Merge tag 'for-5.11/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / afs / write.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include "internal.h"
15
16 /*
17  * mark a page as having been made dirty and thus needing writeback
18  */
19 int afs_set_page_dirty(struct page *page)
20 {
21         _enter("");
22         return __set_page_dirty_nobuffers(page);
23 }
24
25 /*
26  * partly or wholly fill a page that's under preparation for writing
27  */
28 static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
29                          loff_t pos, unsigned int len, struct page *page)
30 {
31         struct afs_read *req;
32         size_t p;
33         void *data;
34         int ret;
35
36         _enter(",,%llu", (unsigned long long)pos);
37
38         if (pos >= vnode->vfs_inode.i_size) {
39                 p = pos & ~PAGE_MASK;
40                 ASSERTCMP(p + len, <=, PAGE_SIZE);
41                 data = kmap(page);
42                 memset(data + p, 0, len);
43                 kunmap(page);
44                 return 0;
45         }
46
47         req = kzalloc(struct_size(req, array, 1), GFP_KERNEL);
48         if (!req)
49                 return -ENOMEM;
50
51         refcount_set(&req->usage, 1);
52         req->pos = pos;
53         req->len = len;
54         req->nr_pages = 1;
55         req->pages = req->array;
56         req->pages[0] = page;
57         get_page(page);
58
59         ret = afs_fetch_data(vnode, key, req);
60         afs_put_read(req);
61         if (ret < 0) {
62                 if (ret == -ENOENT) {
63                         _debug("got NOENT from server"
64                                " - marking file deleted and stale");
65                         set_bit(AFS_VNODE_DELETED, &vnode->flags);
66                         ret = -ESTALE;
67                 }
68         }
69
70         _leave(" = %d", ret);
71         return ret;
72 }
73
74 /*
75  * prepare to perform part of a write to a page
76  */
77 int afs_write_begin(struct file *file, struct address_space *mapping,
78                     loff_t pos, unsigned len, unsigned flags,
79                     struct page **_page, void **fsdata)
80 {
81         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
82         struct page *page;
83         struct key *key = afs_file_key(file);
84         unsigned long priv;
85         unsigned f, from = pos & (PAGE_SIZE - 1);
86         unsigned t, to = from + len;
87         pgoff_t index = pos >> PAGE_SHIFT;
88         int ret;
89
90         _enter("{%llx:%llu},{%lx},%u,%u",
91                vnode->fid.vid, vnode->fid.vnode, index, from, to);
92
93         page = grab_cache_page_write_begin(mapping, index, flags);
94         if (!page)
95                 return -ENOMEM;
96
97         if (!PageUptodate(page) && len != PAGE_SIZE) {
98                 ret = afs_fill_page(vnode, key, pos & PAGE_MASK, PAGE_SIZE, page);
99                 if (ret < 0) {
100                         unlock_page(page);
101                         put_page(page);
102                         _leave(" = %d [prep]", ret);
103                         return ret;
104                 }
105                 SetPageUptodate(page);
106         }
107
108 try_again:
109         /* See if this page is already partially written in a way that we can
110          * merge the new write with.
111          */
112         t = f = 0;
113         if (PagePrivate(page)) {
114                 priv = page_private(page);
115                 f = afs_page_dirty_from(priv);
116                 t = afs_page_dirty_to(priv);
117                 ASSERTCMP(f, <=, t);
118         }
119
120         if (f != t) {
121                 if (PageWriteback(page)) {
122                         trace_afs_page_dirty(vnode, tracepoint_string("alrdy"),
123                                              page->index, priv);
124                         goto flush_conflicting_write;
125                 }
126                 /* If the file is being filled locally, allow inter-write
127                  * spaces to be merged into writes.  If it's not, only write
128                  * back what the user gives us.
129                  */
130                 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
131                     (to < f || from > t))
132                         goto flush_conflicting_write;
133         }
134
135         *_page = page;
136         _leave(" = 0");
137         return 0;
138
139         /* The previous write and this write aren't adjacent or overlapping, so
140          * flush the page out.
141          */
142 flush_conflicting_write:
143         _debug("flush conflict");
144         ret = write_one_page(page);
145         if (ret < 0)
146                 goto error;
147
148         ret = lock_page_killable(page);
149         if (ret < 0)
150                 goto error;
151         goto try_again;
152
153 error:
154         put_page(page);
155         _leave(" = %d", ret);
156         return ret;
157 }
158
159 /*
160  * finalise part of a write to a page
161  */
162 int afs_write_end(struct file *file, struct address_space *mapping,
163                   loff_t pos, unsigned len, unsigned copied,
164                   struct page *page, void *fsdata)
165 {
166         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
167         struct key *key = afs_file_key(file);
168         unsigned long priv;
169         unsigned int f, from = pos & (PAGE_SIZE - 1);
170         unsigned int t, to = from + copied;
171         loff_t i_size, maybe_i_size;
172         int ret = 0;
173
174         _enter("{%llx:%llu},{%lx}",
175                vnode->fid.vid, vnode->fid.vnode, page->index);
176
177         if (copied == 0)
178                 goto out;
179
180         maybe_i_size = pos + copied;
181
182         i_size = i_size_read(&vnode->vfs_inode);
183         if (maybe_i_size > i_size) {
184                 write_seqlock(&vnode->cb_lock);
185                 i_size = i_size_read(&vnode->vfs_inode);
186                 if (maybe_i_size > i_size)
187                         i_size_write(&vnode->vfs_inode, maybe_i_size);
188                 write_sequnlock(&vnode->cb_lock);
189         }
190
191         if (!PageUptodate(page)) {
192                 if (copied < len) {
193                         /* Try and load any missing data from the server.  The
194                          * unmarshalling routine will take care of clearing any
195                          * bits that are beyond the EOF.
196                          */
197                         ret = afs_fill_page(vnode, key, pos + copied,
198                                             len - copied, page);
199                         if (ret < 0)
200                                 goto out;
201                 }
202                 SetPageUptodate(page);
203         }
204
205         if (PagePrivate(page)) {
206                 priv = page_private(page);
207                 f = afs_page_dirty_from(priv);
208                 t = afs_page_dirty_to(priv);
209                 if (from < f)
210                         f = from;
211                 if (to > t)
212                         t = to;
213                 priv = afs_page_dirty(f, t);
214                 set_page_private(page, priv);
215                 trace_afs_page_dirty(vnode, tracepoint_string("dirty+"),
216                                      page->index, priv);
217         } else {
218                 priv = afs_page_dirty(from, to);
219                 attach_page_private(page, (void *)priv);
220                 trace_afs_page_dirty(vnode, tracepoint_string("dirty"),
221                                      page->index, priv);
222         }
223
224         set_page_dirty(page);
225         if (PageDirty(page))
226                 _debug("dirtied");
227         ret = copied;
228
229 out:
230         unlock_page(page);
231         put_page(page);
232         return ret;
233 }
234
235 /*
236  * kill all the pages in the given range
237  */
238 static void afs_kill_pages(struct address_space *mapping,
239                            pgoff_t first, pgoff_t last)
240 {
241         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
242         struct pagevec pv;
243         unsigned count, loop;
244
245         _enter("{%llx:%llu},%lx-%lx",
246                vnode->fid.vid, vnode->fid.vnode, first, last);
247
248         pagevec_init(&pv);
249
250         do {
251                 _debug("kill %lx-%lx", first, last);
252
253                 count = last - first + 1;
254                 if (count > PAGEVEC_SIZE)
255                         count = PAGEVEC_SIZE;
256                 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
257                 ASSERTCMP(pv.nr, ==, count);
258
259                 for (loop = 0; loop < count; loop++) {
260                         struct page *page = pv.pages[loop];
261                         ClearPageUptodate(page);
262                         SetPageError(page);
263                         end_page_writeback(page);
264                         if (page->index >= first)
265                                 first = page->index + 1;
266                         lock_page(page);
267                         generic_error_remove_page(mapping, page);
268                         unlock_page(page);
269                 }
270
271                 __pagevec_release(&pv);
272         } while (first <= last);
273
274         _leave("");
275 }
276
277 /*
278  * Redirty all the pages in a given range.
279  */
280 static void afs_redirty_pages(struct writeback_control *wbc,
281                               struct address_space *mapping,
282                               pgoff_t first, pgoff_t last)
283 {
284         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
285         struct pagevec pv;
286         unsigned count, loop;
287
288         _enter("{%llx:%llu},%lx-%lx",
289                vnode->fid.vid, vnode->fid.vnode, first, last);
290
291         pagevec_init(&pv);
292
293         do {
294                 _debug("redirty %lx-%lx", first, last);
295
296                 count = last - first + 1;
297                 if (count > PAGEVEC_SIZE)
298                         count = PAGEVEC_SIZE;
299                 pv.nr = find_get_pages_contig(mapping, first, count, pv.pages);
300                 ASSERTCMP(pv.nr, ==, count);
301
302                 for (loop = 0; loop < count; loop++) {
303                         struct page *page = pv.pages[loop];
304
305                         redirty_page_for_writepage(wbc, page);
306                         end_page_writeback(page);
307                         if (page->index >= first)
308                                 first = page->index + 1;
309                 }
310
311                 __pagevec_release(&pv);
312         } while (first <= last);
313
314         _leave("");
315 }
316
317 /*
318  * completion of write to server
319  */
320 static void afs_pages_written_back(struct afs_vnode *vnode,
321                                    pgoff_t first, pgoff_t last)
322 {
323         struct pagevec pv;
324         unsigned long priv;
325         unsigned count, loop;
326
327         _enter("{%llx:%llu},{%lx-%lx}",
328                vnode->fid.vid, vnode->fid.vnode, first, last);
329
330         pagevec_init(&pv);
331
332         do {
333                 _debug("done %lx-%lx", first, last);
334
335                 count = last - first + 1;
336                 if (count > PAGEVEC_SIZE)
337                         count = PAGEVEC_SIZE;
338                 pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
339                                               first, count, pv.pages);
340                 ASSERTCMP(pv.nr, ==, count);
341
342                 for (loop = 0; loop < count; loop++) {
343                         priv = (unsigned long)detach_page_private(pv.pages[loop]);
344                         trace_afs_page_dirty(vnode, tracepoint_string("clear"),
345                                              pv.pages[loop]->index, priv);
346                         end_page_writeback(pv.pages[loop]);
347                 }
348                 first += count;
349                 __pagevec_release(&pv);
350         } while (first <= last);
351
352         afs_prune_wb_keys(vnode);
353         _leave("");
354 }
355
356 /*
357  * Find a key to use for the writeback.  We cached the keys used to author the
358  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
359  * and we need to start from there if it's set.
360  */
361 static int afs_get_writeback_key(struct afs_vnode *vnode,
362                                  struct afs_wb_key **_wbk)
363 {
364         struct afs_wb_key *wbk = NULL;
365         struct list_head *p;
366         int ret = -ENOKEY, ret2;
367
368         spin_lock(&vnode->wb_lock);
369         if (*_wbk)
370                 p = (*_wbk)->vnode_link.next;
371         else
372                 p = vnode->wb_keys.next;
373
374         while (p != &vnode->wb_keys) {
375                 wbk = list_entry(p, struct afs_wb_key, vnode_link);
376                 _debug("wbk %u", key_serial(wbk->key));
377                 ret2 = key_validate(wbk->key);
378                 if (ret2 == 0) {
379                         refcount_inc(&wbk->usage);
380                         _debug("USE WB KEY %u", key_serial(wbk->key));
381                         break;
382                 }
383
384                 wbk = NULL;
385                 if (ret == -ENOKEY)
386                         ret = ret2;
387                 p = p->next;
388         }
389
390         spin_unlock(&vnode->wb_lock);
391         if (*_wbk)
392                 afs_put_wb_key(*_wbk);
393         *_wbk = wbk;
394         return 0;
395 }
396
397 static void afs_store_data_success(struct afs_operation *op)
398 {
399         struct afs_vnode *vnode = op->file[0].vnode;
400
401         op->ctime = op->file[0].scb.status.mtime_client;
402         afs_vnode_commit_status(op, &op->file[0]);
403         if (op->error == 0) {
404                 if (!op->store.laundering)
405                         afs_pages_written_back(vnode, op->store.first, op->store.last);
406                 afs_stat_v(vnode, n_stores);
407                 atomic_long_add((op->store.last * PAGE_SIZE + op->store.last_to) -
408                                 (op->store.first * PAGE_SIZE + op->store.first_offset),
409                                 &afs_v2net(vnode)->n_store_bytes);
410         }
411 }
412
413 static const struct afs_operation_ops afs_store_data_operation = {
414         .issue_afs_rpc  = afs_fs_store_data,
415         .issue_yfs_rpc  = yfs_fs_store_data,
416         .success        = afs_store_data_success,
417 };
418
419 /*
420  * write to a file
421  */
422 static int afs_store_data(struct address_space *mapping,
423                           pgoff_t first, pgoff_t last,
424                           unsigned offset, unsigned to, bool laundering)
425 {
426         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
427         struct afs_operation *op;
428         struct afs_wb_key *wbk = NULL;
429         int ret;
430
431         _enter("%s{%llx:%llu.%u},%lx,%lx,%x,%x",
432                vnode->volume->name,
433                vnode->fid.vid,
434                vnode->fid.vnode,
435                vnode->fid.unique,
436                first, last, offset, to);
437
438         ret = afs_get_writeback_key(vnode, &wbk);
439         if (ret) {
440                 _leave(" = %d [no keys]", ret);
441                 return ret;
442         }
443
444         op = afs_alloc_operation(wbk->key, vnode->volume);
445         if (IS_ERR(op)) {
446                 afs_put_wb_key(wbk);
447                 return -ENOMEM;
448         }
449
450         afs_op_set_vnode(op, 0, vnode);
451         op->file[0].dv_delta = 1;
452         op->store.mapping = mapping;
453         op->store.first = first;
454         op->store.last = last;
455         op->store.first_offset = offset;
456         op->store.last_to = to;
457         op->store.laundering = laundering;
458         op->mtime = vnode->vfs_inode.i_mtime;
459         op->flags |= AFS_OPERATION_UNINTR;
460         op->ops = &afs_store_data_operation;
461
462 try_next_key:
463         afs_begin_vnode_operation(op);
464         afs_wait_for_operation(op);
465
466         switch (op->error) {
467         case -EACCES:
468         case -EPERM:
469         case -ENOKEY:
470         case -EKEYEXPIRED:
471         case -EKEYREJECTED:
472         case -EKEYREVOKED:
473                 _debug("next");
474
475                 ret = afs_get_writeback_key(vnode, &wbk);
476                 if (ret == 0) {
477                         key_put(op->key);
478                         op->key = key_get(wbk->key);
479                         goto try_next_key;
480                 }
481                 break;
482         }
483
484         afs_put_wb_key(wbk);
485         _leave(" = %d", op->error);
486         return afs_put_operation(op);
487 }
488
489 /*
490  * Synchronously write back the locked page and any subsequent non-locked dirty
491  * pages.
492  */
493 static int afs_write_back_from_locked_page(struct address_space *mapping,
494                                            struct writeback_control *wbc,
495                                            struct page *primary_page,
496                                            pgoff_t final_page)
497 {
498         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
499         struct page *pages[8], *page;
500         unsigned long count, priv;
501         unsigned n, offset, to, f, t;
502         pgoff_t start, first, last;
503         loff_t i_size, end;
504         int loop, ret;
505
506         _enter(",%lx", primary_page->index);
507
508         count = 1;
509         if (test_set_page_writeback(primary_page))
510                 BUG();
511
512         /* Find all consecutive lockable dirty pages that have contiguous
513          * written regions, stopping when we find a page that is not
514          * immediately lockable, is not dirty or is missing, or we reach the
515          * end of the range.
516          */
517         start = primary_page->index;
518         priv = page_private(primary_page);
519         offset = afs_page_dirty_from(priv);
520         to = afs_page_dirty_to(priv);
521         trace_afs_page_dirty(vnode, tracepoint_string("store"),
522                              primary_page->index, priv);
523
524         WARN_ON(offset == to);
525         if (offset == to)
526                 trace_afs_page_dirty(vnode, tracepoint_string("WARN"),
527                                      primary_page->index, priv);
528
529         if (start >= final_page ||
530             (to < PAGE_SIZE && !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)))
531                 goto no_more;
532
533         start++;
534         do {
535                 _debug("more %lx [%lx]", start, count);
536                 n = final_page - start + 1;
537                 if (n > ARRAY_SIZE(pages))
538                         n = ARRAY_SIZE(pages);
539                 n = find_get_pages_contig(mapping, start, ARRAY_SIZE(pages), pages);
540                 _debug("fgpc %u", n);
541                 if (n == 0)
542                         goto no_more;
543                 if (pages[0]->index != start) {
544                         do {
545                                 put_page(pages[--n]);
546                         } while (n > 0);
547                         goto no_more;
548                 }
549
550                 for (loop = 0; loop < n; loop++) {
551                         page = pages[loop];
552                         if (to != PAGE_SIZE &&
553                             !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags))
554                                 break;
555                         if (page->index > final_page)
556                                 break;
557                         if (!trylock_page(page))
558                                 break;
559                         if (!PageDirty(page) || PageWriteback(page)) {
560                                 unlock_page(page);
561                                 break;
562                         }
563
564                         priv = page_private(page);
565                         f = afs_page_dirty_from(priv);
566                         t = afs_page_dirty_to(priv);
567                         if (f != 0 &&
568                             !test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags)) {
569                                 unlock_page(page);
570                                 break;
571                         }
572                         to = t;
573
574                         trace_afs_page_dirty(vnode, tracepoint_string("store+"),
575                                              page->index, priv);
576
577                         if (!clear_page_dirty_for_io(page))
578                                 BUG();
579                         if (test_set_page_writeback(page))
580                                 BUG();
581                         unlock_page(page);
582                         put_page(page);
583                 }
584                 count += loop;
585                 if (loop < n) {
586                         for (; loop < n; loop++)
587                                 put_page(pages[loop]);
588                         goto no_more;
589                 }
590
591                 start += loop;
592         } while (start <= final_page && count < 65536);
593
594 no_more:
595         /* We now have a contiguous set of dirty pages, each with writeback
596          * set; the first page is still locked at this point, but all the rest
597          * have been unlocked.
598          */
599         unlock_page(primary_page);
600
601         first = primary_page->index;
602         last = first + count - 1;
603
604         end = (loff_t)last * PAGE_SIZE + to;
605         i_size = i_size_read(&vnode->vfs_inode);
606
607         _debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
608         if (end > i_size)
609                 to = i_size & ~PAGE_MASK;
610
611         ret = afs_store_data(mapping, first, last, offset, to, false);
612         switch (ret) {
613         case 0:
614                 ret = count;
615                 break;
616
617         default:
618                 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
619                 fallthrough;
620         case -EACCES:
621         case -EPERM:
622         case -ENOKEY:
623         case -EKEYEXPIRED:
624         case -EKEYREJECTED:
625         case -EKEYREVOKED:
626                 afs_redirty_pages(wbc, mapping, first, last);
627                 mapping_set_error(mapping, ret);
628                 break;
629
630         case -EDQUOT:
631         case -ENOSPC:
632                 afs_redirty_pages(wbc, mapping, first, last);
633                 mapping_set_error(mapping, -ENOSPC);
634                 break;
635
636         case -EROFS:
637         case -EIO:
638         case -EREMOTEIO:
639         case -EFBIG:
640         case -ENOENT:
641         case -ENOMEDIUM:
642         case -ENXIO:
643                 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
644                 afs_kill_pages(mapping, first, last);
645                 mapping_set_error(mapping, ret);
646                 break;
647         }
648
649         _leave(" = %d", ret);
650         return ret;
651 }
652
653 /*
654  * write a page back to the server
655  * - the caller locked the page for us
656  */
657 int afs_writepage(struct page *page, struct writeback_control *wbc)
658 {
659         int ret;
660
661         _enter("{%lx},", page->index);
662
663         ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
664                                               wbc->range_end >> PAGE_SHIFT);
665         if (ret < 0) {
666                 _leave(" = %d", ret);
667                 return 0;
668         }
669
670         wbc->nr_to_write -= ret;
671
672         _leave(" = 0");
673         return 0;
674 }
675
676 /*
677  * write a region of pages back to the server
678  */
679 static int afs_writepages_region(struct address_space *mapping,
680                                  struct writeback_control *wbc,
681                                  pgoff_t index, pgoff_t end, pgoff_t *_next)
682 {
683         struct page *page;
684         int ret, n;
685
686         _enter(",,%lx,%lx,", index, end);
687
688         do {
689                 n = find_get_pages_range_tag(mapping, &index, end,
690                                         PAGECACHE_TAG_DIRTY, 1, &page);
691                 if (!n)
692                         break;
693
694                 _debug("wback %lx", page->index);
695
696                 /*
697                  * at this point we hold neither the i_pages lock nor the
698                  * page lock: the page may be truncated or invalidated
699                  * (changing page->mapping to NULL), or even swizzled
700                  * back from swapper_space to tmpfs file mapping
701                  */
702                 ret = lock_page_killable(page);
703                 if (ret < 0) {
704                         put_page(page);
705                         _leave(" = %d", ret);
706                         return ret;
707                 }
708
709                 if (page->mapping != mapping || !PageDirty(page)) {
710                         unlock_page(page);
711                         put_page(page);
712                         continue;
713                 }
714
715                 if (PageWriteback(page)) {
716                         unlock_page(page);
717                         if (wbc->sync_mode != WB_SYNC_NONE)
718                                 wait_on_page_writeback(page);
719                         put_page(page);
720                         continue;
721                 }
722
723                 if (!clear_page_dirty_for_io(page))
724                         BUG();
725                 ret = afs_write_back_from_locked_page(mapping, wbc, page, end);
726                 put_page(page);
727                 if (ret < 0) {
728                         _leave(" = %d", ret);
729                         return ret;
730                 }
731
732                 wbc->nr_to_write -= ret;
733
734                 cond_resched();
735         } while (index < end && wbc->nr_to_write > 0);
736
737         *_next = index;
738         _leave(" = 0 [%lx]", *_next);
739         return 0;
740 }
741
742 /*
743  * write some of the pending data back to the server
744  */
745 int afs_writepages(struct address_space *mapping,
746                    struct writeback_control *wbc)
747 {
748         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
749         pgoff_t start, end, next;
750         int ret;
751
752         _enter("");
753
754         /* We have to be careful as we can end up racing with setattr()
755          * truncating the pagecache since the caller doesn't take a lock here
756          * to prevent it.
757          */
758         if (wbc->sync_mode == WB_SYNC_ALL)
759                 down_read(&vnode->validate_lock);
760         else if (!down_read_trylock(&vnode->validate_lock))
761                 return 0;
762
763         if (wbc->range_cyclic) {
764                 start = mapping->writeback_index;
765                 end = -1;
766                 ret = afs_writepages_region(mapping, wbc, start, end, &next);
767                 if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
768                         ret = afs_writepages_region(mapping, wbc, 0, start,
769                                                     &next);
770                 mapping->writeback_index = next;
771         } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
772                 end = (pgoff_t)(LLONG_MAX >> PAGE_SHIFT);
773                 ret = afs_writepages_region(mapping, wbc, 0, end, &next);
774                 if (wbc->nr_to_write > 0)
775                         mapping->writeback_index = next;
776         } else {
777                 start = wbc->range_start >> PAGE_SHIFT;
778                 end = wbc->range_end >> PAGE_SHIFT;
779                 ret = afs_writepages_region(mapping, wbc, start, end, &next);
780         }
781
782         up_read(&vnode->validate_lock);
783         _leave(" = %d", ret);
784         return ret;
785 }
786
787 /*
788  * write to an AFS file
789  */
790 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
791 {
792         struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
793         ssize_t result;
794         size_t count = iov_iter_count(from);
795
796         _enter("{%llx:%llu},{%zu},",
797                vnode->fid.vid, vnode->fid.vnode, count);
798
799         if (IS_SWAPFILE(&vnode->vfs_inode)) {
800                 printk(KERN_INFO
801                        "AFS: Attempt to write to active swap file!\n");
802                 return -EBUSY;
803         }
804
805         if (!count)
806                 return 0;
807
808         result = generic_file_write_iter(iocb, from);
809
810         _leave(" = %zd", result);
811         return result;
812 }
813
814 /*
815  * flush any dirty pages for this process, and check for write errors.
816  * - the return status from this call provides a reliable indication of
817  *   whether any write errors occurred for this process.
818  */
819 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
820 {
821         struct inode *inode = file_inode(file);
822         struct afs_vnode *vnode = AFS_FS_I(inode);
823
824         _enter("{%llx:%llu},{n=%pD},%d",
825                vnode->fid.vid, vnode->fid.vnode, file,
826                datasync);
827
828         return file_write_and_wait_range(file, start, end);
829 }
830
831 /*
832  * notification that a previously read-only page is about to become writable
833  * - if it returns an error, the caller will deliver a bus error signal
834  */
835 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
836 {
837         struct file *file = vmf->vma->vm_file;
838         struct inode *inode = file_inode(file);
839         struct afs_vnode *vnode = AFS_FS_I(inode);
840         unsigned long priv;
841
842         _enter("{{%llx:%llu}},{%lx}",
843                vnode->fid.vid, vnode->fid.vnode, vmf->page->index);
844
845         sb_start_pagefault(inode->i_sb);
846
847         /* Wait for the page to be written to the cache before we allow it to
848          * be modified.  We then assume the entire page will need writing back.
849          */
850 #ifdef CONFIG_AFS_FSCACHE
851         fscache_wait_on_page_write(vnode->cache, vmf->page);
852 #endif
853
854         if (PageWriteback(vmf->page) &&
855             wait_on_page_bit_killable(vmf->page, PG_writeback) < 0)
856                 return VM_FAULT_RETRY;
857
858         if (lock_page_killable(vmf->page) < 0)
859                 return VM_FAULT_RETRY;
860
861         /* We mustn't change page->private until writeback is complete as that
862          * details the portion of the page we need to write back and we might
863          * need to redirty the page if there's a problem.
864          */
865         wait_on_page_writeback(vmf->page);
866
867         priv = afs_page_dirty(0, PAGE_SIZE);
868         priv = afs_page_dirty_mmapped(priv);
869         trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"),
870                              vmf->page->index, priv);
871         if (PagePrivate(vmf->page))
872                 set_page_private(vmf->page, priv);
873         else
874                 attach_page_private(vmf->page, (void *)priv);
875         file_update_time(file);
876
877         sb_end_pagefault(inode->i_sb);
878         return VM_FAULT_LOCKED;
879 }
880
881 /*
882  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
883  */
884 void afs_prune_wb_keys(struct afs_vnode *vnode)
885 {
886         LIST_HEAD(graveyard);
887         struct afs_wb_key *wbk, *tmp;
888
889         /* Discard unused keys */
890         spin_lock(&vnode->wb_lock);
891
892         if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
893             !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
894                 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
895                         if (refcount_read(&wbk->usage) == 1)
896                                 list_move(&wbk->vnode_link, &graveyard);
897                 }
898         }
899
900         spin_unlock(&vnode->wb_lock);
901
902         while (!list_empty(&graveyard)) {
903                 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
904                 list_del(&wbk->vnode_link);
905                 afs_put_wb_key(wbk);
906         }
907 }
908
909 /*
910  * Clean up a page during invalidation.
911  */
912 int afs_launder_page(struct page *page)
913 {
914         struct address_space *mapping = page->mapping;
915         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
916         unsigned long priv;
917         unsigned int f, t;
918         int ret = 0;
919
920         _enter("{%lx}", page->index);
921
922         priv = page_private(page);
923         if (clear_page_dirty_for_io(page)) {
924                 f = 0;
925                 t = PAGE_SIZE;
926                 if (PagePrivate(page)) {
927                         f = afs_page_dirty_from(priv);
928                         t = afs_page_dirty_to(priv);
929                 }
930
931                 trace_afs_page_dirty(vnode, tracepoint_string("launder"),
932                                      page->index, priv);
933                 ret = afs_store_data(mapping, page->index, page->index, t, f, true);
934         }
935
936         priv = (unsigned long)detach_page_private(page);
937         trace_afs_page_dirty(vnode, tracepoint_string("laundered"),
938                              page->index, priv);
939
940 #ifdef CONFIG_AFS_FSCACHE
941         if (PageFsCache(page)) {
942                 fscache_wait_on_page_write(vnode->cache, page);
943                 fscache_uncache_page(vnode->cache, page);
944         }
945 #endif
946         return ret;
947 }