Merge tag 'usb-v5.13-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/peter...
[linux-2.6-microblaze.git] / fs / afs / write.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include <linux/fscache.h>
16 #include "internal.h"
17
18 /*
19  * mark a page as having been made dirty and thus needing writeback
20  */
21 int afs_set_page_dirty(struct page *page)
22 {
23         _enter("");
24         return __set_page_dirty_nobuffers(page);
25 }
26
27 /*
28  * prepare to perform part of a write to a page
29  */
30 int afs_write_begin(struct file *file, struct address_space *mapping,
31                     loff_t pos, unsigned len, unsigned flags,
32                     struct page **_page, void **fsdata)
33 {
34         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
35         struct page *page;
36         unsigned long priv;
37         unsigned f, from;
38         unsigned t, to;
39         pgoff_t index;
40         int ret;
41
42         _enter("{%llx:%llu},%llx,%x",
43                vnode->fid.vid, vnode->fid.vnode, pos, len);
44
45         /* Prefetch area to be written into the cache if we're caching this
46          * file.  We need to do this before we get a lock on the page in case
47          * there's more than one writer competing for the same cache block.
48          */
49         ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata,
50                                 &afs_req_ops, NULL);
51         if (ret < 0)
52                 return ret;
53
54         index = page->index;
55         from = pos - index * PAGE_SIZE;
56         to = from + len;
57
58 try_again:
59         /* See if this page is already partially written in a way that we can
60          * merge the new write with.
61          */
62         if (PagePrivate(page)) {
63                 priv = page_private(page);
64                 f = afs_page_dirty_from(page, priv);
65                 t = afs_page_dirty_to(page, priv);
66                 ASSERTCMP(f, <=, t);
67
68                 if (PageWriteback(page)) {
69                         trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
70                         goto flush_conflicting_write;
71                 }
72                 /* If the file is being filled locally, allow inter-write
73                  * spaces to be merged into writes.  If it's not, only write
74                  * back what the user gives us.
75                  */
76                 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
77                     (to < f || from > t))
78                         goto flush_conflicting_write;
79         }
80
81         *_page = page;
82         _leave(" = 0");
83         return 0;
84
85         /* The previous write and this write aren't adjacent or overlapping, so
86          * flush the page out.
87          */
88 flush_conflicting_write:
89         _debug("flush conflict");
90         ret = write_one_page(page);
91         if (ret < 0)
92                 goto error;
93
94         ret = lock_page_killable(page);
95         if (ret < 0)
96                 goto error;
97         goto try_again;
98
99 error:
100         put_page(page);
101         _leave(" = %d", ret);
102         return ret;
103 }
104
105 /*
106  * finalise part of a write to a page
107  */
108 int afs_write_end(struct file *file, struct address_space *mapping,
109                   loff_t pos, unsigned len, unsigned copied,
110                   struct page *page, void *fsdata)
111 {
112         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
113         unsigned long priv;
114         unsigned int f, from = pos & (thp_size(page) - 1);
115         unsigned int t, to = from + copied;
116         loff_t i_size, maybe_i_size;
117
118         _enter("{%llx:%llu},{%lx}",
119                vnode->fid.vid, vnode->fid.vnode, page->index);
120
121         if (copied == 0)
122                 goto out;
123
124         maybe_i_size = pos + copied;
125
126         i_size = i_size_read(&vnode->vfs_inode);
127         if (maybe_i_size > i_size) {
128                 write_seqlock(&vnode->cb_lock);
129                 i_size = i_size_read(&vnode->vfs_inode);
130                 if (maybe_i_size > i_size)
131                         i_size_write(&vnode->vfs_inode, maybe_i_size);
132                 write_sequnlock(&vnode->cb_lock);
133         }
134
135         ASSERT(PageUptodate(page));
136
137         if (PagePrivate(page)) {
138                 priv = page_private(page);
139                 f = afs_page_dirty_from(page, priv);
140                 t = afs_page_dirty_to(page, priv);
141                 if (from < f)
142                         f = from;
143                 if (to > t)
144                         t = to;
145                 priv = afs_page_dirty(page, f, t);
146                 set_page_private(page, priv);
147                 trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
148         } else {
149                 priv = afs_page_dirty(page, from, to);
150                 attach_page_private(page, (void *)priv);
151                 trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
152         }
153
154         if (set_page_dirty(page))
155                 _debug("dirtied %lx", page->index);
156
157 out:
158         unlock_page(page);
159         put_page(page);
160         return copied;
161 }
162
163 /*
164  * kill all the pages in the given range
165  */
166 static void afs_kill_pages(struct address_space *mapping,
167                            loff_t start, loff_t len)
168 {
169         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
170         struct pagevec pv;
171         unsigned int loop, psize;
172
173         _enter("{%llx:%llu},%llx @%llx",
174                vnode->fid.vid, vnode->fid.vnode, len, start);
175
176         pagevec_init(&pv);
177
178         do {
179                 _debug("kill %llx @%llx", len, start);
180
181                 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
182                                               PAGEVEC_SIZE, pv.pages);
183                 if (pv.nr == 0)
184                         break;
185
186                 for (loop = 0; loop < pv.nr; loop++) {
187                         struct page *page = pv.pages[loop];
188
189                         if (page->index * PAGE_SIZE >= start + len)
190                                 break;
191
192                         psize = thp_size(page);
193                         start += psize;
194                         len -= psize;
195                         ClearPageUptodate(page);
196                         end_page_writeback(page);
197                         lock_page(page);
198                         generic_error_remove_page(mapping, page);
199                         unlock_page(page);
200                 }
201
202                 __pagevec_release(&pv);
203         } while (len > 0);
204
205         _leave("");
206 }
207
208 /*
209  * Redirty all the pages in a given range.
210  */
211 static void afs_redirty_pages(struct writeback_control *wbc,
212                               struct address_space *mapping,
213                               loff_t start, loff_t len)
214 {
215         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
216         struct pagevec pv;
217         unsigned int loop, psize;
218
219         _enter("{%llx:%llu},%llx @%llx",
220                vnode->fid.vid, vnode->fid.vnode, len, start);
221
222         pagevec_init(&pv);
223
224         do {
225                 _debug("redirty %llx @%llx", len, start);
226
227                 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
228                                               PAGEVEC_SIZE, pv.pages);
229                 if (pv.nr == 0)
230                         break;
231
232                 for (loop = 0; loop < pv.nr; loop++) {
233                         struct page *page = pv.pages[loop];
234
235                         if (page->index * PAGE_SIZE >= start + len)
236                                 break;
237
238                         psize = thp_size(page);
239                         start += psize;
240                         len -= psize;
241                         redirty_page_for_writepage(wbc, page);
242                         end_page_writeback(page);
243                 }
244
245                 __pagevec_release(&pv);
246         } while (len > 0);
247
248         _leave("");
249 }
250
251 /*
252  * completion of write to server
253  */
254 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
255 {
256         struct address_space *mapping = vnode->vfs_inode.i_mapping;
257         struct page *page;
258         pgoff_t end;
259
260         XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
261
262         _enter("{%llx:%llu},{%x @%llx}",
263                vnode->fid.vid, vnode->fid.vnode, len, start);
264
265         rcu_read_lock();
266
267         end = (start + len - 1) / PAGE_SIZE;
268         xas_for_each(&xas, page, end) {
269                 if (!PageWriteback(page)) {
270                         kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end);
271                         ASSERT(PageWriteback(page));
272                 }
273
274                 trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
275                 detach_page_private(page);
276                 page_endio(page, true, 0);
277         }
278
279         rcu_read_unlock();
280
281         afs_prune_wb_keys(vnode);
282         _leave("");
283 }
284
285 /*
286  * Find a key to use for the writeback.  We cached the keys used to author the
287  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
288  * and we need to start from there if it's set.
289  */
290 static int afs_get_writeback_key(struct afs_vnode *vnode,
291                                  struct afs_wb_key **_wbk)
292 {
293         struct afs_wb_key *wbk = NULL;
294         struct list_head *p;
295         int ret = -ENOKEY, ret2;
296
297         spin_lock(&vnode->wb_lock);
298         if (*_wbk)
299                 p = (*_wbk)->vnode_link.next;
300         else
301                 p = vnode->wb_keys.next;
302
303         while (p != &vnode->wb_keys) {
304                 wbk = list_entry(p, struct afs_wb_key, vnode_link);
305                 _debug("wbk %u", key_serial(wbk->key));
306                 ret2 = key_validate(wbk->key);
307                 if (ret2 == 0) {
308                         refcount_inc(&wbk->usage);
309                         _debug("USE WB KEY %u", key_serial(wbk->key));
310                         break;
311                 }
312
313                 wbk = NULL;
314                 if (ret == -ENOKEY)
315                         ret = ret2;
316                 p = p->next;
317         }
318
319         spin_unlock(&vnode->wb_lock);
320         if (*_wbk)
321                 afs_put_wb_key(*_wbk);
322         *_wbk = wbk;
323         return 0;
324 }
325
326 static void afs_store_data_success(struct afs_operation *op)
327 {
328         struct afs_vnode *vnode = op->file[0].vnode;
329
330         op->ctime = op->file[0].scb.status.mtime_client;
331         afs_vnode_commit_status(op, &op->file[0]);
332         if (op->error == 0) {
333                 if (!op->store.laundering)
334                         afs_pages_written_back(vnode, op->store.pos, op->store.size);
335                 afs_stat_v(vnode, n_stores);
336                 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
337         }
338 }
339
340 static const struct afs_operation_ops afs_store_data_operation = {
341         .issue_afs_rpc  = afs_fs_store_data,
342         .issue_yfs_rpc  = yfs_fs_store_data,
343         .success        = afs_store_data_success,
344 };
345
346 /*
347  * write to a file
348  */
349 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
350                           bool laundering)
351 {
352         struct afs_operation *op;
353         struct afs_wb_key *wbk = NULL;
354         loff_t size = iov_iter_count(iter), i_size;
355         int ret = -ENOKEY;
356
357         _enter("%s{%llx:%llu.%u},%llx,%llx",
358                vnode->volume->name,
359                vnode->fid.vid,
360                vnode->fid.vnode,
361                vnode->fid.unique,
362                size, pos);
363
364         ret = afs_get_writeback_key(vnode, &wbk);
365         if (ret) {
366                 _leave(" = %d [no keys]", ret);
367                 return ret;
368         }
369
370         op = afs_alloc_operation(wbk->key, vnode->volume);
371         if (IS_ERR(op)) {
372                 afs_put_wb_key(wbk);
373                 return -ENOMEM;
374         }
375
376         i_size = i_size_read(&vnode->vfs_inode);
377
378         afs_op_set_vnode(op, 0, vnode);
379         op->file[0].dv_delta = 1;
380         op->file[0].modification = true;
381         op->store.write_iter = iter;
382         op->store.pos = pos;
383         op->store.size = size;
384         op->store.i_size = max(pos + size, i_size);
385         op->store.laundering = laundering;
386         op->mtime = vnode->vfs_inode.i_mtime;
387         op->flags |= AFS_OPERATION_UNINTR;
388         op->ops = &afs_store_data_operation;
389
390 try_next_key:
391         afs_begin_vnode_operation(op);
392         afs_wait_for_operation(op);
393
394         switch (op->error) {
395         case -EACCES:
396         case -EPERM:
397         case -ENOKEY:
398         case -EKEYEXPIRED:
399         case -EKEYREJECTED:
400         case -EKEYREVOKED:
401                 _debug("next");
402
403                 ret = afs_get_writeback_key(vnode, &wbk);
404                 if (ret == 0) {
405                         key_put(op->key);
406                         op->key = key_get(wbk->key);
407                         goto try_next_key;
408                 }
409                 break;
410         }
411
412         afs_put_wb_key(wbk);
413         _leave(" = %d", op->error);
414         return afs_put_operation(op);
415 }
416
417 /*
418  * Extend the region to be written back to include subsequent contiguously
419  * dirty pages if possible, but don't sleep while doing so.
420  *
421  * If this page holds new content, then we can include filler zeros in the
422  * writeback.
423  */
424 static void afs_extend_writeback(struct address_space *mapping,
425                                  struct afs_vnode *vnode,
426                                  long *_count,
427                                  loff_t start,
428                                  loff_t max_len,
429                                  bool new_content,
430                                  unsigned int *_len)
431 {
432         struct pagevec pvec;
433         struct page *page;
434         unsigned long priv;
435         unsigned int psize, filler = 0;
436         unsigned int f, t;
437         loff_t len = *_len;
438         pgoff_t index = (start + len) / PAGE_SIZE;
439         bool stop = true;
440         unsigned int i;
441
442         XA_STATE(xas, &mapping->i_pages, index);
443         pagevec_init(&pvec);
444
445         do {
446                 /* Firstly, we gather up a batch of contiguous dirty pages
447                  * under the RCU read lock - but we can't clear the dirty flags
448                  * there if any of those pages are mapped.
449                  */
450                 rcu_read_lock();
451
452                 xas_for_each(&xas, page, ULONG_MAX) {
453                         stop = true;
454                         if (xas_retry(&xas, page))
455                                 continue;
456                         if (xa_is_value(page))
457                                 break;
458                         if (page->index != index)
459                                 break;
460
461                         if (!page_cache_get_speculative(page)) {
462                                 xas_reset(&xas);
463                                 continue;
464                         }
465
466                         /* Has the page moved or been split? */
467                         if (unlikely(page != xas_reload(&xas)))
468                                 break;
469
470                         if (!trylock_page(page))
471                                 break;
472                         if (!PageDirty(page) || PageWriteback(page)) {
473                                 unlock_page(page);
474                                 break;
475                         }
476
477                         psize = thp_size(page);
478                         priv = page_private(page);
479                         f = afs_page_dirty_from(page, priv);
480                         t = afs_page_dirty_to(page, priv);
481                         if (f != 0 && !new_content) {
482                                 unlock_page(page);
483                                 break;
484                         }
485
486                         len += filler + t;
487                         filler = psize - t;
488                         if (len >= max_len || *_count <= 0)
489                                 stop = true;
490                         else if (t == psize || new_content)
491                                 stop = false;
492
493                         index += thp_nr_pages(page);
494                         if (!pagevec_add(&pvec, page))
495                                 break;
496                         if (stop)
497                                 break;
498                 }
499
500                 if (!stop)
501                         xas_pause(&xas);
502                 rcu_read_unlock();
503
504                 /* Now, if we obtained any pages, we can shift them to being
505                  * writable and mark them for caching.
506                  */
507                 if (!pagevec_count(&pvec))
508                         break;
509
510                 for (i = 0; i < pagevec_count(&pvec); i++) {
511                         page = pvec.pages[i];
512                         trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
513
514                         if (!clear_page_dirty_for_io(page))
515                                 BUG();
516                         if (test_set_page_writeback(page))
517                                 BUG();
518
519                         *_count -= thp_nr_pages(page);
520                         unlock_page(page);
521                 }
522
523                 pagevec_release(&pvec);
524                 cond_resched();
525         } while (!stop);
526
527         *_len = len;
528 }
529
530 /*
531  * Synchronously write back the locked page and any subsequent non-locked dirty
532  * pages.
533  */
534 static ssize_t afs_write_back_from_locked_page(struct address_space *mapping,
535                                                struct writeback_control *wbc,
536                                                struct page *page,
537                                                loff_t start, loff_t end)
538 {
539         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
540         struct iov_iter iter;
541         unsigned long priv;
542         unsigned int offset, to, len, max_len;
543         loff_t i_size = i_size_read(&vnode->vfs_inode);
544         bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
545         long count = wbc->nr_to_write;
546         int ret;
547
548         _enter(",%lx,%llx-%llx", page->index, start, end);
549
550         if (test_set_page_writeback(page))
551                 BUG();
552
553         count -= thp_nr_pages(page);
554
555         /* Find all consecutive lockable dirty pages that have contiguous
556          * written regions, stopping when we find a page that is not
557          * immediately lockable, is not dirty or is missing, or we reach the
558          * end of the range.
559          */
560         priv = page_private(page);
561         offset = afs_page_dirty_from(page, priv);
562         to = afs_page_dirty_to(page, priv);
563         trace_afs_page_dirty(vnode, tracepoint_string("store"), page);
564
565         len = to - offset;
566         start += offset;
567         if (start < i_size) {
568                 /* Trim the write to the EOF; the extra data is ignored.  Also
569                  * put an upper limit on the size of a single storedata op.
570                  */
571                 max_len = 65536 * 4096;
572                 max_len = min_t(unsigned long long, max_len, end - start + 1);
573                 max_len = min_t(unsigned long long, max_len, i_size - start);
574
575                 if (len < max_len &&
576                     (to == thp_size(page) || new_content))
577                         afs_extend_writeback(mapping, vnode, &count,
578                                              start, max_len, new_content, &len);
579                 len = min_t(loff_t, len, max_len);
580         }
581
582         /* We now have a contiguous set of dirty pages, each with writeback
583          * set; the first page is still locked at this point, but all the rest
584          * have been unlocked.
585          */
586         unlock_page(page);
587
588         if (start < i_size) {
589                 _debug("write back %x @%llx [%llx]", len, start, i_size);
590
591                 iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
592                 ret = afs_store_data(vnode, &iter, start, false);
593         } else {
594                 _debug("write discard %x @%llx [%llx]", len, start, i_size);
595
596                 /* The dirty region was entirely beyond the EOF. */
597                 afs_pages_written_back(vnode, start, len);
598                 ret = 0;
599         }
600
601         switch (ret) {
602         case 0:
603                 wbc->nr_to_write = count;
604                 ret = len;
605                 break;
606
607         default:
608                 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
609                 fallthrough;
610         case -EACCES:
611         case -EPERM:
612         case -ENOKEY:
613         case -EKEYEXPIRED:
614         case -EKEYREJECTED:
615         case -EKEYREVOKED:
616                 afs_redirty_pages(wbc, mapping, start, len);
617                 mapping_set_error(mapping, ret);
618                 break;
619
620         case -EDQUOT:
621         case -ENOSPC:
622                 afs_redirty_pages(wbc, mapping, start, len);
623                 mapping_set_error(mapping, -ENOSPC);
624                 break;
625
626         case -EROFS:
627         case -EIO:
628         case -EREMOTEIO:
629         case -EFBIG:
630         case -ENOENT:
631         case -ENOMEDIUM:
632         case -ENXIO:
633                 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
634                 afs_kill_pages(mapping, start, len);
635                 mapping_set_error(mapping, ret);
636                 break;
637         }
638
639         _leave(" = %d", ret);
640         return ret;
641 }
642
643 /*
644  * write a page back to the server
645  * - the caller locked the page for us
646  */
647 int afs_writepage(struct page *page, struct writeback_control *wbc)
648 {
649         ssize_t ret;
650         loff_t start;
651
652         _enter("{%lx},", page->index);
653
654         start = page->index * PAGE_SIZE;
655         ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
656                                               start, LLONG_MAX - start);
657         if (ret < 0) {
658                 _leave(" = %zd", ret);
659                 return ret;
660         }
661
662         _leave(" = 0");
663         return 0;
664 }
665
666 /*
667  * write a region of pages back to the server
668  */
669 static int afs_writepages_region(struct address_space *mapping,
670                                  struct writeback_control *wbc,
671                                  loff_t start, loff_t end, loff_t *_next)
672 {
673         struct page *page;
674         ssize_t ret;
675         int n;
676
677         _enter("%llx,%llx,", start, end);
678
679         do {
680                 pgoff_t index = start / PAGE_SIZE;
681
682                 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
683                                              PAGECACHE_TAG_DIRTY, 1, &page);
684                 if (!n)
685                         break;
686
687                 start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */
688
689                 _debug("wback %lx", page->index);
690
691                 /* At this point we hold neither the i_pages lock nor the
692                  * page lock: the page may be truncated or invalidated
693                  * (changing page->mapping to NULL), or even swizzled
694                  * back from swapper_space to tmpfs file mapping
695                  */
696                 if (wbc->sync_mode != WB_SYNC_NONE) {
697                         ret = lock_page_killable(page);
698                         if (ret < 0) {
699                                 put_page(page);
700                                 return ret;
701                         }
702                 } else {
703                         if (!trylock_page(page)) {
704                                 put_page(page);
705                                 return 0;
706                         }
707                 }
708
709                 if (page->mapping != mapping || !PageDirty(page)) {
710                         start += thp_size(page);
711                         unlock_page(page);
712                         put_page(page);
713                         continue;
714                 }
715
716                 if (PageWriteback(page)) {
717                         unlock_page(page);
718                         if (wbc->sync_mode != WB_SYNC_NONE)
719                                 wait_on_page_writeback(page);
720                         put_page(page);
721                         continue;
722                 }
723
724                 if (!clear_page_dirty_for_io(page))
725                         BUG();
726                 ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end);
727                 put_page(page);
728                 if (ret < 0) {
729                         _leave(" = %zd", ret);
730                         return ret;
731                 }
732
733                 start += ret;
734
735                 cond_resched();
736         } while (wbc->nr_to_write > 0);
737
738         *_next = start;
739         _leave(" = 0 [%llx]", *_next);
740         return 0;
741 }
742
743 /*
744  * write some of the pending data back to the server
745  */
746 int afs_writepages(struct address_space *mapping,
747                    struct writeback_control *wbc)
748 {
749         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
750         loff_t start, next;
751         int ret;
752
753         _enter("");
754
755         /* We have to be careful as we can end up racing with setattr()
756          * truncating the pagecache since the caller doesn't take a lock here
757          * to prevent it.
758          */
759         if (wbc->sync_mode == WB_SYNC_ALL)
760                 down_read(&vnode->validate_lock);
761         else if (!down_read_trylock(&vnode->validate_lock))
762                 return 0;
763
764         if (wbc->range_cyclic) {
765                 start = mapping->writeback_index * PAGE_SIZE;
766                 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
767                 if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
768                         ret = afs_writepages_region(mapping, wbc, 0, start,
769                                                     &next);
770                 mapping->writeback_index = next / PAGE_SIZE;
771         } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
772                 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
773                 if (wbc->nr_to_write > 0)
774                         mapping->writeback_index = next;
775         } else {
776                 ret = afs_writepages_region(mapping, wbc,
777                                             wbc->range_start, wbc->range_end, &next);
778         }
779
780         up_read(&vnode->validate_lock);
781         _leave(" = %d", ret);
782         return ret;
783 }
784
785 /*
786  * write to an AFS file
787  */
788 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
789 {
790         struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
791         ssize_t result;
792         size_t count = iov_iter_count(from);
793
794         _enter("{%llx:%llu},{%zu},",
795                vnode->fid.vid, vnode->fid.vnode, count);
796
797         if (IS_SWAPFILE(&vnode->vfs_inode)) {
798                 printk(KERN_INFO
799                        "AFS: Attempt to write to active swap file!\n");
800                 return -EBUSY;
801         }
802
803         if (!count)
804                 return 0;
805
806         result = generic_file_write_iter(iocb, from);
807
808         _leave(" = %zd", result);
809         return result;
810 }
811
812 /*
813  * flush any dirty pages for this process, and check for write errors.
814  * - the return status from this call provides a reliable indication of
815  *   whether any write errors occurred for this process.
816  */
817 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
818 {
819         struct inode *inode = file_inode(file);
820         struct afs_vnode *vnode = AFS_FS_I(inode);
821
822         _enter("{%llx:%llu},{n=%pD},%d",
823                vnode->fid.vid, vnode->fid.vnode, file,
824                datasync);
825
826         return file_write_and_wait_range(file, start, end);
827 }
828
829 /*
830  * notification that a previously read-only page is about to become writable
831  * - if it returns an error, the caller will deliver a bus error signal
832  */
833 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
834 {
835         struct page *page = thp_head(vmf->page);
836         struct file *file = vmf->vma->vm_file;
837         struct inode *inode = file_inode(file);
838         struct afs_vnode *vnode = AFS_FS_I(inode);
839         unsigned long priv;
840
841         _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index);
842
843         sb_start_pagefault(inode->i_sb);
844
845         /* Wait for the page to be written to the cache before we allow it to
846          * be modified.  We then assume the entire page will need writing back.
847          */
848 #ifdef CONFIG_AFS_FSCACHE
849         if (PageFsCache(page) &&
850             wait_on_page_fscache_killable(page) < 0)
851                 return VM_FAULT_RETRY;
852 #endif
853
854         if (wait_on_page_writeback_killable(page))
855                 return VM_FAULT_RETRY;
856
857         if (lock_page_killable(page) < 0)
858                 return VM_FAULT_RETRY;
859
860         /* We mustn't change page->private until writeback is complete as that
861          * details the portion of the page we need to write back and we might
862          * need to redirty the page if there's a problem.
863          */
864         if (wait_on_page_writeback_killable(page) < 0) {
865                 unlock_page(page);
866                 return VM_FAULT_RETRY;
867         }
868
869         priv = afs_page_dirty(page, 0, thp_size(page));
870         priv = afs_page_dirty_mmapped(priv);
871         if (PagePrivate(page)) {
872                 set_page_private(page, priv);
873                 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page);
874         } else {
875                 attach_page_private(page, (void *)priv);
876                 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page);
877         }
878         file_update_time(file);
879
880         sb_end_pagefault(inode->i_sb);
881         return VM_FAULT_LOCKED;
882 }
883
884 /*
885  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
886  */
887 void afs_prune_wb_keys(struct afs_vnode *vnode)
888 {
889         LIST_HEAD(graveyard);
890         struct afs_wb_key *wbk, *tmp;
891
892         /* Discard unused keys */
893         spin_lock(&vnode->wb_lock);
894
895         if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
896             !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
897                 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
898                         if (refcount_read(&wbk->usage) == 1)
899                                 list_move(&wbk->vnode_link, &graveyard);
900                 }
901         }
902
903         spin_unlock(&vnode->wb_lock);
904
905         while (!list_empty(&graveyard)) {
906                 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
907                 list_del(&wbk->vnode_link);
908                 afs_put_wb_key(wbk);
909         }
910 }
911
912 /*
913  * Clean up a page during invalidation.
914  */
915 int afs_launder_page(struct page *page)
916 {
917         struct address_space *mapping = page->mapping;
918         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
919         struct iov_iter iter;
920         struct bio_vec bv[1];
921         unsigned long priv;
922         unsigned int f, t;
923         int ret = 0;
924
925         _enter("{%lx}", page->index);
926
927         priv = page_private(page);
928         if (clear_page_dirty_for_io(page)) {
929                 f = 0;
930                 t = thp_size(page);
931                 if (PagePrivate(page)) {
932                         f = afs_page_dirty_from(page, priv);
933                         t = afs_page_dirty_to(page, priv);
934                 }
935
936                 bv[0].bv_page = page;
937                 bv[0].bv_offset = f;
938                 bv[0].bv_len = t - f;
939                 iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
940
941                 trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
942                 ret = afs_store_data(vnode, &iter, (loff_t)page->index * PAGE_SIZE,
943                                      true);
944         }
945
946         trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
947         detach_page_private(page);
948         wait_on_page_fscache(page);
949         return ret;
950 }