Merge tag 'for-linus-5.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/uml
[linux-2.6-microblaze.git] / fs / afs / rxrpc.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Maintain an RxRPC server socket to do AFS communications through
3  *
4  * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #include <linux/slab.h>
9 #include <linux/sched/signal.h>
10
11 #include <net/sock.h>
12 #include <net/af_rxrpc.h>
13 #include "internal.h"
14 #include "afs_cm.h"
15 #include "protocol_yfs.h"
16
17 struct workqueue_struct *afs_async_calls;
18
19 static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
20 static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
21 static void afs_process_async_call(struct work_struct *);
22 static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
23 static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
24 static int afs_deliver_cm_op_id(struct afs_call *);
25
26 /* asynchronous incoming call initial processing */
27 static const struct afs_call_type afs_RXCMxxxx = {
28         .name           = "CB.xxxx",
29         .deliver        = afs_deliver_cm_op_id,
30 };
31
32 /*
33  * open an RxRPC socket and bind it to be a server for callback notifications
34  * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
35  */
36 int afs_open_socket(struct afs_net *net)
37 {
38         struct sockaddr_rxrpc srx;
39         struct socket *socket;
40         int ret;
41
42         _enter("");
43
44         ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket);
45         if (ret < 0)
46                 goto error_1;
47
48         socket->sk->sk_allocation = GFP_NOFS;
49
50         /* bind the callback manager's address to make this a server socket */
51         memset(&srx, 0, sizeof(srx));
52         srx.srx_family                  = AF_RXRPC;
53         srx.srx_service                 = CM_SERVICE;
54         srx.transport_type              = SOCK_DGRAM;
55         srx.transport_len               = sizeof(srx.transport.sin6);
56         srx.transport.sin6.sin6_family  = AF_INET6;
57         srx.transport.sin6.sin6_port    = htons(AFS_CM_PORT);
58
59         ret = rxrpc_sock_set_min_security_level(socket->sk,
60                                                 RXRPC_SECURITY_ENCRYPT);
61         if (ret < 0)
62                 goto error_2;
63
64         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
65         if (ret == -EADDRINUSE) {
66                 srx.transport.sin6.sin6_port = 0;
67                 ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
68         }
69         if (ret < 0)
70                 goto error_2;
71
72         srx.srx_service = YFS_CM_SERVICE;
73         ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
74         if (ret < 0)
75                 goto error_2;
76
77         /* Ideally, we'd turn on service upgrade here, but we can't because
78          * OpenAFS is buggy and leaks the userStatus field from packet to
79          * packet and between FS packets and CB packets - so if we try to do an
80          * upgrade on an FS packet, OpenAFS will leak that into the CB packet
81          * it sends back to us.
82          */
83
84         rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
85                                            afs_rx_discard_new_call);
86
87         ret = kernel_listen(socket, INT_MAX);
88         if (ret < 0)
89                 goto error_2;
90
91         net->socket = socket;
92         afs_charge_preallocation(&net->charge_preallocation_work);
93         _leave(" = 0");
94         return 0;
95
96 error_2:
97         sock_release(socket);
98 error_1:
99         _leave(" = %d", ret);
100         return ret;
101 }
102
103 /*
104  * close the RxRPC socket AFS was using
105  */
106 void afs_close_socket(struct afs_net *net)
107 {
108         _enter("");
109
110         kernel_listen(net->socket, 0);
111         flush_workqueue(afs_async_calls);
112
113         if (net->spare_incoming_call) {
114                 afs_put_call(net->spare_incoming_call);
115                 net->spare_incoming_call = NULL;
116         }
117
118         _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls));
119         wait_var_event(&net->nr_outstanding_calls,
120                        !atomic_read(&net->nr_outstanding_calls));
121         _debug("no outstanding calls");
122
123         kernel_sock_shutdown(net->socket, SHUT_RDWR);
124         flush_workqueue(afs_async_calls);
125         sock_release(net->socket);
126
127         _debug("dework");
128         _leave("");
129 }
130
131 /*
132  * Allocate a call.
133  */
134 static struct afs_call *afs_alloc_call(struct afs_net *net,
135                                        const struct afs_call_type *type,
136                                        gfp_t gfp)
137 {
138         struct afs_call *call;
139         int o;
140
141         call = kzalloc(sizeof(*call), gfp);
142         if (!call)
143                 return NULL;
144
145         call->type = type;
146         call->net = net;
147         call->debug_id = atomic_inc_return(&rxrpc_debug_id);
148         atomic_set(&call->usage, 1);
149         INIT_WORK(&call->async_work, afs_process_async_call);
150         init_waitqueue_head(&call->waitq);
151         spin_lock_init(&call->state_lock);
152         call->iter = &call->def_iter;
153
154         o = atomic_inc_return(&net->nr_outstanding_calls);
155         trace_afs_call(call, afs_call_trace_alloc, 1, o,
156                        __builtin_return_address(0));
157         return call;
158 }
159
160 /*
161  * Dispose of a reference on a call.
162  */
163 void afs_put_call(struct afs_call *call)
164 {
165         struct afs_net *net = call->net;
166         int n = atomic_dec_return(&call->usage);
167         int o = atomic_read(&net->nr_outstanding_calls);
168
169         trace_afs_call(call, afs_call_trace_put, n, o,
170                        __builtin_return_address(0));
171
172         ASSERTCMP(n, >=, 0);
173         if (n == 0) {
174                 ASSERT(!work_pending(&call->async_work));
175                 ASSERT(call->type->name != NULL);
176
177                 if (call->rxcall) {
178                         rxrpc_kernel_end_call(net->socket, call->rxcall);
179                         call->rxcall = NULL;
180                 }
181                 if (call->type->destructor)
182                         call->type->destructor(call);
183
184                 afs_unuse_server_notime(call->net, call->server, afs_server_trace_put_call);
185                 afs_put_addrlist(call->alist);
186                 kfree(call->request);
187
188                 trace_afs_call(call, afs_call_trace_free, 0, o,
189                                __builtin_return_address(0));
190                 kfree(call);
191
192                 o = atomic_dec_return(&net->nr_outstanding_calls);
193                 if (o == 0)
194                         wake_up_var(&net->nr_outstanding_calls);
195         }
196 }
197
198 static struct afs_call *afs_get_call(struct afs_call *call,
199                                      enum afs_call_trace why)
200 {
201         int u = atomic_inc_return(&call->usage);
202
203         trace_afs_call(call, why, u,
204                        atomic_read(&call->net->nr_outstanding_calls),
205                        __builtin_return_address(0));
206         return call;
207 }
208
209 /*
210  * Queue the call for actual work.
211  */
212 static void afs_queue_call_work(struct afs_call *call)
213 {
214         if (call->type->work) {
215                 INIT_WORK(&call->work, call->type->work);
216
217                 afs_get_call(call, afs_call_trace_work);
218                 if (!queue_work(afs_wq, &call->work))
219                         afs_put_call(call);
220         }
221 }
222
223 /*
224  * allocate a call with flat request and reply buffers
225  */
226 struct afs_call *afs_alloc_flat_call(struct afs_net *net,
227                                      const struct afs_call_type *type,
228                                      size_t request_size, size_t reply_max)
229 {
230         struct afs_call *call;
231
232         call = afs_alloc_call(net, type, GFP_NOFS);
233         if (!call)
234                 goto nomem_call;
235
236         if (request_size) {
237                 call->request_size = request_size;
238                 call->request = kmalloc(request_size, GFP_NOFS);
239                 if (!call->request)
240                         goto nomem_free;
241         }
242
243         if (reply_max) {
244                 call->reply_max = reply_max;
245                 call->buffer = kmalloc(reply_max, GFP_NOFS);
246                 if (!call->buffer)
247                         goto nomem_free;
248         }
249
250         afs_extract_to_buf(call, call->reply_max);
251         call->operation_ID = type->op;
252         init_waitqueue_head(&call->waitq);
253         return call;
254
255 nomem_free:
256         afs_put_call(call);
257 nomem_call:
258         return NULL;
259 }
260
261 /*
262  * clean up a call with flat buffer
263  */
264 void afs_flat_call_destructor(struct afs_call *call)
265 {
266         _enter("");
267
268         kfree(call->request);
269         call->request = NULL;
270         kfree(call->buffer);
271         call->buffer = NULL;
272 }
273
274 #define AFS_BVEC_MAX 8
275
276 /*
277  * Load the given bvec with the next few pages.
278  */
279 static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
280                           struct bio_vec *bv, pgoff_t first, pgoff_t last,
281                           unsigned offset)
282 {
283         struct afs_operation *op = call->op;
284         struct page *pages[AFS_BVEC_MAX];
285         unsigned int nr, n, i, to, bytes = 0;
286
287         nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
288         n = find_get_pages_contig(op->store.mapping, first, nr, pages);
289         ASSERTCMP(n, ==, nr);
290
291         msg->msg_flags |= MSG_MORE;
292         for (i = 0; i < nr; i++) {
293                 to = PAGE_SIZE;
294                 if (first + i >= last) {
295                         to = op->store.last_to;
296                         msg->msg_flags &= ~MSG_MORE;
297                 }
298                 bv[i].bv_page = pages[i];
299                 bv[i].bv_len = to - offset;
300                 bv[i].bv_offset = offset;
301                 bytes += to - offset;
302                 offset = 0;
303         }
304
305         iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes);
306 }
307
308 /*
309  * Advance the AFS call state when the RxRPC call ends the transmit phase.
310  */
311 static void afs_notify_end_request_tx(struct sock *sock,
312                                       struct rxrpc_call *rxcall,
313                                       unsigned long call_user_ID)
314 {
315         struct afs_call *call = (struct afs_call *)call_user_ID;
316
317         afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY);
318 }
319
320 /*
321  * attach the data from a bunch of pages on an inode to a call
322  */
323 static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
324 {
325         struct afs_operation *op = call->op;
326         struct bio_vec bv[AFS_BVEC_MAX];
327         unsigned int bytes, nr, loop, offset;
328         pgoff_t first = op->store.first, last = op->store.last;
329         int ret;
330
331         offset = op->store.first_offset;
332         op->store.first_offset = 0;
333
334         do {
335                 afs_load_bvec(call, msg, bv, first, last, offset);
336                 trace_afs_send_pages(call, msg, first, last, offset);
337
338                 offset = 0;
339                 bytes = msg->msg_iter.count;
340                 nr = msg->msg_iter.nr_segs;
341
342                 ret = rxrpc_kernel_send_data(op->net->socket, call->rxcall, msg,
343                                              bytes, afs_notify_end_request_tx);
344                 for (loop = 0; loop < nr; loop++)
345                         put_page(bv[loop].bv_page);
346                 if (ret < 0)
347                         break;
348
349                 first += nr;
350         } while (first <= last);
351
352         trace_afs_sent_pages(call, op->store.first, last, first, ret);
353         return ret;
354 }
355
356 /*
357  * Initiate a call and synchronously queue up the parameters for dispatch.  Any
358  * error is stored into the call struct, which the caller must check for.
359  */
360 void afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, gfp_t gfp)
361 {
362         struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index];
363         struct rxrpc_call *rxcall;
364         struct msghdr msg;
365         struct kvec iov[1];
366         s64 tx_total_len;
367         int ret;
368
369         _enter(",{%pISp},", &srx->transport);
370
371         ASSERT(call->type != NULL);
372         ASSERT(call->type->name != NULL);
373
374         _debug("____MAKE %p{%s,%x} [%d]____",
375                call, call->type->name, key_serial(call->key),
376                atomic_read(&call->net->nr_outstanding_calls));
377
378         call->addr_ix = ac->index;
379         call->alist = afs_get_addrlist(ac->alist);
380
381         /* Work out the length we're going to transmit.  This is awkward for
382          * calls such as FS.StoreData where there's an extra injection of data
383          * after the initial fixed part.
384          */
385         tx_total_len = call->request_size;
386         if (call->send_pages) {
387                 struct afs_operation *op = call->op;
388
389                 if (op->store.last == op->store.first) {
390                         tx_total_len += op->store.last_to - op->store.first_offset;
391                 } else {
392                         /* It looks mathematically like you should be able to
393                          * combine the following lines with the ones above, but
394                          * unsigned arithmetic is fun when it wraps...
395                          */
396                         tx_total_len += PAGE_SIZE - op->store.first_offset;
397                         tx_total_len += op->store.last_to;
398                         tx_total_len += (op->store.last - op->store.first - 1) * PAGE_SIZE;
399                 }
400         }
401
402         /* If the call is going to be asynchronous, we need an extra ref for
403          * the call to hold itself so the caller need not hang on to its ref.
404          */
405         if (call->async) {
406                 afs_get_call(call, afs_call_trace_get);
407                 call->drop_ref = true;
408         }
409
410         /* create a call */
411         rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key,
412                                          (unsigned long)call,
413                                          tx_total_len, gfp,
414                                          (call->async ?
415                                           afs_wake_up_async_call :
416                                           afs_wake_up_call_waiter),
417                                          call->upgrade,
418                                          (call->intr ? RXRPC_PREINTERRUPTIBLE :
419                                           RXRPC_UNINTERRUPTIBLE),
420                                          call->debug_id);
421         if (IS_ERR(rxcall)) {
422                 ret = PTR_ERR(rxcall);
423                 call->error = ret;
424                 goto error_kill_call;
425         }
426
427         call->rxcall = rxcall;
428
429         if (call->max_lifespan)
430                 rxrpc_kernel_set_max_life(call->net->socket, rxcall,
431                                           call->max_lifespan);
432
433         /* send the request */
434         iov[0].iov_base = call->request;
435         iov[0].iov_len  = call->request_size;
436
437         msg.msg_name            = NULL;
438         msg.msg_namelen         = 0;
439         iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size);
440         msg.msg_control         = NULL;
441         msg.msg_controllen      = 0;
442         msg.msg_flags           = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0);
443
444         ret = rxrpc_kernel_send_data(call->net->socket, rxcall,
445                                      &msg, call->request_size,
446                                      afs_notify_end_request_tx);
447         if (ret < 0)
448                 goto error_do_abort;
449
450         if (call->send_pages) {
451                 ret = afs_send_pages(call, &msg);
452                 if (ret < 0)
453                         goto error_do_abort;
454         }
455
456         /* Note that at this point, we may have received the reply or an abort
457          * - and an asynchronous call may already have completed.
458          *
459          * afs_wait_for_call_to_complete(call, ac)
460          * must be called to synchronously clean up.
461          */
462         return;
463
464 error_do_abort:
465         if (ret != -ECONNABORTED) {
466                 rxrpc_kernel_abort_call(call->net->socket, rxcall,
467                                         RX_USER_ABORT, ret, "KSD");
468         } else {
469                 iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0);
470                 rxrpc_kernel_recv_data(call->net->socket, rxcall,
471                                        &msg.msg_iter, false,
472                                        &call->abort_code, &call->service_id);
473                 ac->abort_code = call->abort_code;
474                 ac->responded = true;
475         }
476         call->error = ret;
477         trace_afs_call_done(call);
478 error_kill_call:
479         if (call->type->done)
480                 call->type->done(call);
481
482         /* We need to dispose of the extra ref we grabbed for an async call.
483          * The call, however, might be queued on afs_async_calls and we need to
484          * make sure we don't get any more notifications that might requeue it.
485          */
486         if (call->rxcall) {
487                 rxrpc_kernel_end_call(call->net->socket, call->rxcall);
488                 call->rxcall = NULL;
489         }
490         if (call->async) {
491                 if (cancel_work_sync(&call->async_work))
492                         afs_put_call(call);
493                 afs_put_call(call);
494         }
495
496         ac->error = ret;
497         call->state = AFS_CALL_COMPLETE;
498         _leave(" = %d", ret);
499 }
500
501 /*
502  * deliver messages to a call
503  */
504 static void afs_deliver_to_call(struct afs_call *call)
505 {
506         enum afs_call_state state;
507         u32 abort_code, remote_abort = 0;
508         int ret;
509
510         _enter("%s", call->type->name);
511
512         while (state = READ_ONCE(call->state),
513                state == AFS_CALL_CL_AWAIT_REPLY ||
514                state == AFS_CALL_SV_AWAIT_OP_ID ||
515                state == AFS_CALL_SV_AWAIT_REQUEST ||
516                state == AFS_CALL_SV_AWAIT_ACK
517                ) {
518                 if (state == AFS_CALL_SV_AWAIT_ACK) {
519                         iov_iter_kvec(&call->def_iter, READ, NULL, 0, 0);
520                         ret = rxrpc_kernel_recv_data(call->net->socket,
521                                                      call->rxcall, &call->def_iter,
522                                                      false, &remote_abort,
523                                                      &call->service_id);
524                         trace_afs_receive_data(call, &call->def_iter, false, ret);
525
526                         if (ret == -EINPROGRESS || ret == -EAGAIN)
527                                 return;
528                         if (ret < 0 || ret == 1) {
529                                 if (ret == 1)
530                                         ret = 0;
531                                 goto call_complete;
532                         }
533                         return;
534                 }
535
536                 if (!call->have_reply_time &&
537                     rxrpc_kernel_get_reply_time(call->net->socket,
538                                                 call->rxcall,
539                                                 &call->reply_time))
540                         call->have_reply_time = true;
541
542                 ret = call->type->deliver(call);
543                 state = READ_ONCE(call->state);
544                 if (ret == 0 && call->unmarshalling_error)
545                         ret = -EBADMSG;
546                 switch (ret) {
547                 case 0:
548                         afs_queue_call_work(call);
549                         if (state == AFS_CALL_CL_PROC_REPLY) {
550                                 if (call->op)
551                                         set_bit(AFS_SERVER_FL_MAY_HAVE_CB,
552                                                 &call->op->server->flags);
553                                 goto call_complete;
554                         }
555                         ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY);
556                         goto done;
557                 case -EINPROGRESS:
558                 case -EAGAIN:
559                         goto out;
560                 case -ECONNABORTED:
561                         ASSERTCMP(state, ==, AFS_CALL_COMPLETE);
562                         goto done;
563                 case -ENOTSUPP:
564                         abort_code = RXGEN_OPCODE;
565                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
566                                                 abort_code, ret, "KIV");
567                         goto local_abort;
568                 case -EIO:
569                         pr_err("kAFS: Call %u in bad state %u\n",
570                                call->debug_id, state);
571                         fallthrough;
572                 case -ENODATA:
573                 case -EBADMSG:
574                 case -EMSGSIZE:
575                         abort_code = RXGEN_CC_UNMARSHAL;
576                         if (state != AFS_CALL_CL_AWAIT_REPLY)
577                                 abort_code = RXGEN_SS_UNMARSHAL;
578                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
579                                                 abort_code, ret, "KUM");
580                         goto local_abort;
581                 default:
582                         abort_code = RX_USER_ABORT;
583                         rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
584                                                 abort_code, ret, "KER");
585                         goto local_abort;
586                 }
587         }
588
589 done:
590         if (call->type->done)
591                 call->type->done(call);
592 out:
593         _leave("");
594         return;
595
596 local_abort:
597         abort_code = 0;
598 call_complete:
599         afs_set_call_complete(call, ret, remote_abort);
600         state = AFS_CALL_COMPLETE;
601         goto done;
602 }
603
604 /*
605  * Wait synchronously for a call to complete and clean up the call struct.
606  */
607 long afs_wait_for_call_to_complete(struct afs_call *call,
608                                    struct afs_addr_cursor *ac)
609 {
610         long ret;
611         bool rxrpc_complete = false;
612
613         DECLARE_WAITQUEUE(myself, current);
614
615         _enter("");
616
617         ret = call->error;
618         if (ret < 0)
619                 goto out;
620
621         add_wait_queue(&call->waitq, &myself);
622         for (;;) {
623                 set_current_state(TASK_UNINTERRUPTIBLE);
624
625                 /* deliver any messages that are in the queue */
626                 if (!afs_check_call_state(call, AFS_CALL_COMPLETE) &&
627                     call->need_attention) {
628                         call->need_attention = false;
629                         __set_current_state(TASK_RUNNING);
630                         afs_deliver_to_call(call);
631                         continue;
632                 }
633
634                 if (afs_check_call_state(call, AFS_CALL_COMPLETE))
635                         break;
636
637                 if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall)) {
638                         /* rxrpc terminated the call. */
639                         rxrpc_complete = true;
640                         break;
641                 }
642
643                 schedule();
644         }
645
646         remove_wait_queue(&call->waitq, &myself);
647         __set_current_state(TASK_RUNNING);
648
649         if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) {
650                 if (rxrpc_complete) {
651                         afs_set_call_complete(call, call->error, call->abort_code);
652                 } else {
653                         /* Kill off the call if it's still live. */
654                         _debug("call interrupted");
655                         if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall,
656                                                     RX_USER_ABORT, -EINTR, "KWI"))
657                                 afs_set_call_complete(call, -EINTR, 0);
658                 }
659         }
660
661         spin_lock_bh(&call->state_lock);
662         ac->abort_code = call->abort_code;
663         ac->error = call->error;
664         spin_unlock_bh(&call->state_lock);
665
666         ret = ac->error;
667         switch (ret) {
668         case 0:
669                 ret = call->ret0;
670                 call->ret0 = 0;
671
672                 fallthrough;
673         case -ECONNABORTED:
674                 ac->responded = true;
675                 break;
676         }
677
678 out:
679         _debug("call complete");
680         afs_put_call(call);
681         _leave(" = %p", (void *)ret);
682         return ret;
683 }
684
685 /*
686  * wake up a waiting call
687  */
688 static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
689                                     unsigned long call_user_ID)
690 {
691         struct afs_call *call = (struct afs_call *)call_user_ID;
692
693         call->need_attention = true;
694         wake_up(&call->waitq);
695 }
696
697 /*
698  * wake up an asynchronous call
699  */
700 static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
701                                    unsigned long call_user_ID)
702 {
703         struct afs_call *call = (struct afs_call *)call_user_ID;
704         int u;
705
706         trace_afs_notify_call(rxcall, call);
707         call->need_attention = true;
708
709         u = atomic_fetch_add_unless(&call->usage, 1, 0);
710         if (u != 0) {
711                 trace_afs_call(call, afs_call_trace_wake, u + 1,
712                                atomic_read(&call->net->nr_outstanding_calls),
713                                __builtin_return_address(0));
714
715                 if (!queue_work(afs_async_calls, &call->async_work))
716                         afs_put_call(call);
717         }
718 }
719
720 /*
721  * Perform I/O processing on an asynchronous call.  The work item carries a ref
722  * to the call struct that we either need to release or to pass on.
723  */
724 static void afs_process_async_call(struct work_struct *work)
725 {
726         struct afs_call *call = container_of(work, struct afs_call, async_work);
727
728         _enter("");
729
730         if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
731                 call->need_attention = false;
732                 afs_deliver_to_call(call);
733         }
734
735         afs_put_call(call);
736         _leave("");
737 }
738
739 static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
740 {
741         struct afs_call *call = (struct afs_call *)user_call_ID;
742
743         call->rxcall = rxcall;
744 }
745
746 /*
747  * Charge the incoming call preallocation.
748  */
749 void afs_charge_preallocation(struct work_struct *work)
750 {
751         struct afs_net *net =
752                 container_of(work, struct afs_net, charge_preallocation_work);
753         struct afs_call *call = net->spare_incoming_call;
754
755         for (;;) {
756                 if (!call) {
757                         call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL);
758                         if (!call)
759                                 break;
760
761                         call->drop_ref = true;
762                         call->async = true;
763                         call->state = AFS_CALL_SV_AWAIT_OP_ID;
764                         init_waitqueue_head(&call->waitq);
765                         afs_extract_to_tmp(call);
766                 }
767
768                 if (rxrpc_kernel_charge_accept(net->socket,
769                                                afs_wake_up_async_call,
770                                                afs_rx_attach,
771                                                (unsigned long)call,
772                                                GFP_KERNEL,
773                                                call->debug_id) < 0)
774                         break;
775                 call = NULL;
776         }
777         net->spare_incoming_call = call;
778 }
779
780 /*
781  * Discard a preallocated call when a socket is shut down.
782  */
783 static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
784                                     unsigned long user_call_ID)
785 {
786         struct afs_call *call = (struct afs_call *)user_call_ID;
787
788         call->rxcall = NULL;
789         afs_put_call(call);
790 }
791
792 /*
793  * Notification of an incoming call.
794  */
795 static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
796                             unsigned long user_call_ID)
797 {
798         struct afs_net *net = afs_sock2net(sk);
799
800         queue_work(afs_wq, &net->charge_preallocation_work);
801 }
802
803 /*
804  * Grab the operation ID from an incoming cache manager call.  The socket
805  * buffer is discarded on error or if we don't yet have sufficient data.
806  */
807 static int afs_deliver_cm_op_id(struct afs_call *call)
808 {
809         int ret;
810
811         _enter("{%zu}", iov_iter_count(call->iter));
812
813         /* the operation ID forms the first four bytes of the request data */
814         ret = afs_extract_data(call, true);
815         if (ret < 0)
816                 return ret;
817
818         call->operation_ID = ntohl(call->tmp);
819         afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST);
820
821         /* ask the cache manager to route the call (it'll change the call type
822          * if successful) */
823         if (!afs_cm_incoming_call(call))
824                 return -ENOTSUPP;
825
826         trace_afs_cb_call(call);
827
828         /* pass responsibility for the remainer of this message off to the
829          * cache manager op */
830         return call->type->deliver(call);
831 }
832
833 /*
834  * Advance the AFS call state when an RxRPC service call ends the transmit
835  * phase.
836  */
837 static void afs_notify_end_reply_tx(struct sock *sock,
838                                     struct rxrpc_call *rxcall,
839                                     unsigned long call_user_ID)
840 {
841         struct afs_call *call = (struct afs_call *)call_user_ID;
842
843         afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK);
844 }
845
846 /*
847  * send an empty reply
848  */
849 void afs_send_empty_reply(struct afs_call *call)
850 {
851         struct afs_net *net = call->net;
852         struct msghdr msg;
853
854         _enter("");
855
856         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0);
857
858         msg.msg_name            = NULL;
859         msg.msg_namelen         = 0;
860         iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0);
861         msg.msg_control         = NULL;
862         msg.msg_controllen      = 0;
863         msg.msg_flags           = 0;
864
865         switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0,
866                                        afs_notify_end_reply_tx)) {
867         case 0:
868                 _leave(" [replied]");
869                 return;
870
871         case -ENOMEM:
872                 _debug("oom");
873                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
874                                         RX_USER_ABORT, -ENOMEM, "KOO");
875                 fallthrough;
876         default:
877                 _leave(" [error]");
878                 return;
879         }
880 }
881
882 /*
883  * send a simple reply
884  */
885 void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
886 {
887         struct afs_net *net = call->net;
888         struct msghdr msg;
889         struct kvec iov[1];
890         int n;
891
892         _enter("");
893
894         rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len);
895
896         iov[0].iov_base         = (void *) buf;
897         iov[0].iov_len          = len;
898         msg.msg_name            = NULL;
899         msg.msg_namelen         = 0;
900         iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len);
901         msg.msg_control         = NULL;
902         msg.msg_controllen      = 0;
903         msg.msg_flags           = 0;
904
905         n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len,
906                                    afs_notify_end_reply_tx);
907         if (n >= 0) {
908                 /* Success */
909                 _leave(" [replied]");
910                 return;
911         }
912
913         if (n == -ENOMEM) {
914                 _debug("oom");
915                 rxrpc_kernel_abort_call(net->socket, call->rxcall,
916                                         RX_USER_ABORT, -ENOMEM, "KOO");
917         }
918         _leave(" [error]");
919 }
920
921 /*
922  * Extract a piece of data from the received data socket buffers.
923  */
924 int afs_extract_data(struct afs_call *call, bool want_more)
925 {
926         struct afs_net *net = call->net;
927         struct iov_iter *iter = call->iter;
928         enum afs_call_state state;
929         u32 remote_abort = 0;
930         int ret;
931
932         _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more);
933
934         ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter,
935                                      want_more, &remote_abort,
936                                      &call->service_id);
937         if (ret == 0 || ret == -EAGAIN)
938                 return ret;
939
940         state = READ_ONCE(call->state);
941         if (ret == 1) {
942                 switch (state) {
943                 case AFS_CALL_CL_AWAIT_REPLY:
944                         afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY);
945                         break;
946                 case AFS_CALL_SV_AWAIT_REQUEST:
947                         afs_set_call_state(call, state, AFS_CALL_SV_REPLYING);
948                         break;
949                 case AFS_CALL_COMPLETE:
950                         kdebug("prem complete %d", call->error);
951                         return afs_io_error(call, afs_io_error_extract);
952                 default:
953                         break;
954                 }
955                 return 0;
956         }
957
958         afs_set_call_complete(call, ret, remote_abort);
959         return ret;
960 }
961
962 /*
963  * Log protocol error production.
964  */
965 noinline int afs_protocol_error(struct afs_call *call,
966                                 enum afs_eproto_cause cause)
967 {
968         trace_afs_protocol_error(call, cause);
969         if (call)
970                 call->unmarshalling_error = true;
971         return -EBADMSG;
972 }