Merge tag 'ktest-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / drivers / watchdog / octeon-wdt-main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Octeon Watchdog driver
4  *
5  * Copyright (C) 2007-2017 Cavium, Inc.
6  *
7  * Converted to use WATCHDOG_CORE by Aaro Koskinen <aaro.koskinen@iki.fi>.
8  *
9  * Some parts derived from wdt.c
10  *
11  *      (c) Copyright 1996-1997 Alan Cox <alan@lxorguk.ukuu.org.uk>,
12  *                                              All Rights Reserved.
13  *
14  *      Neither Alan Cox nor CymruNet Ltd. admit liability nor provide
15  *      warranty for any of this software. This material is provided
16  *      "AS-IS" and at no charge.
17  *
18  *      (c) Copyright 1995    Alan Cox <alan@lxorguk.ukuu.org.uk>
19  *
20  * The OCTEON watchdog has a maximum timeout of 2^32 * io_clock.
21  * For most systems this is less than 10 seconds, so to allow for
22  * software to request longer watchdog heartbeats, we maintain software
23  * counters to count multiples of the base rate.  If the system locks
24  * up in such a manner that we can not run the software counters, the
25  * only result is a watchdog reset sooner than was requested.  But
26  * that is OK, because in this case userspace would likely not be able
27  * to do anything anyhow.
28  *
29  * The hardware watchdog interval we call the period.  The OCTEON
30  * watchdog goes through several stages, after the first period an
31  * irq is asserted, then if it is not reset, after the next period NMI
32  * is asserted, then after an additional period a chip wide soft reset.
33  * So for the software counters, we reset watchdog after each period
34  * and decrement the counter.  But for the last two periods we need to
35  * let the watchdog progress to the NMI stage so we disable the irq
36  * and let it proceed.  Once in the NMI, we print the register state
37  * to the serial port and then wait for the reset.
38  *
39  * A watchdog is maintained for each CPU in the system, that way if
40  * one CPU suffers a lockup, we also get a register dump and reset.
41  * The userspace ping resets the watchdog on all CPUs.
42  *
43  * Before userspace opens the watchdog device, we still run the
44  * watchdogs to catch any lockups that may be kernel related.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/interrupt.h>
51 #include <linux/watchdog.h>
52 #include <linux/cpumask.h>
53 #include <linux/module.h>
54 #include <linux/delay.h>
55 #include <linux/cpu.h>
56 #include <linux/irq.h>
57
58 #include <asm/mipsregs.h>
59 #include <asm/uasm.h>
60
61 #include <asm/octeon/octeon.h>
62 #include <asm/octeon/cvmx-boot-vector.h>
63 #include <asm/octeon/cvmx-ciu2-defs.h>
64 #include <asm/octeon/cvmx-rst-defs.h>
65
66 /* Watchdog interrupt major block number (8 MSBs of intsn) */
67 #define WD_BLOCK_NUMBER         0x01
68
69 static int divisor;
70
71 /* The count needed to achieve timeout_sec. */
72 static unsigned int timeout_cnt;
73
74 /* The maximum period supported. */
75 static unsigned int max_timeout_sec;
76
77 /* The current period.  */
78 static unsigned int timeout_sec;
79
80 /* Set to non-zero when userspace countdown mode active */
81 static bool do_countdown;
82 static unsigned int countdown_reset;
83 static unsigned int per_cpu_countdown[NR_CPUS];
84
85 static cpumask_t irq_enabled_cpus;
86
87 #define WD_TIMO 60                      /* Default heartbeat = 60 seconds */
88
89 #define CVMX_GSERX_SCRATCH(offset) (CVMX_ADD_IO_SEG(0x0001180090000020ull) + ((offset) & 15) * 0x1000000ull)
90
91 static int heartbeat = WD_TIMO;
92 module_param(heartbeat, int, 0444);
93 MODULE_PARM_DESC(heartbeat,
94         "Watchdog heartbeat in seconds. (0 < heartbeat, default="
95                                 __MODULE_STRING(WD_TIMO) ")");
96
97 static bool nowayout = WATCHDOG_NOWAYOUT;
98 module_param(nowayout, bool, 0444);
99 MODULE_PARM_DESC(nowayout,
100         "Watchdog cannot be stopped once started (default="
101                                 __MODULE_STRING(WATCHDOG_NOWAYOUT) ")");
102
103 static int disable;
104 module_param(disable, int, 0444);
105 MODULE_PARM_DESC(disable,
106         "Disable the watchdog entirely (default=0)");
107
108 static struct cvmx_boot_vector_element *octeon_wdt_bootvector;
109
110 void octeon_wdt_nmi_stage2(void);
111
112 static int cpu2core(int cpu)
113 {
114 #ifdef CONFIG_SMP
115         return cpu_logical_map(cpu) & 0x3f;
116 #else
117         return cvmx_get_core_num();
118 #endif
119 }
120
121 /**
122  * Poke the watchdog when an interrupt is received
123  *
124  * @cpl:
125  * @dev_id:
126  *
127  * Returns
128  */
129 static irqreturn_t octeon_wdt_poke_irq(int cpl, void *dev_id)
130 {
131         int cpu = raw_smp_processor_id();
132         unsigned int core = cpu2core(cpu);
133         int node = cpu_to_node(cpu);
134
135         if (do_countdown) {
136                 if (per_cpu_countdown[cpu] > 0) {
137                         /* We're alive, poke the watchdog */
138                         cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
139                         per_cpu_countdown[cpu]--;
140                 } else {
141                         /* Bad news, you are about to reboot. */
142                         disable_irq_nosync(cpl);
143                         cpumask_clear_cpu(cpu, &irq_enabled_cpus);
144                 }
145         } else {
146                 /* Not open, just ping away... */
147                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
148         }
149         return IRQ_HANDLED;
150 }
151
152 /* From setup.c */
153 extern int prom_putchar(char c);
154
155 /**
156  * Write a string to the uart
157  *
158  * @str:        String to write
159  */
160 static void octeon_wdt_write_string(const char *str)
161 {
162         /* Just loop writing one byte at a time */
163         while (*str)
164                 prom_putchar(*str++);
165 }
166
167 /**
168  * Write a hex number out of the uart
169  *
170  * @value:      Number to display
171  * @digits:     Number of digits to print (1 to 16)
172  */
173 static void octeon_wdt_write_hex(u64 value, int digits)
174 {
175         int d;
176         int v;
177
178         for (d = 0; d < digits; d++) {
179                 v = (value >> ((digits - d - 1) * 4)) & 0xf;
180                 if (v >= 10)
181                         prom_putchar('a' + v - 10);
182                 else
183                         prom_putchar('0' + v);
184         }
185 }
186
187 static const char reg_name[][3] = {
188         "$0", "at", "v0", "v1", "a0", "a1", "a2", "a3",
189         "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
190         "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
191         "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
192 };
193
194 /**
195  * NMI stage 3 handler. NMIs are handled in the following manner:
196  * 1) The first NMI handler enables CVMSEG and transfers from
197  * the bootbus region into normal memory. It is careful to not
198  * destroy any registers.
199  * 2) The second stage handler uses CVMSEG to save the registers
200  * and create a stack for C code. It then calls the third level
201  * handler with one argument, a pointer to the register values.
202  * 3) The third, and final, level handler is the following C
203  * function that prints out some useful infomration.
204  *
205  * @reg:    Pointer to register state before the NMI
206  */
207 void octeon_wdt_nmi_stage3(u64 reg[32])
208 {
209         u64 i;
210
211         unsigned int coreid = cvmx_get_core_num();
212         /*
213          * Save status and cause early to get them before any changes
214          * might happen.
215          */
216         u64 cp0_cause = read_c0_cause();
217         u64 cp0_status = read_c0_status();
218         u64 cp0_error_epc = read_c0_errorepc();
219         u64 cp0_epc = read_c0_epc();
220
221         /* Delay so output from all cores output is not jumbled together. */
222         udelay(85000 * coreid);
223
224         octeon_wdt_write_string("\r\n*** NMI Watchdog interrupt on Core 0x");
225         octeon_wdt_write_hex(coreid, 2);
226         octeon_wdt_write_string(" ***\r\n");
227         for (i = 0; i < 32; i++) {
228                 octeon_wdt_write_string("\t");
229                 octeon_wdt_write_string(reg_name[i]);
230                 octeon_wdt_write_string("\t0x");
231                 octeon_wdt_write_hex(reg[i], 16);
232                 if (i & 1)
233                         octeon_wdt_write_string("\r\n");
234         }
235         octeon_wdt_write_string("\terr_epc\t0x");
236         octeon_wdt_write_hex(cp0_error_epc, 16);
237
238         octeon_wdt_write_string("\tepc\t0x");
239         octeon_wdt_write_hex(cp0_epc, 16);
240         octeon_wdt_write_string("\r\n");
241
242         octeon_wdt_write_string("\tstatus\t0x");
243         octeon_wdt_write_hex(cp0_status, 16);
244         octeon_wdt_write_string("\tcause\t0x");
245         octeon_wdt_write_hex(cp0_cause, 16);
246         octeon_wdt_write_string("\r\n");
247
248         /* The CIU register is different for each Octeon model. */
249         if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
250                 octeon_wdt_write_string("\tsrc_wd\t0x");
251                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_WDOG(coreid)), 16);
252                 octeon_wdt_write_string("\ten_wd\t0x");
253                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_WDOG(coreid)), 16);
254                 octeon_wdt_write_string("\r\n");
255                 octeon_wdt_write_string("\tsrc_rml\t0x");
256                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SRC_PPX_IP2_RML(coreid)), 16);
257                 octeon_wdt_write_string("\ten_rml\t0x");
258                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_EN_PPX_IP2_RML(coreid)), 16);
259                 octeon_wdt_write_string("\r\n");
260                 octeon_wdt_write_string("\tsum\t0x");
261                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU2_SUM_PPX_IP2(coreid)), 16);
262                 octeon_wdt_write_string("\r\n");
263         } else if (!octeon_has_feature(OCTEON_FEATURE_CIU3)) {
264                 octeon_wdt_write_string("\tsum0\t0x");
265                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_SUM0(coreid * 2)), 16);
266                 octeon_wdt_write_string("\ten0\t0x");
267                 octeon_wdt_write_hex(cvmx_read_csr(CVMX_CIU_INTX_EN0(coreid * 2)), 16);
268                 octeon_wdt_write_string("\r\n");
269         }
270
271         octeon_wdt_write_string("*** Chip soft reset soon ***\r\n");
272
273         /*
274          * G-30204: We must trigger a soft reset before watchdog
275          * does an incomplete job of doing it.
276          */
277         if (OCTEON_IS_OCTEON3() && !OCTEON_IS_MODEL(OCTEON_CN70XX)) {
278                 u64 scr;
279                 unsigned int node = cvmx_get_node_num();
280                 unsigned int lcore = cvmx_get_local_core_num();
281                 union cvmx_ciu_wdogx ciu_wdog;
282
283                 /*
284                  * Wait for other cores to print out information, but
285                  * not too long.  Do the soft reset before watchdog
286                  * can trigger it.
287                  */
288                 do {
289                         ciu_wdog.u64 = cvmx_read_csr_node(node, CVMX_CIU_WDOGX(lcore));
290                 } while (ciu_wdog.s.cnt > 0x10000);
291
292                 scr = cvmx_read_csr_node(0, CVMX_GSERX_SCRATCH(0));
293                 scr |= 1 << 11; /* Indicate watchdog in bit 11 */
294                 cvmx_write_csr_node(0, CVMX_GSERX_SCRATCH(0), scr);
295                 cvmx_write_csr_node(0, CVMX_RST_SOFT_RST, 1);
296         }
297 }
298
299 static int octeon_wdt_cpu_to_irq(int cpu)
300 {
301         unsigned int coreid;
302         int node;
303         int irq;
304
305         coreid = cpu2core(cpu);
306         node = cpu_to_node(cpu);
307
308         if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
309                 struct irq_domain *domain;
310                 int hwirq;
311
312                 domain = octeon_irq_get_block_domain(node,
313                                                      WD_BLOCK_NUMBER);
314                 hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | coreid;
315                 irq = irq_find_mapping(domain, hwirq);
316         } else {
317                 irq = OCTEON_IRQ_WDOG0 + coreid;
318         }
319         return irq;
320 }
321
322 static int octeon_wdt_cpu_pre_down(unsigned int cpu)
323 {
324         unsigned int core;
325         int node;
326         union cvmx_ciu_wdogx ciu_wdog;
327
328         core = cpu2core(cpu);
329
330         node = cpu_to_node(cpu);
331
332         /* Poke the watchdog to clear out its state */
333         cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
334
335         /* Disable the hardware. */
336         ciu_wdog.u64 = 0;
337         cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
338
339         free_irq(octeon_wdt_cpu_to_irq(cpu), octeon_wdt_poke_irq);
340         return 0;
341 }
342
343 static int octeon_wdt_cpu_online(unsigned int cpu)
344 {
345         unsigned int core;
346         unsigned int irq;
347         union cvmx_ciu_wdogx ciu_wdog;
348         int node;
349         struct irq_domain *domain;
350         int hwirq;
351
352         core = cpu2core(cpu);
353         node = cpu_to_node(cpu);
354
355         octeon_wdt_bootvector[core].target_ptr = (u64)octeon_wdt_nmi_stage2;
356
357         /* Disable it before doing anything with the interrupts. */
358         ciu_wdog.u64 = 0;
359         cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
360
361         per_cpu_countdown[cpu] = countdown_reset;
362
363         if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
364                 /* Must get the domain for the watchdog block */
365                 domain = octeon_irq_get_block_domain(node, WD_BLOCK_NUMBER);
366
367                 /* Get a irq for the wd intsn (hardware interrupt) */
368                 hwirq = WD_BLOCK_NUMBER << 12 | 0x200 | core;
369                 irq = irq_create_mapping(domain, hwirq);
370                 irqd_set_trigger_type(irq_get_irq_data(irq),
371                                       IRQ_TYPE_EDGE_RISING);
372         } else
373                 irq = OCTEON_IRQ_WDOG0 + core;
374
375         if (request_irq(irq, octeon_wdt_poke_irq,
376                         IRQF_NO_THREAD, "octeon_wdt", octeon_wdt_poke_irq))
377                 panic("octeon_wdt: Couldn't obtain irq %d", irq);
378
379         /* Must set the irq affinity here */
380         if (octeon_has_feature(OCTEON_FEATURE_CIU3)) {
381                 cpumask_t mask;
382
383                 cpumask_clear(&mask);
384                 cpumask_set_cpu(cpu, &mask);
385                 irq_set_affinity(irq, &mask);
386         }
387
388         cpumask_set_cpu(cpu, &irq_enabled_cpus);
389
390         /* Poke the watchdog to clear out its state */
391         cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(core), 1);
392
393         /* Finally enable the watchdog now that all handlers are installed */
394         ciu_wdog.u64 = 0;
395         ciu_wdog.s.len = timeout_cnt;
396         ciu_wdog.s.mode = 3;    /* 3 = Interrupt + NMI + Soft-Reset */
397         cvmx_write_csr_node(node, CVMX_CIU_WDOGX(core), ciu_wdog.u64);
398
399         return 0;
400 }
401
402 static int octeon_wdt_ping(struct watchdog_device __always_unused *wdog)
403 {
404         int cpu;
405         int coreid;
406         int node;
407
408         if (disable)
409                 return 0;
410
411         for_each_online_cpu(cpu) {
412                 coreid = cpu2core(cpu);
413                 node = cpu_to_node(cpu);
414                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
415                 per_cpu_countdown[cpu] = countdown_reset;
416                 if ((countdown_reset || !do_countdown) &&
417                     !cpumask_test_cpu(cpu, &irq_enabled_cpus)) {
418                         /* We have to enable the irq */
419                         enable_irq(octeon_wdt_cpu_to_irq(cpu));
420                         cpumask_set_cpu(cpu, &irq_enabled_cpus);
421                 }
422         }
423         return 0;
424 }
425
426 static void octeon_wdt_calc_parameters(int t)
427 {
428         unsigned int periods;
429
430         timeout_sec = max_timeout_sec;
431
432
433         /*
434          * Find the largest interrupt period, that can evenly divide
435          * the requested heartbeat time.
436          */
437         while ((t % timeout_sec) != 0)
438                 timeout_sec--;
439
440         periods = t / timeout_sec;
441
442         /*
443          * The last two periods are after the irq is disabled, and
444          * then to the nmi, so we subtract them off.
445          */
446
447         countdown_reset = periods > 2 ? periods - 2 : 0;
448         heartbeat = t;
449         timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * timeout_sec) >> 8;
450 }
451
452 static int octeon_wdt_set_timeout(struct watchdog_device *wdog,
453                                   unsigned int t)
454 {
455         int cpu;
456         int coreid;
457         union cvmx_ciu_wdogx ciu_wdog;
458         int node;
459
460         if (t <= 0)
461                 return -1;
462
463         octeon_wdt_calc_parameters(t);
464
465         if (disable)
466                 return 0;
467
468         for_each_online_cpu(cpu) {
469                 coreid = cpu2core(cpu);
470                 node = cpu_to_node(cpu);
471                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
472                 ciu_wdog.u64 = 0;
473                 ciu_wdog.s.len = timeout_cnt;
474                 ciu_wdog.s.mode = 3;    /* 3 = Interrupt + NMI + Soft-Reset */
475                 cvmx_write_csr_node(node, CVMX_CIU_WDOGX(coreid), ciu_wdog.u64);
476                 cvmx_write_csr_node(node, CVMX_CIU_PP_POKEX(coreid), 1);
477         }
478         octeon_wdt_ping(wdog); /* Get the irqs back on. */
479         return 0;
480 }
481
482 static int octeon_wdt_start(struct watchdog_device *wdog)
483 {
484         octeon_wdt_ping(wdog);
485         do_countdown = 1;
486         return 0;
487 }
488
489 static int octeon_wdt_stop(struct watchdog_device *wdog)
490 {
491         do_countdown = 0;
492         octeon_wdt_ping(wdog);
493         return 0;
494 }
495
496 static const struct watchdog_info octeon_wdt_info = {
497         .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING,
498         .identity = "OCTEON",
499 };
500
501 static const struct watchdog_ops octeon_wdt_ops = {
502         .owner          = THIS_MODULE,
503         .start          = octeon_wdt_start,
504         .stop           = octeon_wdt_stop,
505         .ping           = octeon_wdt_ping,
506         .set_timeout    = octeon_wdt_set_timeout,
507 };
508
509 static struct watchdog_device octeon_wdt = {
510         .info   = &octeon_wdt_info,
511         .ops    = &octeon_wdt_ops,
512 };
513
514 static enum cpuhp_state octeon_wdt_online;
515 /**
516  * Module/ driver initialization.
517  *
518  * Returns Zero on success
519  */
520 static int __init octeon_wdt_init(void)
521 {
522         int ret;
523
524         octeon_wdt_bootvector = cvmx_boot_vector_get();
525         if (!octeon_wdt_bootvector) {
526                 pr_err("Error: Cannot allocate boot vector.\n");
527                 return -ENOMEM;
528         }
529
530         if (OCTEON_IS_MODEL(OCTEON_CN68XX))
531                 divisor = 0x200;
532         else if (OCTEON_IS_MODEL(OCTEON_CN78XX))
533                 divisor = 0x400;
534         else
535                 divisor = 0x100;
536
537         /*
538          * Watchdog time expiration length = The 16 bits of LEN
539          * represent the most significant bits of a 24 bit decrementer
540          * that decrements every divisor cycle.
541          *
542          * Try for a timeout of 5 sec, if that fails a smaller number
543          * of even seconds,
544          */
545         max_timeout_sec = 6;
546         do {
547                 max_timeout_sec--;
548                 timeout_cnt = ((octeon_get_io_clock_rate() / divisor) * max_timeout_sec) >> 8;
549         } while (timeout_cnt > 65535);
550
551         BUG_ON(timeout_cnt == 0);
552
553         octeon_wdt_calc_parameters(heartbeat);
554
555         pr_info("Initial granularity %d Sec\n", timeout_sec);
556
557         octeon_wdt.timeout      = timeout_sec;
558         octeon_wdt.max_timeout  = UINT_MAX;
559
560         watchdog_set_nowayout(&octeon_wdt, nowayout);
561
562         ret = watchdog_register_device(&octeon_wdt);
563         if (ret) {
564                 pr_err("watchdog_register_device() failed: %d\n", ret);
565                 return ret;
566         }
567
568         if (disable) {
569                 pr_notice("disabled\n");
570                 return 0;
571         }
572
573         cpumask_clear(&irq_enabled_cpus);
574
575         ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "watchdog/octeon:online",
576                                 octeon_wdt_cpu_online, octeon_wdt_cpu_pre_down);
577         if (ret < 0)
578                 goto err;
579         octeon_wdt_online = ret;
580         return 0;
581 err:
582         cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
583         watchdog_unregister_device(&octeon_wdt);
584         return ret;
585 }
586
587 /**
588  * Module / driver shutdown
589  */
590 static void __exit octeon_wdt_cleanup(void)
591 {
592         watchdog_unregister_device(&octeon_wdt);
593
594         if (disable)
595                 return;
596
597         cpuhp_remove_state(octeon_wdt_online);
598
599         /*
600          * Disable the boot-bus memory, the code it points to is soon
601          * to go missing.
602          */
603         cvmx_write_csr(CVMX_MIO_BOOT_LOC_CFGX(0), 0);
604 }
605
606 MODULE_LICENSE("GPL");
607 MODULE_AUTHOR("Cavium Inc. <support@cavium.com>");
608 MODULE_DESCRIPTION("Cavium Inc. OCTEON Watchdog driver.");
609 module_init(octeon_wdt_init);
610 module_exit(octeon_wdt_cleanup);