Merge tag 'usb-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux-2.6-microblaze.git] / drivers / usb / host / xhci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-debugfs.h"
24 #include "xhci-dbgcap.h"
25
26 #define DRIVER_AUTHOR "Sarah Sharp"
27 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
28
29 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
30
31 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
32 static int link_quirk;
33 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
34 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
35
36 static unsigned long long quirks;
37 module_param(quirks, ullong, S_IRUGO);
38 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
39
40 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
41 {
42         struct xhci_segment *seg = ring->first_seg;
43
44         if (!td || !td->start_seg)
45                 return false;
46         do {
47                 if (seg == td->start_seg)
48                         return true;
49                 seg = seg->next;
50         } while (seg && seg != ring->first_seg);
51
52         return false;
53 }
54
55 /*
56  * xhci_handshake - spin reading hc until handshake completes or fails
57  * @ptr: address of hc register to be read
58  * @mask: bits to look at in result of read
59  * @done: value of those bits when handshake succeeds
60  * @usec: timeout in microseconds
61  *
62  * Returns negative errno, or zero on success
63  *
64  * Success happens when the "mask" bits have the specified value (hardware
65  * handshake done).  There are two failure modes:  "usec" have passed (major
66  * hardware flakeout), or the register reads as all-ones (hardware removed).
67  */
68 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
69 {
70         u32     result;
71         int     ret;
72
73         ret = readl_poll_timeout_atomic(ptr, result,
74                                         (result & mask) == done ||
75                                         result == U32_MAX,
76                                         1, usec);
77         if (result == U32_MAX)          /* card removed */
78                 return -ENODEV;
79
80         return ret;
81 }
82
83 /*
84  * Disable interrupts and begin the xHCI halting process.
85  */
86 void xhci_quiesce(struct xhci_hcd *xhci)
87 {
88         u32 halted;
89         u32 cmd;
90         u32 mask;
91
92         mask = ~(XHCI_IRQS);
93         halted = readl(&xhci->op_regs->status) & STS_HALT;
94         if (!halted)
95                 mask &= ~CMD_RUN;
96
97         cmd = readl(&xhci->op_regs->command);
98         cmd &= mask;
99         writel(cmd, &xhci->op_regs->command);
100 }
101
102 /*
103  * Force HC into halt state.
104  *
105  * Disable any IRQs and clear the run/stop bit.
106  * HC will complete any current and actively pipelined transactions, and
107  * should halt within 16 ms of the run/stop bit being cleared.
108  * Read HC Halted bit in the status register to see when the HC is finished.
109  */
110 int xhci_halt(struct xhci_hcd *xhci)
111 {
112         int ret;
113         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
114         xhci_quiesce(xhci);
115
116         ret = xhci_handshake(&xhci->op_regs->status,
117                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
118         if (ret) {
119                 xhci_warn(xhci, "Host halt failed, %d\n", ret);
120                 return ret;
121         }
122         xhci->xhc_state |= XHCI_STATE_HALTED;
123         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
124         return ret;
125 }
126
127 /*
128  * Set the run bit and wait for the host to be running.
129  */
130 int xhci_start(struct xhci_hcd *xhci)
131 {
132         u32 temp;
133         int ret;
134
135         temp = readl(&xhci->op_regs->command);
136         temp |= (CMD_RUN);
137         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
138                         temp);
139         writel(temp, &xhci->op_regs->command);
140
141         /*
142          * Wait for the HCHalted Status bit to be 0 to indicate the host is
143          * running.
144          */
145         ret = xhci_handshake(&xhci->op_regs->status,
146                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
147         if (ret == -ETIMEDOUT)
148                 xhci_err(xhci, "Host took too long to start, "
149                                 "waited %u microseconds.\n",
150                                 XHCI_MAX_HALT_USEC);
151         if (!ret)
152                 /* clear state flags. Including dying, halted or removing */
153                 xhci->xhc_state = 0;
154
155         return ret;
156 }
157
158 /*
159  * Reset a halted HC.
160  *
161  * This resets pipelines, timers, counters, state machines, etc.
162  * Transactions will be terminated immediately, and operational registers
163  * will be set to their defaults.
164  */
165 int xhci_reset(struct xhci_hcd *xhci)
166 {
167         u32 command;
168         u32 state;
169         int ret;
170
171         state = readl(&xhci->op_regs->status);
172
173         if (state == ~(u32)0) {
174                 xhci_warn(xhci, "Host not accessible, reset failed.\n");
175                 return -ENODEV;
176         }
177
178         if ((state & STS_HALT) == 0) {
179                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
180                 return 0;
181         }
182
183         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
184         command = readl(&xhci->op_regs->command);
185         command |= CMD_RESET;
186         writel(command, &xhci->op_regs->command);
187
188         /* Existing Intel xHCI controllers require a delay of 1 mS,
189          * after setting the CMD_RESET bit, and before accessing any
190          * HC registers. This allows the HC to complete the
191          * reset operation and be ready for HC register access.
192          * Without this delay, the subsequent HC register access,
193          * may result in a system hang very rarely.
194          */
195         if (xhci->quirks & XHCI_INTEL_HOST)
196                 udelay(1000);
197
198         ret = xhci_handshake(&xhci->op_regs->command,
199                         CMD_RESET, 0, 10 * 1000 * 1000);
200         if (ret)
201                 return ret;
202
203         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
204                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
205
206         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
207                          "Wait for controller to be ready for doorbell rings");
208         /*
209          * xHCI cannot write to any doorbells or operational registers other
210          * than status until the "Controller Not Ready" flag is cleared.
211          */
212         ret = xhci_handshake(&xhci->op_regs->status,
213                         STS_CNR, 0, 10 * 1000 * 1000);
214
215         xhci->usb2_rhub.bus_state.port_c_suspend = 0;
216         xhci->usb2_rhub.bus_state.suspended_ports = 0;
217         xhci->usb2_rhub.bus_state.resuming_ports = 0;
218         xhci->usb3_rhub.bus_state.port_c_suspend = 0;
219         xhci->usb3_rhub.bus_state.suspended_ports = 0;
220         xhci->usb3_rhub.bus_state.resuming_ports = 0;
221
222         return ret;
223 }
224
225 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
226 {
227         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
228         int err, i;
229         u64 val;
230         u32 intrs;
231
232         /*
233          * Some Renesas controllers get into a weird state if they are
234          * reset while programmed with 64bit addresses (they will preserve
235          * the top half of the address in internal, non visible
236          * registers). You end up with half the address coming from the
237          * kernel, and the other half coming from the firmware. Also,
238          * changing the programming leads to extra accesses even if the
239          * controller is supposed to be halted. The controller ends up with
240          * a fatal fault, and is then ripe for being properly reset.
241          *
242          * Special care is taken to only apply this if the device is behind
243          * an iommu. Doing anything when there is no iommu is definitely
244          * unsafe...
245          */
246         if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247                 return;
248
249         xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250
251         /* Clear HSEIE so that faults do not get signaled */
252         val = readl(&xhci->op_regs->command);
253         val &= ~CMD_HSEIE;
254         writel(val, &xhci->op_regs->command);
255
256         /* Clear HSE (aka FATAL) */
257         val = readl(&xhci->op_regs->status);
258         val |= STS_FATAL;
259         writel(val, &xhci->op_regs->status);
260
261         /* Now zero the registers, and brace for impact */
262         val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263         if (upper_32_bits(val))
264                 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265         val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266         if (upper_32_bits(val))
267                 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268
269         intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
270                       ARRAY_SIZE(xhci->run_regs->ir_set));
271
272         for (i = 0; i < intrs; i++) {
273                 struct xhci_intr_reg __iomem *ir;
274
275                 ir = &xhci->run_regs->ir_set[i];
276                 val = xhci_read_64(xhci, &ir->erst_base);
277                 if (upper_32_bits(val))
278                         xhci_write_64(xhci, 0, &ir->erst_base);
279                 val= xhci_read_64(xhci, &ir->erst_dequeue);
280                 if (upper_32_bits(val))
281                         xhci_write_64(xhci, 0, &ir->erst_dequeue);
282         }
283
284         /* Wait for the fault to appear. It will be cleared on reset */
285         err = xhci_handshake(&xhci->op_regs->status,
286                              STS_FATAL, STS_FATAL,
287                              XHCI_MAX_HALT_USEC);
288         if (!err)
289                 xhci_info(xhci, "Fault detected\n");
290 }
291
292 #ifdef CONFIG_USB_PCI
293 /*
294  * Set up MSI
295  */
296 static int xhci_setup_msi(struct xhci_hcd *xhci)
297 {
298         int ret;
299         /*
300          * TODO:Check with MSI Soc for sysdev
301          */
302         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
303
304         ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
305         if (ret < 0) {
306                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
307                                 "failed to allocate MSI entry");
308                 return ret;
309         }
310
311         ret = request_irq(pdev->irq, xhci_msi_irq,
312                                 0, "xhci_hcd", xhci_to_hcd(xhci));
313         if (ret) {
314                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
315                                 "disable MSI interrupt");
316                 pci_free_irq_vectors(pdev);
317         }
318
319         return ret;
320 }
321
322 /*
323  * Set up MSI-X
324  */
325 static int xhci_setup_msix(struct xhci_hcd *xhci)
326 {
327         int i, ret = 0;
328         struct usb_hcd *hcd = xhci_to_hcd(xhci);
329         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
330
331         /*
332          * calculate number of msi-x vectors supported.
333          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
334          *   with max number of interrupters based on the xhci HCSPARAMS1.
335          * - num_online_cpus: maximum msi-x vectors per CPUs core.
336          *   Add additional 1 vector to ensure always available interrupt.
337          */
338         xhci->msix_count = min(num_online_cpus() + 1,
339                                 HCS_MAX_INTRS(xhci->hcs_params1));
340
341         ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
342                         PCI_IRQ_MSIX);
343         if (ret < 0) {
344                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
345                                 "Failed to enable MSI-X");
346                 return ret;
347         }
348
349         for (i = 0; i < xhci->msix_count; i++) {
350                 ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
351                                 "xhci_hcd", xhci_to_hcd(xhci));
352                 if (ret)
353                         goto disable_msix;
354         }
355
356         hcd->msix_enabled = 1;
357         return ret;
358
359 disable_msix:
360         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
361         while (--i >= 0)
362                 free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
363         pci_free_irq_vectors(pdev);
364         return ret;
365 }
366
367 /* Free any IRQs and disable MSI-X */
368 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
369 {
370         struct usb_hcd *hcd = xhci_to_hcd(xhci);
371         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
372
373         if (xhci->quirks & XHCI_PLAT)
374                 return;
375
376         /* return if using legacy interrupt */
377         if (hcd->irq > 0)
378                 return;
379
380         if (hcd->msix_enabled) {
381                 int i;
382
383                 for (i = 0; i < xhci->msix_count; i++)
384                         free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
385         } else {
386                 free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
387         }
388
389         pci_free_irq_vectors(pdev);
390         hcd->msix_enabled = 0;
391 }
392
393 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
394 {
395         struct usb_hcd *hcd = xhci_to_hcd(xhci);
396
397         if (hcd->msix_enabled) {
398                 struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
399                 int i;
400
401                 for (i = 0; i < xhci->msix_count; i++)
402                         synchronize_irq(pci_irq_vector(pdev, i));
403         }
404 }
405
406 static int xhci_try_enable_msi(struct usb_hcd *hcd)
407 {
408         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
409         struct pci_dev  *pdev;
410         int ret;
411
412         /* The xhci platform device has set up IRQs through usb_add_hcd. */
413         if (xhci->quirks & XHCI_PLAT)
414                 return 0;
415
416         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
417         /*
418          * Some Fresco Logic host controllers advertise MSI, but fail to
419          * generate interrupts.  Don't even try to enable MSI.
420          */
421         if (xhci->quirks & XHCI_BROKEN_MSI)
422                 goto legacy_irq;
423
424         /* unregister the legacy interrupt */
425         if (hcd->irq)
426                 free_irq(hcd->irq, hcd);
427         hcd->irq = 0;
428
429         ret = xhci_setup_msix(xhci);
430         if (ret)
431                 /* fall back to msi*/
432                 ret = xhci_setup_msi(xhci);
433
434         if (!ret) {
435                 hcd->msi_enabled = 1;
436                 return 0;
437         }
438
439         if (!pdev->irq) {
440                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
441                 return -EINVAL;
442         }
443
444  legacy_irq:
445         if (!strlen(hcd->irq_descr))
446                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
447                          hcd->driver->description, hcd->self.busnum);
448
449         /* fall back to legacy interrupt*/
450         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
451                         hcd->irq_descr, hcd);
452         if (ret) {
453                 xhci_err(xhci, "request interrupt %d failed\n",
454                                 pdev->irq);
455                 return ret;
456         }
457         hcd->irq = pdev->irq;
458         return 0;
459 }
460
461 #else
462
463 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
464 {
465         return 0;
466 }
467
468 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
469 {
470 }
471
472 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
473 {
474 }
475
476 #endif
477
478 static void compliance_mode_recovery(struct timer_list *t)
479 {
480         struct xhci_hcd *xhci;
481         struct usb_hcd *hcd;
482         struct xhci_hub *rhub;
483         u32 temp;
484         int i;
485
486         xhci = from_timer(xhci, t, comp_mode_recovery_timer);
487         rhub = &xhci->usb3_rhub;
488
489         for (i = 0; i < rhub->num_ports; i++) {
490                 temp = readl(rhub->ports[i]->addr);
491                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
492                         /*
493                          * Compliance Mode Detected. Letting USB Core
494                          * handle the Warm Reset
495                          */
496                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497                                         "Compliance mode detected->port %d",
498                                         i + 1);
499                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
500                                         "Attempting compliance mode recovery");
501                         hcd = xhci->shared_hcd;
502
503                         if (hcd->state == HC_STATE_SUSPENDED)
504                                 usb_hcd_resume_root_hub(hcd);
505
506                         usb_hcd_poll_rh_status(hcd);
507                 }
508         }
509
510         if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
511                 mod_timer(&xhci->comp_mode_recovery_timer,
512                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
513 }
514
515 /*
516  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
517  * that causes ports behind that hardware to enter compliance mode sometimes.
518  * The quirk creates a timer that polls every 2 seconds the link state of
519  * each host controller's port and recovers it by issuing a Warm reset
520  * if Compliance mode is detected, otherwise the port will become "dead" (no
521  * device connections or disconnections will be detected anymore). Becasue no
522  * status event is generated when entering compliance mode (per xhci spec),
523  * this quirk is needed on systems that have the failing hardware installed.
524  */
525 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
526 {
527         xhci->port_status_u0 = 0;
528         timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
529                     0);
530         xhci->comp_mode_recovery_timer.expires = jiffies +
531                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
532
533         add_timer(&xhci->comp_mode_recovery_timer);
534         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
535                         "Compliance mode recovery timer initialized");
536 }
537
538 /*
539  * This function identifies the systems that have installed the SN65LVPE502CP
540  * USB3.0 re-driver and that need the Compliance Mode Quirk.
541  * Systems:
542  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
543  */
544 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
545 {
546         const char *dmi_product_name, *dmi_sys_vendor;
547
548         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
549         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
550         if (!dmi_product_name || !dmi_sys_vendor)
551                 return false;
552
553         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
554                 return false;
555
556         if (strstr(dmi_product_name, "Z420") ||
557                         strstr(dmi_product_name, "Z620") ||
558                         strstr(dmi_product_name, "Z820") ||
559                         strstr(dmi_product_name, "Z1 Workstation"))
560                 return true;
561
562         return false;
563 }
564
565 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
566 {
567         return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
568 }
569
570
571 /*
572  * Initialize memory for HCD and xHC (one-time init).
573  *
574  * Program the PAGESIZE register, initialize the device context array, create
575  * device contexts (?), set up a command ring segment (or two?), create event
576  * ring (one for now).
577  */
578 static int xhci_init(struct usb_hcd *hcd)
579 {
580         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
581         int retval = 0;
582
583         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
584         spin_lock_init(&xhci->lock);
585         if (xhci->hci_version == 0x95 && link_quirk) {
586                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
587                                 "QUIRK: Not clearing Link TRB chain bits.");
588                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
589         } else {
590                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
591                                 "xHCI doesn't need link TRB QUIRK");
592         }
593         retval = xhci_mem_init(xhci, GFP_KERNEL);
594         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
595
596         /* Initializing Compliance Mode Recovery Data If Needed */
597         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
598                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
599                 compliance_mode_recovery_timer_init(xhci);
600         }
601
602         return retval;
603 }
604
605 /*-------------------------------------------------------------------------*/
606
607
608 static int xhci_run_finished(struct xhci_hcd *xhci)
609 {
610         if (xhci_start(xhci)) {
611                 xhci_halt(xhci);
612                 return -ENODEV;
613         }
614         xhci->shared_hcd->state = HC_STATE_RUNNING;
615         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
616
617         if (xhci->quirks & XHCI_NEC_HOST)
618                 xhci_ring_cmd_db(xhci);
619
620         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
621                         "Finished xhci_run for USB3 roothub");
622         return 0;
623 }
624
625 /*
626  * Start the HC after it was halted.
627  *
628  * This function is called by the USB core when the HC driver is added.
629  * Its opposite is xhci_stop().
630  *
631  * xhci_init() must be called once before this function can be called.
632  * Reset the HC, enable device slot contexts, program DCBAAP, and
633  * set command ring pointer and event ring pointer.
634  *
635  * Setup MSI-X vectors and enable interrupts.
636  */
637 int xhci_run(struct usb_hcd *hcd)
638 {
639         u32 temp;
640         u64 temp_64;
641         int ret;
642         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
643
644         /* Start the xHCI host controller running only after the USB 2.0 roothub
645          * is setup.
646          */
647
648         hcd->uses_new_polling = 1;
649         if (!usb_hcd_is_primary_hcd(hcd))
650                 return xhci_run_finished(xhci);
651
652         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
653
654         ret = xhci_try_enable_msi(hcd);
655         if (ret)
656                 return ret;
657
658         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
659         temp_64 &= ~ERST_PTR_MASK;
660         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
662
663         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
664                         "// Set the interrupt modulation register");
665         temp = readl(&xhci->ir_set->irq_control);
666         temp &= ~ER_IRQ_INTERVAL_MASK;
667         temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
668         writel(temp, &xhci->ir_set->irq_control);
669
670         /* Set the HCD state before we enable the irqs */
671         temp = readl(&xhci->op_regs->command);
672         temp |= (CMD_EIE);
673         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
674                         "// Enable interrupts, cmd = 0x%x.", temp);
675         writel(temp, &xhci->op_regs->command);
676
677         temp = readl(&xhci->ir_set->irq_pending);
678         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
679                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
680                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
681         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
682
683         if (xhci->quirks & XHCI_NEC_HOST) {
684                 struct xhci_command *command;
685
686                 command = xhci_alloc_command(xhci, false, GFP_KERNEL);
687                 if (!command)
688                         return -ENOMEM;
689
690                 ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
691                                 TRB_TYPE(TRB_NEC_GET_FW));
692                 if (ret)
693                         xhci_free_command(xhci, command);
694         }
695         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696                         "Finished xhci_run for USB2 roothub");
697
698         xhci_dbc_init(xhci);
699
700         xhci_debugfs_init(xhci);
701
702         return 0;
703 }
704 EXPORT_SYMBOL_GPL(xhci_run);
705
706 /*
707  * Stop xHCI driver.
708  *
709  * This function is called by the USB core when the HC driver is removed.
710  * Its opposite is xhci_run().
711  *
712  * Disable device contexts, disable IRQs, and quiesce the HC.
713  * Reset the HC, finish any completed transactions, and cleanup memory.
714  */
715 static void xhci_stop(struct usb_hcd *hcd)
716 {
717         u32 temp;
718         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
719
720         mutex_lock(&xhci->mutex);
721
722         /* Only halt host and free memory after both hcds are removed */
723         if (!usb_hcd_is_primary_hcd(hcd)) {
724                 mutex_unlock(&xhci->mutex);
725                 return;
726         }
727
728         xhci_dbc_exit(xhci);
729
730         spin_lock_irq(&xhci->lock);
731         xhci->xhc_state |= XHCI_STATE_HALTED;
732         xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
733         xhci_halt(xhci);
734         xhci_reset(xhci);
735         spin_unlock_irq(&xhci->lock);
736
737         xhci_cleanup_msix(xhci);
738
739         /* Deleting Compliance Mode Recovery Timer */
740         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
741                         (!(xhci_all_ports_seen_u0(xhci)))) {
742                 del_timer_sync(&xhci->comp_mode_recovery_timer);
743                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
744                                 "%s: compliance mode recovery timer deleted",
745                                 __func__);
746         }
747
748         if (xhci->quirks & XHCI_AMD_PLL_FIX)
749                 usb_amd_dev_put();
750
751         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
752                         "// Disabling event ring interrupts");
753         temp = readl(&xhci->op_regs->status);
754         writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
755         temp = readl(&xhci->ir_set->irq_pending);
756         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
757
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
759         xhci_mem_cleanup(xhci);
760         xhci_debugfs_exit(xhci);
761         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
762                         "xhci_stop completed - status = %x",
763                         readl(&xhci->op_regs->status));
764         mutex_unlock(&xhci->mutex);
765 }
766
767 /*
768  * Shutdown HC (not bus-specific)
769  *
770  * This is called when the machine is rebooting or halting.  We assume that the
771  * machine will be powered off, and the HC's internal state will be reset.
772  * Don't bother to free memory.
773  *
774  * This will only ever be called with the main usb_hcd (the USB3 roothub).
775  */
776 void xhci_shutdown(struct usb_hcd *hcd)
777 {
778         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
779
780         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
781                 usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
782
783         spin_lock_irq(&xhci->lock);
784         xhci_halt(xhci);
785         /* Workaround for spurious wakeups at shutdown with HSW */
786         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
787                 xhci_reset(xhci);
788         spin_unlock_irq(&xhci->lock);
789
790         xhci_cleanup_msix(xhci);
791
792         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
793                         "xhci_shutdown completed - status = %x",
794                         readl(&xhci->op_regs->status));
795 }
796 EXPORT_SYMBOL_GPL(xhci_shutdown);
797
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801         xhci->s3.command = readl(&xhci->op_regs->command);
802         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814         writel(xhci->s3.command, &xhci->op_regs->command);
815         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827         u64     val_64;
828
829         /* step 2: initialize command ring buffer */
830         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833                                       xhci->cmd_ring->dequeue) &
834                  (u64) ~CMD_RING_RSVD_BITS) |
835                 xhci->cmd_ring->cycle_state;
836         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837                         "// Setting command ring address to 0x%llx",
838                         (long unsigned long) val_64);
839         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853         struct xhci_ring *ring;
854         struct xhci_segment *seg;
855
856         ring = xhci->cmd_ring;
857         seg = ring->deq_seg;
858         do {
859                 memset(seg->trbs, 0,
860                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862                         cpu_to_le32(~TRB_CYCLE);
863                 seg = seg->next;
864         } while (seg != ring->deq_seg);
865
866         /* Reset the software enqueue and dequeue pointers */
867         ring->deq_seg = ring->first_seg;
868         ring->dequeue = ring->first_seg->trbs;
869         ring->enq_seg = ring->deq_seg;
870         ring->enqueue = ring->dequeue;
871
872         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873         /*
874          * Ring is now zeroed, so the HW should look for change of ownership
875          * when the cycle bit is set to 1.
876          */
877         ring->cycle_state = 1;
878
879         /*
880          * Reset the hardware dequeue pointer.
881          * Yes, this will need to be re-written after resume, but we're paranoid
882          * and want to make sure the hardware doesn't access bogus memory
883          * because, say, the BIOS or an SMI started the host without changing
884          * the command ring pointers.
885          */
886         xhci_set_cmd_ring_deq(xhci);
887 }
888
889 /*
890  * Disable port wake bits if do_wakeup is not set.
891  *
892  * Also clear a possible internal port wake state left hanging for ports that
893  * detected termination but never successfully enumerated (trained to 0U).
894  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
895  * at enumeration clears this wake, force one here as well for unconnected ports
896  */
897
898 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
899                                        struct xhci_hub *rhub,
900                                        bool do_wakeup)
901 {
902         unsigned long flags;
903         u32 t1, t2, portsc;
904         int i;
905
906         spin_lock_irqsave(&xhci->lock, flags);
907
908         for (i = 0; i < rhub->num_ports; i++) {
909                 portsc = readl(rhub->ports[i]->addr);
910                 t1 = xhci_port_state_to_neutral(portsc);
911                 t2 = t1;
912
913                 /* clear wake bits if do_wake is not set */
914                 if (!do_wakeup)
915                         t2 &= ~PORT_WAKE_BITS;
916
917                 /* Don't touch csc bit if connected or connect change is set */
918                 if (!(portsc & (PORT_CSC | PORT_CONNECT)))
919                         t2 |= PORT_CSC;
920
921                 if (t1 != t2) {
922                         writel(t2, rhub->ports[i]->addr);
923                         xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
924                                  rhub->hcd->self.busnum, i + 1, portsc, t2);
925                 }
926         }
927         spin_unlock_irqrestore(&xhci->lock, flags);
928 }
929
930 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
931 {
932         struct xhci_port        **ports;
933         int                     port_index;
934         u32                     status;
935         u32                     portsc;
936
937         status = readl(&xhci->op_regs->status);
938         if (status & STS_EINT)
939                 return true;
940         /*
941          * Checking STS_EINT is not enough as there is a lag between a change
942          * bit being set and the Port Status Change Event that it generated
943          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
944          */
945
946         port_index = xhci->usb2_rhub.num_ports;
947         ports = xhci->usb2_rhub.ports;
948         while (port_index--) {
949                 portsc = readl(ports[port_index]->addr);
950                 if (portsc & PORT_CHANGE_MASK ||
951                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
952                         return true;
953         }
954         port_index = xhci->usb3_rhub.num_ports;
955         ports = xhci->usb3_rhub.ports;
956         while (port_index--) {
957                 portsc = readl(ports[port_index]->addr);
958                 if (portsc & PORT_CHANGE_MASK ||
959                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
960                         return true;
961         }
962         return false;
963 }
964
965 /*
966  * Stop HC (not bus-specific)
967  *
968  * This is called when the machine transition into S3/S4 mode.
969  *
970  */
971 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
972 {
973         int                     rc = 0;
974         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
975         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
976         u32                     command;
977         u32                     res;
978
979         if (!hcd->state)
980                 return 0;
981
982         if (hcd->state != HC_STATE_SUSPENDED ||
983                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
984                 return -EINVAL;
985
986         /* Clear root port wake on bits if wakeup not allowed. */
987         xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
988         xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
989
990         if (!HCD_HW_ACCESSIBLE(hcd))
991                 return 0;
992
993         xhci_dbc_suspend(xhci);
994
995         /* Don't poll the roothubs on bus suspend. */
996         xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
997                  __func__, hcd->self.busnum);
998         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
999         del_timer_sync(&hcd->rh_timer);
1000         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001         del_timer_sync(&xhci->shared_hcd->rh_timer);
1002
1003         if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004                 usleep_range(1000, 1500);
1005
1006         spin_lock_irq(&xhci->lock);
1007         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009         /* step 1: stop endpoint */
1010         /* skipped assuming that port suspend has done */
1011
1012         /* step 2: clear Run/Stop bit */
1013         command = readl(&xhci->op_regs->command);
1014         command &= ~CMD_RUN;
1015         writel(command, &xhci->op_regs->command);
1016
1017         /* Some chips from Fresco Logic need an extraordinary delay */
1018         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019
1020         if (xhci_handshake(&xhci->op_regs->status,
1021                       STS_HALT, STS_HALT, delay)) {
1022                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023                 spin_unlock_irq(&xhci->lock);
1024                 return -ETIMEDOUT;
1025         }
1026         xhci_clear_command_ring(xhci);
1027
1028         /* step 3: save registers */
1029         xhci_save_registers(xhci);
1030
1031         /* step 4: set CSS flag */
1032         command = readl(&xhci->op_regs->command);
1033         command |= CMD_CSS;
1034         writel(command, &xhci->op_regs->command);
1035         xhci->broken_suspend = 0;
1036         if (xhci_handshake(&xhci->op_regs->status,
1037                                 STS_SAVE, 0, 20 * 1000)) {
1038         /*
1039          * AMD SNPS xHC 3.0 occasionally does not clear the
1040          * SSS bit of USBSTS and when driver tries to poll
1041          * to see if the xHC clears BIT(8) which never happens
1042          * and driver assumes that controller is not responding
1043          * and times out. To workaround this, its good to check
1044          * if SRE and HCE bits are not set (as per xhci
1045          * Section 5.4.2) and bypass the timeout.
1046          */
1047                 res = readl(&xhci->op_regs->status);
1048                 if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049                     (((res & STS_SRE) == 0) &&
1050                                 ((res & STS_HCE) == 0))) {
1051                         xhci->broken_suspend = 1;
1052                 } else {
1053                         xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054                         spin_unlock_irq(&xhci->lock);
1055                         return -ETIMEDOUT;
1056                 }
1057         }
1058         spin_unlock_irq(&xhci->lock);
1059
1060         /*
1061          * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062          * is about to be suspended.
1063          */
1064         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065                         (!(xhci_all_ports_seen_u0(xhci)))) {
1066                 del_timer_sync(&xhci->comp_mode_recovery_timer);
1067                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068                                 "%s: compliance mode recovery timer deleted",
1069                                 __func__);
1070         }
1071
1072         /* step 5: remove core well power */
1073         /* synchronize irq when using MSI-X */
1074         xhci_msix_sync_irqs(xhci);
1075
1076         return rc;
1077 }
1078 EXPORT_SYMBOL_GPL(xhci_suspend);
1079
1080 /*
1081  * start xHC (not bus-specific)
1082  *
1083  * This is called when the machine transition from S3/S4 mode.
1084  *
1085  */
1086 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087 {
1088         u32                     command, temp = 0;
1089         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1090         struct usb_hcd          *secondary_hcd;
1091         int                     retval = 0;
1092         bool                    comp_timer_running = false;
1093         bool                    pending_portevent = false;
1094
1095         if (!hcd->state)
1096                 return 0;
1097
1098         /* Wait a bit if either of the roothubs need to settle from the
1099          * transition into bus suspend.
1100          */
1101
1102         if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1103             time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1104                 msleep(100);
1105
1106         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1107         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1108
1109         spin_lock_irq(&xhci->lock);
1110         if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1111                 hibernated = true;
1112
1113         if (!hibernated) {
1114                 /*
1115                  * Some controllers might lose power during suspend, so wait
1116                  * for controller not ready bit to clear, just as in xHC init.
1117                  */
1118                 retval = xhci_handshake(&xhci->op_regs->status,
1119                                         STS_CNR, 0, 10 * 1000 * 1000);
1120                 if (retval) {
1121                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1122                                   retval);
1123                         spin_unlock_irq(&xhci->lock);
1124                         return retval;
1125                 }
1126                 /* step 1: restore register */
1127                 xhci_restore_registers(xhci);
1128                 /* step 2: initialize command ring buffer */
1129                 xhci_set_cmd_ring_deq(xhci);
1130                 /* step 3: restore state and start state*/
1131                 /* step 3: set CRS flag */
1132                 command = readl(&xhci->op_regs->command);
1133                 command |= CMD_CRS;
1134                 writel(command, &xhci->op_regs->command);
1135                 /*
1136                  * Some controllers take up to 55+ ms to complete the controller
1137                  * restore so setting the timeout to 100ms. Xhci specification
1138                  * doesn't mention any timeout value.
1139                  */
1140                 if (xhci_handshake(&xhci->op_regs->status,
1141                               STS_RESTORE, 0, 100 * 1000)) {
1142                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1143                         spin_unlock_irq(&xhci->lock);
1144                         return -ETIMEDOUT;
1145                 }
1146                 temp = readl(&xhci->op_regs->status);
1147         }
1148
1149         /* If restore operation fails, re-initialize the HC during resume */
1150         if ((temp & STS_SRE) || hibernated) {
1151
1152                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1153                                 !(xhci_all_ports_seen_u0(xhci))) {
1154                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1155                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1156                                 "Compliance Mode Recovery Timer deleted!");
1157                 }
1158
1159                 /* Let the USB core know _both_ roothubs lost power. */
1160                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1161                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1162
1163                 xhci_dbg(xhci, "Stop HCD\n");
1164                 xhci_halt(xhci);
1165                 xhci_zero_64b_regs(xhci);
1166                 retval = xhci_reset(xhci);
1167                 spin_unlock_irq(&xhci->lock);
1168                 if (retval)
1169                         return retval;
1170                 xhci_cleanup_msix(xhci);
1171
1172                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1173                 temp = readl(&xhci->op_regs->status);
1174                 writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1175                 temp = readl(&xhci->ir_set->irq_pending);
1176                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1177
1178                 xhci_dbg(xhci, "cleaning up memory\n");
1179                 xhci_mem_cleanup(xhci);
1180                 xhci_debugfs_exit(xhci);
1181                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1182                             readl(&xhci->op_regs->status));
1183
1184                 /* USB core calls the PCI reinit and start functions twice:
1185                  * first with the primary HCD, and then with the secondary HCD.
1186                  * If we don't do the same, the host will never be started.
1187                  */
1188                 if (!usb_hcd_is_primary_hcd(hcd))
1189                         secondary_hcd = hcd;
1190                 else
1191                         secondary_hcd = xhci->shared_hcd;
1192
1193                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1194                 retval = xhci_init(hcd->primary_hcd);
1195                 if (retval)
1196                         return retval;
1197                 comp_timer_running = true;
1198
1199                 xhci_dbg(xhci, "Start the primary HCD\n");
1200                 retval = xhci_run(hcd->primary_hcd);
1201                 if (!retval) {
1202                         xhci_dbg(xhci, "Start the secondary HCD\n");
1203                         retval = xhci_run(secondary_hcd);
1204                 }
1205                 hcd->state = HC_STATE_SUSPENDED;
1206                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1207                 goto done;
1208         }
1209
1210         /* step 4: set Run/Stop bit */
1211         command = readl(&xhci->op_regs->command);
1212         command |= CMD_RUN;
1213         writel(command, &xhci->op_regs->command);
1214         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1215                   0, 250 * 1000);
1216
1217         /* step 5: walk topology and initialize portsc,
1218          * portpmsc and portli
1219          */
1220         /* this is done in bus_resume */
1221
1222         /* step 6: restart each of the previously
1223          * Running endpoints by ringing their doorbells
1224          */
1225
1226         spin_unlock_irq(&xhci->lock);
1227
1228         xhci_dbc_resume(xhci);
1229
1230  done:
1231         if (retval == 0) {
1232                 /*
1233                  * Resume roothubs only if there are pending events.
1234                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1235                  * the first wake signalling failed, give it that chance.
1236                  */
1237                 pending_portevent = xhci_pending_portevent(xhci);
1238                 if (!pending_portevent) {
1239                         msleep(120);
1240                         pending_portevent = xhci_pending_portevent(xhci);
1241                 }
1242
1243                 if (pending_portevent) {
1244                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1245                         usb_hcd_resume_root_hub(hcd);
1246                 }
1247         }
1248         /*
1249          * If system is subject to the Quirk, Compliance Mode Timer needs to
1250          * be re-initialized Always after a system resume. Ports are subject
1251          * to suffer the Compliance Mode issue again. It doesn't matter if
1252          * ports have entered previously to U0 before system's suspension.
1253          */
1254         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1255                 compliance_mode_recovery_timer_init(xhci);
1256
1257         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1258                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1259
1260         /* Re-enable port polling. */
1261         xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1262                  __func__, hcd->self.busnum);
1263         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1264         usb_hcd_poll_rh_status(xhci->shared_hcd);
1265         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1266         usb_hcd_poll_rh_status(hcd);
1267
1268         return retval;
1269 }
1270 EXPORT_SYMBOL_GPL(xhci_resume);
1271 #endif  /* CONFIG_PM */
1272
1273 /*-------------------------------------------------------------------------*/
1274
1275 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1276 {
1277         void *temp;
1278         int ret = 0;
1279         unsigned int buf_len;
1280         enum dma_data_direction dir;
1281
1282         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1283         buf_len = urb->transfer_buffer_length;
1284
1285         temp = kzalloc_node(buf_len, GFP_ATOMIC,
1286                             dev_to_node(hcd->self.sysdev));
1287
1288         if (usb_urb_dir_out(urb))
1289                 sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1290                                    temp, buf_len, 0);
1291
1292         urb->transfer_buffer = temp;
1293         urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1294                                            urb->transfer_buffer,
1295                                            urb->transfer_buffer_length,
1296                                            dir);
1297
1298         if (dma_mapping_error(hcd->self.sysdev,
1299                               urb->transfer_dma)) {
1300                 ret = -EAGAIN;
1301                 kfree(temp);
1302         } else {
1303                 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1304         }
1305
1306         return ret;
1307 }
1308
1309 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1310                                           struct urb *urb)
1311 {
1312         bool ret = false;
1313         unsigned int i;
1314         unsigned int len = 0;
1315         unsigned int trb_size;
1316         unsigned int max_pkt;
1317         struct scatterlist *sg;
1318         struct scatterlist *tail_sg;
1319
1320         tail_sg = urb->sg;
1321         max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1322
1323         if (!urb->num_sgs)
1324                 return ret;
1325
1326         if (urb->dev->speed >= USB_SPEED_SUPER)
1327                 trb_size = TRB_CACHE_SIZE_SS;
1328         else
1329                 trb_size = TRB_CACHE_SIZE_HS;
1330
1331         if (urb->transfer_buffer_length != 0 &&
1332             !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1333                 for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1334                         len = len + sg->length;
1335                         if (i > trb_size - 2) {
1336                                 len = len - tail_sg->length;
1337                                 if (len < max_pkt) {
1338                                         ret = true;
1339                                         break;
1340                                 }
1341
1342                                 tail_sg = sg_next(tail_sg);
1343                         }
1344                 }
1345         }
1346         return ret;
1347 }
1348
1349 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1350 {
1351         unsigned int len;
1352         unsigned int buf_len;
1353         enum dma_data_direction dir;
1354
1355         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1356
1357         buf_len = urb->transfer_buffer_length;
1358
1359         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1360             (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1361                 dma_unmap_single(hcd->self.sysdev,
1362                                  urb->transfer_dma,
1363                                  urb->transfer_buffer_length,
1364                                  dir);
1365
1366         if (usb_urb_dir_in(urb)) {
1367                 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1368                                            urb->transfer_buffer,
1369                                            buf_len,
1370                                            0);
1371                 if (len != buf_len) {
1372                         xhci_dbg(hcd_to_xhci(hcd),
1373                                  "Copy from tmp buf to urb sg list failed\n");
1374                         urb->actual_length = len;
1375                 }
1376         }
1377         urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1378         kfree(urb->transfer_buffer);
1379         urb->transfer_buffer = NULL;
1380 }
1381
1382 /*
1383  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1384  * we'll copy the actual data into the TRB address register. This is limited to
1385  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1386  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1387  */
1388 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1389                                 gfp_t mem_flags)
1390 {
1391         struct xhci_hcd *xhci;
1392
1393         xhci = hcd_to_xhci(hcd);
1394
1395         if (xhci_urb_suitable_for_idt(urb))
1396                 return 0;
1397
1398         if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1399                 if (xhci_urb_temp_buffer_required(hcd, urb))
1400                         return xhci_map_temp_buffer(hcd, urb);
1401         }
1402         return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1403 }
1404
1405 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1406 {
1407         struct xhci_hcd *xhci;
1408         bool unmap_temp_buf = false;
1409
1410         xhci = hcd_to_xhci(hcd);
1411
1412         if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1413                 unmap_temp_buf = true;
1414
1415         if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1416                 xhci_unmap_temp_buf(hcd, urb);
1417         else
1418                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1419 }
1420
1421 /**
1422  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1423  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1424  * value to right shift 1 for the bitmask.
1425  *
1426  * Index  = (epnum * 2) + direction - 1,
1427  * where direction = 0 for OUT, 1 for IN.
1428  * For control endpoints, the IN index is used (OUT index is unused), so
1429  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1430  */
1431 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1432 {
1433         unsigned int index;
1434         if (usb_endpoint_xfer_control(desc))
1435                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1436         else
1437                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1438                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1439         return index;
1440 }
1441 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1442
1443 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1444  * address from the XHCI endpoint index.
1445  */
1446 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1447 {
1448         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1449         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1450         return direction | number;
1451 }
1452
1453 /* Find the flag for this endpoint (for use in the control context).  Use the
1454  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1455  * bit 1, etc.
1456  */
1457 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1458 {
1459         return 1 << (xhci_get_endpoint_index(desc) + 1);
1460 }
1461
1462 /* Compute the last valid endpoint context index.  Basically, this is the
1463  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1464  * we find the most significant bit set in the added contexts flags.
1465  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1466  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1467  */
1468 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1469 {
1470         return fls(added_ctxs) - 1;
1471 }
1472
1473 /* Returns 1 if the arguments are OK;
1474  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1475  */
1476 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1477                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1478                 const char *func) {
1479         struct xhci_hcd *xhci;
1480         struct xhci_virt_device *virt_dev;
1481
1482         if (!hcd || (check_ep && !ep) || !udev) {
1483                 pr_debug("xHCI %s called with invalid args\n", func);
1484                 return -EINVAL;
1485         }
1486         if (!udev->parent) {
1487                 pr_debug("xHCI %s called for root hub\n", func);
1488                 return 0;
1489         }
1490
1491         xhci = hcd_to_xhci(hcd);
1492         if (check_virt_dev) {
1493                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1494                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1495                                         func);
1496                         return -EINVAL;
1497                 }
1498
1499                 virt_dev = xhci->devs[udev->slot_id];
1500                 if (virt_dev->udev != udev) {
1501                         xhci_dbg(xhci, "xHCI %s called with udev and "
1502                                           "virt_dev does not match\n", func);
1503                         return -EINVAL;
1504                 }
1505         }
1506
1507         if (xhci->xhc_state & XHCI_STATE_HALTED)
1508                 return -ENODEV;
1509
1510         return 1;
1511 }
1512
1513 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1514                 struct usb_device *udev, struct xhci_command *command,
1515                 bool ctx_change, bool must_succeed);
1516
1517 /*
1518  * Full speed devices may have a max packet size greater than 8 bytes, but the
1519  * USB core doesn't know that until it reads the first 8 bytes of the
1520  * descriptor.  If the usb_device's max packet size changes after that point,
1521  * we need to issue an evaluate context command and wait on it.
1522  */
1523 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1524                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1525 {
1526         struct xhci_container_ctx *out_ctx;
1527         struct xhci_input_control_ctx *ctrl_ctx;
1528         struct xhci_ep_ctx *ep_ctx;
1529         struct xhci_command *command;
1530         int max_packet_size;
1531         int hw_max_packet_size;
1532         int ret = 0;
1533
1534         out_ctx = xhci->devs[slot_id]->out_ctx;
1535         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1536         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1537         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1538         if (hw_max_packet_size != max_packet_size) {
1539                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1540                                 "Max Packet Size for ep 0 changed.");
1541                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1542                                 "Max packet size in usb_device = %d",
1543                                 max_packet_size);
1544                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1545                                 "Max packet size in xHCI HW = %d",
1546                                 hw_max_packet_size);
1547                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1548                                 "Issuing evaluate context command.");
1549
1550                 /* Set up the input context flags for the command */
1551                 /* FIXME: This won't work if a non-default control endpoint
1552                  * changes max packet sizes.
1553                  */
1554
1555                 command = xhci_alloc_command(xhci, true, mem_flags);
1556                 if (!command)
1557                         return -ENOMEM;
1558
1559                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1560                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1561                 if (!ctrl_ctx) {
1562                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1563                                         __func__);
1564                         ret = -ENOMEM;
1565                         goto command_cleanup;
1566                 }
1567                 /* Set up the modified control endpoint 0 */
1568                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1569                                 xhci->devs[slot_id]->out_ctx, ep_index);
1570
1571                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1572                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1573                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1574                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1575
1576                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1577                 ctrl_ctx->drop_flags = 0;
1578
1579                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1580                                 true, false);
1581
1582                 /* Clean up the input context for later use by bandwidth
1583                  * functions.
1584                  */
1585                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1586 command_cleanup:
1587                 kfree(command->completion);
1588                 kfree(command);
1589         }
1590         return ret;
1591 }
1592
1593 /*
1594  * non-error returns are a promise to giveback() the urb later
1595  * we drop ownership so next owner (or urb unlink) can get it
1596  */
1597 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1598 {
1599         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1600         unsigned long flags;
1601         int ret = 0;
1602         unsigned int slot_id, ep_index;
1603         unsigned int *ep_state;
1604         struct urb_priv *urb_priv;
1605         int num_tds;
1606
1607         if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1608                                         true, true, __func__) <= 0)
1609                 return -EINVAL;
1610
1611         slot_id = urb->dev->slot_id;
1612         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1613         ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1614
1615         if (!HCD_HW_ACCESSIBLE(hcd))
1616                 return -ESHUTDOWN;
1617
1618         if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1619                 xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1620                 return -ENODEV;
1621         }
1622
1623         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1624                 num_tds = urb->number_of_packets;
1625         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1626             urb->transfer_buffer_length > 0 &&
1627             urb->transfer_flags & URB_ZERO_PACKET &&
1628             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1629                 num_tds = 2;
1630         else
1631                 num_tds = 1;
1632
1633         urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1634         if (!urb_priv)
1635                 return -ENOMEM;
1636
1637         urb_priv->num_tds = num_tds;
1638         urb_priv->num_tds_done = 0;
1639         urb->hcpriv = urb_priv;
1640
1641         trace_xhci_urb_enqueue(urb);
1642
1643         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1644                 /* Check to see if the max packet size for the default control
1645                  * endpoint changed during FS device enumeration
1646                  */
1647                 if (urb->dev->speed == USB_SPEED_FULL) {
1648                         ret = xhci_check_maxpacket(xhci, slot_id,
1649                                         ep_index, urb, mem_flags);
1650                         if (ret < 0) {
1651                                 xhci_urb_free_priv(urb_priv);
1652                                 urb->hcpriv = NULL;
1653                                 return ret;
1654                         }
1655                 }
1656         }
1657
1658         spin_lock_irqsave(&xhci->lock, flags);
1659
1660         if (xhci->xhc_state & XHCI_STATE_DYING) {
1661                 xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1662                          urb->ep->desc.bEndpointAddress, urb);
1663                 ret = -ESHUTDOWN;
1664                 goto free_priv;
1665         }
1666         if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1667                 xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1668                           *ep_state);
1669                 ret = -EINVAL;
1670                 goto free_priv;
1671         }
1672         if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1673                 xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1674                 ret = -EINVAL;
1675                 goto free_priv;
1676         }
1677
1678         switch (usb_endpoint_type(&urb->ep->desc)) {
1679
1680         case USB_ENDPOINT_XFER_CONTROL:
1681                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1682                                          slot_id, ep_index);
1683                 break;
1684         case USB_ENDPOINT_XFER_BULK:
1685                 ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1686                                          slot_id, ep_index);
1687                 break;
1688         case USB_ENDPOINT_XFER_INT:
1689                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1690                                 slot_id, ep_index);
1691                 break;
1692         case USB_ENDPOINT_XFER_ISOC:
1693                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1694                                 slot_id, ep_index);
1695         }
1696
1697         if (ret) {
1698 free_priv:
1699                 xhci_urb_free_priv(urb_priv);
1700                 urb->hcpriv = NULL;
1701         }
1702         spin_unlock_irqrestore(&xhci->lock, flags);
1703         return ret;
1704 }
1705
1706 /*
1707  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1708  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1709  * should pick up where it left off in the TD, unless a Set Transfer Ring
1710  * Dequeue Pointer is issued.
1711  *
1712  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1713  * the ring.  Since the ring is a contiguous structure, they can't be physically
1714  * removed.  Instead, there are two options:
1715  *
1716  *  1) If the HC is in the middle of processing the URB to be canceled, we
1717  *     simply move the ring's dequeue pointer past those TRBs using the Set
1718  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1719  *     when drivers timeout on the last submitted URB and attempt to cancel.
1720  *
1721  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1722  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1723  *     HC will need to invalidate the any TRBs it has cached after the stop
1724  *     endpoint command, as noted in the xHCI 0.95 errata.
1725  *
1726  *  3) The TD may have completed by the time the Stop Endpoint Command
1727  *     completes, so software needs to handle that case too.
1728  *
1729  * This function should protect against the TD enqueueing code ringing the
1730  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1731  * It also needs to account for multiple cancellations on happening at the same
1732  * time for the same endpoint.
1733  *
1734  * Note that this function can be called in any context, or so says
1735  * usb_hcd_unlink_urb()
1736  */
1737 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1738 {
1739         unsigned long flags;
1740         int ret, i;
1741         u32 temp;
1742         struct xhci_hcd *xhci;
1743         struct urb_priv *urb_priv;
1744         struct xhci_td *td;
1745         unsigned int ep_index;
1746         struct xhci_ring *ep_ring;
1747         struct xhci_virt_ep *ep;
1748         struct xhci_command *command;
1749         struct xhci_virt_device *vdev;
1750
1751         xhci = hcd_to_xhci(hcd);
1752         spin_lock_irqsave(&xhci->lock, flags);
1753
1754         trace_xhci_urb_dequeue(urb);
1755
1756         /* Make sure the URB hasn't completed or been unlinked already */
1757         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1758         if (ret)
1759                 goto done;
1760
1761         /* give back URB now if we can't queue it for cancel */
1762         vdev = xhci->devs[urb->dev->slot_id];
1763         urb_priv = urb->hcpriv;
1764         if (!vdev || !urb_priv)
1765                 goto err_giveback;
1766
1767         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1768         ep = &vdev->eps[ep_index];
1769         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1770         if (!ep || !ep_ring)
1771                 goto err_giveback;
1772
1773         /* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1774         temp = readl(&xhci->op_regs->status);
1775         if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1776                 xhci_hc_died(xhci);
1777                 goto done;
1778         }
1779
1780         /*
1781          * check ring is not re-allocated since URB was enqueued. If it is, then
1782          * make sure none of the ring related pointers in this URB private data
1783          * are touched, such as td_list, otherwise we overwrite freed data
1784          */
1785         if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1786                 xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1787                 for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1788                         td = &urb_priv->td[i];
1789                         if (!list_empty(&td->cancelled_td_list))
1790                                 list_del_init(&td->cancelled_td_list);
1791                 }
1792                 goto err_giveback;
1793         }
1794
1795         if (xhci->xhc_state & XHCI_STATE_HALTED) {
1796                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1797                                 "HC halted, freeing TD manually.");
1798                 for (i = urb_priv->num_tds_done;
1799                      i < urb_priv->num_tds;
1800                      i++) {
1801                         td = &urb_priv->td[i];
1802                         if (!list_empty(&td->td_list))
1803                                 list_del_init(&td->td_list);
1804                         if (!list_empty(&td->cancelled_td_list))
1805                                 list_del_init(&td->cancelled_td_list);
1806                 }
1807                 goto err_giveback;
1808         }
1809
1810         i = urb_priv->num_tds_done;
1811         if (i < urb_priv->num_tds)
1812                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1813                                 "Cancel URB %p, dev %s, ep 0x%x, "
1814                                 "starting at offset 0x%llx",
1815                                 urb, urb->dev->devpath,
1816                                 urb->ep->desc.bEndpointAddress,
1817                                 (unsigned long long) xhci_trb_virt_to_dma(
1818                                         urb_priv->td[i].start_seg,
1819                                         urb_priv->td[i].first_trb));
1820
1821         for (; i < urb_priv->num_tds; i++) {
1822                 td = &urb_priv->td[i];
1823                 /* TD can already be on cancelled list if ep halted on it */
1824                 if (list_empty(&td->cancelled_td_list)) {
1825                         td->cancel_status = TD_DIRTY;
1826                         list_add_tail(&td->cancelled_td_list,
1827                                       &ep->cancelled_td_list);
1828                 }
1829         }
1830
1831         /* Queue a stop endpoint command, but only if this is
1832          * the first cancellation to be handled.
1833          */
1834         if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1835                 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1836                 if (!command) {
1837                         ret = -ENOMEM;
1838                         goto done;
1839                 }
1840                 ep->ep_state |= EP_STOP_CMD_PENDING;
1841                 ep->stop_cmd_timer.expires = jiffies +
1842                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1843                 add_timer(&ep->stop_cmd_timer);
1844                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1845                                          ep_index, 0);
1846                 xhci_ring_cmd_db(xhci);
1847         }
1848 done:
1849         spin_unlock_irqrestore(&xhci->lock, flags);
1850         return ret;
1851
1852 err_giveback:
1853         if (urb_priv)
1854                 xhci_urb_free_priv(urb_priv);
1855         usb_hcd_unlink_urb_from_ep(hcd, urb);
1856         spin_unlock_irqrestore(&xhci->lock, flags);
1857         usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1858         return ret;
1859 }
1860
1861 /* Drop an endpoint from a new bandwidth configuration for this device.
1862  * Only one call to this function is allowed per endpoint before
1863  * check_bandwidth() or reset_bandwidth() must be called.
1864  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1865  * add the endpoint to the schedule with possibly new parameters denoted by a
1866  * different endpoint descriptor in usb_host_endpoint.
1867  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1868  * not allowed.
1869  *
1870  * The USB core will not allow URBs to be queued to an endpoint that is being
1871  * disabled, so there's no need for mutual exclusion to protect
1872  * the xhci->devs[slot_id] structure.
1873  */
1874 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1875                        struct usb_host_endpoint *ep)
1876 {
1877         struct xhci_hcd *xhci;
1878         struct xhci_container_ctx *in_ctx, *out_ctx;
1879         struct xhci_input_control_ctx *ctrl_ctx;
1880         unsigned int ep_index;
1881         struct xhci_ep_ctx *ep_ctx;
1882         u32 drop_flag;
1883         u32 new_add_flags, new_drop_flags;
1884         int ret;
1885
1886         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1887         if (ret <= 0)
1888                 return ret;
1889         xhci = hcd_to_xhci(hcd);
1890         if (xhci->xhc_state & XHCI_STATE_DYING)
1891                 return -ENODEV;
1892
1893         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1894         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1895         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1896                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1897                                 __func__, drop_flag);
1898                 return 0;
1899         }
1900
1901         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1902         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1903         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1904         if (!ctrl_ctx) {
1905                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1906                                 __func__);
1907                 return 0;
1908         }
1909
1910         ep_index = xhci_get_endpoint_index(&ep->desc);
1911         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1912         /* If the HC already knows the endpoint is disabled,
1913          * or the HCD has noted it is disabled, ignore this request
1914          */
1915         if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1916             le32_to_cpu(ctrl_ctx->drop_flags) &
1917             xhci_get_endpoint_flag(&ep->desc)) {
1918                 /* Do not warn when called after a usb_device_reset */
1919                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1920                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1921                                   __func__, ep);
1922                 return 0;
1923         }
1924
1925         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1926         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1927
1928         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1929         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1930
1931         xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1932
1933         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1934
1935         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1936                         (unsigned int) ep->desc.bEndpointAddress,
1937                         udev->slot_id,
1938                         (unsigned int) new_drop_flags,
1939                         (unsigned int) new_add_flags);
1940         return 0;
1941 }
1942 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1943
1944 /* Add an endpoint to a new possible bandwidth configuration for this device.
1945  * Only one call to this function is allowed per endpoint before
1946  * check_bandwidth() or reset_bandwidth() must be called.
1947  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1948  * add the endpoint to the schedule with possibly new parameters denoted by a
1949  * different endpoint descriptor in usb_host_endpoint.
1950  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1951  * not allowed.
1952  *
1953  * The USB core will not allow URBs to be queued to an endpoint until the
1954  * configuration or alt setting is installed in the device, so there's no need
1955  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1956  */
1957 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1958                       struct usb_host_endpoint *ep)
1959 {
1960         struct xhci_hcd *xhci;
1961         struct xhci_container_ctx *in_ctx;
1962         unsigned int ep_index;
1963         struct xhci_input_control_ctx *ctrl_ctx;
1964         struct xhci_ep_ctx *ep_ctx;
1965         u32 added_ctxs;
1966         u32 new_add_flags, new_drop_flags;
1967         struct xhci_virt_device *virt_dev;
1968         int ret = 0;
1969
1970         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1971         if (ret <= 0) {
1972                 /* So we won't queue a reset ep command for a root hub */
1973                 ep->hcpriv = NULL;
1974                 return ret;
1975         }
1976         xhci = hcd_to_xhci(hcd);
1977         if (xhci->xhc_state & XHCI_STATE_DYING)
1978                 return -ENODEV;
1979
1980         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1981         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1982                 /* FIXME when we have to issue an evaluate endpoint command to
1983                  * deal with ep0 max packet size changing once we get the
1984                  * descriptors
1985                  */
1986                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1987                                 __func__, added_ctxs);
1988                 return 0;
1989         }
1990
1991         virt_dev = xhci->devs[udev->slot_id];
1992         in_ctx = virt_dev->in_ctx;
1993         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1994         if (!ctrl_ctx) {
1995                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1996                                 __func__);
1997                 return 0;
1998         }
1999
2000         ep_index = xhci_get_endpoint_index(&ep->desc);
2001         /* If this endpoint is already in use, and the upper layers are trying
2002          * to add it again without dropping it, reject the addition.
2003          */
2004         if (virt_dev->eps[ep_index].ring &&
2005                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2006                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
2007                                 "without dropping it.\n",
2008                                 (unsigned int) ep->desc.bEndpointAddress);
2009                 return -EINVAL;
2010         }
2011
2012         /* If the HCD has already noted the endpoint is enabled,
2013          * ignore this request.
2014          */
2015         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2016                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2017                                 __func__, ep);
2018                 return 0;
2019         }
2020
2021         /*
2022          * Configuration and alternate setting changes must be done in
2023          * process context, not interrupt context (or so documenation
2024          * for usb_set_interface() and usb_set_configuration() claim).
2025          */
2026         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2027                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2028                                 __func__, ep->desc.bEndpointAddress);
2029                 return -ENOMEM;
2030         }
2031
2032         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2033         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2034
2035         /* If xhci_endpoint_disable() was called for this endpoint, but the
2036          * xHC hasn't been notified yet through the check_bandwidth() call,
2037          * this re-adds a new state for the endpoint from the new endpoint
2038          * descriptors.  We must drop and re-add this endpoint, so we leave the
2039          * drop flags alone.
2040          */
2041         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2042
2043         /* Store the usb_device pointer for later use */
2044         ep->hcpriv = udev;
2045
2046         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2047         trace_xhci_add_endpoint(ep_ctx);
2048
2049         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2050                         (unsigned int) ep->desc.bEndpointAddress,
2051                         udev->slot_id,
2052                         (unsigned int) new_drop_flags,
2053                         (unsigned int) new_add_flags);
2054         return 0;
2055 }
2056 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2057
2058 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2059 {
2060         struct xhci_input_control_ctx *ctrl_ctx;
2061         struct xhci_ep_ctx *ep_ctx;
2062         struct xhci_slot_ctx *slot_ctx;
2063         int i;
2064
2065         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2066         if (!ctrl_ctx) {
2067                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2068                                 __func__);
2069                 return;
2070         }
2071
2072         /* When a device's add flag and drop flag are zero, any subsequent
2073          * configure endpoint command will leave that endpoint's state
2074          * untouched.  Make sure we don't leave any old state in the input
2075          * endpoint contexts.
2076          */
2077         ctrl_ctx->drop_flags = 0;
2078         ctrl_ctx->add_flags = 0;
2079         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2080         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2081         /* Endpoint 0 is always valid */
2082         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2083         for (i = 1; i < 31; i++) {
2084                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2085                 ep_ctx->ep_info = 0;
2086                 ep_ctx->ep_info2 = 0;
2087                 ep_ctx->deq = 0;
2088                 ep_ctx->tx_info = 0;
2089         }
2090 }
2091
2092 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2093                 struct usb_device *udev, u32 *cmd_status)
2094 {
2095         int ret;
2096
2097         switch (*cmd_status) {
2098         case COMP_COMMAND_ABORTED:
2099         case COMP_COMMAND_RING_STOPPED:
2100                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2101                 ret = -ETIME;
2102                 break;
2103         case COMP_RESOURCE_ERROR:
2104                 dev_warn(&udev->dev,
2105                          "Not enough host controller resources for new device state.\n");
2106                 ret = -ENOMEM;
2107                 /* FIXME: can we allocate more resources for the HC? */
2108                 break;
2109         case COMP_BANDWIDTH_ERROR:
2110         case COMP_SECONDARY_BANDWIDTH_ERROR:
2111                 dev_warn(&udev->dev,
2112                          "Not enough bandwidth for new device state.\n");
2113                 ret = -ENOSPC;
2114                 /* FIXME: can we go back to the old state? */
2115                 break;
2116         case COMP_TRB_ERROR:
2117                 /* the HCD set up something wrong */
2118                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2119                                 "add flag = 1, "
2120                                 "and endpoint is not disabled.\n");
2121                 ret = -EINVAL;
2122                 break;
2123         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2124                 dev_warn(&udev->dev,
2125                          "ERROR: Incompatible device for endpoint configure command.\n");
2126                 ret = -ENODEV;
2127                 break;
2128         case COMP_SUCCESS:
2129                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2130                                 "Successful Endpoint Configure command");
2131                 ret = 0;
2132                 break;
2133         default:
2134                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2135                                 *cmd_status);
2136                 ret = -EINVAL;
2137                 break;
2138         }
2139         return ret;
2140 }
2141
2142 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2143                 struct usb_device *udev, u32 *cmd_status)
2144 {
2145         int ret;
2146
2147         switch (*cmd_status) {
2148         case COMP_COMMAND_ABORTED:
2149         case COMP_COMMAND_RING_STOPPED:
2150                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2151                 ret = -ETIME;
2152                 break;
2153         case COMP_PARAMETER_ERROR:
2154                 dev_warn(&udev->dev,
2155                          "WARN: xHCI driver setup invalid evaluate context command.\n");
2156                 ret = -EINVAL;
2157                 break;
2158         case COMP_SLOT_NOT_ENABLED_ERROR:
2159                 dev_warn(&udev->dev,
2160                         "WARN: slot not enabled for evaluate context command.\n");
2161                 ret = -EINVAL;
2162                 break;
2163         case COMP_CONTEXT_STATE_ERROR:
2164                 dev_warn(&udev->dev,
2165                         "WARN: invalid context state for evaluate context command.\n");
2166                 ret = -EINVAL;
2167                 break;
2168         case COMP_INCOMPATIBLE_DEVICE_ERROR:
2169                 dev_warn(&udev->dev,
2170                         "ERROR: Incompatible device for evaluate context command.\n");
2171                 ret = -ENODEV;
2172                 break;
2173         case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2174                 /* Max Exit Latency too large error */
2175                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2176                 ret = -EINVAL;
2177                 break;
2178         case COMP_SUCCESS:
2179                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2180                                 "Successful evaluate context command");
2181                 ret = 0;
2182                 break;
2183         default:
2184                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2185                         *cmd_status);
2186                 ret = -EINVAL;
2187                 break;
2188         }
2189         return ret;
2190 }
2191
2192 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2193                 struct xhci_input_control_ctx *ctrl_ctx)
2194 {
2195         u32 valid_add_flags;
2196         u32 valid_drop_flags;
2197
2198         /* Ignore the slot flag (bit 0), and the default control endpoint flag
2199          * (bit 1).  The default control endpoint is added during the Address
2200          * Device command and is never removed until the slot is disabled.
2201          */
2202         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2203         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2204
2205         /* Use hweight32 to count the number of ones in the add flags, or
2206          * number of endpoints added.  Don't count endpoints that are changed
2207          * (both added and dropped).
2208          */
2209         return hweight32(valid_add_flags) -
2210                 hweight32(valid_add_flags & valid_drop_flags);
2211 }
2212
2213 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2214                 struct xhci_input_control_ctx *ctrl_ctx)
2215 {
2216         u32 valid_add_flags;
2217         u32 valid_drop_flags;
2218
2219         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2220         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2221
2222         return hweight32(valid_drop_flags) -
2223                 hweight32(valid_add_flags & valid_drop_flags);
2224 }
2225
2226 /*
2227  * We need to reserve the new number of endpoints before the configure endpoint
2228  * command completes.  We can't subtract the dropped endpoints from the number
2229  * of active endpoints until the command completes because we can oversubscribe
2230  * the host in this case:
2231  *
2232  *  - the first configure endpoint command drops more endpoints than it adds
2233  *  - a second configure endpoint command that adds more endpoints is queued
2234  *  - the first configure endpoint command fails, so the config is unchanged
2235  *  - the second command may succeed, even though there isn't enough resources
2236  *
2237  * Must be called with xhci->lock held.
2238  */
2239 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2240                 struct xhci_input_control_ctx *ctrl_ctx)
2241 {
2242         u32 added_eps;
2243
2244         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2245         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2246                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247                                 "Not enough ep ctxs: "
2248                                 "%u active, need to add %u, limit is %u.",
2249                                 xhci->num_active_eps, added_eps,
2250                                 xhci->limit_active_eps);
2251                 return -ENOMEM;
2252         }
2253         xhci->num_active_eps += added_eps;
2254         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2255                         "Adding %u ep ctxs, %u now active.", added_eps,
2256                         xhci->num_active_eps);
2257         return 0;
2258 }
2259
2260 /*
2261  * The configure endpoint was failed by the xHC for some other reason, so we
2262  * need to revert the resources that failed configuration would have used.
2263  *
2264  * Must be called with xhci->lock held.
2265  */
2266 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2267                 struct xhci_input_control_ctx *ctrl_ctx)
2268 {
2269         u32 num_failed_eps;
2270
2271         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2272         xhci->num_active_eps -= num_failed_eps;
2273         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2274                         "Removing %u failed ep ctxs, %u now active.",
2275                         num_failed_eps,
2276                         xhci->num_active_eps);
2277 }
2278
2279 /*
2280  * Now that the command has completed, clean up the active endpoint count by
2281  * subtracting out the endpoints that were dropped (but not changed).
2282  *
2283  * Must be called with xhci->lock held.
2284  */
2285 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2286                 struct xhci_input_control_ctx *ctrl_ctx)
2287 {
2288         u32 num_dropped_eps;
2289
2290         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2291         xhci->num_active_eps -= num_dropped_eps;
2292         if (num_dropped_eps)
2293                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2294                                 "Removing %u dropped ep ctxs, %u now active.",
2295                                 num_dropped_eps,
2296                                 xhci->num_active_eps);
2297 }
2298
2299 static unsigned int xhci_get_block_size(struct usb_device *udev)
2300 {
2301         switch (udev->speed) {
2302         case USB_SPEED_LOW:
2303         case USB_SPEED_FULL:
2304                 return FS_BLOCK;
2305         case USB_SPEED_HIGH:
2306                 return HS_BLOCK;
2307         case USB_SPEED_SUPER:
2308         case USB_SPEED_SUPER_PLUS:
2309                 return SS_BLOCK;
2310         case USB_SPEED_UNKNOWN:
2311         case USB_SPEED_WIRELESS:
2312         default:
2313                 /* Should never happen */
2314                 return 1;
2315         }
2316 }
2317
2318 static unsigned int
2319 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2320 {
2321         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2322                 return LS_OVERHEAD;
2323         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2324                 return FS_OVERHEAD;
2325         return HS_OVERHEAD;
2326 }
2327
2328 /* If we are changing a LS/FS device under a HS hub,
2329  * make sure (if we are activating a new TT) that the HS bus has enough
2330  * bandwidth for this new TT.
2331  */
2332 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2333                 struct xhci_virt_device *virt_dev,
2334                 int old_active_eps)
2335 {
2336         struct xhci_interval_bw_table *bw_table;
2337         struct xhci_tt_bw_info *tt_info;
2338
2339         /* Find the bandwidth table for the root port this TT is attached to. */
2340         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2341         tt_info = virt_dev->tt_info;
2342         /* If this TT already had active endpoints, the bandwidth for this TT
2343          * has already been added.  Removing all periodic endpoints (and thus
2344          * making the TT enactive) will only decrease the bandwidth used.
2345          */
2346         if (old_active_eps)
2347                 return 0;
2348         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2349                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2350                         return -ENOMEM;
2351                 return 0;
2352         }
2353         /* Not sure why we would have no new active endpoints...
2354          *
2355          * Maybe because of an Evaluate Context change for a hub update or a
2356          * control endpoint 0 max packet size change?
2357          * FIXME: skip the bandwidth calculation in that case.
2358          */
2359         return 0;
2360 }
2361
2362 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2363                 struct xhci_virt_device *virt_dev)
2364 {
2365         unsigned int bw_reserved;
2366
2367         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2368         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2369                 return -ENOMEM;
2370
2371         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2372         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2373                 return -ENOMEM;
2374
2375         return 0;
2376 }
2377
2378 /*
2379  * This algorithm is a very conservative estimate of the worst-case scheduling
2380  * scenario for any one interval.  The hardware dynamically schedules the
2381  * packets, so we can't tell which microframe could be the limiting factor in
2382  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2383  *
2384  * Obviously, we can't solve an NP complete problem to find the minimum worst
2385  * case scenario.  Instead, we come up with an estimate that is no less than
2386  * the worst case bandwidth used for any one microframe, but may be an
2387  * over-estimate.
2388  *
2389  * We walk the requirements for each endpoint by interval, starting with the
2390  * smallest interval, and place packets in the schedule where there is only one
2391  * possible way to schedule packets for that interval.  In order to simplify
2392  * this algorithm, we record the largest max packet size for each interval, and
2393  * assume all packets will be that size.
2394  *
2395  * For interval 0, we obviously must schedule all packets for each interval.
2396  * The bandwidth for interval 0 is just the amount of data to be transmitted
2397  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2398  * the number of packets).
2399  *
2400  * For interval 1, we have two possible microframes to schedule those packets
2401  * in.  For this algorithm, if we can schedule the same number of packets for
2402  * each possible scheduling opportunity (each microframe), we will do so.  The
2403  * remaining number of packets will be saved to be transmitted in the gaps in
2404  * the next interval's scheduling sequence.
2405  *
2406  * As we move those remaining packets to be scheduled with interval 2 packets,
2407  * we have to double the number of remaining packets to transmit.  This is
2408  * because the intervals are actually powers of 2, and we would be transmitting
2409  * the previous interval's packets twice in this interval.  We also have to be
2410  * sure that when we look at the largest max packet size for this interval, we
2411  * also look at the largest max packet size for the remaining packets and take
2412  * the greater of the two.
2413  *
2414  * The algorithm continues to evenly distribute packets in each scheduling
2415  * opportunity, and push the remaining packets out, until we get to the last
2416  * interval.  Then those packets and their associated overhead are just added
2417  * to the bandwidth used.
2418  */
2419 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2420                 struct xhci_virt_device *virt_dev,
2421                 int old_active_eps)
2422 {
2423         unsigned int bw_reserved;
2424         unsigned int max_bandwidth;
2425         unsigned int bw_used;
2426         unsigned int block_size;
2427         struct xhci_interval_bw_table *bw_table;
2428         unsigned int packet_size = 0;
2429         unsigned int overhead = 0;
2430         unsigned int packets_transmitted = 0;
2431         unsigned int packets_remaining = 0;
2432         unsigned int i;
2433
2434         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2435                 return xhci_check_ss_bw(xhci, virt_dev);
2436
2437         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2438                 max_bandwidth = HS_BW_LIMIT;
2439                 /* Convert percent of bus BW reserved to blocks reserved */
2440                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2441         } else {
2442                 max_bandwidth = FS_BW_LIMIT;
2443                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2444         }
2445
2446         bw_table = virt_dev->bw_table;
2447         /* We need to translate the max packet size and max ESIT payloads into
2448          * the units the hardware uses.
2449          */
2450         block_size = xhci_get_block_size(virt_dev->udev);
2451
2452         /* If we are manipulating a LS/FS device under a HS hub, double check
2453          * that the HS bus has enough bandwidth if we are activing a new TT.
2454          */
2455         if (virt_dev->tt_info) {
2456                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2457                                 "Recalculating BW for rootport %u",
2458                                 virt_dev->real_port);
2459                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2460                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2461                                         "newly activated TT.\n");
2462                         return -ENOMEM;
2463                 }
2464                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2465                                 "Recalculating BW for TT slot %u port %u",
2466                                 virt_dev->tt_info->slot_id,
2467                                 virt_dev->tt_info->ttport);
2468         } else {
2469                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2470                                 "Recalculating BW for rootport %u",
2471                                 virt_dev->real_port);
2472         }
2473
2474         /* Add in how much bandwidth will be used for interval zero, or the
2475          * rounded max ESIT payload + number of packets * largest overhead.
2476          */
2477         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2478                 bw_table->interval_bw[0].num_packets *
2479                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2480
2481         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2482                 unsigned int bw_added;
2483                 unsigned int largest_mps;
2484                 unsigned int interval_overhead;
2485
2486                 /*
2487                  * How many packets could we transmit in this interval?
2488                  * If packets didn't fit in the previous interval, we will need
2489                  * to transmit that many packets twice within this interval.
2490                  */
2491                 packets_remaining = 2 * packets_remaining +
2492                         bw_table->interval_bw[i].num_packets;
2493
2494                 /* Find the largest max packet size of this or the previous
2495                  * interval.
2496                  */
2497                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2498                         largest_mps = 0;
2499                 else {
2500                         struct xhci_virt_ep *virt_ep;
2501                         struct list_head *ep_entry;
2502
2503                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2504                         virt_ep = list_entry(ep_entry,
2505                                         struct xhci_virt_ep, bw_endpoint_list);
2506                         /* Convert to blocks, rounding up */
2507                         largest_mps = DIV_ROUND_UP(
2508                                         virt_ep->bw_info.max_packet_size,
2509                                         block_size);
2510                 }
2511                 if (largest_mps > packet_size)
2512                         packet_size = largest_mps;
2513
2514                 /* Use the larger overhead of this or the previous interval. */
2515                 interval_overhead = xhci_get_largest_overhead(
2516                                 &bw_table->interval_bw[i]);
2517                 if (interval_overhead > overhead)
2518                         overhead = interval_overhead;
2519
2520                 /* How many packets can we evenly distribute across
2521                  * (1 << (i + 1)) possible scheduling opportunities?
2522                  */
2523                 packets_transmitted = packets_remaining >> (i + 1);
2524
2525                 /* Add in the bandwidth used for those scheduled packets */
2526                 bw_added = packets_transmitted * (overhead + packet_size);
2527
2528                 /* How many packets do we have remaining to transmit? */
2529                 packets_remaining = packets_remaining % (1 << (i + 1));
2530
2531                 /* What largest max packet size should those packets have? */
2532                 /* If we've transmitted all packets, don't carry over the
2533                  * largest packet size.
2534                  */
2535                 if (packets_remaining == 0) {
2536                         packet_size = 0;
2537                         overhead = 0;
2538                 } else if (packets_transmitted > 0) {
2539                         /* Otherwise if we do have remaining packets, and we've
2540                          * scheduled some packets in this interval, take the
2541                          * largest max packet size from endpoints with this
2542                          * interval.
2543                          */
2544                         packet_size = largest_mps;
2545                         overhead = interval_overhead;
2546                 }
2547                 /* Otherwise carry over packet_size and overhead from the last
2548                  * time we had a remainder.
2549                  */
2550                 bw_used += bw_added;
2551                 if (bw_used > max_bandwidth) {
2552                         xhci_warn(xhci, "Not enough bandwidth. "
2553                                         "Proposed: %u, Max: %u\n",
2554                                 bw_used, max_bandwidth);
2555                         return -ENOMEM;
2556                 }
2557         }
2558         /*
2559          * Ok, we know we have some packets left over after even-handedly
2560          * scheduling interval 15.  We don't know which microframes they will
2561          * fit into, so we over-schedule and say they will be scheduled every
2562          * microframe.
2563          */
2564         if (packets_remaining > 0)
2565                 bw_used += overhead + packet_size;
2566
2567         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2568                 unsigned int port_index = virt_dev->real_port - 1;
2569
2570                 /* OK, we're manipulating a HS device attached to a
2571                  * root port bandwidth domain.  Include the number of active TTs
2572                  * in the bandwidth used.
2573                  */
2574                 bw_used += TT_HS_OVERHEAD *
2575                         xhci->rh_bw[port_index].num_active_tts;
2576         }
2577
2578         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2579                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2580                 "Available: %u " "percent",
2581                 bw_used, max_bandwidth, bw_reserved,
2582                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2583                 max_bandwidth);
2584
2585         bw_used += bw_reserved;
2586         if (bw_used > max_bandwidth) {
2587                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2588                                 bw_used, max_bandwidth);
2589                 return -ENOMEM;
2590         }
2591
2592         bw_table->bw_used = bw_used;
2593         return 0;
2594 }
2595
2596 static bool xhci_is_async_ep(unsigned int ep_type)
2597 {
2598         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2599                                         ep_type != ISOC_IN_EP &&
2600                                         ep_type != INT_IN_EP);
2601 }
2602
2603 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2604 {
2605         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2606 }
2607
2608 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2609 {
2610         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2611
2612         if (ep_bw->ep_interval == 0)
2613                 return SS_OVERHEAD_BURST +
2614                         (ep_bw->mult * ep_bw->num_packets *
2615                                         (SS_OVERHEAD + mps));
2616         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2617                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2618                                 1 << ep_bw->ep_interval);
2619
2620 }
2621
2622 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2623                 struct xhci_bw_info *ep_bw,
2624                 struct xhci_interval_bw_table *bw_table,
2625                 struct usb_device *udev,
2626                 struct xhci_virt_ep *virt_ep,
2627                 struct xhci_tt_bw_info *tt_info)
2628 {
2629         struct xhci_interval_bw *interval_bw;
2630         int normalized_interval;
2631
2632         if (xhci_is_async_ep(ep_bw->type))
2633                 return;
2634
2635         if (udev->speed >= USB_SPEED_SUPER) {
2636                 if (xhci_is_sync_in_ep(ep_bw->type))
2637                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2638                                 xhci_get_ss_bw_consumed(ep_bw);
2639                 else
2640                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2641                                 xhci_get_ss_bw_consumed(ep_bw);
2642                 return;
2643         }
2644
2645         /* SuperSpeed endpoints never get added to intervals in the table, so
2646          * this check is only valid for HS/FS/LS devices.
2647          */
2648         if (list_empty(&virt_ep->bw_endpoint_list))
2649                 return;
2650         /* For LS/FS devices, we need to translate the interval expressed in
2651          * microframes to frames.
2652          */
2653         if (udev->speed == USB_SPEED_HIGH)
2654                 normalized_interval = ep_bw->ep_interval;
2655         else
2656                 normalized_interval = ep_bw->ep_interval - 3;
2657
2658         if (normalized_interval == 0)
2659                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2660         interval_bw = &bw_table->interval_bw[normalized_interval];
2661         interval_bw->num_packets -= ep_bw->num_packets;
2662         switch (udev->speed) {
2663         case USB_SPEED_LOW:
2664                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2665                 break;
2666         case USB_SPEED_FULL:
2667                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2668                 break;
2669         case USB_SPEED_HIGH:
2670                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2671                 break;
2672         case USB_SPEED_SUPER:
2673         case USB_SPEED_SUPER_PLUS:
2674         case USB_SPEED_UNKNOWN:
2675         case USB_SPEED_WIRELESS:
2676                 /* Should never happen because only LS/FS/HS endpoints will get
2677                  * added to the endpoint list.
2678                  */
2679                 return;
2680         }
2681         if (tt_info)
2682                 tt_info->active_eps -= 1;
2683         list_del_init(&virt_ep->bw_endpoint_list);
2684 }
2685
2686 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2687                 struct xhci_bw_info *ep_bw,
2688                 struct xhci_interval_bw_table *bw_table,
2689                 struct usb_device *udev,
2690                 struct xhci_virt_ep *virt_ep,
2691                 struct xhci_tt_bw_info *tt_info)
2692 {
2693         struct xhci_interval_bw *interval_bw;
2694         struct xhci_virt_ep *smaller_ep;
2695         int normalized_interval;
2696
2697         if (xhci_is_async_ep(ep_bw->type))
2698                 return;
2699
2700         if (udev->speed == USB_SPEED_SUPER) {
2701                 if (xhci_is_sync_in_ep(ep_bw->type))
2702                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2703                                 xhci_get_ss_bw_consumed(ep_bw);
2704                 else
2705                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2706                                 xhci_get_ss_bw_consumed(ep_bw);
2707                 return;
2708         }
2709
2710         /* For LS/FS devices, we need to translate the interval expressed in
2711          * microframes to frames.
2712          */
2713         if (udev->speed == USB_SPEED_HIGH)
2714                 normalized_interval = ep_bw->ep_interval;
2715         else
2716                 normalized_interval = ep_bw->ep_interval - 3;
2717
2718         if (normalized_interval == 0)
2719                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2720         interval_bw = &bw_table->interval_bw[normalized_interval];
2721         interval_bw->num_packets += ep_bw->num_packets;
2722         switch (udev->speed) {
2723         case USB_SPEED_LOW:
2724                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2725                 break;
2726         case USB_SPEED_FULL:
2727                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2728                 break;
2729         case USB_SPEED_HIGH:
2730                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2731                 break;
2732         case USB_SPEED_SUPER:
2733         case USB_SPEED_SUPER_PLUS:
2734         case USB_SPEED_UNKNOWN:
2735         case USB_SPEED_WIRELESS:
2736                 /* Should never happen because only LS/FS/HS endpoints will get
2737                  * added to the endpoint list.
2738                  */
2739                 return;
2740         }
2741
2742         if (tt_info)
2743                 tt_info->active_eps += 1;
2744         /* Insert the endpoint into the list, largest max packet size first. */
2745         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2746                         bw_endpoint_list) {
2747                 if (ep_bw->max_packet_size >=
2748                                 smaller_ep->bw_info.max_packet_size) {
2749                         /* Add the new ep before the smaller endpoint */
2750                         list_add_tail(&virt_ep->bw_endpoint_list,
2751                                         &smaller_ep->bw_endpoint_list);
2752                         return;
2753                 }
2754         }
2755         /* Add the new endpoint at the end of the list. */
2756         list_add_tail(&virt_ep->bw_endpoint_list,
2757                         &interval_bw->endpoints);
2758 }
2759
2760 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2761                 struct xhci_virt_device *virt_dev,
2762                 int old_active_eps)
2763 {
2764         struct xhci_root_port_bw_info *rh_bw_info;
2765         if (!virt_dev->tt_info)
2766                 return;
2767
2768         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2769         if (old_active_eps == 0 &&
2770                                 virt_dev->tt_info->active_eps != 0) {
2771                 rh_bw_info->num_active_tts += 1;
2772                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2773         } else if (old_active_eps != 0 &&
2774                                 virt_dev->tt_info->active_eps == 0) {
2775                 rh_bw_info->num_active_tts -= 1;
2776                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2777         }
2778 }
2779
2780 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2781                 struct xhci_virt_device *virt_dev,
2782                 struct xhci_container_ctx *in_ctx)
2783 {
2784         struct xhci_bw_info ep_bw_info[31];
2785         int i;
2786         struct xhci_input_control_ctx *ctrl_ctx;
2787         int old_active_eps = 0;
2788
2789         if (virt_dev->tt_info)
2790                 old_active_eps = virt_dev->tt_info->active_eps;
2791
2792         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2793         if (!ctrl_ctx) {
2794                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2795                                 __func__);
2796                 return -ENOMEM;
2797         }
2798
2799         for (i = 0; i < 31; i++) {
2800                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2801                         continue;
2802
2803                 /* Make a copy of the BW info in case we need to revert this */
2804                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2805                                 sizeof(ep_bw_info[i]));
2806                 /* Drop the endpoint from the interval table if the endpoint is
2807                  * being dropped or changed.
2808                  */
2809                 if (EP_IS_DROPPED(ctrl_ctx, i))
2810                         xhci_drop_ep_from_interval_table(xhci,
2811                                         &virt_dev->eps[i].bw_info,
2812                                         virt_dev->bw_table,
2813                                         virt_dev->udev,
2814                                         &virt_dev->eps[i],
2815                                         virt_dev->tt_info);
2816         }
2817         /* Overwrite the information stored in the endpoints' bw_info */
2818         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2819         for (i = 0; i < 31; i++) {
2820                 /* Add any changed or added endpoints to the interval table */
2821                 if (EP_IS_ADDED(ctrl_ctx, i))
2822                         xhci_add_ep_to_interval_table(xhci,
2823                                         &virt_dev->eps[i].bw_info,
2824                                         virt_dev->bw_table,
2825                                         virt_dev->udev,
2826                                         &virt_dev->eps[i],
2827                                         virt_dev->tt_info);
2828         }
2829
2830         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2831                 /* Ok, this fits in the bandwidth we have.
2832                  * Update the number of active TTs.
2833                  */
2834                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2835                 return 0;
2836         }
2837
2838         /* We don't have enough bandwidth for this, revert the stored info. */
2839         for (i = 0; i < 31; i++) {
2840                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2841                         continue;
2842
2843                 /* Drop the new copies of any added or changed endpoints from
2844                  * the interval table.
2845                  */
2846                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2847                         xhci_drop_ep_from_interval_table(xhci,
2848                                         &virt_dev->eps[i].bw_info,
2849                                         virt_dev->bw_table,
2850                                         virt_dev->udev,
2851                                         &virt_dev->eps[i],
2852                                         virt_dev->tt_info);
2853                 }
2854                 /* Revert the endpoint back to its old information */
2855                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2856                                 sizeof(ep_bw_info[i]));
2857                 /* Add any changed or dropped endpoints back into the table */
2858                 if (EP_IS_DROPPED(ctrl_ctx, i))
2859                         xhci_add_ep_to_interval_table(xhci,
2860                                         &virt_dev->eps[i].bw_info,
2861                                         virt_dev->bw_table,
2862                                         virt_dev->udev,
2863                                         &virt_dev->eps[i],
2864                                         virt_dev->tt_info);
2865         }
2866         return -ENOMEM;
2867 }
2868
2869
2870 /* Issue a configure endpoint command or evaluate context command
2871  * and wait for it to finish.
2872  */
2873 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2874                 struct usb_device *udev,
2875                 struct xhci_command *command,
2876                 bool ctx_change, bool must_succeed)
2877 {
2878         int ret;
2879         unsigned long flags;
2880         struct xhci_input_control_ctx *ctrl_ctx;
2881         struct xhci_virt_device *virt_dev;
2882         struct xhci_slot_ctx *slot_ctx;
2883
2884         if (!command)
2885                 return -EINVAL;
2886
2887         spin_lock_irqsave(&xhci->lock, flags);
2888
2889         if (xhci->xhc_state & XHCI_STATE_DYING) {
2890                 spin_unlock_irqrestore(&xhci->lock, flags);
2891                 return -ESHUTDOWN;
2892         }
2893
2894         virt_dev = xhci->devs[udev->slot_id];
2895
2896         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2897         if (!ctrl_ctx) {
2898                 spin_unlock_irqrestore(&xhci->lock, flags);
2899                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2900                                 __func__);
2901                 return -ENOMEM;
2902         }
2903
2904         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2905                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2906                 spin_unlock_irqrestore(&xhci->lock, flags);
2907                 xhci_warn(xhci, "Not enough host resources, "
2908                                 "active endpoint contexts = %u\n",
2909                                 xhci->num_active_eps);
2910                 return -ENOMEM;
2911         }
2912         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2913             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2914                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2915                         xhci_free_host_resources(xhci, ctrl_ctx);
2916                 spin_unlock_irqrestore(&xhci->lock, flags);
2917                 xhci_warn(xhci, "Not enough bandwidth\n");
2918                 return -ENOMEM;
2919         }
2920
2921         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2922
2923         trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2924         trace_xhci_configure_endpoint(slot_ctx);
2925
2926         if (!ctx_change)
2927                 ret = xhci_queue_configure_endpoint(xhci, command,
2928                                 command->in_ctx->dma,
2929                                 udev->slot_id, must_succeed);
2930         else
2931                 ret = xhci_queue_evaluate_context(xhci, command,
2932                                 command->in_ctx->dma,
2933                                 udev->slot_id, must_succeed);
2934         if (ret < 0) {
2935                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2936                         xhci_free_host_resources(xhci, ctrl_ctx);
2937                 spin_unlock_irqrestore(&xhci->lock, flags);
2938                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2939                                 "FIXME allocate a new ring segment");
2940                 return -ENOMEM;
2941         }
2942         xhci_ring_cmd_db(xhci);
2943         spin_unlock_irqrestore(&xhci->lock, flags);
2944
2945         /* Wait for the configure endpoint command to complete */
2946         wait_for_completion(command->completion);
2947
2948         if (!ctx_change)
2949                 ret = xhci_configure_endpoint_result(xhci, udev,
2950                                                      &command->status);
2951         else
2952                 ret = xhci_evaluate_context_result(xhci, udev,
2953                                                    &command->status);
2954
2955         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2956                 spin_lock_irqsave(&xhci->lock, flags);
2957                 /* If the command failed, remove the reserved resources.
2958                  * Otherwise, clean up the estimate to include dropped eps.
2959                  */
2960                 if (ret)
2961                         xhci_free_host_resources(xhci, ctrl_ctx);
2962                 else
2963                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2964                 spin_unlock_irqrestore(&xhci->lock, flags);
2965         }
2966         return ret;
2967 }
2968
2969 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2970         struct xhci_virt_device *vdev, int i)
2971 {
2972         struct xhci_virt_ep *ep = &vdev->eps[i];
2973
2974         if (ep->ep_state & EP_HAS_STREAMS) {
2975                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2976                                 xhci_get_endpoint_address(i));
2977                 xhci_free_stream_info(xhci, ep->stream_info);
2978                 ep->stream_info = NULL;
2979                 ep->ep_state &= ~EP_HAS_STREAMS;
2980         }
2981 }
2982
2983 /* Called after one or more calls to xhci_add_endpoint() or
2984  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2985  * to call xhci_reset_bandwidth().
2986  *
2987  * Since we are in the middle of changing either configuration or
2988  * installing a new alt setting, the USB core won't allow URBs to be
2989  * enqueued for any endpoint on the old config or interface.  Nothing
2990  * else should be touching the xhci->devs[slot_id] structure, so we
2991  * don't need to take the xhci->lock for manipulating that.
2992  */
2993 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2994 {
2995         int i;
2996         int ret = 0;
2997         struct xhci_hcd *xhci;
2998         struct xhci_virt_device *virt_dev;
2999         struct xhci_input_control_ctx *ctrl_ctx;
3000         struct xhci_slot_ctx *slot_ctx;
3001         struct xhci_command *command;
3002
3003         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3004         if (ret <= 0)
3005                 return ret;
3006         xhci = hcd_to_xhci(hcd);
3007         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3008                 (xhci->xhc_state & XHCI_STATE_REMOVING))
3009                 return -ENODEV;
3010
3011         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3012         virt_dev = xhci->devs[udev->slot_id];
3013
3014         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3015         if (!command)
3016                 return -ENOMEM;
3017
3018         command->in_ctx = virt_dev->in_ctx;
3019
3020         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3021         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3022         if (!ctrl_ctx) {
3023                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3024                                 __func__);
3025                 ret = -ENOMEM;
3026                 goto command_cleanup;
3027         }
3028         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3029         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3030         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3031
3032         /* Don't issue the command if there's no endpoints to update. */
3033         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3034             ctrl_ctx->drop_flags == 0) {
3035                 ret = 0;
3036                 goto command_cleanup;
3037         }
3038         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3039         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3040         for (i = 31; i >= 1; i--) {
3041                 __le32 le32 = cpu_to_le32(BIT(i));
3042
3043                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3044                     || (ctrl_ctx->add_flags & le32) || i == 1) {
3045                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3046                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3047                         break;
3048                 }
3049         }
3050
3051         ret = xhci_configure_endpoint(xhci, udev, command,
3052                         false, false);
3053         if (ret)
3054                 /* Callee should call reset_bandwidth() */
3055                 goto command_cleanup;
3056
3057         /* Free any rings that were dropped, but not changed. */
3058         for (i = 1; i < 31; i++) {
3059                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3060                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3061                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3062                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3063                 }
3064         }
3065         xhci_zero_in_ctx(xhci, virt_dev);
3066         /*
3067          * Install any rings for completely new endpoints or changed endpoints,
3068          * and free any old rings from changed endpoints.
3069          */
3070         for (i = 1; i < 31; i++) {
3071                 if (!virt_dev->eps[i].new_ring)
3072                         continue;
3073                 /* Only free the old ring if it exists.
3074                  * It may not if this is the first add of an endpoint.
3075                  */
3076                 if (virt_dev->eps[i].ring) {
3077                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3078                 }
3079                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3080                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3081                 virt_dev->eps[i].new_ring = NULL;
3082                 xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3083         }
3084 command_cleanup:
3085         kfree(command->completion);
3086         kfree(command);
3087
3088         return ret;
3089 }
3090 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3091
3092 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3093 {
3094         struct xhci_hcd *xhci;
3095         struct xhci_virt_device *virt_dev;
3096         int i, ret;
3097
3098         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3099         if (ret <= 0)
3100                 return;
3101         xhci = hcd_to_xhci(hcd);
3102
3103         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3104         virt_dev = xhci->devs[udev->slot_id];
3105         /* Free any rings allocated for added endpoints */
3106         for (i = 0; i < 31; i++) {
3107                 if (virt_dev->eps[i].new_ring) {
3108                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3109                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3110                         virt_dev->eps[i].new_ring = NULL;
3111                 }
3112         }
3113         xhci_zero_in_ctx(xhci, virt_dev);
3114 }
3115 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3116
3117 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3118                 struct xhci_container_ctx *in_ctx,
3119                 struct xhci_container_ctx *out_ctx,
3120                 struct xhci_input_control_ctx *ctrl_ctx,
3121                 u32 add_flags, u32 drop_flags)
3122 {
3123         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3124         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3125         xhci_slot_copy(xhci, in_ctx, out_ctx);
3126         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3127 }
3128
3129 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3130                                   struct usb_host_endpoint *host_ep)
3131 {
3132         struct xhci_hcd         *xhci;
3133         struct xhci_virt_device *vdev;
3134         struct xhci_virt_ep     *ep;
3135         struct usb_device       *udev;
3136         unsigned long           flags;
3137         unsigned int            ep_index;
3138
3139         xhci = hcd_to_xhci(hcd);
3140 rescan:
3141         spin_lock_irqsave(&xhci->lock, flags);
3142
3143         udev = (struct usb_device *)host_ep->hcpriv;
3144         if (!udev || !udev->slot_id)
3145                 goto done;
3146
3147         vdev = xhci->devs[udev->slot_id];
3148         if (!vdev)
3149                 goto done;
3150
3151         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3152         ep = &vdev->eps[ep_index];
3153         if (!ep)
3154                 goto done;
3155
3156         /* wait for hub_tt_work to finish clearing hub TT */
3157         if (ep->ep_state & EP_CLEARING_TT) {
3158                 spin_unlock_irqrestore(&xhci->lock, flags);
3159                 schedule_timeout_uninterruptible(1);
3160                 goto rescan;
3161         }
3162
3163         if (ep->ep_state)
3164                 xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3165                          ep->ep_state);
3166 done:
3167         host_ep->hcpriv = NULL;
3168         spin_unlock_irqrestore(&xhci->lock, flags);
3169 }
3170
3171 /*
3172  * Called after usb core issues a clear halt control message.
3173  * The host side of the halt should already be cleared by a reset endpoint
3174  * command issued when the STALL event was received.
3175  *
3176  * The reset endpoint command may only be issued to endpoints in the halted
3177  * state. For software that wishes to reset the data toggle or sequence number
3178  * of an endpoint that isn't in the halted state this function will issue a
3179  * configure endpoint command with the Drop and Add bits set for the target
3180  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3181  */
3182
3183 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3184                 struct usb_host_endpoint *host_ep)
3185 {
3186         struct xhci_hcd *xhci;
3187         struct usb_device *udev;
3188         struct xhci_virt_device *vdev;
3189         struct xhci_virt_ep *ep;
3190         struct xhci_input_control_ctx *ctrl_ctx;
3191         struct xhci_command *stop_cmd, *cfg_cmd;
3192         unsigned int ep_index;
3193         unsigned long flags;
3194         u32 ep_flag;
3195         int err;
3196
3197         xhci = hcd_to_xhci(hcd);
3198         if (!host_ep->hcpriv)
3199                 return;
3200         udev = (struct usb_device *) host_ep->hcpriv;
3201         vdev = xhci->devs[udev->slot_id];
3202
3203         /*
3204          * vdev may be lost due to xHC restore error and re-initialization
3205          * during S3/S4 resume. A new vdev will be allocated later by
3206          * xhci_discover_or_reset_device()
3207          */
3208         if (!udev->slot_id || !vdev)
3209                 return;
3210         ep_index = xhci_get_endpoint_index(&host_ep->desc);
3211         ep = &vdev->eps[ep_index];
3212         if (!ep)
3213                 return;
3214
3215         /* Bail out if toggle is already being cleared by a endpoint reset */
3216         if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3217                 ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3218                 return;
3219         }
3220         /* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3221         if (usb_endpoint_xfer_control(&host_ep->desc) ||
3222             usb_endpoint_xfer_isoc(&host_ep->desc))
3223                 return;
3224
3225         ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3226
3227         if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3228                 return;
3229
3230         stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3231         if (!stop_cmd)
3232                 return;
3233
3234         cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3235         if (!cfg_cmd)
3236                 goto cleanup;
3237
3238         spin_lock_irqsave(&xhci->lock, flags);
3239
3240         /* block queuing new trbs and ringing ep doorbell */
3241         ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3242
3243         /*
3244          * Make sure endpoint ring is empty before resetting the toggle/seq.
3245          * Driver is required to synchronously cancel all transfer request.
3246          * Stop the endpoint to force xHC to update the output context
3247          */
3248
3249         if (!list_empty(&ep->ring->td_list)) {
3250                 dev_err(&udev->dev, "EP not empty, refuse reset\n");
3251                 spin_unlock_irqrestore(&xhci->lock, flags);
3252                 xhci_free_command(xhci, cfg_cmd);
3253                 goto cleanup;
3254         }
3255
3256         err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3257                                         ep_index, 0);
3258         if (err < 0) {
3259                 spin_unlock_irqrestore(&xhci->lock, flags);
3260                 xhci_free_command(xhci, cfg_cmd);
3261                 xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3262                                 __func__, err);
3263                 goto cleanup;
3264         }
3265
3266         xhci_ring_cmd_db(xhci);
3267         spin_unlock_irqrestore(&xhci->lock, flags);
3268
3269         wait_for_completion(stop_cmd->completion);
3270
3271         spin_lock_irqsave(&xhci->lock, flags);
3272
3273         /* config ep command clears toggle if add and drop ep flags are set */
3274         ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3275         if (!ctrl_ctx) {
3276                 spin_unlock_irqrestore(&xhci->lock, flags);
3277                 xhci_free_command(xhci, cfg_cmd);
3278                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3279                                 __func__);
3280                 goto cleanup;
3281         }
3282
3283         xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3284                                            ctrl_ctx, ep_flag, ep_flag);
3285         xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3286
3287         err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3288                                       udev->slot_id, false);
3289         if (err < 0) {
3290                 spin_unlock_irqrestore(&xhci->lock, flags);
3291                 xhci_free_command(xhci, cfg_cmd);
3292                 xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3293                                 __func__, err);
3294                 goto cleanup;
3295         }
3296
3297         xhci_ring_cmd_db(xhci);
3298         spin_unlock_irqrestore(&xhci->lock, flags);
3299
3300         wait_for_completion(cfg_cmd->completion);
3301
3302         xhci_free_command(xhci, cfg_cmd);
3303 cleanup:
3304         xhci_free_command(xhci, stop_cmd);
3305         if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3306                 ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3307 }
3308
3309 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3310                 struct usb_device *udev, struct usb_host_endpoint *ep,
3311                 unsigned int slot_id)
3312 {
3313         int ret;
3314         unsigned int ep_index;
3315         unsigned int ep_state;
3316
3317         if (!ep)
3318                 return -EINVAL;
3319         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3320         if (ret <= 0)
3321                 return -EINVAL;
3322         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3323                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3324                                 " descriptor for ep 0x%x does not support streams\n",
3325                                 ep->desc.bEndpointAddress);
3326                 return -EINVAL;
3327         }
3328
3329         ep_index = xhci_get_endpoint_index(&ep->desc);
3330         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3331         if (ep_state & EP_HAS_STREAMS ||
3332                         ep_state & EP_GETTING_STREAMS) {
3333                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3334                                 "already has streams set up.\n",
3335                                 ep->desc.bEndpointAddress);
3336                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3337                                 "dynamic stream context array reallocation.\n");
3338                 return -EINVAL;
3339         }
3340         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3341                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3342                                 "endpoint 0x%x; URBs are pending.\n",
3343                                 ep->desc.bEndpointAddress);
3344                 return -EINVAL;
3345         }
3346         return 0;
3347 }
3348
3349 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3350                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3351 {
3352         unsigned int max_streams;
3353
3354         /* The stream context array size must be a power of two */
3355         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3356         /*
3357          * Find out how many primary stream array entries the host controller
3358          * supports.  Later we may use secondary stream arrays (similar to 2nd
3359          * level page entries), but that's an optional feature for xHCI host
3360          * controllers. xHCs must support at least 4 stream IDs.
3361          */
3362         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3363         if (*num_stream_ctxs > max_streams) {
3364                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3365                                 max_streams);
3366                 *num_stream_ctxs = max_streams;
3367                 *num_streams = max_streams;
3368         }
3369 }
3370
3371 /* Returns an error code if one of the endpoint already has streams.
3372  * This does not change any data structures, it only checks and gathers
3373  * information.
3374  */
3375 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3376                 struct usb_device *udev,
3377                 struct usb_host_endpoint **eps, unsigned int num_eps,
3378                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3379 {
3380         unsigned int max_streams;
3381         unsigned int endpoint_flag;
3382         int i;
3383         int ret;
3384
3385         for (i = 0; i < num_eps; i++) {
3386                 ret = xhci_check_streams_endpoint(xhci, udev,
3387                                 eps[i], udev->slot_id);
3388                 if (ret < 0)
3389                         return ret;
3390
3391                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3392                 if (max_streams < (*num_streams - 1)) {
3393                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3394                                         eps[i]->desc.bEndpointAddress,
3395                                         max_streams);
3396                         *num_streams = max_streams+1;
3397                 }
3398
3399                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3400                 if (*changed_ep_bitmask & endpoint_flag)
3401                         return -EINVAL;
3402                 *changed_ep_bitmask |= endpoint_flag;
3403         }
3404         return 0;
3405 }
3406
3407 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3408                 struct usb_device *udev,
3409                 struct usb_host_endpoint **eps, unsigned int num_eps)
3410 {
3411         u32 changed_ep_bitmask = 0;
3412         unsigned int slot_id;
3413         unsigned int ep_index;
3414         unsigned int ep_state;
3415         int i;
3416
3417         slot_id = udev->slot_id;
3418         if (!xhci->devs[slot_id])
3419                 return 0;
3420
3421         for (i = 0; i < num_eps; i++) {
3422                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3423                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3424                 /* Are streams already being freed for the endpoint? */
3425                 if (ep_state & EP_GETTING_NO_STREAMS) {
3426                         xhci_warn(xhci, "WARN Can't disable streams for "
3427                                         "endpoint 0x%x, "
3428                                         "streams are being disabled already\n",
3429                                         eps[i]->desc.bEndpointAddress);
3430                         return 0;
3431                 }
3432                 /* Are there actually any streams to free? */
3433                 if (!(ep_state & EP_HAS_STREAMS) &&
3434                                 !(ep_state & EP_GETTING_STREAMS)) {
3435                         xhci_warn(xhci, "WARN Can't disable streams for "
3436                                         "endpoint 0x%x, "
3437                                         "streams are already disabled!\n",
3438                                         eps[i]->desc.bEndpointAddress);
3439                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3440                                         "with non-streams endpoint\n");
3441                         return 0;
3442                 }
3443                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3444         }
3445         return changed_ep_bitmask;
3446 }
3447
3448 /*
3449  * The USB device drivers use this function (through the HCD interface in USB
3450  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3451  * coordinate mass storage command queueing across multiple endpoints (basically
3452  * a stream ID == a task ID).
3453  *
3454  * Setting up streams involves allocating the same size stream context array
3455  * for each endpoint and issuing a configure endpoint command for all endpoints.
3456  *
3457  * Don't allow the call to succeed if one endpoint only supports one stream
3458  * (which means it doesn't support streams at all).
3459  *
3460  * Drivers may get less stream IDs than they asked for, if the host controller
3461  * hardware or endpoints claim they can't support the number of requested
3462  * stream IDs.
3463  */
3464 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3465                 struct usb_host_endpoint **eps, unsigned int num_eps,
3466                 unsigned int num_streams, gfp_t mem_flags)
3467 {
3468         int i, ret;
3469         struct xhci_hcd *xhci;
3470         struct xhci_virt_device *vdev;
3471         struct xhci_command *config_cmd;
3472         struct xhci_input_control_ctx *ctrl_ctx;
3473         unsigned int ep_index;
3474         unsigned int num_stream_ctxs;
3475         unsigned int max_packet;
3476         unsigned long flags;
3477         u32 changed_ep_bitmask = 0;
3478
3479         if (!eps)
3480                 return -EINVAL;
3481
3482         /* Add one to the number of streams requested to account for
3483          * stream 0 that is reserved for xHCI usage.
3484          */
3485         num_streams += 1;
3486         xhci = hcd_to_xhci(hcd);
3487         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3488                         num_streams);
3489
3490         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3491         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3492                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3493                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3494                 return -ENOSYS;
3495         }
3496
3497         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3498         if (!config_cmd)
3499                 return -ENOMEM;
3500
3501         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3502         if (!ctrl_ctx) {
3503                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3504                                 __func__);
3505                 xhci_free_command(xhci, config_cmd);
3506                 return -ENOMEM;
3507         }
3508
3509         /* Check to make sure all endpoints are not already configured for
3510          * streams.  While we're at it, find the maximum number of streams that
3511          * all the endpoints will support and check for duplicate endpoints.
3512          */
3513         spin_lock_irqsave(&xhci->lock, flags);
3514         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3515                         num_eps, &num_streams, &changed_ep_bitmask);
3516         if (ret < 0) {
3517                 xhci_free_command(xhci, config_cmd);
3518                 spin_unlock_irqrestore(&xhci->lock, flags);
3519                 return ret;
3520         }
3521         if (num_streams <= 1) {
3522                 xhci_warn(xhci, "WARN: endpoints can't handle "
3523                                 "more than one stream.\n");
3524                 xhci_free_command(xhci, config_cmd);
3525                 spin_unlock_irqrestore(&xhci->lock, flags);
3526                 return -EINVAL;
3527         }
3528         vdev = xhci->devs[udev->slot_id];
3529         /* Mark each endpoint as being in transition, so
3530          * xhci_urb_enqueue() will reject all URBs.
3531          */
3532         for (i = 0; i < num_eps; i++) {
3533                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3534                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3535         }
3536         spin_unlock_irqrestore(&xhci->lock, flags);
3537
3538         /* Setup internal data structures and allocate HW data structures for
3539          * streams (but don't install the HW structures in the input context
3540          * until we're sure all memory allocation succeeded).
3541          */
3542         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3543         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3544                         num_stream_ctxs, num_streams);
3545
3546         for (i = 0; i < num_eps; i++) {
3547                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3548                 max_packet = usb_endpoint_maxp(&eps[i]->desc);
3549                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3550                                 num_stream_ctxs,
3551                                 num_streams,
3552                                 max_packet, mem_flags);
3553                 if (!vdev->eps[ep_index].stream_info)
3554                         goto cleanup;
3555                 /* Set maxPstreams in endpoint context and update deq ptr to
3556                  * point to stream context array. FIXME
3557                  */
3558         }
3559
3560         /* Set up the input context for a configure endpoint command. */
3561         for (i = 0; i < num_eps; i++) {
3562                 struct xhci_ep_ctx *ep_ctx;
3563
3564                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3565                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3566
3567                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3568                                 vdev->out_ctx, ep_index);
3569                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3570                                 vdev->eps[ep_index].stream_info);
3571         }
3572         /* Tell the HW to drop its old copy of the endpoint context info
3573          * and add the updated copy from the input context.
3574          */
3575         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3576                         vdev->out_ctx, ctrl_ctx,
3577                         changed_ep_bitmask, changed_ep_bitmask);
3578
3579         /* Issue and wait for the configure endpoint command */
3580         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3581                         false, false);
3582
3583         /* xHC rejected the configure endpoint command for some reason, so we
3584          * leave the old ring intact and free our internal streams data
3585          * structure.
3586          */
3587         if (ret < 0)
3588                 goto cleanup;
3589
3590         spin_lock_irqsave(&xhci->lock, flags);
3591         for (i = 0; i < num_eps; i++) {
3592                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3593                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3594                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3595                          udev->slot_id, ep_index);
3596                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3597         }
3598         xhci_free_command(xhci, config_cmd);
3599         spin_unlock_irqrestore(&xhci->lock, flags);
3600
3601         for (i = 0; i < num_eps; i++) {
3602                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3603                 xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3604         }
3605         /* Subtract 1 for stream 0, which drivers can't use */
3606         return num_streams - 1;
3607
3608 cleanup:
3609         /* If it didn't work, free the streams! */
3610         for (i = 0; i < num_eps; i++) {
3611                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3612                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3613                 vdev->eps[ep_index].stream_info = NULL;
3614                 /* FIXME Unset maxPstreams in endpoint context and
3615                  * update deq ptr to point to normal string ring.
3616                  */
3617                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3618                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3619                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3620         }
3621         xhci_free_command(xhci, config_cmd);
3622         return -ENOMEM;
3623 }
3624
3625 /* Transition the endpoint from using streams to being a "normal" endpoint
3626  * without streams.
3627  *
3628  * Modify the endpoint context state, submit a configure endpoint command,
3629  * and free all endpoint rings for streams if that completes successfully.
3630  */
3631 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3632                 struct usb_host_endpoint **eps, unsigned int num_eps,
3633                 gfp_t mem_flags)
3634 {
3635         int i, ret;
3636         struct xhci_hcd *xhci;
3637         struct xhci_virt_device *vdev;
3638         struct xhci_command *command;
3639         struct xhci_input_control_ctx *ctrl_ctx;
3640         unsigned int ep_index;
3641         unsigned long flags;
3642         u32 changed_ep_bitmask;
3643
3644         xhci = hcd_to_xhci(hcd);
3645         vdev = xhci->devs[udev->slot_id];
3646
3647         /* Set up a configure endpoint command to remove the streams rings */
3648         spin_lock_irqsave(&xhci->lock, flags);
3649         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3650                         udev, eps, num_eps);
3651         if (changed_ep_bitmask == 0) {
3652                 spin_unlock_irqrestore(&xhci->lock, flags);
3653                 return -EINVAL;
3654         }
3655
3656         /* Use the xhci_command structure from the first endpoint.  We may have
3657          * allocated too many, but the driver may call xhci_free_streams() for
3658          * each endpoint it grouped into one call to xhci_alloc_streams().
3659          */
3660         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3661         command = vdev->eps[ep_index].stream_info->free_streams_command;
3662         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3663         if (!ctrl_ctx) {
3664                 spin_unlock_irqrestore(&xhci->lock, flags);
3665                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3666                                 __func__);
3667                 return -EINVAL;
3668         }
3669
3670         for (i = 0; i < num_eps; i++) {
3671                 struct xhci_ep_ctx *ep_ctx;
3672
3673                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3674                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3675                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3676                         EP_GETTING_NO_STREAMS;
3677
3678                 xhci_endpoint_copy(xhci, command->in_ctx,
3679                                 vdev->out_ctx, ep_index);
3680                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3681                                 &vdev->eps[ep_index]);
3682         }
3683         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3684                         vdev->out_ctx, ctrl_ctx,
3685                         changed_ep_bitmask, changed_ep_bitmask);
3686         spin_unlock_irqrestore(&xhci->lock, flags);
3687
3688         /* Issue and wait for the configure endpoint command,
3689          * which must succeed.
3690          */
3691         ret = xhci_configure_endpoint(xhci, udev, command,
3692                         false, true);
3693
3694         /* xHC rejected the configure endpoint command for some reason, so we
3695          * leave the streams rings intact.
3696          */
3697         if (ret < 0)
3698                 return ret;
3699
3700         spin_lock_irqsave(&xhci->lock, flags);
3701         for (i = 0; i < num_eps; i++) {
3702                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3703                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3704                 vdev->eps[ep_index].stream_info = NULL;
3705                 /* FIXME Unset maxPstreams in endpoint context and
3706                  * update deq ptr to point to normal string ring.
3707                  */
3708                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3709                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3710         }
3711         spin_unlock_irqrestore(&xhci->lock, flags);
3712
3713         return 0;
3714 }
3715
3716 /*
3717  * Deletes endpoint resources for endpoints that were active before a Reset
3718  * Device command, or a Disable Slot command.  The Reset Device command leaves
3719  * the control endpoint intact, whereas the Disable Slot command deletes it.
3720  *
3721  * Must be called with xhci->lock held.
3722  */
3723 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3724         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3725 {
3726         int i;
3727         unsigned int num_dropped_eps = 0;
3728         unsigned int drop_flags = 0;
3729
3730         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3731                 if (virt_dev->eps[i].ring) {
3732                         drop_flags |= 1 << i;
3733                         num_dropped_eps++;
3734                 }
3735         }
3736         xhci->num_active_eps -= num_dropped_eps;
3737         if (num_dropped_eps)
3738                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3739                                 "Dropped %u ep ctxs, flags = 0x%x, "
3740                                 "%u now active.",
3741                                 num_dropped_eps, drop_flags,
3742                                 xhci->num_active_eps);
3743 }
3744
3745 /*
3746  * This submits a Reset Device Command, which will set the device state to 0,
3747  * set the device address to 0, and disable all the endpoints except the default
3748  * control endpoint.  The USB core should come back and call
3749  * xhci_address_device(), and then re-set up the configuration.  If this is
3750  * called because of a usb_reset_and_verify_device(), then the old alternate
3751  * settings will be re-installed through the normal bandwidth allocation
3752  * functions.
3753  *
3754  * Wait for the Reset Device command to finish.  Remove all structures
3755  * associated with the endpoints that were disabled.  Clear the input device
3756  * structure? Reset the control endpoint 0 max packet size?
3757  *
3758  * If the virt_dev to be reset does not exist or does not match the udev,
3759  * it means the device is lost, possibly due to the xHC restore error and
3760  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3761  * re-allocate the device.
3762  */
3763 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3764                 struct usb_device *udev)
3765 {
3766         int ret, i;
3767         unsigned long flags;
3768         struct xhci_hcd *xhci;
3769         unsigned int slot_id;
3770         struct xhci_virt_device *virt_dev;
3771         struct xhci_command *reset_device_cmd;
3772         struct xhci_slot_ctx *slot_ctx;
3773         int old_active_eps = 0;
3774
3775         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3776         if (ret <= 0)
3777                 return ret;
3778         xhci = hcd_to_xhci(hcd);
3779         slot_id = udev->slot_id;
3780         virt_dev = xhci->devs[slot_id];
3781         if (!virt_dev) {
3782                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3783                                 "not exist. Re-allocate the device\n", slot_id);
3784                 ret = xhci_alloc_dev(hcd, udev);
3785                 if (ret == 1)
3786                         return 0;
3787                 else
3788                         return -EINVAL;
3789         }
3790
3791         if (virt_dev->tt_info)
3792                 old_active_eps = virt_dev->tt_info->active_eps;
3793
3794         if (virt_dev->udev != udev) {
3795                 /* If the virt_dev and the udev does not match, this virt_dev
3796                  * may belong to another udev.
3797                  * Re-allocate the device.
3798                  */
3799                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3800                                 "not match the udev. Re-allocate the device\n",
3801                                 slot_id);
3802                 ret = xhci_alloc_dev(hcd, udev);
3803                 if (ret == 1)
3804                         return 0;
3805                 else
3806                         return -EINVAL;
3807         }
3808
3809         /* If device is not setup, there is no point in resetting it */
3810         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3811         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3812                                                 SLOT_STATE_DISABLED)
3813                 return 0;
3814
3815         trace_xhci_discover_or_reset_device(slot_ctx);
3816
3817         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3818         /* Allocate the command structure that holds the struct completion.
3819          * Assume we're in process context, since the normal device reset
3820          * process has to wait for the device anyway.  Storage devices are
3821          * reset as part of error handling, so use GFP_NOIO instead of
3822          * GFP_KERNEL.
3823          */
3824         reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3825         if (!reset_device_cmd) {
3826                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3827                 return -ENOMEM;
3828         }
3829
3830         /* Attempt to submit the Reset Device command to the command ring */
3831         spin_lock_irqsave(&xhci->lock, flags);
3832
3833         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3834         if (ret) {
3835                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3836                 spin_unlock_irqrestore(&xhci->lock, flags);
3837                 goto command_cleanup;
3838         }
3839         xhci_ring_cmd_db(xhci);
3840         spin_unlock_irqrestore(&xhci->lock, flags);
3841
3842         /* Wait for the Reset Device command to finish */
3843         wait_for_completion(reset_device_cmd->completion);
3844
3845         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3846          * unless we tried to reset a slot ID that wasn't enabled,
3847          * or the device wasn't in the addressed or configured state.
3848          */
3849         ret = reset_device_cmd->status;
3850         switch (ret) {
3851         case COMP_COMMAND_ABORTED:
3852         case COMP_COMMAND_RING_STOPPED:
3853                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3854                 ret = -ETIME;
3855                 goto command_cleanup;
3856         case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3857         case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3858                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3859                                 slot_id,
3860                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3861                 xhci_dbg(xhci, "Not freeing device rings.\n");
3862                 /* Don't treat this as an error.  May change my mind later. */
3863                 ret = 0;
3864                 goto command_cleanup;
3865         case COMP_SUCCESS:
3866                 xhci_dbg(xhci, "Successful reset device command.\n");
3867                 break;
3868         default:
3869                 if (xhci_is_vendor_info_code(xhci, ret))
3870                         break;
3871                 xhci_warn(xhci, "Unknown completion code %u for "
3872                                 "reset device command.\n", ret);
3873                 ret = -EINVAL;
3874                 goto command_cleanup;
3875         }
3876
3877         /* Free up host controller endpoint resources */
3878         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3879                 spin_lock_irqsave(&xhci->lock, flags);
3880                 /* Don't delete the default control endpoint resources */
3881                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3882                 spin_unlock_irqrestore(&xhci->lock, flags);
3883         }
3884
3885         /* Everything but endpoint 0 is disabled, so free the rings. */
3886         for (i = 1; i < 31; i++) {
3887                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3888
3889                 if (ep->ep_state & EP_HAS_STREAMS) {
3890                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3891                                         xhci_get_endpoint_address(i));
3892                         xhci_free_stream_info(xhci, ep->stream_info);
3893                         ep->stream_info = NULL;
3894                         ep->ep_state &= ~EP_HAS_STREAMS;
3895                 }
3896
3897                 if (ep->ring) {
3898                         xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3899                         xhci_free_endpoint_ring(xhci, virt_dev, i);
3900                 }
3901                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3902                         xhci_drop_ep_from_interval_table(xhci,
3903                                         &virt_dev->eps[i].bw_info,
3904                                         virt_dev->bw_table,
3905                                         udev,
3906                                         &virt_dev->eps[i],
3907                                         virt_dev->tt_info);
3908                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3909         }
3910         /* If necessary, update the number of active TTs on this root port */
3911         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3912         virt_dev->flags = 0;
3913         ret = 0;
3914
3915 command_cleanup:
3916         xhci_free_command(xhci, reset_device_cmd);
3917         return ret;
3918 }
3919
3920 /*
3921  * At this point, the struct usb_device is about to go away, the device has
3922  * disconnected, and all traffic has been stopped and the endpoints have been
3923  * disabled.  Free any HC data structures associated with that device.
3924  */
3925 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3926 {
3927         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3928         struct xhci_virt_device *virt_dev;
3929         struct xhci_slot_ctx *slot_ctx;
3930         int i, ret;
3931
3932 #ifndef CONFIG_USB_DEFAULT_PERSIST
3933         /*
3934          * We called pm_runtime_get_noresume when the device was attached.
3935          * Decrement the counter here to allow controller to runtime suspend
3936          * if no devices remain.
3937          */
3938         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3939                 pm_runtime_put_noidle(hcd->self.controller);
3940 #endif
3941
3942         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3943         /* If the host is halted due to driver unload, we still need to free the
3944          * device.
3945          */
3946         if (ret <= 0 && ret != -ENODEV)
3947                 return;
3948
3949         virt_dev = xhci->devs[udev->slot_id];
3950         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3951         trace_xhci_free_dev(slot_ctx);
3952
3953         /* Stop any wayward timer functions (which may grab the lock) */
3954         for (i = 0; i < 31; i++) {
3955                 virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3956                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3957         }
3958         virt_dev->udev = NULL;
3959         ret = xhci_disable_slot(xhci, udev->slot_id);
3960         if (ret)
3961                 xhci_free_virt_device(xhci, udev->slot_id);
3962 }
3963
3964 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3965 {
3966         struct xhci_command *command;
3967         unsigned long flags;
3968         u32 state;
3969         int ret = 0;
3970
3971         command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3972         if (!command)
3973                 return -ENOMEM;
3974
3975         xhci_debugfs_remove_slot(xhci, slot_id);
3976
3977         spin_lock_irqsave(&xhci->lock, flags);
3978         /* Don't disable the slot if the host controller is dead. */
3979         state = readl(&xhci->op_regs->status);
3980         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3981                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3982                 spin_unlock_irqrestore(&xhci->lock, flags);
3983                 kfree(command);
3984                 return -ENODEV;
3985         }
3986
3987         ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3988                                 slot_id);
3989         if (ret) {
3990                 spin_unlock_irqrestore(&xhci->lock, flags);
3991                 kfree(command);
3992                 return ret;
3993         }
3994         xhci_ring_cmd_db(xhci);
3995         spin_unlock_irqrestore(&xhci->lock, flags);
3996         return ret;
3997 }
3998
3999 /*
4000  * Checks if we have enough host controller resources for the default control
4001  * endpoint.
4002  *
4003  * Must be called with xhci->lock held.
4004  */
4005 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4006 {
4007         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4008                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4009                                 "Not enough ep ctxs: "
4010                                 "%u active, need to add 1, limit is %u.",
4011                                 xhci->num_active_eps, xhci->limit_active_eps);
4012                 return -ENOMEM;
4013         }
4014         xhci->num_active_eps += 1;
4015         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4016                         "Adding 1 ep ctx, %u now active.",
4017                         xhci->num_active_eps);
4018         return 0;
4019 }
4020
4021
4022 /*
4023  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4024  * timed out, or allocating memory failed.  Returns 1 on success.
4025  */
4026 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4027 {
4028         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4029         struct xhci_virt_device *vdev;
4030         struct xhci_slot_ctx *slot_ctx;
4031         unsigned long flags;
4032         int ret, slot_id;
4033         struct xhci_command *command;
4034
4035         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4036         if (!command)
4037                 return 0;
4038
4039         spin_lock_irqsave(&xhci->lock, flags);
4040         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4041         if (ret) {
4042                 spin_unlock_irqrestore(&xhci->lock, flags);
4043                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4044                 xhci_free_command(xhci, command);
4045                 return 0;
4046         }
4047         xhci_ring_cmd_db(xhci);
4048         spin_unlock_irqrestore(&xhci->lock, flags);
4049
4050         wait_for_completion(command->completion);
4051         slot_id = command->slot_id;
4052
4053         if (!slot_id || command->status != COMP_SUCCESS) {
4054                 xhci_err(xhci, "Error while assigning device slot ID\n");
4055                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4056                                 HCS_MAX_SLOTS(
4057                                         readl(&xhci->cap_regs->hcs_params1)));
4058                 xhci_free_command(xhci, command);
4059                 return 0;
4060         }
4061
4062         xhci_free_command(xhci, command);
4063
4064         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4065                 spin_lock_irqsave(&xhci->lock, flags);
4066                 ret = xhci_reserve_host_control_ep_resources(xhci);
4067                 if (ret) {
4068                         spin_unlock_irqrestore(&xhci->lock, flags);
4069                         xhci_warn(xhci, "Not enough host resources, "
4070                                         "active endpoint contexts = %u\n",
4071                                         xhci->num_active_eps);
4072                         goto disable_slot;
4073                 }
4074                 spin_unlock_irqrestore(&xhci->lock, flags);
4075         }
4076         /* Use GFP_NOIO, since this function can be called from
4077          * xhci_discover_or_reset_device(), which may be called as part of
4078          * mass storage driver error handling.
4079          */
4080         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4081                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4082                 goto disable_slot;
4083         }
4084         vdev = xhci->devs[slot_id];
4085         slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4086         trace_xhci_alloc_dev(slot_ctx);
4087
4088         udev->slot_id = slot_id;
4089
4090         xhci_debugfs_create_slot(xhci, slot_id);
4091
4092 #ifndef CONFIG_USB_DEFAULT_PERSIST
4093         /*
4094          * If resetting upon resume, we can't put the controller into runtime
4095          * suspend if there is a device attached.
4096          */
4097         if (xhci->quirks & XHCI_RESET_ON_RESUME)
4098                 pm_runtime_get_noresume(hcd->self.controller);
4099 #endif
4100
4101         /* Is this a LS or FS device under a HS hub? */
4102         /* Hub or peripherial? */
4103         return 1;
4104
4105 disable_slot:
4106         ret = xhci_disable_slot(xhci, udev->slot_id);
4107         if (ret)
4108                 xhci_free_virt_device(xhci, udev->slot_id);
4109
4110         return 0;
4111 }
4112
4113 /*
4114  * Issue an Address Device command and optionally send a corresponding
4115  * SetAddress request to the device.
4116  */
4117 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4118                              enum xhci_setup_dev setup)
4119 {
4120         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4121         unsigned long flags;
4122         struct xhci_virt_device *virt_dev;
4123         int ret = 0;
4124         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4125         struct xhci_slot_ctx *slot_ctx;
4126         struct xhci_input_control_ctx *ctrl_ctx;
4127         u64 temp_64;
4128         struct xhci_command *command = NULL;
4129
4130         mutex_lock(&xhci->mutex);
4131
4132         if (xhci->xhc_state) {  /* dying, removing or halted */
4133                 ret = -ESHUTDOWN;
4134                 goto out;
4135         }
4136
4137         if (!udev->slot_id) {
4138                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4139                                 "Bad Slot ID %d", udev->slot_id);
4140                 ret = -EINVAL;
4141                 goto out;
4142         }
4143
4144         virt_dev = xhci->devs[udev->slot_id];
4145
4146         if (WARN_ON(!virt_dev)) {
4147                 /*
4148                  * In plug/unplug torture test with an NEC controller,
4149                  * a zero-dereference was observed once due to virt_dev = 0.
4150                  * Print useful debug rather than crash if it is observed again!
4151                  */
4152                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4153                         udev->slot_id);
4154                 ret = -EINVAL;
4155                 goto out;
4156         }
4157         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4158         trace_xhci_setup_device_slot(slot_ctx);
4159
4160         if (setup == SETUP_CONTEXT_ONLY) {
4161                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4162                     SLOT_STATE_DEFAULT) {
4163                         xhci_dbg(xhci, "Slot already in default state\n");
4164                         goto out;
4165                 }
4166         }
4167
4168         command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4169         if (!command) {
4170                 ret = -ENOMEM;
4171                 goto out;
4172         }
4173
4174         command->in_ctx = virt_dev->in_ctx;
4175
4176         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4177         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4178         if (!ctrl_ctx) {
4179                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4180                                 __func__);
4181                 ret = -EINVAL;
4182                 goto out;
4183         }
4184         /*
4185          * If this is the first Set Address since device plug-in or
4186          * virt_device realloaction after a resume with an xHCI power loss,
4187          * then set up the slot context.
4188          */
4189         if (!slot_ctx->dev_info)
4190                 xhci_setup_addressable_virt_dev(xhci, udev);
4191         /* Otherwise, update the control endpoint ring enqueue pointer. */
4192         else
4193                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4194         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4195         ctrl_ctx->drop_flags = 0;
4196
4197         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4198                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4199
4200         trace_xhci_address_ctrl_ctx(ctrl_ctx);
4201         spin_lock_irqsave(&xhci->lock, flags);
4202         trace_xhci_setup_device(virt_dev);
4203         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4204                                         udev->slot_id, setup);
4205         if (ret) {
4206                 spin_unlock_irqrestore(&xhci->lock, flags);
4207                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4208                                 "FIXME: allocate a command ring segment");
4209                 goto out;
4210         }
4211         xhci_ring_cmd_db(xhci);
4212         spin_unlock_irqrestore(&xhci->lock, flags);
4213
4214         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4215         wait_for_completion(command->completion);
4216
4217         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
4218          * the SetAddress() "recovery interval" required by USB and aborting the
4219          * command on a timeout.
4220          */
4221         switch (command->status) {
4222         case COMP_COMMAND_ABORTED:
4223         case COMP_COMMAND_RING_STOPPED:
4224                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4225                 ret = -ETIME;
4226                 break;
4227         case COMP_CONTEXT_STATE_ERROR:
4228         case COMP_SLOT_NOT_ENABLED_ERROR:
4229                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4230                          act, udev->slot_id);
4231                 ret = -EINVAL;
4232                 break;
4233         case COMP_USB_TRANSACTION_ERROR:
4234                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4235
4236                 mutex_unlock(&xhci->mutex);
4237                 ret = xhci_disable_slot(xhci, udev->slot_id);
4238                 if (!ret)
4239                         xhci_alloc_dev(hcd, udev);
4240                 kfree(command->completion);
4241                 kfree(command);
4242                 return -EPROTO;
4243         case COMP_INCOMPATIBLE_DEVICE_ERROR:
4244                 dev_warn(&udev->dev,
4245                          "ERROR: Incompatible device for setup %s command\n", act);
4246                 ret = -ENODEV;
4247                 break;
4248         case COMP_SUCCESS:
4249                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4250                                "Successful setup %s command", act);
4251                 break;
4252         default:
4253                 xhci_err(xhci,
4254                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
4255                          act, command->status);
4256                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4257                 ret = -EINVAL;
4258                 break;
4259         }
4260         if (ret)
4261                 goto out;
4262         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4263         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4264                         "Op regs DCBAA ptr = %#016llx", temp_64);
4265         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4266                 "Slot ID %d dcbaa entry @%p = %#016llx",
4267                 udev->slot_id,
4268                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4269                 (unsigned long long)
4270                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4271         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4272                         "Output Context DMA address = %#08llx",
4273                         (unsigned long long)virt_dev->out_ctx->dma);
4274         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4275                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4276         /*
4277          * USB core uses address 1 for the roothubs, so we add one to the
4278          * address given back to us by the HC.
4279          */
4280         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4281                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
4282         /* Zero the input context control for later use */
4283         ctrl_ctx->add_flags = 0;
4284         ctrl_ctx->drop_flags = 0;
4285         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4286         udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4287
4288         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4289                        "Internal device address = %d",
4290                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4291 out:
4292         mutex_unlock(&xhci->mutex);
4293         if (command) {
4294                 kfree(command->completion);
4295                 kfree(command);
4296         }
4297         return ret;
4298 }
4299
4300 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4301 {
4302         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4303 }
4304
4305 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4306 {
4307         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4308 }
4309
4310 /*
4311  * Transfer the port index into real index in the HW port status
4312  * registers. Caculate offset between the port's PORTSC register
4313  * and port status base. Divide the number of per port register
4314  * to get the real index. The raw port number bases 1.
4315  */
4316 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4317 {
4318         struct xhci_hub *rhub;
4319
4320         rhub = xhci_get_rhub(hcd);
4321         return rhub->ports[port1 - 1]->hw_portnum + 1;
4322 }
4323
4324 /*
4325  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4326  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4327  */
4328 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4329                         struct usb_device *udev, u16 max_exit_latency)
4330 {
4331         struct xhci_virt_device *virt_dev;
4332         struct xhci_command *command;
4333         struct xhci_input_control_ctx *ctrl_ctx;
4334         struct xhci_slot_ctx *slot_ctx;
4335         unsigned long flags;
4336         int ret;
4337
4338         spin_lock_irqsave(&xhci->lock, flags);
4339
4340         virt_dev = xhci->devs[udev->slot_id];
4341
4342         /*
4343          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4344          * xHC was re-initialized. Exit latency will be set later after
4345          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4346          */
4347
4348         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4349                 spin_unlock_irqrestore(&xhci->lock, flags);
4350                 return 0;
4351         }
4352
4353         /* Attempt to issue an Evaluate Context command to change the MEL. */
4354         command = xhci->lpm_command;
4355         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4356         if (!ctrl_ctx) {
4357                 spin_unlock_irqrestore(&xhci->lock, flags);
4358                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4359                                 __func__);
4360                 return -ENOMEM;
4361         }
4362
4363         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4364         spin_unlock_irqrestore(&xhci->lock, flags);
4365
4366         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4367         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4368         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4369         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4370         slot_ctx->dev_state = 0;
4371
4372         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4373                         "Set up evaluate context for LPM MEL change.");
4374
4375         /* Issue and wait for the evaluate context command. */
4376         ret = xhci_configure_endpoint(xhci, udev, command,
4377                         true, true);
4378
4379         if (!ret) {
4380                 spin_lock_irqsave(&xhci->lock, flags);
4381                 virt_dev->current_mel = max_exit_latency;
4382                 spin_unlock_irqrestore(&xhci->lock, flags);
4383         }
4384         return ret;
4385 }
4386
4387 #ifdef CONFIG_PM
4388
4389 /* BESL to HIRD Encoding array for USB2 LPM */
4390 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4391         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4392
4393 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4394 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4395                                         struct usb_device *udev)
4396 {
4397         int u2del, besl, besl_host;
4398         int besl_device = 0;
4399         u32 field;
4400
4401         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4402         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4403
4404         if (field & USB_BESL_SUPPORT) {
4405                 for (besl_host = 0; besl_host < 16; besl_host++) {
4406                         if (xhci_besl_encoding[besl_host] >= u2del)
4407                                 break;
4408                 }
4409                 /* Use baseline BESL value as default */
4410                 if (field & USB_BESL_BASELINE_VALID)
4411                         besl_device = USB_GET_BESL_BASELINE(field);
4412                 else if (field & USB_BESL_DEEP_VALID)
4413                         besl_device = USB_GET_BESL_DEEP(field);
4414         } else {
4415                 if (u2del <= 50)
4416                         besl_host = 0;
4417                 else
4418                         besl_host = (u2del - 51) / 75 + 1;
4419         }
4420
4421         besl = besl_host + besl_device;
4422         if (besl > 15)
4423                 besl = 15;
4424
4425         return besl;
4426 }
4427
4428 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4429 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4430 {
4431         u32 field;
4432         int l1;
4433         int besld = 0;
4434         int hirdm = 0;
4435
4436         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4437
4438         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4439         l1 = udev->l1_params.timeout / 256;
4440
4441         /* device has preferred BESLD */
4442         if (field & USB_BESL_DEEP_VALID) {
4443                 besld = USB_GET_BESL_DEEP(field);
4444                 hirdm = 1;
4445         }
4446
4447         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4448 }
4449
4450 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4451                         struct usb_device *udev, int enable)
4452 {
4453         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4454         struct xhci_port **ports;
4455         __le32 __iomem  *pm_addr, *hlpm_addr;
4456         u32             pm_val, hlpm_val, field;
4457         unsigned int    port_num;
4458         unsigned long   flags;
4459         int             hird, exit_latency;
4460         int             ret;
4461
4462         if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4463                 return -EPERM;
4464
4465         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4466                         !udev->lpm_capable)
4467                 return -EPERM;
4468
4469         if (!udev->parent || udev->parent->parent ||
4470                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4471                 return -EPERM;
4472
4473         if (udev->usb2_hw_lpm_capable != 1)
4474                 return -EPERM;
4475
4476         spin_lock_irqsave(&xhci->lock, flags);
4477
4478         ports = xhci->usb2_rhub.ports;
4479         port_num = udev->portnum - 1;
4480         pm_addr = ports[port_num]->addr + PORTPMSC;
4481         pm_val = readl(pm_addr);
4482         hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4483
4484         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4485                         enable ? "enable" : "disable", port_num + 1);
4486
4487         if (enable) {
4488                 /* Host supports BESL timeout instead of HIRD */
4489                 if (udev->usb2_hw_lpm_besl_capable) {
4490                         /* if device doesn't have a preferred BESL value use a
4491                          * default one which works with mixed HIRD and BESL
4492                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4493                          */
4494                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4495                         if ((field & USB_BESL_SUPPORT) &&
4496                             (field & USB_BESL_BASELINE_VALID))
4497                                 hird = USB_GET_BESL_BASELINE(field);
4498                         else
4499                                 hird = udev->l1_params.besl;
4500
4501                         exit_latency = xhci_besl_encoding[hird];
4502                         spin_unlock_irqrestore(&xhci->lock, flags);
4503
4504                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4505                          * input context for link powermanagement evaluate
4506                          * context commands. It is protected by hcd->bandwidth
4507                          * mutex and is shared by all devices. We need to set
4508                          * the max ext latency in USB 2 BESL LPM as well, so
4509                          * use the same mutex and xhci_change_max_exit_latency()
4510                          */
4511                         mutex_lock(hcd->bandwidth_mutex);
4512                         ret = xhci_change_max_exit_latency(xhci, udev,
4513                                                            exit_latency);
4514                         mutex_unlock(hcd->bandwidth_mutex);
4515
4516                         if (ret < 0)
4517                                 return ret;
4518                         spin_lock_irqsave(&xhci->lock, flags);
4519
4520                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4521                         writel(hlpm_val, hlpm_addr);
4522                         /* flush write */
4523                         readl(hlpm_addr);
4524                 } else {
4525                         hird = xhci_calculate_hird_besl(xhci, udev);
4526                 }
4527
4528                 pm_val &= ~PORT_HIRD_MASK;
4529                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4530                 writel(pm_val, pm_addr);
4531                 pm_val = readl(pm_addr);
4532                 pm_val |= PORT_HLE;
4533                 writel(pm_val, pm_addr);
4534                 /* flush write */
4535                 readl(pm_addr);
4536         } else {
4537                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4538                 writel(pm_val, pm_addr);
4539                 /* flush write */
4540                 readl(pm_addr);
4541                 if (udev->usb2_hw_lpm_besl_capable) {
4542                         spin_unlock_irqrestore(&xhci->lock, flags);
4543                         mutex_lock(hcd->bandwidth_mutex);
4544                         xhci_change_max_exit_latency(xhci, udev, 0);
4545                         mutex_unlock(hcd->bandwidth_mutex);
4546                         readl_poll_timeout(ports[port_num]->addr, pm_val,
4547                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4548                                            100, 10000);
4549                         return 0;
4550                 }
4551         }
4552
4553         spin_unlock_irqrestore(&xhci->lock, flags);
4554         return 0;
4555 }
4556
4557 /* check if a usb2 port supports a given extened capability protocol
4558  * only USB2 ports extended protocol capability values are cached.
4559  * Return 1 if capability is supported
4560  */
4561 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4562                                            unsigned capability)
4563 {
4564         u32 port_offset, port_count;
4565         int i;
4566
4567         for (i = 0; i < xhci->num_ext_caps; i++) {
4568                 if (xhci->ext_caps[i] & capability) {
4569                         /* port offsets starts at 1 */
4570                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4571                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4572                         if (port >= port_offset &&
4573                             port < port_offset + port_count)
4574                                 return 1;
4575                 }
4576         }
4577         return 0;
4578 }
4579
4580 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4581 {
4582         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4583         int             portnum = udev->portnum - 1;
4584
4585         if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4586                 return 0;
4587
4588         /* we only support lpm for non-hub device connected to root hub yet */
4589         if (!udev->parent || udev->parent->parent ||
4590                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4591                 return 0;
4592
4593         if (xhci->hw_lpm_support == 1 &&
4594                         xhci_check_usb2_port_capability(
4595                                 xhci, portnum, XHCI_HLC)) {
4596                 udev->usb2_hw_lpm_capable = 1;
4597                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4598                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4599                 if (xhci_check_usb2_port_capability(xhci, portnum,
4600                                         XHCI_BLC))
4601                         udev->usb2_hw_lpm_besl_capable = 1;
4602         }
4603
4604         return 0;
4605 }
4606
4607 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4608
4609 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4610 static unsigned long long xhci_service_interval_to_ns(
4611                 struct usb_endpoint_descriptor *desc)
4612 {
4613         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4614 }
4615
4616 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4617                 enum usb3_link_state state)
4618 {
4619         unsigned long long sel;
4620         unsigned long long pel;
4621         unsigned int max_sel_pel;
4622         char *state_name;
4623
4624         switch (state) {
4625         case USB3_LPM_U1:
4626                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4627                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4628                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4629                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4630                 state_name = "U1";
4631                 break;
4632         case USB3_LPM_U2:
4633                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4634                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4635                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4636                 state_name = "U2";
4637                 break;
4638         default:
4639                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4640                                 __func__);
4641                 return USB3_LPM_DISABLED;
4642         }
4643
4644         if (sel <= max_sel_pel && pel <= max_sel_pel)
4645                 return USB3_LPM_DEVICE_INITIATED;
4646
4647         if (sel > max_sel_pel)
4648                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4649                                 "due to long SEL %llu ms\n",
4650                                 state_name, sel);
4651         else
4652                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4653                                 "due to long PEL %llu ms\n",
4654                                 state_name, pel);
4655         return USB3_LPM_DISABLED;
4656 }
4657
4658 /* The U1 timeout should be the maximum of the following values:
4659  *  - For control endpoints, U1 system exit latency (SEL) * 3
4660  *  - For bulk endpoints, U1 SEL * 5
4661  *  - For interrupt endpoints:
4662  *    - Notification EPs, U1 SEL * 3
4663  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4664  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4665  */
4666 static unsigned long long xhci_calculate_intel_u1_timeout(
4667                 struct usb_device *udev,
4668                 struct usb_endpoint_descriptor *desc)
4669 {
4670         unsigned long long timeout_ns;
4671         int ep_type;
4672         int intr_type;
4673
4674         ep_type = usb_endpoint_type(desc);
4675         switch (ep_type) {
4676         case USB_ENDPOINT_XFER_CONTROL:
4677                 timeout_ns = udev->u1_params.sel * 3;
4678                 break;
4679         case USB_ENDPOINT_XFER_BULK:
4680                 timeout_ns = udev->u1_params.sel * 5;
4681                 break;
4682         case USB_ENDPOINT_XFER_INT:
4683                 intr_type = usb_endpoint_interrupt_type(desc);
4684                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4685                         timeout_ns = udev->u1_params.sel * 3;
4686                         break;
4687                 }
4688                 /* Otherwise the calculation is the same as isoc eps */
4689                 fallthrough;
4690         case USB_ENDPOINT_XFER_ISOC:
4691                 timeout_ns = xhci_service_interval_to_ns(desc);
4692                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4693                 if (timeout_ns < udev->u1_params.sel * 2)
4694                         timeout_ns = udev->u1_params.sel * 2;
4695                 break;
4696         default:
4697                 return 0;
4698         }
4699
4700         return timeout_ns;
4701 }
4702
4703 /* Returns the hub-encoded U1 timeout value. */
4704 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4705                 struct usb_device *udev,
4706                 struct usb_endpoint_descriptor *desc)
4707 {
4708         unsigned long long timeout_ns;
4709
4710         /* Prevent U1 if service interval is shorter than U1 exit latency */
4711         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4712                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4713                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4714                         return USB3_LPM_DISABLED;
4715                 }
4716         }
4717
4718         if (xhci->quirks & XHCI_INTEL_HOST)
4719                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4720         else
4721                 timeout_ns = udev->u1_params.sel;
4722
4723         /* The U1 timeout is encoded in 1us intervals.
4724          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4725          */
4726         if (timeout_ns == USB3_LPM_DISABLED)
4727                 timeout_ns = 1;
4728         else
4729                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4730
4731         /* If the necessary timeout value is bigger than what we can set in the
4732          * USB 3.0 hub, we have to disable hub-initiated U1.
4733          */
4734         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4735                 return timeout_ns;
4736         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4737                         "due to long timeout %llu ms\n", timeout_ns);
4738         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4739 }
4740
4741 /* The U2 timeout should be the maximum of:
4742  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4743  *  - largest bInterval of any active periodic endpoint (to avoid going
4744  *    into lower power link states between intervals).
4745  *  - the U2 Exit Latency of the device
4746  */
4747 static unsigned long long xhci_calculate_intel_u2_timeout(
4748                 struct usb_device *udev,
4749                 struct usb_endpoint_descriptor *desc)
4750 {
4751         unsigned long long timeout_ns;
4752         unsigned long long u2_del_ns;
4753
4754         timeout_ns = 10 * 1000 * 1000;
4755
4756         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4757                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4758                 timeout_ns = xhci_service_interval_to_ns(desc);
4759
4760         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4761         if (u2_del_ns > timeout_ns)
4762                 timeout_ns = u2_del_ns;
4763
4764         return timeout_ns;
4765 }
4766
4767 /* Returns the hub-encoded U2 timeout value. */
4768 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4769                 struct usb_device *udev,
4770                 struct usb_endpoint_descriptor *desc)
4771 {
4772         unsigned long long timeout_ns;
4773
4774         /* Prevent U2 if service interval is shorter than U2 exit latency */
4775         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4776                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4777                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4778                         return USB3_LPM_DISABLED;
4779                 }
4780         }
4781
4782         if (xhci->quirks & XHCI_INTEL_HOST)
4783                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4784         else
4785                 timeout_ns = udev->u2_params.sel;
4786
4787         /* The U2 timeout is encoded in 256us intervals */
4788         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4789         /* If the necessary timeout value is bigger than what we can set in the
4790          * USB 3.0 hub, we have to disable hub-initiated U2.
4791          */
4792         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4793                 return timeout_ns;
4794         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4795                         "due to long timeout %llu ms\n", timeout_ns);
4796         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4797 }
4798
4799 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4800                 struct usb_device *udev,
4801                 struct usb_endpoint_descriptor *desc,
4802                 enum usb3_link_state state,
4803                 u16 *timeout)
4804 {
4805         if (state == USB3_LPM_U1)
4806                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4807         else if (state == USB3_LPM_U2)
4808                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4809
4810         return USB3_LPM_DISABLED;
4811 }
4812
4813 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4814                 struct usb_device *udev,
4815                 struct usb_endpoint_descriptor *desc,
4816                 enum usb3_link_state state,
4817                 u16 *timeout)
4818 {
4819         u16 alt_timeout;
4820
4821         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4822                 desc, state, timeout);
4823
4824         /* If we found we can't enable hub-initiated LPM, and
4825          * the U1 or U2 exit latency was too high to allow
4826          * device-initiated LPM as well, then we will disable LPM
4827          * for this device, so stop searching any further.
4828          */
4829         if (alt_timeout == USB3_LPM_DISABLED) {
4830                 *timeout = alt_timeout;
4831                 return -E2BIG;
4832         }
4833         if (alt_timeout > *timeout)
4834                 *timeout = alt_timeout;
4835         return 0;
4836 }
4837
4838 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4839                 struct usb_device *udev,
4840                 struct usb_host_interface *alt,
4841                 enum usb3_link_state state,
4842                 u16 *timeout)
4843 {
4844         int j;
4845
4846         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4847                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4848                                         &alt->endpoint[j].desc, state, timeout))
4849                         return -E2BIG;
4850         }
4851         return 0;
4852 }
4853
4854 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4855                 enum usb3_link_state state)
4856 {
4857         struct usb_device *parent;
4858         unsigned int num_hubs;
4859
4860         if (state == USB3_LPM_U2)
4861                 return 0;
4862
4863         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4864         for (parent = udev->parent, num_hubs = 0; parent->parent;
4865                         parent = parent->parent)
4866                 num_hubs++;
4867
4868         if (num_hubs < 2)
4869                 return 0;
4870
4871         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4872                         " below second-tier hub.\n");
4873         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4874                         "to decrease power consumption.\n");
4875         return -E2BIG;
4876 }
4877
4878 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4879                 struct usb_device *udev,
4880                 enum usb3_link_state state)
4881 {
4882         if (xhci->quirks & XHCI_INTEL_HOST)
4883                 return xhci_check_intel_tier_policy(udev, state);
4884         else
4885                 return 0;
4886 }
4887
4888 /* Returns the U1 or U2 timeout that should be enabled.
4889  * If the tier check or timeout setting functions return with a non-zero exit
4890  * code, that means the timeout value has been finalized and we shouldn't look
4891  * at any more endpoints.
4892  */
4893 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4894                         struct usb_device *udev, enum usb3_link_state state)
4895 {
4896         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4897         struct usb_host_config *config;
4898         char *state_name;
4899         int i;
4900         u16 timeout = USB3_LPM_DISABLED;
4901
4902         if (state == USB3_LPM_U1)
4903                 state_name = "U1";
4904         else if (state == USB3_LPM_U2)
4905                 state_name = "U2";
4906         else {
4907                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4908                                 state);
4909                 return timeout;
4910         }
4911
4912         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4913                 return timeout;
4914
4915         /* Gather some information about the currently installed configuration
4916          * and alternate interface settings.
4917          */
4918         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4919                         state, &timeout))
4920                 return timeout;
4921
4922         config = udev->actconfig;
4923         if (!config)
4924                 return timeout;
4925
4926         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4927                 struct usb_driver *driver;
4928                 struct usb_interface *intf = config->interface[i];
4929
4930                 if (!intf)
4931                         continue;
4932
4933                 /* Check if any currently bound drivers want hub-initiated LPM
4934                  * disabled.
4935                  */
4936                 if (intf->dev.driver) {
4937                         driver = to_usb_driver(intf->dev.driver);
4938                         if (driver && driver->disable_hub_initiated_lpm) {
4939                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4940                                         state_name, driver->name);
4941                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4942                                                                       state);
4943                                 if (timeout == USB3_LPM_DISABLED)
4944                                         return timeout;
4945                         }
4946                 }
4947
4948                 /* Not sure how this could happen... */
4949                 if (!intf->cur_altsetting)
4950                         continue;
4951
4952                 if (xhci_update_timeout_for_interface(xhci, udev,
4953                                         intf->cur_altsetting,
4954                                         state, &timeout))
4955                         return timeout;
4956         }
4957         return timeout;
4958 }
4959
4960 static int calculate_max_exit_latency(struct usb_device *udev,
4961                 enum usb3_link_state state_changed,
4962                 u16 hub_encoded_timeout)
4963 {
4964         unsigned long long u1_mel_us = 0;
4965         unsigned long long u2_mel_us = 0;
4966         unsigned long long mel_us = 0;
4967         bool disabling_u1;
4968         bool disabling_u2;
4969         bool enabling_u1;
4970         bool enabling_u2;
4971
4972         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4973                         hub_encoded_timeout == USB3_LPM_DISABLED);
4974         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4975                         hub_encoded_timeout == USB3_LPM_DISABLED);
4976
4977         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4978                         hub_encoded_timeout != USB3_LPM_DISABLED);
4979         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4980                         hub_encoded_timeout != USB3_LPM_DISABLED);
4981
4982         /* If U1 was already enabled and we're not disabling it,
4983          * or we're going to enable U1, account for the U1 max exit latency.
4984          */
4985         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4986                         enabling_u1)
4987                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4988         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4989                         enabling_u2)
4990                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4991
4992         if (u1_mel_us > u2_mel_us)
4993                 mel_us = u1_mel_us;
4994         else
4995                 mel_us = u2_mel_us;
4996         /* xHCI host controller max exit latency field is only 16 bits wide. */
4997         if (mel_us > MAX_EXIT) {
4998                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4999                                 "is too big.\n", mel_us);
5000                 return -E2BIG;
5001         }
5002         return mel_us;
5003 }
5004
5005 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5006 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5007                         struct usb_device *udev, enum usb3_link_state state)
5008 {
5009         struct xhci_hcd *xhci;
5010         u16 hub_encoded_timeout;
5011         int mel;
5012         int ret;
5013
5014         xhci = hcd_to_xhci(hcd);
5015         /* The LPM timeout values are pretty host-controller specific, so don't
5016          * enable hub-initiated timeouts unless the vendor has provided
5017          * information about their timeout algorithm.
5018          */
5019         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5020                         !xhci->devs[udev->slot_id])
5021                 return USB3_LPM_DISABLED;
5022
5023         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5024         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5025         if (mel < 0) {
5026                 /* Max Exit Latency is too big, disable LPM. */
5027                 hub_encoded_timeout = USB3_LPM_DISABLED;
5028                 mel = 0;
5029         }
5030
5031         ret = xhci_change_max_exit_latency(xhci, udev, mel);
5032         if (ret)
5033                 return ret;
5034         return hub_encoded_timeout;
5035 }
5036
5037 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5038                         struct usb_device *udev, enum usb3_link_state state)
5039 {
5040         struct xhci_hcd *xhci;
5041         u16 mel;
5042
5043         xhci = hcd_to_xhci(hcd);
5044         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5045                         !xhci->devs[udev->slot_id])
5046                 return 0;
5047
5048         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5049         return xhci_change_max_exit_latency(xhci, udev, mel);
5050 }
5051 #else /* CONFIG_PM */
5052
5053 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5054                                 struct usb_device *udev, int enable)
5055 {
5056         return 0;
5057 }
5058
5059 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5060 {
5061         return 0;
5062 }
5063
5064 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5065                         struct usb_device *udev, enum usb3_link_state state)
5066 {
5067         return USB3_LPM_DISABLED;
5068 }
5069
5070 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5071                         struct usb_device *udev, enum usb3_link_state state)
5072 {
5073         return 0;
5074 }
5075 #endif  /* CONFIG_PM */
5076
5077 /*-------------------------------------------------------------------------*/
5078
5079 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5080  * internal data structures for the device.
5081  */
5082 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5083                         struct usb_tt *tt, gfp_t mem_flags)
5084 {
5085         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5086         struct xhci_virt_device *vdev;
5087         struct xhci_command *config_cmd;
5088         struct xhci_input_control_ctx *ctrl_ctx;
5089         struct xhci_slot_ctx *slot_ctx;
5090         unsigned long flags;
5091         unsigned think_time;
5092         int ret;
5093
5094         /* Ignore root hubs */
5095         if (!hdev->parent)
5096                 return 0;
5097
5098         vdev = xhci->devs[hdev->slot_id];
5099         if (!vdev) {
5100                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5101                 return -EINVAL;
5102         }
5103
5104         config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5105         if (!config_cmd)
5106                 return -ENOMEM;
5107
5108         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5109         if (!ctrl_ctx) {
5110                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5111                                 __func__);
5112                 xhci_free_command(xhci, config_cmd);
5113                 return -ENOMEM;
5114         }
5115
5116         spin_lock_irqsave(&xhci->lock, flags);
5117         if (hdev->speed == USB_SPEED_HIGH &&
5118                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5119                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5120                 xhci_free_command(xhci, config_cmd);
5121                 spin_unlock_irqrestore(&xhci->lock, flags);
5122                 return -ENOMEM;
5123         }
5124
5125         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5126         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5127         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5128         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5129         /*
5130          * refer to section 6.2.2: MTT should be 0 for full speed hub,
5131          * but it may be already set to 1 when setup an xHCI virtual
5132          * device, so clear it anyway.
5133          */
5134         if (tt->multi)
5135                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5136         else if (hdev->speed == USB_SPEED_FULL)
5137                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5138
5139         if (xhci->hci_version > 0x95) {
5140                 xhci_dbg(xhci, "xHCI version %x needs hub "
5141                                 "TT think time and number of ports\n",
5142                                 (unsigned int) xhci->hci_version);
5143                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5144                 /* Set TT think time - convert from ns to FS bit times.
5145                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
5146                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
5147                  *
5148                  * xHCI 1.0: this field shall be 0 if the device is not a
5149                  * High-spped hub.
5150                  */
5151                 think_time = tt->think_time;
5152                 if (think_time != 0)
5153                         think_time = (think_time / 666) - 1;
5154                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5155                         slot_ctx->tt_info |=
5156                                 cpu_to_le32(TT_THINK_TIME(think_time));
5157         } else {
5158                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5159                                 "TT think time or number of ports\n",
5160                                 (unsigned int) xhci->hci_version);
5161         }
5162         slot_ctx->dev_state = 0;
5163         spin_unlock_irqrestore(&xhci->lock, flags);
5164
5165         xhci_dbg(xhci, "Set up %s for hub device.\n",
5166                         (xhci->hci_version > 0x95) ?
5167                         "configure endpoint" : "evaluate context");
5168
5169         /* Issue and wait for the configure endpoint or
5170          * evaluate context command.
5171          */
5172         if (xhci->hci_version > 0x95)
5173                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5174                                 false, false);
5175         else
5176                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5177                                 true, false);
5178
5179         xhci_free_command(xhci, config_cmd);
5180         return ret;
5181 }
5182
5183 static int xhci_get_frame(struct usb_hcd *hcd)
5184 {
5185         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5186         /* EHCI mods by the periodic size.  Why? */
5187         return readl(&xhci->run_regs->microframe_index) >> 3;
5188 }
5189
5190 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5191 {
5192         struct xhci_hcd         *xhci;
5193         /*
5194          * TODO: Check with DWC3 clients for sysdev according to
5195          * quirks
5196          */
5197         struct device           *dev = hcd->self.sysdev;
5198         unsigned int            minor_rev;
5199         int                     retval;
5200
5201         /* Accept arbitrarily long scatter-gather lists */
5202         hcd->self.sg_tablesize = ~0;
5203
5204         /* support to build packet from discontinuous buffers */
5205         hcd->self.no_sg_constraint = 1;
5206
5207         /* XHCI controllers don't stop the ep queue on short packets :| */
5208         hcd->self.no_stop_on_short = 1;
5209
5210         xhci = hcd_to_xhci(hcd);
5211
5212         if (usb_hcd_is_primary_hcd(hcd)) {
5213                 xhci->main_hcd = hcd;
5214                 xhci->usb2_rhub.hcd = hcd;
5215                 /* Mark the first roothub as being USB 2.0.
5216                  * The xHCI driver will register the USB 3.0 roothub.
5217                  */
5218                 hcd->speed = HCD_USB2;
5219                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
5220                 /*
5221                  * USB 2.0 roothub under xHCI has an integrated TT,
5222                  * (rate matching hub) as opposed to having an OHCI/UHCI
5223                  * companion controller.
5224                  */
5225                 hcd->has_tt = 1;
5226         } else {
5227                 /*
5228                  * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5229                  * should return 0x31 for sbrn, or that the minor revision
5230                  * is a two digit BCD containig minor and sub-minor numbers.
5231                  * This was later clarified in xHCI 1.2.
5232                  *
5233                  * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5234                  * minor revision set to 0x1 instead of 0x10.
5235                  */
5236                 if (xhci->usb3_rhub.min_rev == 0x1)
5237                         minor_rev = 1;
5238                 else
5239                         minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5240
5241                 switch (minor_rev) {
5242                 case 2:
5243                         hcd->speed = HCD_USB32;
5244                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5245                         hcd->self.root_hub->rx_lanes = 2;
5246                         hcd->self.root_hub->tx_lanes = 2;
5247                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5248                         break;
5249                 case 1:
5250                         hcd->speed = HCD_USB31;
5251                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5252                         hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5253                         break;
5254                 }
5255                 xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5256                           minor_rev,
5257                           minor_rev ? "Enhanced " : "");
5258
5259                 xhci->usb3_rhub.hcd = hcd;
5260                 /* xHCI private pointer was set in xhci_pci_probe for the second
5261                  * registered roothub.
5262                  */
5263                 return 0;
5264         }
5265
5266         mutex_init(&xhci->mutex);
5267         xhci->cap_regs = hcd->regs;
5268         xhci->op_regs = hcd->regs +
5269                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5270         xhci->run_regs = hcd->regs +
5271                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5272         /* Cache read-only capability registers */
5273         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5274         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5275         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5276         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5277         xhci->hci_version = HC_VERSION(xhci->hcc_params);
5278         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5279         if (xhci->hci_version > 0x100)
5280                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5281
5282         xhci->quirks |= quirks;
5283
5284         get_quirks(dev, xhci);
5285
5286         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
5287          * success event after a short transfer. This quirk will ignore such
5288          * spurious event.
5289          */
5290         if (xhci->hci_version > 0x96)
5291                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5292
5293         /* Make sure the HC is halted. */
5294         retval = xhci_halt(xhci);
5295         if (retval)
5296                 return retval;
5297
5298         xhci_zero_64b_regs(xhci);
5299
5300         xhci_dbg(xhci, "Resetting HCD\n");
5301         /* Reset the internal HC memory state and registers. */
5302         retval = xhci_reset(xhci);
5303         if (retval)
5304                 return retval;
5305         xhci_dbg(xhci, "Reset complete\n");
5306
5307         /*
5308          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5309          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5310          * address memory pointers actually. So, this driver clears the AC64
5311          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5312          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5313          */
5314         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5315                 xhci->hcc_params &= ~BIT(0);
5316
5317         /* Set dma_mask and coherent_dma_mask to 64-bits,
5318          * if xHC supports 64-bit addressing */
5319         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5320                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5321                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5322                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5323         } else {
5324                 /*
5325                  * This is to avoid error in cases where a 32-bit USB
5326                  * controller is used on a 64-bit capable system.
5327                  */
5328                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5329                 if (retval)
5330                         return retval;
5331                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5332                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5333         }
5334
5335         xhci_dbg(xhci, "Calling HCD init\n");
5336         /* Initialize HCD and host controller data structures. */
5337         retval = xhci_init(hcd);
5338         if (retval)
5339                 return retval;
5340         xhci_dbg(xhci, "Called HCD init\n");
5341
5342         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5343                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5344
5345         return 0;
5346 }
5347 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5348
5349 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5350                 struct usb_host_endpoint *ep)
5351 {
5352         struct xhci_hcd *xhci;
5353         struct usb_device *udev;
5354         unsigned int slot_id;
5355         unsigned int ep_index;
5356         unsigned long flags;
5357
5358         xhci = hcd_to_xhci(hcd);
5359
5360         spin_lock_irqsave(&xhci->lock, flags);
5361         udev = (struct usb_device *)ep->hcpriv;
5362         slot_id = udev->slot_id;
5363         ep_index = xhci_get_endpoint_index(&ep->desc);
5364
5365         xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5366         xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5367         spin_unlock_irqrestore(&xhci->lock, flags);
5368 }
5369
5370 static const struct hc_driver xhci_hc_driver = {
5371         .description =          "xhci-hcd",
5372         .product_desc =         "xHCI Host Controller",
5373         .hcd_priv_size =        sizeof(struct xhci_hcd),
5374
5375         /*
5376          * generic hardware linkage
5377          */
5378         .irq =                  xhci_irq,
5379         .flags =                HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5380                                 HCD_BH,
5381
5382         /*
5383          * basic lifecycle operations
5384          */
5385         .reset =                NULL, /* set in xhci_init_driver() */
5386         .start =                xhci_run,
5387         .stop =                 xhci_stop,
5388         .shutdown =             xhci_shutdown,
5389
5390         /*
5391          * managing i/o requests and associated device resources
5392          */
5393         .map_urb_for_dma =      xhci_map_urb_for_dma,
5394         .unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5395         .urb_enqueue =          xhci_urb_enqueue,
5396         .urb_dequeue =          xhci_urb_dequeue,
5397         .alloc_dev =            xhci_alloc_dev,
5398         .free_dev =             xhci_free_dev,
5399         .alloc_streams =        xhci_alloc_streams,
5400         .free_streams =         xhci_free_streams,
5401         .add_endpoint =         xhci_add_endpoint,
5402         .drop_endpoint =        xhci_drop_endpoint,
5403         .endpoint_disable =     xhci_endpoint_disable,
5404         .endpoint_reset =       xhci_endpoint_reset,
5405         .check_bandwidth =      xhci_check_bandwidth,
5406         .reset_bandwidth =      xhci_reset_bandwidth,
5407         .address_device =       xhci_address_device,
5408         .enable_device =        xhci_enable_device,
5409         .update_hub_device =    xhci_update_hub_device,
5410         .reset_device =         xhci_discover_or_reset_device,
5411
5412         /*
5413          * scheduling support
5414          */
5415         .get_frame_number =     xhci_get_frame,
5416
5417         /*
5418          * root hub support
5419          */
5420         .hub_control =          xhci_hub_control,
5421         .hub_status_data =      xhci_hub_status_data,
5422         .bus_suspend =          xhci_bus_suspend,
5423         .bus_resume =           xhci_bus_resume,
5424         .get_resuming_ports =   xhci_get_resuming_ports,
5425
5426         /*
5427          * call back when device connected and addressed
5428          */
5429         .update_device =        xhci_update_device,
5430         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5431         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5432         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5433         .find_raw_port_number = xhci_find_raw_port_number,
5434         .clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5435 };
5436
5437 void xhci_init_driver(struct hc_driver *drv,
5438                       const struct xhci_driver_overrides *over)
5439 {
5440         BUG_ON(!over);
5441
5442         /* Copy the generic table to drv then apply the overrides */
5443         *drv = xhci_hc_driver;
5444
5445         if (over) {
5446                 drv->hcd_priv_size += over->extra_priv_size;
5447                 if (over->reset)
5448                         drv->reset = over->reset;
5449                 if (over->start)
5450                         drv->start = over->start;
5451                 if (over->add_endpoint)
5452                         drv->add_endpoint = over->add_endpoint;
5453                 if (over->drop_endpoint)
5454                         drv->drop_endpoint = over->drop_endpoint;
5455                 if (over->check_bandwidth)
5456                         drv->check_bandwidth = over->check_bandwidth;
5457                 if (over->reset_bandwidth)
5458                         drv->reset_bandwidth = over->reset_bandwidth;
5459         }
5460 }
5461 EXPORT_SYMBOL_GPL(xhci_init_driver);
5462
5463 MODULE_DESCRIPTION(DRIVER_DESC);
5464 MODULE_AUTHOR(DRIVER_AUTHOR);
5465 MODULE_LICENSE("GPL");
5466
5467 static int __init xhci_hcd_init(void)
5468 {
5469         /*
5470          * Check the compiler generated sizes of structures that must be laid
5471          * out in specific ways for hardware access.
5472          */
5473         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5474         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5475         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5476         /* xhci_device_control has eight fields, and also
5477          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5478          */
5479         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5480         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5481         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5482         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5483         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5484         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5485         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5486
5487         if (usb_disabled())
5488                 return -ENODEV;
5489
5490         xhci_debugfs_create_root();
5491
5492         return 0;
5493 }
5494
5495 /*
5496  * If an init function is provided, an exit function must also be provided
5497  * to allow module unload.
5498  */
5499 static void __exit xhci_hcd_fini(void)
5500 {
5501         xhci_debugfs_remove_root();
5502 }
5503
5504 module_init(xhci_hcd_init);
5505 module_exit(xhci_hcd_fini);