RDMA/mlx5: Fix query DCT via DEVX
[linux-2.6-microblaze.git] / drivers / thunderbolt / nhi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Thunderbolt driver - NHI driver
4  *
5  * The NHI (native host interface) is the pci device that allows us to send and
6  * receive frames from the thunderbolt bus.
7  *
8  * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
9  * Copyright (C) 2018, Intel Corporation
10  */
11
12 #include <linux/pm_runtime.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/pci.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/delay.h>
19 #include <linux/property.h>
20 #include <linux/platform_data/x86/apple.h>
21
22 #include "nhi.h"
23 #include "nhi_regs.h"
24 #include "tb.h"
25
26 #define RING_TYPE(ring) ((ring)->is_tx ? "TX ring" : "RX ring")
27
28 #define RING_FIRST_USABLE_HOPID 1
29
30 /*
31  * Minimal number of vectors when we use MSI-X. Two for control channel
32  * Rx/Tx and the rest four are for cross domain DMA paths.
33  */
34 #define MSIX_MIN_VECS           6
35 #define MSIX_MAX_VECS           16
36
37 #define NHI_MAILBOX_TIMEOUT     500 /* ms */
38
39 static int ring_interrupt_index(struct tb_ring *ring)
40 {
41         int bit = ring->hop;
42         if (!ring->is_tx)
43                 bit += ring->nhi->hop_count;
44         return bit;
45 }
46
47 /*
48  * ring_interrupt_active() - activate/deactivate interrupts for a single ring
49  *
50  * ring->nhi->lock must be held.
51  */
52 static void ring_interrupt_active(struct tb_ring *ring, bool active)
53 {
54         int reg = REG_RING_INTERRUPT_BASE +
55                   ring_interrupt_index(ring) / 32 * 4;
56         int bit = ring_interrupt_index(ring) & 31;
57         int mask = 1 << bit;
58         u32 old, new;
59
60         if (ring->irq > 0) {
61                 u32 step, shift, ivr, misc;
62                 void __iomem *ivr_base;
63                 int index;
64
65                 if (ring->is_tx)
66                         index = ring->hop;
67                 else
68                         index = ring->hop + ring->nhi->hop_count;
69
70                 /*
71                  * Ask the hardware to clear interrupt status bits automatically
72                  * since we already know which interrupt was triggered.
73                  */
74                 misc = ioread32(ring->nhi->iobase + REG_DMA_MISC);
75                 if (!(misc & REG_DMA_MISC_INT_AUTO_CLEAR)) {
76                         misc |= REG_DMA_MISC_INT_AUTO_CLEAR;
77                         iowrite32(misc, ring->nhi->iobase + REG_DMA_MISC);
78                 }
79
80                 ivr_base = ring->nhi->iobase + REG_INT_VEC_ALLOC_BASE;
81                 step = index / REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
82                 shift = index % REG_INT_VEC_ALLOC_REGS * REG_INT_VEC_ALLOC_BITS;
83                 ivr = ioread32(ivr_base + step);
84                 ivr &= ~(REG_INT_VEC_ALLOC_MASK << shift);
85                 if (active)
86                         ivr |= ring->vector << shift;
87                 iowrite32(ivr, ivr_base + step);
88         }
89
90         old = ioread32(ring->nhi->iobase + reg);
91         if (active)
92                 new = old | mask;
93         else
94                 new = old & ~mask;
95
96         dev_dbg(&ring->nhi->pdev->dev,
97                 "%s interrupt at register %#x bit %d (%#x -> %#x)\n",
98                 active ? "enabling" : "disabling", reg, bit, old, new);
99
100         if (new == old)
101                 dev_WARN(&ring->nhi->pdev->dev,
102                                          "interrupt for %s %d is already %s\n",
103                                          RING_TYPE(ring), ring->hop,
104                                          active ? "enabled" : "disabled");
105         iowrite32(new, ring->nhi->iobase + reg);
106 }
107
108 /*
109  * nhi_disable_interrupts() - disable interrupts for all rings
110  *
111  * Use only during init and shutdown.
112  */
113 static void nhi_disable_interrupts(struct tb_nhi *nhi)
114 {
115         int i = 0;
116         /* disable interrupts */
117         for (i = 0; i < RING_INTERRUPT_REG_COUNT(nhi); i++)
118                 iowrite32(0, nhi->iobase + REG_RING_INTERRUPT_BASE + 4 * i);
119
120         /* clear interrupt status bits */
121         for (i = 0; i < RING_NOTIFY_REG_COUNT(nhi); i++)
122                 ioread32(nhi->iobase + REG_RING_NOTIFY_BASE + 4 * i);
123 }
124
125 /* ring helper methods */
126
127 static void __iomem *ring_desc_base(struct tb_ring *ring)
128 {
129         void __iomem *io = ring->nhi->iobase;
130         io += ring->is_tx ? REG_TX_RING_BASE : REG_RX_RING_BASE;
131         io += ring->hop * 16;
132         return io;
133 }
134
135 static void __iomem *ring_options_base(struct tb_ring *ring)
136 {
137         void __iomem *io = ring->nhi->iobase;
138         io += ring->is_tx ? REG_TX_OPTIONS_BASE : REG_RX_OPTIONS_BASE;
139         io += ring->hop * 32;
140         return io;
141 }
142
143 static void ring_iowrite_cons(struct tb_ring *ring, u16 cons)
144 {
145         /*
146          * The other 16-bits in the register is read-only and writes to it
147          * are ignored by the hardware so we can save one ioread32() by
148          * filling the read-only bits with zeroes.
149          */
150         iowrite32(cons, ring_desc_base(ring) + 8);
151 }
152
153 static void ring_iowrite_prod(struct tb_ring *ring, u16 prod)
154 {
155         /* See ring_iowrite_cons() above for explanation */
156         iowrite32(prod << 16, ring_desc_base(ring) + 8);
157 }
158
159 static void ring_iowrite32desc(struct tb_ring *ring, u32 value, u32 offset)
160 {
161         iowrite32(value, ring_desc_base(ring) + offset);
162 }
163
164 static void ring_iowrite64desc(struct tb_ring *ring, u64 value, u32 offset)
165 {
166         iowrite32(value, ring_desc_base(ring) + offset);
167         iowrite32(value >> 32, ring_desc_base(ring) + offset + 4);
168 }
169
170 static void ring_iowrite32options(struct tb_ring *ring, u32 value, u32 offset)
171 {
172         iowrite32(value, ring_options_base(ring) + offset);
173 }
174
175 static bool ring_full(struct tb_ring *ring)
176 {
177         return ((ring->head + 1) % ring->size) == ring->tail;
178 }
179
180 static bool ring_empty(struct tb_ring *ring)
181 {
182         return ring->head == ring->tail;
183 }
184
185 /*
186  * ring_write_descriptors() - post frames from ring->queue to the controller
187  *
188  * ring->lock is held.
189  */
190 static void ring_write_descriptors(struct tb_ring *ring)
191 {
192         struct ring_frame *frame, *n;
193         struct ring_desc *descriptor;
194         list_for_each_entry_safe(frame, n, &ring->queue, list) {
195                 if (ring_full(ring))
196                         break;
197                 list_move_tail(&frame->list, &ring->in_flight);
198                 descriptor = &ring->descriptors[ring->head];
199                 descriptor->phys = frame->buffer_phy;
200                 descriptor->time = 0;
201                 descriptor->flags = RING_DESC_POSTED | RING_DESC_INTERRUPT;
202                 if (ring->is_tx) {
203                         descriptor->length = frame->size;
204                         descriptor->eof = frame->eof;
205                         descriptor->sof = frame->sof;
206                 }
207                 ring->head = (ring->head + 1) % ring->size;
208                 if (ring->is_tx)
209                         ring_iowrite_prod(ring, ring->head);
210                 else
211                         ring_iowrite_cons(ring, ring->head);
212         }
213 }
214
215 /*
216  * ring_work() - progress completed frames
217  *
218  * If the ring is shutting down then all frames are marked as canceled and
219  * their callbacks are invoked.
220  *
221  * Otherwise we collect all completed frame from the ring buffer, write new
222  * frame to the ring buffer and invoke the callbacks for the completed frames.
223  */
224 static void ring_work(struct work_struct *work)
225 {
226         struct tb_ring *ring = container_of(work, typeof(*ring), work);
227         struct ring_frame *frame;
228         bool canceled = false;
229         unsigned long flags;
230         LIST_HEAD(done);
231
232         spin_lock_irqsave(&ring->lock, flags);
233
234         if (!ring->running) {
235                 /*  Move all frames to done and mark them as canceled. */
236                 list_splice_tail_init(&ring->in_flight, &done);
237                 list_splice_tail_init(&ring->queue, &done);
238                 canceled = true;
239                 goto invoke_callback;
240         }
241
242         while (!ring_empty(ring)) {
243                 if (!(ring->descriptors[ring->tail].flags
244                                 & RING_DESC_COMPLETED))
245                         break;
246                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
247                                          list);
248                 list_move_tail(&frame->list, &done);
249                 if (!ring->is_tx) {
250                         frame->size = ring->descriptors[ring->tail].length;
251                         frame->eof = ring->descriptors[ring->tail].eof;
252                         frame->sof = ring->descriptors[ring->tail].sof;
253                         frame->flags = ring->descriptors[ring->tail].flags;
254                 }
255                 ring->tail = (ring->tail + 1) % ring->size;
256         }
257         ring_write_descriptors(ring);
258
259 invoke_callback:
260         /* allow callbacks to schedule new work */
261         spin_unlock_irqrestore(&ring->lock, flags);
262         while (!list_empty(&done)) {
263                 frame = list_first_entry(&done, typeof(*frame), list);
264                 /*
265                  * The callback may reenqueue or delete frame.
266                  * Do not hold on to it.
267                  */
268                 list_del_init(&frame->list);
269                 if (frame->callback)
270                         frame->callback(ring, frame, canceled);
271         }
272 }
273
274 int __tb_ring_enqueue(struct tb_ring *ring, struct ring_frame *frame)
275 {
276         unsigned long flags;
277         int ret = 0;
278
279         spin_lock_irqsave(&ring->lock, flags);
280         if (ring->running) {
281                 list_add_tail(&frame->list, &ring->queue);
282                 ring_write_descriptors(ring);
283         } else {
284                 ret = -ESHUTDOWN;
285         }
286         spin_unlock_irqrestore(&ring->lock, flags);
287         return ret;
288 }
289 EXPORT_SYMBOL_GPL(__tb_ring_enqueue);
290
291 /**
292  * tb_ring_poll() - Poll one completed frame from the ring
293  * @ring: Ring to poll
294  *
295  * This function can be called when @start_poll callback of the @ring
296  * has been called. It will read one completed frame from the ring and
297  * return it to the caller. Returns %NULL if there is no more completed
298  * frames.
299  */
300 struct ring_frame *tb_ring_poll(struct tb_ring *ring)
301 {
302         struct ring_frame *frame = NULL;
303         unsigned long flags;
304
305         spin_lock_irqsave(&ring->lock, flags);
306         if (!ring->running)
307                 goto unlock;
308         if (ring_empty(ring))
309                 goto unlock;
310
311         if (ring->descriptors[ring->tail].flags & RING_DESC_COMPLETED) {
312                 frame = list_first_entry(&ring->in_flight, typeof(*frame),
313                                          list);
314                 list_del_init(&frame->list);
315
316                 if (!ring->is_tx) {
317                         frame->size = ring->descriptors[ring->tail].length;
318                         frame->eof = ring->descriptors[ring->tail].eof;
319                         frame->sof = ring->descriptors[ring->tail].sof;
320                         frame->flags = ring->descriptors[ring->tail].flags;
321                 }
322
323                 ring->tail = (ring->tail + 1) % ring->size;
324         }
325
326 unlock:
327         spin_unlock_irqrestore(&ring->lock, flags);
328         return frame;
329 }
330 EXPORT_SYMBOL_GPL(tb_ring_poll);
331
332 static void __ring_interrupt_mask(struct tb_ring *ring, bool mask)
333 {
334         int idx = ring_interrupt_index(ring);
335         int reg = REG_RING_INTERRUPT_BASE + idx / 32 * 4;
336         int bit = idx % 32;
337         u32 val;
338
339         val = ioread32(ring->nhi->iobase + reg);
340         if (mask)
341                 val &= ~BIT(bit);
342         else
343                 val |= BIT(bit);
344         iowrite32(val, ring->nhi->iobase + reg);
345 }
346
347 /* Both @nhi->lock and @ring->lock should be held */
348 static void __ring_interrupt(struct tb_ring *ring)
349 {
350         if (!ring->running)
351                 return;
352
353         if (ring->start_poll) {
354                 __ring_interrupt_mask(ring, true);
355                 ring->start_poll(ring->poll_data);
356         } else {
357                 schedule_work(&ring->work);
358         }
359 }
360
361 /**
362  * tb_ring_poll_complete() - Re-start interrupt for the ring
363  * @ring: Ring to re-start the interrupt
364  *
365  * This will re-start (unmask) the ring interrupt once the user is done
366  * with polling.
367  */
368 void tb_ring_poll_complete(struct tb_ring *ring)
369 {
370         unsigned long flags;
371
372         spin_lock_irqsave(&ring->nhi->lock, flags);
373         spin_lock(&ring->lock);
374         if (ring->start_poll)
375                 __ring_interrupt_mask(ring, false);
376         spin_unlock(&ring->lock);
377         spin_unlock_irqrestore(&ring->nhi->lock, flags);
378 }
379 EXPORT_SYMBOL_GPL(tb_ring_poll_complete);
380
381 static irqreturn_t ring_msix(int irq, void *data)
382 {
383         struct tb_ring *ring = data;
384
385         spin_lock(&ring->nhi->lock);
386         spin_lock(&ring->lock);
387         __ring_interrupt(ring);
388         spin_unlock(&ring->lock);
389         spin_unlock(&ring->nhi->lock);
390
391         return IRQ_HANDLED;
392 }
393
394 static int ring_request_msix(struct tb_ring *ring, bool no_suspend)
395 {
396         struct tb_nhi *nhi = ring->nhi;
397         unsigned long irqflags;
398         int ret;
399
400         if (!nhi->pdev->msix_enabled)
401                 return 0;
402
403         ret = ida_simple_get(&nhi->msix_ida, 0, MSIX_MAX_VECS, GFP_KERNEL);
404         if (ret < 0)
405                 return ret;
406
407         ring->vector = ret;
408
409         ret = pci_irq_vector(ring->nhi->pdev, ring->vector);
410         if (ret < 0)
411                 goto err_ida_remove;
412
413         ring->irq = ret;
414
415         irqflags = no_suspend ? IRQF_NO_SUSPEND : 0;
416         ret = request_irq(ring->irq, ring_msix, irqflags, "thunderbolt", ring);
417         if (ret)
418                 goto err_ida_remove;
419
420         return 0;
421
422 err_ida_remove:
423         ida_simple_remove(&nhi->msix_ida, ring->vector);
424
425         return ret;
426 }
427
428 static void ring_release_msix(struct tb_ring *ring)
429 {
430         if (ring->irq <= 0)
431                 return;
432
433         free_irq(ring->irq, ring);
434         ida_simple_remove(&ring->nhi->msix_ida, ring->vector);
435         ring->vector = 0;
436         ring->irq = 0;
437 }
438
439 static int nhi_alloc_hop(struct tb_nhi *nhi, struct tb_ring *ring)
440 {
441         int ret = 0;
442
443         spin_lock_irq(&nhi->lock);
444
445         if (ring->hop < 0) {
446                 unsigned int i;
447
448                 /*
449                  * Automatically allocate HopID from the non-reserved
450                  * range 1 .. hop_count - 1.
451                  */
452                 for (i = RING_FIRST_USABLE_HOPID; i < nhi->hop_count; i++) {
453                         if (ring->is_tx) {
454                                 if (!nhi->tx_rings[i]) {
455                                         ring->hop = i;
456                                         break;
457                                 }
458                         } else {
459                                 if (!nhi->rx_rings[i]) {
460                                         ring->hop = i;
461                                         break;
462                                 }
463                         }
464                 }
465         }
466
467         if (ring->hop < 0 || ring->hop >= nhi->hop_count) {
468                 dev_warn(&nhi->pdev->dev, "invalid hop: %d\n", ring->hop);
469                 ret = -EINVAL;
470                 goto err_unlock;
471         }
472         if (ring->is_tx && nhi->tx_rings[ring->hop]) {
473                 dev_warn(&nhi->pdev->dev, "TX hop %d already allocated\n",
474                          ring->hop);
475                 ret = -EBUSY;
476                 goto err_unlock;
477         } else if (!ring->is_tx && nhi->rx_rings[ring->hop]) {
478                 dev_warn(&nhi->pdev->dev, "RX hop %d already allocated\n",
479                          ring->hop);
480                 ret = -EBUSY;
481                 goto err_unlock;
482         }
483
484         if (ring->is_tx)
485                 nhi->tx_rings[ring->hop] = ring;
486         else
487                 nhi->rx_rings[ring->hop] = ring;
488
489 err_unlock:
490         spin_unlock_irq(&nhi->lock);
491
492         return ret;
493 }
494
495 static struct tb_ring *tb_ring_alloc(struct tb_nhi *nhi, u32 hop, int size,
496                                      bool transmit, unsigned int flags,
497                                      int e2e_tx_hop, u16 sof_mask, u16 eof_mask,
498                                      void (*start_poll)(void *),
499                                      void *poll_data)
500 {
501         struct tb_ring *ring = NULL;
502
503         dev_dbg(&nhi->pdev->dev, "allocating %s ring %d of size %d\n",
504                 transmit ? "TX" : "RX", hop, size);
505
506         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
507         if (!ring)
508                 return NULL;
509
510         spin_lock_init(&ring->lock);
511         INIT_LIST_HEAD(&ring->queue);
512         INIT_LIST_HEAD(&ring->in_flight);
513         INIT_WORK(&ring->work, ring_work);
514
515         ring->nhi = nhi;
516         ring->hop = hop;
517         ring->is_tx = transmit;
518         ring->size = size;
519         ring->flags = flags;
520         ring->e2e_tx_hop = e2e_tx_hop;
521         ring->sof_mask = sof_mask;
522         ring->eof_mask = eof_mask;
523         ring->head = 0;
524         ring->tail = 0;
525         ring->running = false;
526         ring->start_poll = start_poll;
527         ring->poll_data = poll_data;
528
529         ring->descriptors = dma_alloc_coherent(&ring->nhi->pdev->dev,
530                         size * sizeof(*ring->descriptors),
531                         &ring->descriptors_dma, GFP_KERNEL | __GFP_ZERO);
532         if (!ring->descriptors)
533                 goto err_free_ring;
534
535         if (ring_request_msix(ring, flags & RING_FLAG_NO_SUSPEND))
536                 goto err_free_descs;
537
538         if (nhi_alloc_hop(nhi, ring))
539                 goto err_release_msix;
540
541         return ring;
542
543 err_release_msix:
544         ring_release_msix(ring);
545 err_free_descs:
546         dma_free_coherent(&ring->nhi->pdev->dev,
547                           ring->size * sizeof(*ring->descriptors),
548                           ring->descriptors, ring->descriptors_dma);
549 err_free_ring:
550         kfree(ring);
551
552         return NULL;
553 }
554
555 /**
556  * tb_ring_alloc_tx() - Allocate DMA ring for transmit
557  * @nhi: Pointer to the NHI the ring is to be allocated
558  * @hop: HopID (ring) to allocate
559  * @size: Number of entries in the ring
560  * @flags: Flags for the ring
561  */
562 struct tb_ring *tb_ring_alloc_tx(struct tb_nhi *nhi, int hop, int size,
563                                  unsigned int flags)
564 {
565         return tb_ring_alloc(nhi, hop, size, true, flags, 0, 0, 0, NULL, NULL);
566 }
567 EXPORT_SYMBOL_GPL(tb_ring_alloc_tx);
568
569 /**
570  * tb_ring_alloc_rx() - Allocate DMA ring for receive
571  * @nhi: Pointer to the NHI the ring is to be allocated
572  * @hop: HopID (ring) to allocate. Pass %-1 for automatic allocation.
573  * @size: Number of entries in the ring
574  * @flags: Flags for the ring
575  * @e2e_tx_hop: Transmit HopID when E2E is enabled in @flags
576  * @sof_mask: Mask of PDF values that start a frame
577  * @eof_mask: Mask of PDF values that end a frame
578  * @start_poll: If not %NULL the ring will call this function when an
579  *              interrupt is triggered and masked, instead of callback
580  *              in each Rx frame.
581  * @poll_data: Optional data passed to @start_poll
582  */
583 struct tb_ring *tb_ring_alloc_rx(struct tb_nhi *nhi, int hop, int size,
584                                  unsigned int flags, int e2e_tx_hop,
585                                  u16 sof_mask, u16 eof_mask,
586                                  void (*start_poll)(void *), void *poll_data)
587 {
588         return tb_ring_alloc(nhi, hop, size, false, flags, e2e_tx_hop, sof_mask, eof_mask,
589                              start_poll, poll_data);
590 }
591 EXPORT_SYMBOL_GPL(tb_ring_alloc_rx);
592
593 /**
594  * tb_ring_start() - enable a ring
595  * @ring: Ring to start
596  *
597  * Must not be invoked in parallel with tb_ring_stop().
598  */
599 void tb_ring_start(struct tb_ring *ring)
600 {
601         u16 frame_size;
602         u32 flags;
603
604         spin_lock_irq(&ring->nhi->lock);
605         spin_lock(&ring->lock);
606         if (ring->nhi->going_away)
607                 goto err;
608         if (ring->running) {
609                 dev_WARN(&ring->nhi->pdev->dev, "ring already started\n");
610                 goto err;
611         }
612         dev_dbg(&ring->nhi->pdev->dev, "starting %s %d\n",
613                 RING_TYPE(ring), ring->hop);
614
615         if (ring->flags & RING_FLAG_FRAME) {
616                 /* Means 4096 */
617                 frame_size = 0;
618                 flags = RING_FLAG_ENABLE;
619         } else {
620                 frame_size = TB_FRAME_SIZE;
621                 flags = RING_FLAG_ENABLE | RING_FLAG_RAW;
622         }
623
624         ring_iowrite64desc(ring, ring->descriptors_dma, 0);
625         if (ring->is_tx) {
626                 ring_iowrite32desc(ring, ring->size, 12);
627                 ring_iowrite32options(ring, 0, 4); /* time releated ? */
628                 ring_iowrite32options(ring, flags, 0);
629         } else {
630                 u32 sof_eof_mask = ring->sof_mask << 16 | ring->eof_mask;
631
632                 ring_iowrite32desc(ring, (frame_size << 16) | ring->size, 12);
633                 ring_iowrite32options(ring, sof_eof_mask, 4);
634                 ring_iowrite32options(ring, flags, 0);
635         }
636
637         /*
638          * Now that the ring valid bit is set we can configure E2E if
639          * enabled for the ring.
640          */
641         if (ring->flags & RING_FLAG_E2E) {
642                 if (!ring->is_tx) {
643                         u32 hop;
644
645                         hop = ring->e2e_tx_hop << REG_RX_OPTIONS_E2E_HOP_SHIFT;
646                         hop &= REG_RX_OPTIONS_E2E_HOP_MASK;
647                         flags |= hop;
648
649                         dev_dbg(&ring->nhi->pdev->dev,
650                                 "enabling E2E for %s %d with TX HopID %d\n",
651                                 RING_TYPE(ring), ring->hop, ring->e2e_tx_hop);
652                 } else {
653                         dev_dbg(&ring->nhi->pdev->dev, "enabling E2E for %s %d\n",
654                                 RING_TYPE(ring), ring->hop);
655                 }
656
657                 flags |= RING_FLAG_E2E_FLOW_CONTROL;
658                 ring_iowrite32options(ring, flags, 0);
659         }
660
661         ring_interrupt_active(ring, true);
662         ring->running = true;
663 err:
664         spin_unlock(&ring->lock);
665         spin_unlock_irq(&ring->nhi->lock);
666 }
667 EXPORT_SYMBOL_GPL(tb_ring_start);
668
669 /**
670  * tb_ring_stop() - shutdown a ring
671  * @ring: Ring to stop
672  *
673  * Must not be invoked from a callback.
674  *
675  * This method will disable the ring. Further calls to
676  * tb_ring_tx/tb_ring_rx will return -ESHUTDOWN until ring_stop has been
677  * called.
678  *
679  * All enqueued frames will be canceled and their callbacks will be executed
680  * with frame->canceled set to true (on the callback thread). This method
681  * returns only after all callback invocations have finished.
682  */
683 void tb_ring_stop(struct tb_ring *ring)
684 {
685         spin_lock_irq(&ring->nhi->lock);
686         spin_lock(&ring->lock);
687         dev_dbg(&ring->nhi->pdev->dev, "stopping %s %d\n",
688                 RING_TYPE(ring), ring->hop);
689         if (ring->nhi->going_away)
690                 goto err;
691         if (!ring->running) {
692                 dev_WARN(&ring->nhi->pdev->dev, "%s %d already stopped\n",
693                          RING_TYPE(ring), ring->hop);
694                 goto err;
695         }
696         ring_interrupt_active(ring, false);
697
698         ring_iowrite32options(ring, 0, 0);
699         ring_iowrite64desc(ring, 0, 0);
700         ring_iowrite32desc(ring, 0, 8);
701         ring_iowrite32desc(ring, 0, 12);
702         ring->head = 0;
703         ring->tail = 0;
704         ring->running = false;
705
706 err:
707         spin_unlock(&ring->lock);
708         spin_unlock_irq(&ring->nhi->lock);
709
710         /*
711          * schedule ring->work to invoke callbacks on all remaining frames.
712          */
713         schedule_work(&ring->work);
714         flush_work(&ring->work);
715 }
716 EXPORT_SYMBOL_GPL(tb_ring_stop);
717
718 /*
719  * tb_ring_free() - free ring
720  *
721  * When this method returns all invocations of ring->callback will have
722  * finished.
723  *
724  * Ring must be stopped.
725  *
726  * Must NOT be called from ring_frame->callback!
727  */
728 void tb_ring_free(struct tb_ring *ring)
729 {
730         spin_lock_irq(&ring->nhi->lock);
731         /*
732          * Dissociate the ring from the NHI. This also ensures that
733          * nhi_interrupt_work cannot reschedule ring->work.
734          */
735         if (ring->is_tx)
736                 ring->nhi->tx_rings[ring->hop] = NULL;
737         else
738                 ring->nhi->rx_rings[ring->hop] = NULL;
739
740         if (ring->running) {
741                 dev_WARN(&ring->nhi->pdev->dev, "%s %d still running\n",
742                          RING_TYPE(ring), ring->hop);
743         }
744         spin_unlock_irq(&ring->nhi->lock);
745
746         ring_release_msix(ring);
747
748         dma_free_coherent(&ring->nhi->pdev->dev,
749                           ring->size * sizeof(*ring->descriptors),
750                           ring->descriptors, ring->descriptors_dma);
751
752         ring->descriptors = NULL;
753         ring->descriptors_dma = 0;
754
755
756         dev_dbg(&ring->nhi->pdev->dev, "freeing %s %d\n", RING_TYPE(ring),
757                 ring->hop);
758
759         /*
760          * ring->work can no longer be scheduled (it is scheduled only
761          * by nhi_interrupt_work, ring_stop and ring_msix). Wait for it
762          * to finish before freeing the ring.
763          */
764         flush_work(&ring->work);
765         kfree(ring);
766 }
767 EXPORT_SYMBOL_GPL(tb_ring_free);
768
769 /**
770  * nhi_mailbox_cmd() - Send a command through NHI mailbox
771  * @nhi: Pointer to the NHI structure
772  * @cmd: Command to send
773  * @data: Data to be send with the command
774  *
775  * Sends mailbox command to the firmware running on NHI. Returns %0 in
776  * case of success and negative errno in case of failure.
777  */
778 int nhi_mailbox_cmd(struct tb_nhi *nhi, enum nhi_mailbox_cmd cmd, u32 data)
779 {
780         ktime_t timeout;
781         u32 val;
782
783         iowrite32(data, nhi->iobase + REG_INMAIL_DATA);
784
785         val = ioread32(nhi->iobase + REG_INMAIL_CMD);
786         val &= ~(REG_INMAIL_CMD_MASK | REG_INMAIL_ERROR);
787         val |= REG_INMAIL_OP_REQUEST | cmd;
788         iowrite32(val, nhi->iobase + REG_INMAIL_CMD);
789
790         timeout = ktime_add_ms(ktime_get(), NHI_MAILBOX_TIMEOUT);
791         do {
792                 val = ioread32(nhi->iobase + REG_INMAIL_CMD);
793                 if (!(val & REG_INMAIL_OP_REQUEST))
794                         break;
795                 usleep_range(10, 20);
796         } while (ktime_before(ktime_get(), timeout));
797
798         if (val & REG_INMAIL_OP_REQUEST)
799                 return -ETIMEDOUT;
800         if (val & REG_INMAIL_ERROR)
801                 return -EIO;
802
803         return 0;
804 }
805
806 /**
807  * nhi_mailbox_mode() - Return current firmware operation mode
808  * @nhi: Pointer to the NHI structure
809  *
810  * The function reads current firmware operation mode using NHI mailbox
811  * registers and returns it to the caller.
812  */
813 enum nhi_fw_mode nhi_mailbox_mode(struct tb_nhi *nhi)
814 {
815         u32 val;
816
817         val = ioread32(nhi->iobase + REG_OUTMAIL_CMD);
818         val &= REG_OUTMAIL_CMD_OPMODE_MASK;
819         val >>= REG_OUTMAIL_CMD_OPMODE_SHIFT;
820
821         return (enum nhi_fw_mode)val;
822 }
823
824 static void nhi_interrupt_work(struct work_struct *work)
825 {
826         struct tb_nhi *nhi = container_of(work, typeof(*nhi), interrupt_work);
827         int value = 0; /* Suppress uninitialized usage warning. */
828         int bit;
829         int hop = -1;
830         int type = 0; /* current interrupt type 0: TX, 1: RX, 2: RX overflow */
831         struct tb_ring *ring;
832
833         spin_lock_irq(&nhi->lock);
834
835         /*
836          * Starting at REG_RING_NOTIFY_BASE there are three status bitfields
837          * (TX, RX, RX overflow). We iterate over the bits and read a new
838          * dwords as required. The registers are cleared on read.
839          */
840         for (bit = 0; bit < 3 * nhi->hop_count; bit++) {
841                 if (bit % 32 == 0)
842                         value = ioread32(nhi->iobase
843                                          + REG_RING_NOTIFY_BASE
844                                          + 4 * (bit / 32));
845                 if (++hop == nhi->hop_count) {
846                         hop = 0;
847                         type++;
848                 }
849                 if ((value & (1 << (bit % 32))) == 0)
850                         continue;
851                 if (type == 2) {
852                         dev_warn(&nhi->pdev->dev,
853                                  "RX overflow for ring %d\n",
854                                  hop);
855                         continue;
856                 }
857                 if (type == 0)
858                         ring = nhi->tx_rings[hop];
859                 else
860                         ring = nhi->rx_rings[hop];
861                 if (ring == NULL) {
862                         dev_warn(&nhi->pdev->dev,
863                                  "got interrupt for inactive %s ring %d\n",
864                                  type ? "RX" : "TX",
865                                  hop);
866                         continue;
867                 }
868
869                 spin_lock(&ring->lock);
870                 __ring_interrupt(ring);
871                 spin_unlock(&ring->lock);
872         }
873         spin_unlock_irq(&nhi->lock);
874 }
875
876 static irqreturn_t nhi_msi(int irq, void *data)
877 {
878         struct tb_nhi *nhi = data;
879         schedule_work(&nhi->interrupt_work);
880         return IRQ_HANDLED;
881 }
882
883 static int __nhi_suspend_noirq(struct device *dev, bool wakeup)
884 {
885         struct pci_dev *pdev = to_pci_dev(dev);
886         struct tb *tb = pci_get_drvdata(pdev);
887         struct tb_nhi *nhi = tb->nhi;
888         int ret;
889
890         ret = tb_domain_suspend_noirq(tb);
891         if (ret)
892                 return ret;
893
894         if (nhi->ops && nhi->ops->suspend_noirq) {
895                 ret = nhi->ops->suspend_noirq(tb->nhi, wakeup);
896                 if (ret)
897                         return ret;
898         }
899
900         return 0;
901 }
902
903 static int nhi_suspend_noirq(struct device *dev)
904 {
905         return __nhi_suspend_noirq(dev, device_may_wakeup(dev));
906 }
907
908 static int nhi_freeze_noirq(struct device *dev)
909 {
910         struct pci_dev *pdev = to_pci_dev(dev);
911         struct tb *tb = pci_get_drvdata(pdev);
912
913         return tb_domain_freeze_noirq(tb);
914 }
915
916 static int nhi_thaw_noirq(struct device *dev)
917 {
918         struct pci_dev *pdev = to_pci_dev(dev);
919         struct tb *tb = pci_get_drvdata(pdev);
920
921         return tb_domain_thaw_noirq(tb);
922 }
923
924 static bool nhi_wake_supported(struct pci_dev *pdev)
925 {
926         u8 val;
927
928         /*
929          * If power rails are sustainable for wakeup from S4 this
930          * property is set by the BIOS.
931          */
932         if (device_property_read_u8(&pdev->dev, "WAKE_SUPPORTED", &val))
933                 return !!val;
934
935         return true;
936 }
937
938 static int nhi_poweroff_noirq(struct device *dev)
939 {
940         struct pci_dev *pdev = to_pci_dev(dev);
941         bool wakeup;
942
943         wakeup = device_may_wakeup(dev) && nhi_wake_supported(pdev);
944         return __nhi_suspend_noirq(dev, wakeup);
945 }
946
947 static void nhi_enable_int_throttling(struct tb_nhi *nhi)
948 {
949         /* Throttling is specified in 256ns increments */
950         u32 throttle = DIV_ROUND_UP(128 * NSEC_PER_USEC, 256);
951         unsigned int i;
952
953         /*
954          * Configure interrupt throttling for all vectors even if we
955          * only use few.
956          */
957         for (i = 0; i < MSIX_MAX_VECS; i++) {
958                 u32 reg = REG_INT_THROTTLING_RATE + i * 4;
959                 iowrite32(throttle, nhi->iobase + reg);
960         }
961 }
962
963 static int nhi_resume_noirq(struct device *dev)
964 {
965         struct pci_dev *pdev = to_pci_dev(dev);
966         struct tb *tb = pci_get_drvdata(pdev);
967         struct tb_nhi *nhi = tb->nhi;
968         int ret;
969
970         /*
971          * Check that the device is still there. It may be that the user
972          * unplugged last device which causes the host controller to go
973          * away on PCs.
974          */
975         if (!pci_device_is_present(pdev)) {
976                 nhi->going_away = true;
977         } else {
978                 if (nhi->ops && nhi->ops->resume_noirq) {
979                         ret = nhi->ops->resume_noirq(nhi);
980                         if (ret)
981                                 return ret;
982                 }
983                 nhi_enable_int_throttling(tb->nhi);
984         }
985
986         return tb_domain_resume_noirq(tb);
987 }
988
989 static int nhi_suspend(struct device *dev)
990 {
991         struct pci_dev *pdev = to_pci_dev(dev);
992         struct tb *tb = pci_get_drvdata(pdev);
993
994         return tb_domain_suspend(tb);
995 }
996
997 static void nhi_complete(struct device *dev)
998 {
999         struct pci_dev *pdev = to_pci_dev(dev);
1000         struct tb *tb = pci_get_drvdata(pdev);
1001
1002         /*
1003          * If we were runtime suspended when system suspend started,
1004          * schedule runtime resume now. It should bring the domain back
1005          * to functional state.
1006          */
1007         if (pm_runtime_suspended(&pdev->dev))
1008                 pm_runtime_resume(&pdev->dev);
1009         else
1010                 tb_domain_complete(tb);
1011 }
1012
1013 static int nhi_runtime_suspend(struct device *dev)
1014 {
1015         struct pci_dev *pdev = to_pci_dev(dev);
1016         struct tb *tb = pci_get_drvdata(pdev);
1017         struct tb_nhi *nhi = tb->nhi;
1018         int ret;
1019
1020         ret = tb_domain_runtime_suspend(tb);
1021         if (ret)
1022                 return ret;
1023
1024         if (nhi->ops && nhi->ops->runtime_suspend) {
1025                 ret = nhi->ops->runtime_suspend(tb->nhi);
1026                 if (ret)
1027                         return ret;
1028         }
1029         return 0;
1030 }
1031
1032 static int nhi_runtime_resume(struct device *dev)
1033 {
1034         struct pci_dev *pdev = to_pci_dev(dev);
1035         struct tb *tb = pci_get_drvdata(pdev);
1036         struct tb_nhi *nhi = tb->nhi;
1037         int ret;
1038
1039         if (nhi->ops && nhi->ops->runtime_resume) {
1040                 ret = nhi->ops->runtime_resume(nhi);
1041                 if (ret)
1042                         return ret;
1043         }
1044
1045         nhi_enable_int_throttling(nhi);
1046         return tb_domain_runtime_resume(tb);
1047 }
1048
1049 static void nhi_shutdown(struct tb_nhi *nhi)
1050 {
1051         int i;
1052
1053         dev_dbg(&nhi->pdev->dev, "shutdown\n");
1054
1055         for (i = 0; i < nhi->hop_count; i++) {
1056                 if (nhi->tx_rings[i])
1057                         dev_WARN(&nhi->pdev->dev,
1058                                  "TX ring %d is still active\n", i);
1059                 if (nhi->rx_rings[i])
1060                         dev_WARN(&nhi->pdev->dev,
1061                                  "RX ring %d is still active\n", i);
1062         }
1063         nhi_disable_interrupts(nhi);
1064         /*
1065          * We have to release the irq before calling flush_work. Otherwise an
1066          * already executing IRQ handler could call schedule_work again.
1067          */
1068         if (!nhi->pdev->msix_enabled) {
1069                 devm_free_irq(&nhi->pdev->dev, nhi->pdev->irq, nhi);
1070                 flush_work(&nhi->interrupt_work);
1071         }
1072         ida_destroy(&nhi->msix_ida);
1073
1074         if (nhi->ops && nhi->ops->shutdown)
1075                 nhi->ops->shutdown(nhi);
1076 }
1077
1078 static int nhi_init_msi(struct tb_nhi *nhi)
1079 {
1080         struct pci_dev *pdev = nhi->pdev;
1081         int res, irq, nvec;
1082
1083         /* In case someone left them on. */
1084         nhi_disable_interrupts(nhi);
1085
1086         nhi_enable_int_throttling(nhi);
1087
1088         ida_init(&nhi->msix_ida);
1089
1090         /*
1091          * The NHI has 16 MSI-X vectors or a single MSI. We first try to
1092          * get all MSI-X vectors and if we succeed, each ring will have
1093          * one MSI-X. If for some reason that does not work out, we
1094          * fallback to a single MSI.
1095          */
1096         nvec = pci_alloc_irq_vectors(pdev, MSIX_MIN_VECS, MSIX_MAX_VECS,
1097                                      PCI_IRQ_MSIX);
1098         if (nvec < 0) {
1099                 nvec = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
1100                 if (nvec < 0)
1101                         return nvec;
1102
1103                 INIT_WORK(&nhi->interrupt_work, nhi_interrupt_work);
1104
1105                 irq = pci_irq_vector(nhi->pdev, 0);
1106                 if (irq < 0)
1107                         return irq;
1108
1109                 res = devm_request_irq(&pdev->dev, irq, nhi_msi,
1110                                        IRQF_NO_SUSPEND, "thunderbolt", nhi);
1111                 if (res) {
1112                         dev_err(&pdev->dev, "request_irq failed, aborting\n");
1113                         return res;
1114                 }
1115         }
1116
1117         return 0;
1118 }
1119
1120 static bool nhi_imr_valid(struct pci_dev *pdev)
1121 {
1122         u8 val;
1123
1124         if (!device_property_read_u8(&pdev->dev, "IMR_VALID", &val))
1125                 return !!val;
1126
1127         return true;
1128 }
1129
1130 /*
1131  * During suspend the Thunderbolt controller is reset and all PCIe
1132  * tunnels are lost. The NHI driver will try to reestablish all tunnels
1133  * during resume. This adds device links between the tunneled PCIe
1134  * downstream ports and the NHI so that the device core will make sure
1135  * NHI is resumed first before the rest.
1136  */
1137 static void tb_apple_add_links(struct tb_nhi *nhi)
1138 {
1139         struct pci_dev *upstream, *pdev;
1140
1141         if (!x86_apple_machine)
1142                 return;
1143
1144         switch (nhi->pdev->device) {
1145         case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1146         case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
1147         case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI:
1148         case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI:
1149                 break;
1150         default:
1151                 return;
1152         }
1153
1154         upstream = pci_upstream_bridge(nhi->pdev);
1155         while (upstream) {
1156                 if (!pci_is_pcie(upstream))
1157                         return;
1158                 if (pci_pcie_type(upstream) == PCI_EXP_TYPE_UPSTREAM)
1159                         break;
1160                 upstream = pci_upstream_bridge(upstream);
1161         }
1162
1163         if (!upstream)
1164                 return;
1165
1166         /*
1167          * For each hotplug downstream port, create add device link
1168          * back to NHI so that PCIe tunnels can be re-established after
1169          * sleep.
1170          */
1171         for_each_pci_bridge(pdev, upstream->subordinate) {
1172                 const struct device_link *link;
1173
1174                 if (!pci_is_pcie(pdev))
1175                         continue;
1176                 if (pci_pcie_type(pdev) != PCI_EXP_TYPE_DOWNSTREAM ||
1177                     !pdev->is_hotplug_bridge)
1178                         continue;
1179
1180                 link = device_link_add(&pdev->dev, &nhi->pdev->dev,
1181                                        DL_FLAG_AUTOREMOVE_SUPPLIER |
1182                                        DL_FLAG_PM_RUNTIME);
1183                 if (link) {
1184                         dev_dbg(&nhi->pdev->dev, "created link from %s\n",
1185                                 dev_name(&pdev->dev));
1186                 } else {
1187                         dev_warn(&nhi->pdev->dev, "device link creation from %s failed\n",
1188                                  dev_name(&pdev->dev));
1189                 }
1190         }
1191 }
1192
1193 static struct tb *nhi_select_cm(struct tb_nhi *nhi)
1194 {
1195         struct tb *tb;
1196
1197         /*
1198          * USB4 case is simple. If we got control of any of the
1199          * capabilities, we use software CM.
1200          */
1201         if (tb_acpi_is_native())
1202                 return tb_probe(nhi);
1203
1204         /*
1205          * Either firmware based CM is running (we did not get control
1206          * from the firmware) or this is pre-USB4 PC so try first
1207          * firmware CM and then fallback to software CM.
1208          */
1209         tb = icm_probe(nhi);
1210         if (!tb)
1211                 tb = tb_probe(nhi);
1212
1213         return tb;
1214 }
1215
1216 static int nhi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1217 {
1218         struct tb_nhi *nhi;
1219         struct tb *tb;
1220         int res;
1221
1222         if (!nhi_imr_valid(pdev)) {
1223                 dev_warn(&pdev->dev, "firmware image not valid, aborting\n");
1224                 return -ENODEV;
1225         }
1226
1227         res = pcim_enable_device(pdev);
1228         if (res) {
1229                 dev_err(&pdev->dev, "cannot enable PCI device, aborting\n");
1230                 return res;
1231         }
1232
1233         res = pcim_iomap_regions(pdev, 1 << 0, "thunderbolt");
1234         if (res) {
1235                 dev_err(&pdev->dev, "cannot obtain PCI resources, aborting\n");
1236                 return res;
1237         }
1238
1239         nhi = devm_kzalloc(&pdev->dev, sizeof(*nhi), GFP_KERNEL);
1240         if (!nhi)
1241                 return -ENOMEM;
1242
1243         nhi->pdev = pdev;
1244         nhi->ops = (const struct tb_nhi_ops *)id->driver_data;
1245         /* cannot fail - table is allocated bin pcim_iomap_regions */
1246         nhi->iobase = pcim_iomap_table(pdev)[0];
1247         nhi->hop_count = ioread32(nhi->iobase + REG_HOP_COUNT) & 0x3ff;
1248         dev_dbg(&pdev->dev, "total paths: %d\n", nhi->hop_count);
1249
1250         nhi->tx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1251                                      sizeof(*nhi->tx_rings), GFP_KERNEL);
1252         nhi->rx_rings = devm_kcalloc(&pdev->dev, nhi->hop_count,
1253                                      sizeof(*nhi->rx_rings), GFP_KERNEL);
1254         if (!nhi->tx_rings || !nhi->rx_rings)
1255                 return -ENOMEM;
1256
1257         res = nhi_init_msi(nhi);
1258         if (res) {
1259                 dev_err(&pdev->dev, "cannot enable MSI, aborting\n");
1260                 return res;
1261         }
1262
1263         spin_lock_init(&nhi->lock);
1264
1265         res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1266         if (res)
1267                 res = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1268         if (res) {
1269                 dev_err(&pdev->dev, "failed to set DMA mask\n");
1270                 return res;
1271         }
1272
1273         pci_set_master(pdev);
1274
1275         if (nhi->ops && nhi->ops->init) {
1276                 res = nhi->ops->init(nhi);
1277                 if (res)
1278                         return res;
1279         }
1280
1281         tb_apple_add_links(nhi);
1282         tb_acpi_add_links(nhi);
1283
1284         tb = nhi_select_cm(nhi);
1285         if (!tb) {
1286                 dev_err(&nhi->pdev->dev,
1287                         "failed to determine connection manager, aborting\n");
1288                 return -ENODEV;
1289         }
1290
1291         dev_dbg(&nhi->pdev->dev, "NHI initialized, starting thunderbolt\n");
1292
1293         res = tb_domain_add(tb);
1294         if (res) {
1295                 /*
1296                  * At this point the RX/TX rings might already have been
1297                  * activated. Do a proper shutdown.
1298                  */
1299                 tb_domain_put(tb);
1300                 nhi_shutdown(nhi);
1301                 return res;
1302         }
1303         pci_set_drvdata(pdev, tb);
1304
1305         device_wakeup_enable(&pdev->dev);
1306
1307         pm_runtime_allow(&pdev->dev);
1308         pm_runtime_set_autosuspend_delay(&pdev->dev, TB_AUTOSUSPEND_DELAY);
1309         pm_runtime_use_autosuspend(&pdev->dev);
1310         pm_runtime_put_autosuspend(&pdev->dev);
1311
1312         return 0;
1313 }
1314
1315 static void nhi_remove(struct pci_dev *pdev)
1316 {
1317         struct tb *tb = pci_get_drvdata(pdev);
1318         struct tb_nhi *nhi = tb->nhi;
1319
1320         pm_runtime_get_sync(&pdev->dev);
1321         pm_runtime_dont_use_autosuspend(&pdev->dev);
1322         pm_runtime_forbid(&pdev->dev);
1323
1324         tb_domain_remove(tb);
1325         nhi_shutdown(nhi);
1326 }
1327
1328 /*
1329  * The tunneled pci bridges are siblings of us. Use resume_noirq to reenable
1330  * the tunnels asap. A corresponding pci quirk blocks the downstream bridges
1331  * resume_noirq until we are done.
1332  */
1333 static const struct dev_pm_ops nhi_pm_ops = {
1334         .suspend_noirq = nhi_suspend_noirq,
1335         .resume_noirq = nhi_resume_noirq,
1336         .freeze_noirq = nhi_freeze_noirq,  /*
1337                                             * we just disable hotplug, the
1338                                             * pci-tunnels stay alive.
1339                                             */
1340         .thaw_noirq = nhi_thaw_noirq,
1341         .restore_noirq = nhi_resume_noirq,
1342         .suspend = nhi_suspend,
1343         .poweroff_noirq = nhi_poweroff_noirq,
1344         .poweroff = nhi_suspend,
1345         .complete = nhi_complete,
1346         .runtime_suspend = nhi_runtime_suspend,
1347         .runtime_resume = nhi_runtime_resume,
1348 };
1349
1350 static struct pci_device_id nhi_ids[] = {
1351         /*
1352          * We have to specify class, the TB bridges use the same device and
1353          * vendor (sub)id on gen 1 and gen 2 controllers.
1354          */
1355         {
1356                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1357                 .vendor = PCI_VENDOR_ID_INTEL,
1358                 .device = PCI_DEVICE_ID_INTEL_LIGHT_RIDGE,
1359                 .subvendor = 0x2222, .subdevice = 0x1111,
1360         },
1361         {
1362                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1363                 .vendor = PCI_VENDOR_ID_INTEL,
1364                 .device = PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C,
1365                 .subvendor = 0x2222, .subdevice = 0x1111,
1366         },
1367         {
1368                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1369                 .vendor = PCI_VENDOR_ID_INTEL,
1370                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_NHI,
1371                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1372         },
1373         {
1374                 .class = PCI_CLASS_SYSTEM_OTHER << 8, .class_mask = ~0,
1375                 .vendor = PCI_VENDOR_ID_INTEL,
1376                 .device = PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_NHI,
1377                 .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID,
1378         },
1379
1380         /* Thunderbolt 3 */
1381         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_NHI) },
1382         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_NHI) },
1383         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_USBONLY_NHI) },
1384         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_NHI) },
1385         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_USBONLY_NHI) },
1386         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_NHI) },
1387         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_NHI) },
1388         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_USBONLY_NHI) },
1389         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_NHI) },
1390         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_NHI) },
1391         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI0),
1392           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1393         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_ICL_NHI1),
1394           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1395         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI0),
1396           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1397         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_NHI1),
1398           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1399         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI0),
1400           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1401         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_TGL_H_NHI1),
1402           .driver_data = (kernel_ulong_t)&icl_nhi_ops },
1403
1404         /* Any USB4 compliant host */
1405         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_USB_USB4, ~0) },
1406
1407         { 0,}
1408 };
1409
1410 MODULE_DEVICE_TABLE(pci, nhi_ids);
1411 MODULE_LICENSE("GPL");
1412
1413 static struct pci_driver nhi_driver = {
1414         .name = "thunderbolt",
1415         .id_table = nhi_ids,
1416         .probe = nhi_probe,
1417         .remove = nhi_remove,
1418         .shutdown = nhi_remove,
1419         .driver.pm = &nhi_pm_ops,
1420 };
1421
1422 static int __init nhi_init(void)
1423 {
1424         int ret;
1425
1426         ret = tb_domain_init();
1427         if (ret)
1428                 return ret;
1429         ret = pci_register_driver(&nhi_driver);
1430         if (ret)
1431                 tb_domain_exit();
1432         return ret;
1433 }
1434
1435 static void __exit nhi_unload(void)
1436 {
1437         pci_unregister_driver(&nhi_driver);
1438         tb_domain_exit();
1439 }
1440
1441 rootfs_initcall(nhi_init);
1442 module_exit(nhi_unload);