Merge tag 'sound-fix-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux-2.6-microblaze.git] / drivers / thunderbolt / nhi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20
21 #include "nhi.h"
22 #include "nhi_regs.h"
23 #include "tb.h"
24
25 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
26
27 #define RING_FIRST_USABLE_HOPID 1
28
29 /*
30  * Minimal number of vectors when we use MSI-X. Two for control channel
31  * Rx/Tx and the rest four are for cross domain DMA paths.
32  */
33 #define MSIX_MIN_VECS           6
34 #define MSIX_MAX_VECS           16
35
36 #define NHI_MAILBOX_TIMEOUT     500 /* ms */
37
38 static int ring_interrupt_index(struct tb_ring *ring)
39 {
40         int bit = ring->hop;
41         if (!ring->is_tx)
42                 bit += ring->nhi->hop_count;
43         return bit;
44 }
45
46 /*
47  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
48  *
49  * ring->nhi->lock must be held.
50  */
51 static void ring_interrupt_active(struct tb_ring *ring, bool active)
52 {
53         int reg = REG_RING_INTERRUPT_BASE +
54                   ring_interrupt_index(ring) / 32 * 4;
55         int bit = ring_interrupt_index(ring) & 31;
56         int mask = 1 << bit;
57         u32 old, new;
58
59         if (ring->irq > 0) {
60                 u32 step, shift, ivr, misc;
61                 void __iomem *ivr_base;
62                 int index;
63
64                 if (ring->is_tx)
65                         index = ring->hop;
66                 else
67                         index = ring->hop + ring->nhi->hop_count;
68
69                 /*
70                  * Ask the hardware to clear interrupt status bits automatically
71                  * since we already know which interrupt was triggered.
72                  */
73                 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
74                 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
75                         misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
76                         iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
77                 }
78
79                 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
80                 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
81                 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
82                 ivr = ioread32(ivr_base + step);
83                 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
84                 if (active)
85                         ivr |= ring->vector << shift;
86                 iowrite32(ivr, ivr_base + step);
87         }
88
89         old = ioread32(ring->nhi->iobase + reg);
90         if (active)
91                 new = old | mask;
92         else
93                 new = old & ~mask;
94
95         dev_dbg(&ring->nhi->pdev->dev,
96                 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
97                 active ? "enabling" : "disabling", reg, bit, old, new);
98
99         if (new == old)
100                 dev_WARN(&ring->nhi->pdev->dev,
101                                          "interrupt for %s %d is already %s\n",
102                                          RING_TYPE(ring), ring->hop,
103                                          active ? "enabled" : "disabled");
104         iowrite32(new, ring->nhi->iobase + reg);
105 }
106
107 /*
108  * nhi_disable_interrupts() - disable interrupts for all rings
109  *
110  * Use only during init and shutdown.
111  */
112 static void nhi_disable_interrupts(struct tb_nhi *nhi)
113 {
114         int i = 0;
115         /* disable interrupts */
116         for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
117                 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
118
119         /* clear interrupt status bits */
120         for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
121                 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
122 }
123
124 /* ring helper methods */
125
126 static void __iomem *ring_desc_base(struct tb_ring *ring)
127 {
128         void __iomem *io = ring->nhi->iobase;
129         io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
130         io += ring->hop * 16;
131         return io;
132 }
133
134 static void __iomem *ring_options_base(struct tb_ring *ring)
135 {
136         void __iomem *io = ring->nhi->iobase;
137         io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
138         io += ring->hop * 32;
139         return io;
140 }
141
142 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
143 {
144         /*
145          * The other 16-bits in the register is read-only and writes to it
146          * are ignored by the hardware so we can save one ioread32() by
147          * filling the read-only bits with zeroes.
148          */
149         iowrite32(cons, ring_desc_base(ring) + 8);
150 }
151
152 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
153 {
154         /* See ring_iowrite_cons() above for explanation */
155         iowrite32(prod << 16, ring_desc_base(ring) + 8);
156 }
157
158 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
159 {
160         iowrite32(value, ring_desc_base(ring) + offset);
161 }
162
163 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
164 {
165         iowrite32(value, ring_desc_base(ring) + offset);
166         iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
167 }
168
169 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
170 {
171         iowrite32(value, ring_options_base(ring) + offset);
172 }
173
174 static bool ring_full(struct tb_ring *ring)
175 {
176         return ((ring->head + 1) % ring->size) == ring->tail;
177 }
178
179 static bool ring_empty(struct tb_ring *ring)
180 {
181         return ring->head == ring->tail;
182 }
183
184 /*
185  * ring_write_descriptors() - post frames from ring->queue to the controller
186  *
187  * ring->lock is held.
188  */
189 static void ring_write_descriptors(struct tb_ring *ring)
190 {
191         struct ring_frame *frame, *n;
192         struct ring_desc *descriptor;
193         list_for_each_entry_safe(frame, n, &ring->queue, list) {
194                 if (ring_full(ring))
195                         break;
196                 list_move_tail(&frame->list, &ring->in_flight);
197                 descriptor = &ring->descriptors[ring->head];
198                 descriptor->phys = frame->buffer_phy;
199                 descriptor->time = 0;
200                 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
201                 if (ring->is_tx) {
202                         descriptor->length = frame->size;
203                         descriptor->eof = frame->eof;
204                         descriptor->sof = frame->sof;
205                 }
206                 ring->head = (ring->head + 1) % ring->size;
207                 if (ring->is_tx)
208                         ring_iowrite_prod(ring, ring->head);
209                 else
210                         ring_iowrite_cons(ring, ring->head);
211         }
212 }
213
214 /*
215  * ring_work() - progress completed frames
216  *
217  * If the ring is shutting down then all frames are marked as canceled and
218  * their callbacks are invoked.
219  *
220  * Otherwise we collect all completed frame from the ring buffer, write new
221  * frame to the ring buffer and invoke the callbacks for the completed frames.
222  */
223 static void ring_work(struct work_struct *work)
224 {
225         struct tb_ring *ring = container_of(work, typeof(*ring), work);
226         struct ring_frame *frame;
227         bool canceled = false;
228         unsigned long flags;
229         LIST_HEAD(done);
230
231         spin_lock_irqsave(&ring->lock, flags);
232
233         if (!ring->running) {
234                 /*  Move all frames to done and mark them as canceled. */
235                 list_splice_tail_init(&ring->in_flight, &done);
236                 list_splice_tail_init(&ring->queue, &done);
237                 canceled = true;
238                 goto invoke_callback;
239         }
240
241         while (!ring_empty(ring)) {
242                 if (!(ring->descriptors[ring->tail].flags
243                                 & RING_DESC_COMPLETED))
244                         break;
245                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
246                                          list);
247                 list_move_tail(&frame->list, &done);
248                 if (!ring->is_tx) {
249                         frame->size = ring->descriptors[ring->tail].length;
250                         frame->eof = ring->descriptors[ring->tail].eof;
251                         frame->sof = ring->descriptors[ring->tail].sof;
252                         frame->flags = ring->descriptors[ring->tail].flags;
253                 }
254                 ring->tail = (ring->tail + 1) % ring->size;
255         }
256         ring_write_descriptors(ring);
257
258 invoke_callback:
259         /* allow callbacks to schedule new work */
260         spin_unlock_irqrestore(&ring->lock, flags);
261         while (!list_empty(&done)) {
262                 frame = list_first_entry(&done, typeof(*frame), list);
263                 /*
264                  * The callback may reenqueue or delete frame.
265                  * Do not hold on to it.
266                  */
267                 list_del_init(&frame->list);
268                 if (frame->callback)
269                         frame->callback(ring, frame, canceled);
270         }
271 }
272
273 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
274 {
275         unsigned long flags;
276         int ret = 0;
277
278         spin_lock_irqsave(&ring->lock, flags);
279         if (ring->running) {
280                 list_add_tail(&frame->list, &ring->queue);
281                 ring_write_descriptors(ring);
282         } else {
283                 ret = -ESHUTDOWN;
284         }
285         spin_unlock_irqrestore(&ring->lock, flags);
286         return ret;
287 }
288 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
289
290 /**
291  * tb_ring_poll() - Poll one completed frame from the ring
292  * @ring: Ring to poll
293  *
294  * This function can be called when @start_poll callback of the @ring
295  * has been called. It will read one completed frame from the ring and
296  * return it to the caller. Returns %NULL if there is no more completed
297  * frames.
298  */
299 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
300 {
301         struct ring_frame *frame = NULL;
302         unsigned long flags;
303
304         spin_lock_irqsave(&ring->lock, flags);
305         if (!ring->running)
306                 goto unlock;
307         if (ring_empty(ring))
308                 goto unlock;
309
310         if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
311                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
312                                          list);
313                 list_del_init(&frame->list);
314
315                 if (!ring->is_tx) {
316                         frame->size = ring->descriptors[ring->tail].length;
317                         frame->eof = ring->descriptors[ring->tail].eof;
318                         frame->sof = ring->descriptors[ring->tail].sof;
319                         frame->flags = ring->descriptors[ring->tail].flags;
320                 }
321
322                 ring->tail = (ring->tail + 1) % ring->size;
323         }
324
325 unlock:
326         spin_unlock_irqrestore(&ring->lock, flags);
327         return frame;
328 }
329 EXPORT_SYMBOL_GPL(tb_ring_poll);
330
331 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
332 {
333         int idx = ring_interrupt_index(ring);
334         int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
335         int bit = idx % 32;
336         u32 val;
337
338         val = ioread32(ring->nhi->iobase + reg);
339         if (mask)
340                 val &= ~BIT(bit);
341         else
342                 val |= BIT(bit);
343         iowrite32(val, ring->nhi->iobase + reg);
344 }
345
346 /* Both @nhi->lock and @ring->lock should be held */
347 static void __ring_interrupt(struct tb_ring *ring)
348 {
349         if (!ring->running)
350                 return;
351
352         if (ring->start_poll) {
353                 __ring_interrupt_mask(ring, true);
354                 ring->start_poll(ring->poll_data);
355         } else {
356                 schedule_work(&ring->work);
357         }
358 }
359
360 /**
361  * tb_ring_poll_complete() - Re-start interrupt for the ring
362  * @ring: Ring to re-start the interrupt
363  *
364  * This will re-start (unmask) the ring interrupt once the user is done
365  * with polling.
366  */
367 void tb_ring_poll_complete(struct tb_ring *ring)
368 {
369         unsigned long flags;
370
371         spin_lock_irqsave(&ring->nhi->lock, flags);
372         spin_lock(&ring->lock);
373         if (ring->start_poll)
374                 __ring_interrupt_mask(ring, false);
375         spin_unlock(&ring->lock);
376         spin_unlock_irqrestore(&ring->nhi->lock, flags);
377 }
378 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
379
380 static irqreturn_t ring_msix(int irq, void *data)
381 {
382         struct tb_ring *ring = data;
383
384         spin_lock(&ring->nhi->lock);
385         spin_lock(&ring->lock);
386         __ring_interrupt(ring);
387         spin_unlock(&ring->lock);
388         spin_unlock(&ring->nhi->lock);
389
390         return IRQ_HANDLED;
391 }
392
393 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
394 {
395         struct tb_nhi *nhi = ring->nhi;
396         unsigned long irqflags;
397         int ret;
398
399         if (!nhi->pdev->msix_enabled)
400                 return 0;
401
402         ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
403         if (ret < 0)
404                 return ret;
405
406         ring->vector = ret;
407
408         ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
409         if (ret < 0)
410                 goto err_ida_remove;
411
412         ring->irq = ret;
413
414         irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
415         ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
416         if (ret)
417                 goto err_ida_remove;
418
419         return 0;
420
421 err_ida_remove:
422         ida_simple_remove(&nhi->msix_ida, ring->vector);
423
424         return ret;
425 }
426
427 static void ring_release_msix(struct tb_ring *ring)
428 {
429         if (ring->irq <= 0)
430                 return;
431
432         free_irq(ring->irq, ring);
433         ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
434         ring->vector = 0;
435         ring->irq = 0;
436 }
437
438 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
439 {
440         int ret = 0;
441
442         spin_lock_irq(&nhi->lock);
443
444         if (ring->hop < 0) {
445                 unsigned int i;
446
447                 /*
448                  * Automatically allocate HopID from the non-reserved
449                  * range 1 .. hop_count - 1.
450                  */
451                 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
452                         if (ring->is_tx) {
453                                 if (!nhi->tx_rings[i]) {
454                                         ring->hop = i;
455                                         break;
456                                 }
457                         } else {
458                                 if (!nhi->rx_rings[i]) {
459                                         ring->hop = i;
460                                         break;
461                                 }
462                         }
463                 }
464         }
465
466         if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
467                 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
468                 ret = -EINVAL;
469                 goto err_unlock;
470         }
471         if (ring->is_tx && nhi->tx_rings[ring->hop]) {
472                 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
473                          ring->hop);
474                 ret = -EBUSY;
475                 goto err_unlock;
476         } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
477                 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
478                          ring->hop);
479                 ret = -EBUSY;
480                 goto err_unlock;
481         }
482
483         if (ring->is_tx)
484                 nhi->tx_rings[ring->hop] = ring;
485         else
486                 nhi->rx_rings[ring->hop] = ring;
487
488 err_unlock:
489         spin_unlock_irq(&nhi->lock);
490
491         return ret;
492 }
493
494 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
495                                      bool transmit, unsigned int flags,
496                                      int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
497                                      void (*start_poll)(void *),
498                                      void *poll_data)
499 {
500         struct tb_ring *ring = NULL;
501
502         dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
503                 transmit ? "TX" : "RX", hop, size);
504
505         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
506         if (!ring)
507                 return NULL;
508
509         spin_lock_init(&ring->lock);
510         INIT_LIST_HEAD(&ring->queue);
511         INIT_LIST_HEAD(&ring->in_flight);
512         INIT_WORK(&ring->work, ring_work);
513
514         ring->nhi = nhi;
515         ring->hop = hop;
516         ring->is_tx = transmit;
517         ring->size = size;
518         ring->flags = flags;
519         ring->e2e_tx_hop = e2e_tx_hop;
520         ring->sof_mask = sof_mask;
521         ring->eof_mask = eof_mask;
522         ring->head = 0;
523         ring->tail = 0;
524         ring->running = false;
525         ring->start_poll = start_poll;
526         ring->poll_data = poll_data;
527
528         ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
529                         size * sizeof(*ring->descriptors),
530                         &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
531         if (!ring->descriptors)
532                 goto err_free_ring;
533
534         if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
535                 goto err_free_descs;
536
537         if (nhi_alloc_hop(nhi, ring))
538                 goto err_release_msix;
539
540         return ring;
541
542 err_release_msix:
543         ring_release_msix(ring);
544 err_free_descs:
545         dma_free_coherent(&ring->nhi->pdev->dev,
546                           ring->size * sizeof(*ring->descriptors),
547                           ring->descriptors, ring->descriptors_dma);
548 err_free_ring:
549         kfree(ring);
550
551         return NULL;
552 }
553
554 /**
555  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
556  * @nhi: Pointer to the NHI the ring is to be allocated
557  * @hop: HopID (ring) to allocate
558  * @size: Number of entries in the ring
559  * @flags: Flags for the ring
560  */
561 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
562                                  unsigned int flags)
563 {
564         return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
565 }
566 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
567
568 /**
569  * tb_ring_alloc_rx() - Allocate DMA ring for receive
570  * @nhi: Pointer to the NHI the ring is to be allocated
571  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
572  * @size: Number of entries in the ring
573  * @flags: Flags for the ring
574  * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
575  * @sof_mask: Mask of PDF values that start a frame
576  * @eof_mask: Mask of PDF values that end a frame
577  * @start_poll: If not %NULL the ring will call this function when an
578  *              interrupt is triggered and masked, instead of callback
579  *              in each Rx frame.
580  * @poll_data: Optional data passed to @start_poll
581  */
582 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
583                                  unsigned int flags, int e2e_tx_hop,
584                                  u16 sof_mask, u16 eof_mask,
585                                  void (*start_poll)(void *), void *poll_data)
586 {
587         return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
588                              start_poll, poll_data);
589 }
590 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
591
592 /**
593  * tb_ring_start() - enable a ring
594  * @ring: Ring to start
595  *
596  * Must not be invoked in parallel with tb_ring_stop().
597  */
598 void tb_ring_start(struct tb_ring *ring)
599 {
600         u16 frame_size;
601         u32 flags;
602
603         spin_lock_irq(&ring->nhi->lock);
604         spin_lock(&ring->lock);
605         if (ring->nhi->going_away)
606                 goto err;
607         if (ring->running) {
608                 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
609                 goto err;
610         }
611         dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
612                 RING_TYPE(ring), ring->hop);
613
614         if (ring->flags & RING_FLAG_FRAME) {
615                 /* Means 4096 */
616                 frame_size = 0;
617                 flags = RING_FLAG_ENABLE;
618         } else {
619                 frame_size = TB_FRAME_SIZE;
620                 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
621         }
622
623         ring_iowrite64desc(ring, ring->descriptors_dma, 0);
624         if (ring->is_tx) {
625                 ring_iowrite32desc(ring, ring->size, 12);
626                 ring_iowrite32options(ring, 0, 4); /* time releated ? */
627                 ring_iowrite32options(ring, flags, 0);
628         } else {
629                 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
630
631                 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
632                 ring_iowrite32options(ring, sof_eof_mask, 4);
633                 ring_iowrite32options(ring, flags, 0);
634         }
635
636         /*
637          * Now that the ring valid bit is set we can configure E2E if
638          * enabled for the ring.
639          */
640         if (ring->flags & RING_FLAG_E2E) {
641                 if (!ring->is_tx) {
642                         u32 hop;
643
644                         hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
645                         hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
646                         flags |= hop;
647
648                         dev_dbg(&ring->nhi->pdev->dev,
649                                 "enabling E2E for %s %d with TX HopID %d\n",
650                                 RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
651                 } else {
652                         dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
653                                 RING_TYPE(ring), ring->hop);
654                 }
655
656                 flags |= RING_FLAG_E2E_FLOW_CONTROL;
657                 ring_iowrite32options(ring, flags, 0);
658         }
659
660         ring_interrupt_active(ring, true);
661         ring->running = true;
662 err:
663         spin_unlock(&ring->lock);
664         spin_unlock_irq(&ring->nhi->lock);
665 }
666 EXPORT_SYMBOL_GPL(tb_ring_start);
667
668 /**
669  * tb_ring_stop() - shutdown a ring
670  * @ring: Ring to stop
671  *
672  * Must not be invoked from a callback.
673  *
674  * This method will disable the ring. Further calls to
675  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
676  * called.
677  *
678  * All enqueued frames will be canceled and their callbacks will be executed
679  * with frame->canceled set to true (on the callback thread). This method
680  * returns only after all callback invocations have finished.
681  */
682 void tb_ring_stop(struct tb_ring *ring)
683 {
684         spin_lock_irq(&ring->nhi->lock);
685         spin_lock(&ring->lock);
686         dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
687                 RING_TYPE(ring), ring->hop);
688         if (ring->nhi->going_away)
689                 goto err;
690         if (!ring->running) {
691                 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
692                          RING_TYPE(ring), ring->hop);
693                 goto err;
694         }
695         ring_interrupt_active(ring, false);
696
697         ring_iowrite32options(ring, 0, 0);
698         ring_iowrite64desc(ring, 0, 0);
699         ring_iowrite32desc(ring, 0, 8);
700         ring_iowrite32desc(ring, 0, 12);
701         ring->head = 0;
702         ring->tail = 0;
703         ring->running = false;
704
705 err:
706         spin_unlock(&ring->lock);
707         spin_unlock_irq(&ring->nhi->lock);
708
709         /*
710          * schedule ring->work to invoke callbacks on all remaining frames.
711          */
712         schedule_work(&ring->work);
713         flush_work(&ring->work);
714 }
715 EXPORT_SYMBOL_GPL(tb_ring_stop);
716
717 /*
718  * tb_ring_free() - free ring
719  *
720  * When this method returns all invocations of ring->callback will have
721  * finished.
722  *
723  * Ring must be stopped.
724  *
725  * Must NOT be called from ring_frame->callback!
726  */
727 void tb_ring_free(struct tb_ring *ring)
728 {
729         spin_lock_irq(&ring->nhi->lock);
730         /*
731          * Dissociate the ring from the NHI. This also ensures that
732          * nhi_interrupt_work cannot reschedule ring->work.
733          */
734         if (ring->is_tx)
735                 ring->nhi->tx_rings[ring->hop] = NULL;
736         else
737                 ring->nhi->rx_rings[ring->hop] = NULL;
738
739         if (ring->running) {
740                 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
741                          RING_TYPE(ring), ring->hop);
742         }
743         spin_unlock_irq(&ring->nhi->lock);
744
745         ring_release_msix(ring);
746
747         dma_free_coherent(&ring->nhi->pdev->dev,
748                           ring->size * sizeof(*ring->descriptors),
749                           ring->descriptors, ring->descriptors_dma);
750
751         ring->descriptors = NULL;
752         ring->descriptors_dma = 0;
753
754
755         dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
756                 ring->hop);
757
758         /*
759          * ring->work can no longer be scheduled (it is scheduled only
760          * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
761          * to finish before freeing the ring.
762          */
763         flush_work(&ring->work);
764         kfree(ring);
765 }
766 EXPORT_SYMBOL_GPL(tb_ring_free);
767
768 /**
769  * nhi_mailbox_cmd() - Send a command through NHI mailbox
770  * @nhi: Pointer to the NHI structure
771  * @cmd: Command to send
772  * @data: Data to be send with the command
773  *
774  * Sends mailbox command to the firmware running on NHI. Returns %0 in
775  * case of success and negative errno in case of failure.
776  */
777 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
778 {
779         ktime_t timeout;
780         u32 val;
781
782         iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
783
784         val = ioread32(nhi->iobase + REG_INMAIL_CMD);
785         val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
786         val |= REG_INMAIL_OP_REQUEST | cmd;
787         iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
788
789         timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
790         do {
791                 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
792                 if (!(val & REG_INMAIL_OP_REQUEST))
793                         break;
794                 usleep_range(10, 20);
795         } while (ktime_before(ktime_get(), timeout));
796
797         if (val & REG_INMAIL_OP_REQUEST)
798                 return -ETIMEDOUT;
799         if (val & REG_INMAIL_ERROR)
800                 return -EIO;
801
802         return 0;
803 }
804
805 /**
806  * nhi_mailbox_mode() - Return current firmware operation mode
807  * @nhi: Pointer to the NHI structure
808  *
809  * The function reads current firmware operation mode using NHI mailbox
810  * registers and returns it to the caller.
811  */
812 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
813 {
814         u32 val;
815
816         val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
817         val &= REG_OUTMAIL_CMD_OPMODE_MASK;
818         val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
819
820         return (enum nhi_fw_mode)val;
821 }
822
823 static void nhi_interrupt_work(struct work_struct *work)
824 {
825         struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
826         int value = 0; /* Suppress uninitialized usage warning. */
827         int bit;
828         int hop = -1;
829         int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
830         struct tb_ring *ring;
831
832         spin_lock_irq(&nhi->lock);
833
834         /*
835          * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
836          * (TX, RX, RX overflow). We iterate over the bits and read a new
837          * dwords as required. The registers are cleared on read.
838          */
839         for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
840                 if (bit % 32 == 0)
841                         value = ioread32(nhi->iobase
842                                          + REG_RING_NOTIFY_BASE
843                                          + 4 * (bit / 32));
844                 if (++hop == nhi->hop_count) {
845                         hop = 0;
846                         type++;
847                 }
848                 if ((value & (1 << (bit % 32))) == 0)
849                         continue;
850                 if (type == 2) {
851                         dev_warn(&nhi->pdev->dev,
852                                  "RX overflow for ring %d\n",
853                                  hop);
854                         continue;
855                 }
856                 if (type == 0)
857                         ring = nhi->tx_rings[hop];
858                 else
859                         ring = nhi->rx_rings[hop];
860                 if (ring == NULL) {
861                         dev_warn(&nhi->pdev->dev,
862                                  "got interrupt for inactive %s ring %d\n",
863                                  type ? "RX" : "TX",
864                                  hop);
865                         continue;
866                 }
867
868                 spin_lock(&ring->lock);
869                 __ring_interrupt(ring);
870                 spin_unlock(&ring->lock);
871         }
872         spin_unlock_irq(&nhi->lock);
873 }
874
875 static irqreturn_t nhi_msi(int irq, void *data)
876 {
877         struct tb_nhi *nhi = data;
878         schedule_work(&nhi->interrupt_work);
879         return IRQ_HANDLED;
880 }
881
882 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
883 {
884         struct pci_dev *pdev = to_pci_dev(dev);
885         struct tb *tb = pci_get_drvdata(pdev);
886         struct tb_nhi *nhi = tb->nhi;
887         int ret;
888
889         ret = tb_domain_suspend_noirq(tb);
890         if (ret)
891                 return ret;
892
893         if (nhi->ops && nhi->ops->suspend_noirq) {
894                 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
895                 if (ret)
896                         return ret;
897         }
898
899         return 0;
900 }
901
902 static int nhi_suspend_noirq(struct device *dev)
903 {
904         return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
905 }
906
907 static int nhi_freeze_noirq(struct device *dev)
908 {
909         struct pci_dev *pdev = to_pci_dev(dev);
910         struct tb *tb = pci_get_drvdata(pdev);
911
912         return tb_domain_freeze_noirq(tb);
913 }
914
915 static int nhi_thaw_noirq(struct device *dev)
916 {
917         struct pci_dev *pdev = to_pci_dev(dev);
918         struct tb *tb = pci_get_drvdata(pdev);
919
920         return tb_domain_thaw_noirq(tb);
921 }
922
923 static bool nhi_wake_supported(struct pci_dev *pdev)
924 {
925         u8 val;
926
927         /*
928          * If power rails are sustainable for wakeup from S4 this
929          * property is set by the BIOS.
930          */
931         if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
932                 return !!val;
933
934         return true;
935 }
936
937 static int nhi_poweroff_noirq(struct device *dev)
938 {
939         struct pci_dev *pdev = to_pci_dev(dev);
940         bool wakeup;
941
942         wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
943         return __nhi_suspend_noirq(dev, wakeup);
944 }
945
946 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
947 {
948         /* Throttling is specified in 256ns increments */
949         u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
950         unsigned int i;
951
952         /*
953          * Configure interrupt throttling for all vectors even if we
954          * only use few.
955          */
956         for (i = 0; i < MSIX_MAX_VECS; i++) {
957                 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
958                 iowrite32(throttle, nhi->iobase + reg);
959         }
960 }
961
962 static int nhi_resume_noirq(struct device *dev)
963 {
964         struct pci_dev *pdev = to_pci_dev(dev);
965         struct tb *tb = pci_get_drvdata(pdev);
966         struct tb_nhi *nhi = tb->nhi;
967         int ret;
968
969         /*
970          * Check that the device is still there. It may be that the user
971          * unplugged last device which causes the host controller to go
972          * away on PCs.
973          */
974         if (!pci_device_is_present(pdev)) {
975                 nhi->going_away = true;
976         } else {
977                 if (nhi->ops && nhi->ops->resume_noirq) {
978                         ret = nhi->ops->resume_noirq(nhi);
979                         if (ret)
980                                 return ret;
981                 }
982                 nhi_enable_int_throttling(tb->nhi);
983         }
984
985         return tb_domain_resume_noirq(tb);
986 }
987
988 static int nhi_suspend(struct device *dev)
989 {
990         struct pci_dev *pdev = to_pci_dev(dev);
991         struct tb *tb = pci_get_drvdata(pdev);
992
993         return tb_domain_suspend(tb);
994 }
995
996 static void nhi_complete(struct device *dev)
997 {
998         struct pci_dev *pdev = to_pci_dev(dev);
999         struct tb *tb = pci_get_drvdata(pdev);
1000
1001         /*
1002          * If we were runtime suspended when system suspend started,
1003          * schedule runtime resume now. It should bring the domain back
1004          * to functional state.
1005          */
1006         if (pm_runtime_suspended(&pdev->dev))
1007                 pm_runtime_resume(&pdev->dev);
1008         else
1009                 tb_domain_complete(tb);
1010 }
1011
1012 static int nhi_runtime_suspend(struct device *dev)
1013 {
1014         struct pci_dev *pdev = to_pci_dev(dev);
1015         struct tb *tb = pci_get_drvdata(pdev);
1016         struct tb_nhi *nhi = tb->nhi;
1017         int ret;
1018
1019         ret = tb_domain_runtime_suspend(tb);
1020         if (ret)
1021                 return ret;
1022
1023         if (nhi->ops && nhi->ops->runtime_suspend) {
1024                 ret = nhi->ops->runtime_suspend(tb->nhi);
1025                 if (ret)
1026                         return ret;
1027         }
1028         return 0;
1029 }
1030
1031 static int nhi_runtime_resume(struct device *dev)
1032 {
1033         struct pci_dev *pdev = to_pci_dev(dev);
1034         struct tb *tb = pci_get_drvdata(pdev);
1035         struct tb_nhi *nhi = tb->nhi;
1036         int ret;
1037
1038         if (nhi->ops && nhi->ops->runtime_resume) {
1039                 ret = nhi->ops->runtime_resume(nhi);
1040                 if (ret)
1041                         return ret;
1042         }
1043
1044         nhi_enable_int_throttling(nhi);
1045         return tb_domain_runtime_resume(tb);
1046 }
1047
1048 static void nhi_shutdown(struct tb_nhi *nhi)
1049 {
1050         int i;
1051
1052         dev_dbg(&nhi->pdev->dev, "shutdown\n");
1053
1054         for (i = 0; i < nhi->hop_count; i++) {
1055                 if (nhi->tx_rings[i])
1056                         dev_WARN(&nhi->pdev->dev,
1057                                  "TX ring %d is still active\n", i);
1058                 if (nhi->rx_rings[i])
1059                         dev_WARN(&nhi->pdev->dev,
1060                                  "RX ring %d is still active\n", i);
1061         }
1062         nhi_disable_interrupts(nhi);
1063         /*
1064          * We have to release the irq before calling flush_work. Otherwise an
1065          * already executing IRQ handler could call schedule_work again.
1066          */
1067         if (!nhi->pdev->msix_enabled) {
1068                 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1069                 flush_work(&nhi->interrupt_work);
1070         }
1071         ida_destroy(&nhi->msix_ida);
1072
1073         if (nhi->ops && nhi->ops->shutdown)
1074                 nhi->ops->shutdown(nhi);
1075 }
1076
1077 static int nhi_init_msi(struct tb_nhi *nhi)
1078 {
1079         struct pci_dev *pdev = nhi->pdev;
1080         int res, irq, nvec;
1081
1082         /* In case someone left them on. */
1083         nhi_disable_interrupts(nhi);
1084
1085         nhi_enable_int_throttling(nhi);
1086
1087         ida_init(&nhi->msix_ida);
1088
1089         /*
1090          * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1091          * get all MSI-X vectors and if we succeed, each ring will have
1092          * one MSI-X. If for some reason that does not work out, we
1093          * fallback to a single MSI.
1094          */
1095         nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1096                                      PCI_IRQ_MSIX);
1097         if (nvec < 0) {
1098                 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1099                 if (nvec < 0)
1100                         return nvec;
1101
1102                 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1103
1104                 irq = pci_irq_vector(nhi->pdev, 0);
1105                 if (irq < 0)
1106                         return irq;
1107
1108                 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1109                                        IRQF_NO_SUSPEND, "thunderbolt", nhi);
1110                 if (res) {
1111                         dev_err(&pdev->dev, "request_irq failed, aborting\n");
1112                         return res;
1113                 }
1114         }
1115
1116         return 0;
1117 }
1118
1119 static bool nhi_imr_valid(struct pci_dev *pdev)
1120 {
1121         u8 val;
1122
1123         if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1124                 return !!val;
1125
1126         return true;
1127 }
1128
1129 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1130 {
1131         struct tb *tb;
1132
1133         /*
1134          * USB4 case is simple. If we got control of any of the
1135          * capabilities, we use software CM.
1136          */
1137         if (tb_acpi_is_native())
1138                 return tb_probe(nhi);
1139
1140         /*
1141          * Either firmware based CM is running (we did not get control
1142          * from the firmware) or this is pre-USB4 PC so try first
1143          * firmware CM and then fallback to software CM.
1144          */
1145         tb = icm_probe(nhi);
1146         if (!tb)
1147                 tb = tb_probe(nhi);
1148
1149         return tb;
1150 }
1151
1152 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1153 {
1154         struct tb_nhi *nhi;
1155         struct tb *tb;
1156         int res;
1157
1158         if (!nhi_imr_valid(pdev)) {
1159                 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1160                 return -ENODEV;
1161         }
1162
1163         res = pcim_enable_device(pdev);
1164         if (res) {
1165                 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1166                 return res;
1167         }
1168
1169         res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1170         if (res) {
1171                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1172                 return res;
1173         }
1174
1175         nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1176         if (!nhi)
1177                 return -ENOMEM;
1178
1179         nhi->pdev = pdev;
1180         nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1181         /* cannot fail - table is allocated bin pcim_iomap_regions */
1182         nhi->iobase = pcim_iomap_table(pdev)[0];
1183         nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1184         dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1185
1186         nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1187                                      sizeof(*nhi->tx_rings), GFP_KERNEL);
1188         nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1189                                      sizeof(*nhi->rx_rings), GFP_KERNEL);
1190         if (!nhi->tx_rings || !nhi->rx_rings)
1191                 return -ENOMEM;
1192
1193         res = nhi_init_msi(nhi);
1194         if (res) {
1195                 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1196                 return res;
1197         }
1198
1199         spin_lock_init(&nhi->lock);
1200
1201         res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1202         if (res)
1203                 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1204         if (res) {
1205                 dev_err(&pdev->dev, "failed to set DMA mask\n");
1206                 return res;
1207         }
1208
1209         pci_set_master(pdev);
1210
1211         if (nhi->ops && nhi->ops->init) {
1212                 res = nhi->ops->init(nhi);
1213                 if (res)
1214                         return res;
1215         }
1216
1217         tb = nhi_select_cm(nhi);
1218         if (!tb) {
1219                 dev_err(&nhi->pdev->dev,
1220                         "failed to determine connection manager, aborting\n");
1221                 return -ENODEV;
1222         }
1223
1224         dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1225
1226         res = tb_domain_add(tb);
1227         if (res) {
1228                 /*
1229                  * At this point the RX/TX rings might already have been
1230                  * activated. Do a proper shutdown.
1231                  */
1232                 tb_domain_put(tb);
1233                 nhi_shutdown(nhi);
1234                 return res;
1235         }
1236         pci_set_drvdata(pdev, tb);
1237
1238         device_wakeup_enable(&pdev->dev);
1239
1240         pm_runtime_allow(&pdev->dev);
1241         pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1242         pm_runtime_use_autosuspend(&pdev->dev);
1243         pm_runtime_put_autosuspend(&pdev->dev);
1244
1245         return 0;
1246 }
1247
1248 static void nhi_remove(struct pci_dev *pdev)
1249 {
1250         struct tb *tb = pci_get_drvdata(pdev);
1251         struct tb_nhi *nhi = tb->nhi;
1252
1253         pm_runtime_get_sync(&pdev->dev);
1254         pm_runtime_dont_use_autosuspend(&pdev->dev);
1255         pm_runtime_forbid(&pdev->dev);
1256
1257         tb_domain_remove(tb);
1258         nhi_shutdown(nhi);
1259 }
1260
1261 /*
1262  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1263  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1264  * resume_noirq until we are done.
1265  */
1266 static const struct dev_pm_ops nhi_pm_ops = {
1267         .suspend_noirq = nhi_suspend_noirq,
1268         .resume_noirq = nhi_resume_noirq,
1269         .freeze_noirq = nhi_freeze_noirq,  /*
1270                                             * we just disable hotplug, the
1271                                             * pci-tunnels stay alive.
1272                                             */
1273         .thaw_noirq = nhi_thaw_noirq,
1274         .restore_noirq = nhi_resume_noirq,
1275         .suspend = nhi_suspend,
1276         .poweroff_noirq = nhi_poweroff_noirq,
1277         .poweroff = nhi_suspend,
1278         .complete = nhi_complete,
1279         .runtime_suspend = nhi_runtime_suspend,
1280         .runtime_resume = nhi_runtime_resume,
1281 };
1282
1283 static struct pci_device_id nhi_ids[] = {
1284         /*
1285          * We have to specify class, the TB bridges use the same device and
1286          * vendor (sub)id on gen 1 and gen 2 controllers.
1287          */
1288         {
1289                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1290                 .vendor = PCI_VENDOR_ID_INTEL,
1291                 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1292                 .subvendor = 0x2222, .subdevice = 0x1111,
1293         },
1294         {
1295                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1296                 .vendor = PCI_VENDOR_ID_INTEL,
1297                 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1298                 .subvendor = 0x2222, .subdevice = 0x1111,
1299         },
1300         {
1301                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1302                 .vendor = PCI_VENDOR_ID_INTEL,
1303                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1304                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1305         },
1306         {
1307                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1308                 .vendor = PCI_VENDOR_ID_INTEL,
1309                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1310                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1311         },
1312
1313         /* Thunderbolt 3 */
1314         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1315         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1316         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1317         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1318         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1319         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1320         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1321         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1322         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1323         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1324         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1325           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1326         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1327           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1328         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1329           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1330         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1331           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1332         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1333           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1334         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1335           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1336         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI0),
1337           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1338         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ADL_NHI1),
1339           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1340
1341         /* Any USB4 compliant host */
1342         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1343
1344         { 0,}
1345 };
1346
1347 MODULE_DEVICE_TABLE(pci, nhi_ids);
1348 MODULE_LICENSE("GPL");
1349
1350 static struct pci_driver nhi_driver = {
1351         .name = "thunderbolt",
1352         .id_table = nhi_ids,
1353         .probe = nhi_probe,
1354         .remove = nhi_remove,
1355         .shutdown = nhi_remove,
1356         .driver.pm = &nhi_pm_ops,
1357 };
1358
1359 static int __init nhi_init(void)
1360 {
1361         int ret;
1362
1363         ret = tb_domain_init();
1364         if (ret)
1365                 return ret;
1366         ret = pci_register_driver(&nhi_driver);
1367         if (ret)
1368                 tb_domain_exit();
1369         return ret;
1370 }
1371
1372 static void __exit nhi_unload(void)
1373 {
1374         pci_unregister_driver(&nhi_driver);
1375         tb_domain_exit();
1376 }
1377
1378 rootfs_initcall(nhi_init);
1379 module_exit(nhi_unload);