_backref_node *lower;
3000
3001                 edge = list_first_entry(&pending_edge,
3002                                 struct btrfs_backref_edge, list[UPPER]);
3003                 list_del_init(&edge->list[UPPER]);
3004                 upper = edge->node[UPPER];
3005                 lower = edge->node[LOWER];
3006
3007                 /* Parent is detached, no need to keep any edges */
3008                 if (upper->detached) {
3009                         list_del(&edge->list[LOWER]);
3010                         btrfs_backref_free_edge(cache, edge);
3011
3012                         /* Lower node is orphan, queue for cleanup */
3013                         if (list_empty(&lower->upper))
3014                                 list_add(&lower->list, useless_node);
3015                         continue;
3016                 }
3017
3018                 /*
3019                  * All new nodes added in current build_backref_tree() haven't
3020                  * been linked to the cache rb tree.
3021                  * So if we have upper->rb_node populated, this means a cache
3022                  * hit. We only need to link the edge, as @upper and all its
3023                  * parents have already been linked.
3024                  */
3025                 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3026                         if (upper->lowest) {
3027                                 list_del_init(&upper->lower);
3028                                 upper->lowest = 0;
3029                         }
3030
3031                         list_add_tail(&edge->list[UPPER], &upper->lower);
3032                         continue;
3033                 }
3034
3035                 /* Sanity check, we shouldn't have any unchecked nodes */
3036                 if (!upper->checked) {
3037                         ASSERT(0);
3038                         return -EUCLEAN;
3039                 }
3040
3041                 /* Sanity check, COW-only node has non-COW-only parent */
3042                 if (start->cowonly != upper->cowonly) {
3043                         ASSERT(0);
3044                         return -EUCLEAN;
3045                 }
3046
3047                 /* Only cache non-COW-only (subvolume trees) tree blocks */
3048                 if (!upper->cowonly) {
3049                         rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3050                                                    &upper->rb_node);
3051                         if (rb_node) {
3052                                 btrfs_backref_panic(cache->fs_info,
3053                                                 upper->bytenr, -EEXIST);
3054                                 return -EUCLEAN;
3055                         }
3056                 }
3057
3058                 list_add_tail(&edge->list[UPPER], &upper->lower);
3059
3060                 /*
3061                  * Also queue all the parent edges of this uncached node
3062                  * to finish the upper linkage
3063                  */
3064                 list_for_each_entry(edge, &upper->upper, list[LOWER])
3065                         list_add_tail(&edge->list[UPPER], &pending_edge);
3066         }
3067         return 0;
3068 }
3069
3070 void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3071                                  struct btrfs_backref_node *node)
3072 {
3073         struct btrfs_backref_node *lower;
3074         struct btrfs_backref_node *upper;
3075         struct btrfs_backref_edge *edge;
3076
3077         while (!list_empty(&cache->useless_node)) {
3078                 lower = list_first_entry(&cache->useless_node,
3079                                    struct btrfs_backref_node, list);
3080                 list_del_init(&lower->list);
3081         }
3082         while (!list_empty(&cache->pending_edge)) {
3083                 edge = list_first_entry(&cache->pending_edge,
3084                                 struct btrfs_backref_edge, list[UPPER]);
3085                 list_del(&edge->list[UPPER]);
3086                 list_del(&edge->list[LOWER]);
3087                 lower = edge->node[LOWER];
3088                 upper = edge->node[UPPER];
3089                 btrfs_backref_free_edge(cache, edge);
3090
3091                 /*
3092                  * Lower is no longer linked to any upper backref nodes and
3093                  * isn't in the cache, we can free it ourselves.
3094                  */
3095                 if (list_empty(&lower->upper) &&
3096                     RB_EMPTY_NODE(&lower->rb_node))
3097                         list_add(&lower->list, &cache->useless_node);
3098
3099                 if (!RB_EMPTY_NODE(&upper->rb_node))
3100                         continue;
3101
3102                 /* Add this guy's upper edges to the list to process */
3103                 list_for_each_entry(edge, &upper->upper, list[LOWER])
3104                         list_add_tail(&edge->list[UPPER],
3105                                       &cache->pending_edge);
3106                 if (list_empty(&upper->upper))
3107                         list_add(&upper->list, &cache->useless_node);
3108         }
3109
3110         while (!list_empty(&cache->useless_node)) {
3111                 lower = list_first_entry(&cache->useless_node,
3112                                    struct btrfs_backref_node, list);
3113                 list_del_init(&lower->list);
3114                 if (lower == node)
3115                         node = NULL;
3116                 btrfs_backref_free_node(cache, lower);
3117         }
3118
3119         btrfs_backref_cleanup_node(cache, node);
3120         ASSERT(list_empty(&cache->useless_node) &&
3121                list_empty(&cache->pending_edge));
3122 }