Merge tag 'netfs-fixes-20210621' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / fs / afs / write.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* handling of writes to regular files and writing back to the server
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/backing-dev.h>
9 #include <linux/slab.h>
10 #include <linux/fs.h>
11 #include <linux/pagemap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/netfs.h>
15 #include <linux/fscache.h>
16 #include "internal.h"
17
18 /*
19  * mark a page as having been made dirty and thus needing writeback
20  */
21 int afs_set_page_dirty(struct page *page)
22 {
23         _enter("");
24         return __set_page_dirty_nobuffers(page);
25 }
26
27 /*
28  * prepare to perform part of a write to a page
29  */
30 int afs_write_begin(struct file *file, struct address_space *mapping,
31                     loff_t pos, unsigned len, unsigned flags,
32                     struct page **_page, void **fsdata)
33 {
34         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
35         struct page *page;
36         unsigned long priv;
37         unsigned f, from;
38         unsigned t, to;
39         pgoff_t index;
40         int ret;
41
42         _enter("{%llx:%llu},%llx,%x",
43                vnode->fid.vid, vnode->fid.vnode, pos, len);
44
45         /* Prefetch area to be written into the cache if we're caching this
46          * file.  We need to do this before we get a lock on the page in case
47          * there's more than one writer competing for the same cache block.
48          */
49         ret = netfs_write_begin(file, mapping, pos, len, flags, &page, fsdata,
50                                 &afs_req_ops, NULL);
51         if (ret < 0)
52                 return ret;
53
54         index = page->index;
55         from = pos - index * PAGE_SIZE;
56         to = from + len;
57
58 try_again:
59         /* See if this page is already partially written in a way that we can
60          * merge the new write with.
61          */
62         if (PagePrivate(page)) {
63                 priv = page_private(page);
64                 f = afs_page_dirty_from(page, priv);
65                 t = afs_page_dirty_to(page, priv);
66                 ASSERTCMP(f, <=, t);
67
68                 if (PageWriteback(page)) {
69                         trace_afs_page_dirty(vnode, tracepoint_string("alrdy"), page);
70                         goto flush_conflicting_write;
71                 }
72                 /* If the file is being filled locally, allow inter-write
73                  * spaces to be merged into writes.  If it's not, only write
74                  * back what the user gives us.
75                  */
76                 if (!test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags) &&
77                     (to < f || from > t))
78                         goto flush_conflicting_write;
79         }
80
81         *_page = page;
82         _leave(" = 0");
83         return 0;
84
85         /* The previous write and this write aren't adjacent or overlapping, so
86          * flush the page out.
87          */
88 flush_conflicting_write:
89         _debug("flush conflict");
90         ret = write_one_page(page);
91         if (ret < 0)
92                 goto error;
93
94         ret = lock_page_killable(page);
95         if (ret < 0)
96                 goto error;
97         goto try_again;
98
99 error:
100         put_page(page);
101         _leave(" = %d", ret);
102         return ret;
103 }
104
105 /*
106  * finalise part of a write to a page
107  */
108 int afs_write_end(struct file *file, struct address_space *mapping,
109                   loff_t pos, unsigned len, unsigned copied,
110                   struct page *page, void *fsdata)
111 {
112         struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
113         unsigned long priv;
114         unsigned int f, from = pos & (thp_size(page) - 1);
115         unsigned int t, to = from + copied;
116         loff_t i_size, maybe_i_size;
117
118         _enter("{%llx:%llu},{%lx}",
119                vnode->fid.vid, vnode->fid.vnode, page->index);
120
121         if (!PageUptodate(page)) {
122                 if (copied < len) {
123                         copied = 0;
124                         goto out;
125                 }
126
127                 SetPageUptodate(page);
128         }
129
130         if (copied == 0)
131                 goto out;
132
133         maybe_i_size = pos + copied;
134
135         i_size = i_size_read(&vnode->vfs_inode);
136         if (maybe_i_size > i_size) {
137                 write_seqlock(&vnode->cb_lock);
138                 i_size = i_size_read(&vnode->vfs_inode);
139                 if (maybe_i_size > i_size)
140                         i_size_write(&vnode->vfs_inode, maybe_i_size);
141                 write_sequnlock(&vnode->cb_lock);
142         }
143
144         if (PagePrivate(page)) {
145                 priv = page_private(page);
146                 f = afs_page_dirty_from(page, priv);
147                 t = afs_page_dirty_to(page, priv);
148                 if (from < f)
149                         f = from;
150                 if (to > t)
151                         t = to;
152                 priv = afs_page_dirty(page, f, t);
153                 set_page_private(page, priv);
154                 trace_afs_page_dirty(vnode, tracepoint_string("dirty+"), page);
155         } else {
156                 priv = afs_page_dirty(page, from, to);
157                 attach_page_private(page, (void *)priv);
158                 trace_afs_page_dirty(vnode, tracepoint_string("dirty"), page);
159         }
160
161         if (set_page_dirty(page))
162                 _debug("dirtied %lx", page->index);
163
164 out:
165         unlock_page(page);
166         put_page(page);
167         return copied;
168 }
169
170 /*
171  * kill all the pages in the given range
172  */
173 static void afs_kill_pages(struct address_space *mapping,
174                            loff_t start, loff_t len)
175 {
176         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
177         struct pagevec pv;
178         unsigned int loop, psize;
179
180         _enter("{%llx:%llu},%llx @%llx",
181                vnode->fid.vid, vnode->fid.vnode, len, start);
182
183         pagevec_init(&pv);
184
185         do {
186                 _debug("kill %llx @%llx", len, start);
187
188                 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
189                                               PAGEVEC_SIZE, pv.pages);
190                 if (pv.nr == 0)
191                         break;
192
193                 for (loop = 0; loop < pv.nr; loop++) {
194                         struct page *page = pv.pages[loop];
195
196                         if (page->index * PAGE_SIZE >= start + len)
197                                 break;
198
199                         psize = thp_size(page);
200                         start += psize;
201                         len -= psize;
202                         ClearPageUptodate(page);
203                         end_page_writeback(page);
204                         lock_page(page);
205                         generic_error_remove_page(mapping, page);
206                         unlock_page(page);
207                 }
208
209                 __pagevec_release(&pv);
210         } while (len > 0);
211
212         _leave("");
213 }
214
215 /*
216  * Redirty all the pages in a given range.
217  */
218 static void afs_redirty_pages(struct writeback_control *wbc,
219                               struct address_space *mapping,
220                               loff_t start, loff_t len)
221 {
222         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
223         struct pagevec pv;
224         unsigned int loop, psize;
225
226         _enter("{%llx:%llu},%llx @%llx",
227                vnode->fid.vid, vnode->fid.vnode, len, start);
228
229         pagevec_init(&pv);
230
231         do {
232                 _debug("redirty %llx @%llx", len, start);
233
234                 pv.nr = find_get_pages_contig(mapping, start / PAGE_SIZE,
235                                               PAGEVEC_SIZE, pv.pages);
236                 if (pv.nr == 0)
237                         break;
238
239                 for (loop = 0; loop < pv.nr; loop++) {
240                         struct page *page = pv.pages[loop];
241
242                         if (page->index * PAGE_SIZE >= start + len)
243                                 break;
244
245                         psize = thp_size(page);
246                         start += psize;
247                         len -= psize;
248                         redirty_page_for_writepage(wbc, page);
249                         end_page_writeback(page);
250                 }
251
252                 __pagevec_release(&pv);
253         } while (len > 0);
254
255         _leave("");
256 }
257
258 /*
259  * completion of write to server
260  */
261 static void afs_pages_written_back(struct afs_vnode *vnode, loff_t start, unsigned int len)
262 {
263         struct address_space *mapping = vnode->vfs_inode.i_mapping;
264         struct page *page;
265         pgoff_t end;
266
267         XA_STATE(xas, &mapping->i_pages, start / PAGE_SIZE);
268
269         _enter("{%llx:%llu},{%x @%llx}",
270                vnode->fid.vid, vnode->fid.vnode, len, start);
271
272         rcu_read_lock();
273
274         end = (start + len - 1) / PAGE_SIZE;
275         xas_for_each(&xas, page, end) {
276                 if (!PageWriteback(page)) {
277                         kdebug("bad %x @%llx page %lx %lx", len, start, page->index, end);
278                         ASSERT(PageWriteback(page));
279                 }
280
281                 trace_afs_page_dirty(vnode, tracepoint_string("clear"), page);
282                 detach_page_private(page);
283                 page_endio(page, true, 0);
284         }
285
286         rcu_read_unlock();
287
288         afs_prune_wb_keys(vnode);
289         _leave("");
290 }
291
292 /*
293  * Find a key to use for the writeback.  We cached the keys used to author the
294  * writes on the vnode.  *_wbk will contain the last writeback key used or NULL
295  * and we need to start from there if it's set.
296  */
297 static int afs_get_writeback_key(struct afs_vnode *vnode,
298                                  struct afs_wb_key **_wbk)
299 {
300         struct afs_wb_key *wbk = NULL;
301         struct list_head *p;
302         int ret = -ENOKEY, ret2;
303
304         spin_lock(&vnode->wb_lock);
305         if (*_wbk)
306                 p = (*_wbk)->vnode_link.next;
307         else
308                 p = vnode->wb_keys.next;
309
310         while (p != &vnode->wb_keys) {
311                 wbk = list_entry(p, struct afs_wb_key, vnode_link);
312                 _debug("wbk %u", key_serial(wbk->key));
313                 ret2 = key_validate(wbk->key);
314                 if (ret2 == 0) {
315                         refcount_inc(&wbk->usage);
316                         _debug("USE WB KEY %u", key_serial(wbk->key));
317                         break;
318                 }
319
320                 wbk = NULL;
321                 if (ret == -ENOKEY)
322                         ret = ret2;
323                 p = p->next;
324         }
325
326         spin_unlock(&vnode->wb_lock);
327         if (*_wbk)
328                 afs_put_wb_key(*_wbk);
329         *_wbk = wbk;
330         return 0;
331 }
332
333 static void afs_store_data_success(struct afs_operation *op)
334 {
335         struct afs_vnode *vnode = op->file[0].vnode;
336
337         op->ctime = op->file[0].scb.status.mtime_client;
338         afs_vnode_commit_status(op, &op->file[0]);
339         if (op->error == 0) {
340                 if (!op->store.laundering)
341                         afs_pages_written_back(vnode, op->store.pos, op->store.size);
342                 afs_stat_v(vnode, n_stores);
343                 atomic_long_add(op->store.size, &afs_v2net(vnode)->n_store_bytes);
344         }
345 }
346
347 static const struct afs_operation_ops afs_store_data_operation = {
348         .issue_afs_rpc  = afs_fs_store_data,
349         .issue_yfs_rpc  = yfs_fs_store_data,
350         .success        = afs_store_data_success,
351 };
352
353 /*
354  * write to a file
355  */
356 static int afs_store_data(struct afs_vnode *vnode, struct iov_iter *iter, loff_t pos,
357                           bool laundering)
358 {
359         struct afs_operation *op;
360         struct afs_wb_key *wbk = NULL;
361         loff_t size = iov_iter_count(iter), i_size;
362         int ret = -ENOKEY;
363
364         _enter("%s{%llx:%llu.%u},%llx,%llx",
365                vnode->volume->name,
366                vnode->fid.vid,
367                vnode->fid.vnode,
368                vnode->fid.unique,
369                size, pos);
370
371         ret = afs_get_writeback_key(vnode, &wbk);
372         if (ret) {
373                 _leave(" = %d [no keys]", ret);
374                 return ret;
375         }
376
377         op = afs_alloc_operation(wbk->key, vnode->volume);
378         if (IS_ERR(op)) {
379                 afs_put_wb_key(wbk);
380                 return -ENOMEM;
381         }
382
383         i_size = i_size_read(&vnode->vfs_inode);
384
385         afs_op_set_vnode(op, 0, vnode);
386         op->file[0].dv_delta = 1;
387         op->file[0].modification = true;
388         op->store.write_iter = iter;
389         op->store.pos = pos;
390         op->store.size = size;
391         op->store.i_size = max(pos + size, i_size);
392         op->store.laundering = laundering;
393         op->mtime = vnode->vfs_inode.i_mtime;
394         op->flags |= AFS_OPERATION_UNINTR;
395         op->ops = &afs_store_data_operation;
396
397 try_next_key:
398         afs_begin_vnode_operation(op);
399         afs_wait_for_operation(op);
400
401         switch (op->error) {
402         case -EACCES:
403         case -EPERM:
404         case -ENOKEY:
405         case -EKEYEXPIRED:
406         case -EKEYREJECTED:
407         case -EKEYREVOKED:
408                 _debug("next");
409
410                 ret = afs_get_writeback_key(vnode, &wbk);
411                 if (ret == 0) {
412                         key_put(op->key);
413                         op->key = key_get(wbk->key);
414                         goto try_next_key;
415                 }
416                 break;
417         }
418
419         afs_put_wb_key(wbk);
420         _leave(" = %d", op->error);
421         return afs_put_operation(op);
422 }
423
424 /*
425  * Extend the region to be written back to include subsequent contiguously
426  * dirty pages if possible, but don't sleep while doing so.
427  *
428  * If this page holds new content, then we can include filler zeros in the
429  * writeback.
430  */
431 static void afs_extend_writeback(struct address_space *mapping,
432                                  struct afs_vnode *vnode,
433                                  long *_count,
434                                  loff_t start,
435                                  loff_t max_len,
436                                  bool new_content,
437                                  unsigned int *_len)
438 {
439         struct pagevec pvec;
440         struct page *page;
441         unsigned long priv;
442         unsigned int psize, filler = 0;
443         unsigned int f, t;
444         loff_t len = *_len;
445         pgoff_t index = (start + len) / PAGE_SIZE;
446         bool stop = true;
447         unsigned int i;
448
449         XA_STATE(xas, &mapping->i_pages, index);
450         pagevec_init(&pvec);
451
452         do {
453                 /* Firstly, we gather up a batch of contiguous dirty pages
454                  * under the RCU read lock - but we can't clear the dirty flags
455                  * there if any of those pages are mapped.
456                  */
457                 rcu_read_lock();
458
459                 xas_for_each(&xas, page, ULONG_MAX) {
460                         stop = true;
461                         if (xas_retry(&xas, page))
462                                 continue;
463                         if (xa_is_value(page))
464                                 break;
465                         if (page->index != index)
466                                 break;
467
468                         if (!page_cache_get_speculative(page)) {
469                                 xas_reset(&xas);
470                                 continue;
471                         }
472
473                         /* Has the page moved or been split? */
474                         if (unlikely(page != xas_reload(&xas)))
475                                 break;
476
477                         if (!trylock_page(page))
478                                 break;
479                         if (!PageDirty(page) || PageWriteback(page)) {
480                                 unlock_page(page);
481                                 break;
482                         }
483
484                         psize = thp_size(page);
485                         priv = page_private(page);
486                         f = afs_page_dirty_from(page, priv);
487                         t = afs_page_dirty_to(page, priv);
488                         if (f != 0 && !new_content) {
489                                 unlock_page(page);
490                                 break;
491                         }
492
493                         len += filler + t;
494                         filler = psize - t;
495                         if (len >= max_len || *_count <= 0)
496                                 stop = true;
497                         else if (t == psize || new_content)
498                                 stop = false;
499
500                         index += thp_nr_pages(page);
501                         if (!pagevec_add(&pvec, page))
502                                 break;
503                         if (stop)
504                                 break;
505                 }
506
507                 if (!stop)
508                         xas_pause(&xas);
509                 rcu_read_unlock();
510
511                 /* Now, if we obtained any pages, we can shift them to being
512                  * writable and mark them for caching.
513                  */
514                 if (!pagevec_count(&pvec))
515                         break;
516
517                 for (i = 0; i < pagevec_count(&pvec); i++) {
518                         page = pvec.pages[i];
519                         trace_afs_page_dirty(vnode, tracepoint_string("store+"), page);
520
521                         if (!clear_page_dirty_for_io(page))
522                                 BUG();
523                         if (test_set_page_writeback(page))
524                                 BUG();
525
526                         *_count -= thp_nr_pages(page);
527                         unlock_page(page);
528                 }
529
530                 pagevec_release(&pvec);
531                 cond_resched();
532         } while (!stop);
533
534         *_len = len;
535 }
536
537 /*
538  * Synchronously write back the locked page and any subsequent non-locked dirty
539  * pages.
540  */
541 static ssize_t afs_write_back_from_locked_page(struct address_space *mapping,
542                                                struct writeback_control *wbc,
543                                                struct page *page,
544                                                loff_t start, loff_t end)
545 {
546         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
547         struct iov_iter iter;
548         unsigned long priv;
549         unsigned int offset, to, len, max_len;
550         loff_t i_size = i_size_read(&vnode->vfs_inode);
551         bool new_content = test_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
552         long count = wbc->nr_to_write;
553         int ret;
554
555         _enter(",%lx,%llx-%llx", page->index, start, end);
556
557         if (test_set_page_writeback(page))
558                 BUG();
559
560         count -= thp_nr_pages(page);
561
562         /* Find all consecutive lockable dirty pages that have contiguous
563          * written regions, stopping when we find a page that is not
564          * immediately lockable, is not dirty or is missing, or we reach the
565          * end of the range.
566          */
567         priv = page_private(page);
568         offset = afs_page_dirty_from(page, priv);
569         to = afs_page_dirty_to(page, priv);
570         trace_afs_page_dirty(vnode, tracepoint_string("store"), page);
571
572         len = to - offset;
573         start += offset;
574         if (start < i_size) {
575                 /* Trim the write to the EOF; the extra data is ignored.  Also
576                  * put an upper limit on the size of a single storedata op.
577                  */
578                 max_len = 65536 * 4096;
579                 max_len = min_t(unsigned long long, max_len, end - start + 1);
580                 max_len = min_t(unsigned long long, max_len, i_size - start);
581
582                 if (len < max_len &&
583                     (to == thp_size(page) || new_content))
584                         afs_extend_writeback(mapping, vnode, &count,
585                                              start, max_len, new_content, &len);
586                 len = min_t(loff_t, len, max_len);
587         }
588
589         /* We now have a contiguous set of dirty pages, each with writeback
590          * set; the first page is still locked at this point, but all the rest
591          * have been unlocked.
592          */
593         unlock_page(page);
594
595         if (start < i_size) {
596                 _debug("write back %x @%llx [%llx]", len, start, i_size);
597
598                 iov_iter_xarray(&iter, WRITE, &mapping->i_pages, start, len);
599                 ret = afs_store_data(vnode, &iter, start, false);
600         } else {
601                 _debug("write discard %x @%llx [%llx]", len, start, i_size);
602
603                 /* The dirty region was entirely beyond the EOF. */
604                 afs_pages_written_back(vnode, start, len);
605                 ret = 0;
606         }
607
608         switch (ret) {
609         case 0:
610                 wbc->nr_to_write = count;
611                 ret = len;
612                 break;
613
614         default:
615                 pr_notice("kAFS: Unexpected error from FS.StoreData %d\n", ret);
616                 fallthrough;
617         case -EACCES:
618         case -EPERM:
619         case -ENOKEY:
620         case -EKEYEXPIRED:
621         case -EKEYREJECTED:
622         case -EKEYREVOKED:
623                 afs_redirty_pages(wbc, mapping, start, len);
624                 mapping_set_error(mapping, ret);
625                 break;
626
627         case -EDQUOT:
628         case -ENOSPC:
629                 afs_redirty_pages(wbc, mapping, start, len);
630                 mapping_set_error(mapping, -ENOSPC);
631                 break;
632
633         case -EROFS:
634         case -EIO:
635         case -EREMOTEIO:
636         case -EFBIG:
637         case -ENOENT:
638         case -ENOMEDIUM:
639         case -ENXIO:
640                 trace_afs_file_error(vnode, ret, afs_file_error_writeback_fail);
641                 afs_kill_pages(mapping, start, len);
642                 mapping_set_error(mapping, ret);
643                 break;
644         }
645
646         _leave(" = %d", ret);
647         return ret;
648 }
649
650 /*
651  * write a page back to the server
652  * - the caller locked the page for us
653  */
654 int afs_writepage(struct page *page, struct writeback_control *wbc)
655 {
656         ssize_t ret;
657         loff_t start;
658
659         _enter("{%lx},", page->index);
660
661         start = page->index * PAGE_SIZE;
662         ret = afs_write_back_from_locked_page(page->mapping, wbc, page,
663                                               start, LLONG_MAX - start);
664         if (ret < 0) {
665                 _leave(" = %zd", ret);
666                 return ret;
667         }
668
669         _leave(" = 0");
670         return 0;
671 }
672
673 /*
674  * write a region of pages back to the server
675  */
676 static int afs_writepages_region(struct address_space *mapping,
677                                  struct writeback_control *wbc,
678                                  loff_t start, loff_t end, loff_t *_next)
679 {
680         struct page *page;
681         ssize_t ret;
682         int n;
683
684         _enter("%llx,%llx,", start, end);
685
686         do {
687                 pgoff_t index = start / PAGE_SIZE;
688
689                 n = find_get_pages_range_tag(mapping, &index, end / PAGE_SIZE,
690                                              PAGECACHE_TAG_DIRTY, 1, &page);
691                 if (!n)
692                         break;
693
694                 start = (loff_t)page->index * PAGE_SIZE; /* May regress with THPs */
695
696                 _debug("wback %lx", page->index);
697
698                 /* At this point we hold neither the i_pages lock nor the
699                  * page lock: the page may be truncated or invalidated
700                  * (changing page->mapping to NULL), or even swizzled
701                  * back from swapper_space to tmpfs file mapping
702                  */
703                 if (wbc->sync_mode != WB_SYNC_NONE) {
704                         ret = lock_page_killable(page);
705                         if (ret < 0) {
706                                 put_page(page);
707                                 return ret;
708                         }
709                 } else {
710                         if (!trylock_page(page)) {
711                                 put_page(page);
712                                 return 0;
713                         }
714                 }
715
716                 if (page->mapping != mapping || !PageDirty(page)) {
717                         start += thp_size(page);
718                         unlock_page(page);
719                         put_page(page);
720                         continue;
721                 }
722
723                 if (PageWriteback(page)) {
724                         unlock_page(page);
725                         if (wbc->sync_mode != WB_SYNC_NONE)
726                                 wait_on_page_writeback(page);
727                         put_page(page);
728                         continue;
729                 }
730
731                 if (!clear_page_dirty_for_io(page))
732                         BUG();
733                 ret = afs_write_back_from_locked_page(mapping, wbc, page, start, end);
734                 put_page(page);
735                 if (ret < 0) {
736                         _leave(" = %zd", ret);
737                         return ret;
738                 }
739
740                 start += ret;
741
742                 cond_resched();
743         } while (wbc->nr_to_write > 0);
744
745         *_next = start;
746         _leave(" = 0 [%llx]", *_next);
747         return 0;
748 }
749
750 /*
751  * write some of the pending data back to the server
752  */
753 int afs_writepages(struct address_space *mapping,
754                    struct writeback_control *wbc)
755 {
756         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
757         loff_t start, next;
758         int ret;
759
760         _enter("");
761
762         /* We have to be careful as we can end up racing with setattr()
763          * truncating the pagecache since the caller doesn't take a lock here
764          * to prevent it.
765          */
766         if (wbc->sync_mode == WB_SYNC_ALL)
767                 down_read(&vnode->validate_lock);
768         else if (!down_read_trylock(&vnode->validate_lock))
769                 return 0;
770
771         if (wbc->range_cyclic) {
772                 start = mapping->writeback_index * PAGE_SIZE;
773                 ret = afs_writepages_region(mapping, wbc, start, LLONG_MAX, &next);
774                 if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
775                         ret = afs_writepages_region(mapping, wbc, 0, start,
776                                                     &next);
777                 mapping->writeback_index = next / PAGE_SIZE;
778         } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
779                 ret = afs_writepages_region(mapping, wbc, 0, LLONG_MAX, &next);
780                 if (wbc->nr_to_write > 0)
781                         mapping->writeback_index = next;
782         } else {
783                 ret = afs_writepages_region(mapping, wbc,
784                                             wbc->range_start, wbc->range_end, &next);
785         }
786
787         up_read(&vnode->validate_lock);
788         _leave(" = %d", ret);
789         return ret;
790 }
791
792 /*
793  * write to an AFS file
794  */
795 ssize_t afs_file_write(struct kiocb *iocb, struct iov_iter *from)
796 {
797         struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
798         ssize_t result;
799         size_t count = iov_iter_count(from);
800
801         _enter("{%llx:%llu},{%zu},",
802                vnode->fid.vid, vnode->fid.vnode, count);
803
804         if (IS_SWAPFILE(&vnode->vfs_inode)) {
805                 printk(KERN_INFO
806                        "AFS: Attempt to write to active swap file!\n");
807                 return -EBUSY;
808         }
809
810         if (!count)
811                 return 0;
812
813         result = generic_file_write_iter(iocb, from);
814
815         _leave(" = %zd", result);
816         return result;
817 }
818
819 /*
820  * flush any dirty pages for this process, and check for write errors.
821  * - the return status from this call provides a reliable indication of
822  *   whether any write errors occurred for this process.
823  */
824 int afs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
825 {
826         struct inode *inode = file_inode(file);
827         struct afs_vnode *vnode = AFS_FS_I(inode);
828
829         _enter("{%llx:%llu},{n=%pD},%d",
830                vnode->fid.vid, vnode->fid.vnode, file,
831                datasync);
832
833         return file_write_and_wait_range(file, start, end);
834 }
835
836 /*
837  * notification that a previously read-only page is about to become writable
838  * - if it returns an error, the caller will deliver a bus error signal
839  */
840 vm_fault_t afs_page_mkwrite(struct vm_fault *vmf)
841 {
842         struct page *page = thp_head(vmf->page);
843         struct file *file = vmf->vma->vm_file;
844         struct inode *inode = file_inode(file);
845         struct afs_vnode *vnode = AFS_FS_I(inode);
846         unsigned long priv;
847         vm_fault_t ret = VM_FAULT_RETRY;
848
849         _enter("{{%llx:%llu}},{%lx}", vnode->fid.vid, vnode->fid.vnode, page->index);
850
851         sb_start_pagefault(inode->i_sb);
852
853         /* Wait for the page to be written to the cache before we allow it to
854          * be modified.  We then assume the entire page will need writing back.
855          */
856 #ifdef CONFIG_AFS_FSCACHE
857         if (PageFsCache(page) &&
858             wait_on_page_fscache_killable(page) < 0)
859                 goto out;
860 #endif
861
862         if (wait_on_page_writeback_killable(page))
863                 goto out;
864
865         if (lock_page_killable(page) < 0)
866                 goto out;
867
868         /* We mustn't change page->private until writeback is complete as that
869          * details the portion of the page we need to write back and we might
870          * need to redirty the page if there's a problem.
871          */
872         if (wait_on_page_writeback_killable(page) < 0) {
873                 unlock_page(page);
874                 goto out;
875         }
876
877         priv = afs_page_dirty(page, 0, thp_size(page));
878         priv = afs_page_dirty_mmapped(priv);
879         if (PagePrivate(page)) {
880                 set_page_private(page, priv);
881                 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite+"), page);
882         } else {
883                 attach_page_private(page, (void *)priv);
884                 trace_afs_page_dirty(vnode, tracepoint_string("mkwrite"), page);
885         }
886         file_update_time(file);
887
888         ret = VM_FAULT_LOCKED;
889 out:
890         sb_end_pagefault(inode->i_sb);
891         return ret;
892 }
893
894 /*
895  * Prune the keys cached for writeback.  The caller must hold vnode->wb_lock.
896  */
897 void afs_prune_wb_keys(struct afs_vnode *vnode)
898 {
899         LIST_HEAD(graveyard);
900         struct afs_wb_key *wbk, *tmp;
901
902         /* Discard unused keys */
903         spin_lock(&vnode->wb_lock);
904
905         if (!mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_WRITEBACK) &&
906             !mapping_tagged(&vnode->vfs_inode.i_data, PAGECACHE_TAG_DIRTY)) {
907                 list_for_each_entry_safe(wbk, tmp, &vnode->wb_keys, vnode_link) {
908                         if (refcount_read(&wbk->usage) == 1)
909                                 list_move(&wbk->vnode_link, &graveyard);
910                 }
911         }
912
913         spin_unlock(&vnode->wb_lock);
914
915         while (!list_empty(&graveyard)) {
916                 wbk = list_entry(graveyard.next, struct afs_wb_key, vnode_link);
917                 list_del(&wbk->vnode_link);
918                 afs_put_wb_key(wbk);
919         }
920 }
921
922 /*
923  * Clean up a page during invalidation.
924  */
925 int afs_launder_page(struct page *page)
926 {
927         struct address_space *mapping = page->mapping;
928         struct afs_vnode *vnode = AFS_FS_I(mapping->host);
929         struct iov_iter iter;
930         struct bio_vec bv[1];
931         unsigned long priv;
932         unsigned int f, t;
933         int ret = 0;
934
935         _enter("{%lx}", page->index);
936
937         priv = page_private(page);
938         if (clear_page_dirty_for_io(page)) {
939                 f = 0;
940                 t = thp_size(page);
941                 if (PagePrivate(page)) {
942                         f = afs_page_dirty_from(page, priv);
943                         t = afs_page_dirty_to(page, priv);
944                 }
945
946                 bv[0].bv_page = page;
947                 bv[0].bv_offset = f;
948                 bv[0].bv_len = t - f;
949                 iov_iter_bvec(&iter, WRITE, bv, 1, bv[0].bv_len);
950
951                 trace_afs_page_dirty(vnode, tracepoint_string("launder"), page);
952                 ret = afs_store_data(vnode, &iter, (loff_t)page->index * PAGE_SIZE,
953                                      true);
954         }
955
956         trace_afs_page_dirty(vnode, tracepoint_string("laundered"), page);
957         detach_page_private(page);
958         wait_on_page_fscache(page);
959         return ret;
960 }