Merge tag 'char-misc-5.15-rc1-lkdtm' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / thermal / tegra / soctherm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2014 - 2018, NVIDIA CORPORATION.  All rights reserved.
4  *
5  * Author:
6  *      Mikko Perttunen <mperttunen@nvidia.com>
7  *
8  * This software is licensed under the terms of the GNU General Public
9  * License version 2, as published by the Free Software Foundation, and
10  * may be copied, distributed, and modified under those terms.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  */
18
19 #include <linux/debugfs.h>
20 #include <linux/bitops.h>
21 #include <linux/clk.h>
22 #include <linux/delay.h>
23 #include <linux/err.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/irqdomain.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/platform_device.h>
31 #include <linux/reset.h>
32 #include <linux/thermal.h>
33
34 #include <dt-bindings/thermal/tegra124-soctherm.h>
35
36 #include "../thermal_core.h"
37 #include "soctherm.h"
38
39 #define SENSOR_CONFIG0                          0
40 #define SENSOR_CONFIG0_STOP                     BIT(0)
41 #define SENSOR_CONFIG0_CPTR_OVER                BIT(2)
42 #define SENSOR_CONFIG0_OVER                     BIT(3)
43 #define SENSOR_CONFIG0_TCALC_OVER               BIT(4)
44 #define SENSOR_CONFIG0_TALL_MASK                (0xfffff << 8)
45 #define SENSOR_CONFIG0_TALL_SHIFT               8
46
47 #define SENSOR_CONFIG1                          4
48 #define SENSOR_CONFIG1_TSAMPLE_MASK             0x3ff
49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT            0
50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK            (0x3f << 15)
51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT           15
52 #define SENSOR_CONFIG1_TEN_COUNT_MASK           (0x3f << 24)
53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT          24
54 #define SENSOR_CONFIG1_TEMP_ENABLE              BIT(31)
55
56 /*
57  * SENSOR_CONFIG2 is defined in soctherm.h
58  * because, it will be used by tegra_soctherm_fuse.c
59  */
60
61 #define SENSOR_STATUS0                          0xc
62 #define SENSOR_STATUS0_VALID_MASK               BIT(31)
63 #define SENSOR_STATUS0_CAPTURE_MASK             0xffff
64
65 #define SENSOR_STATUS1                          0x10
66 #define SENSOR_STATUS1_TEMP_VALID_MASK          BIT(31)
67 #define SENSOR_STATUS1_TEMP_MASK                0xffff
68
69 #define READBACK_VALUE_MASK                     0xff00
70 #define READBACK_VALUE_SHIFT                    8
71 #define READBACK_ADD_HALF                       BIT(7)
72 #define READBACK_NEGATE                         BIT(0)
73
74 /*
75  * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
76  * because it will be used by tegraxxx_soctherm.c
77  */
78 #define THERMCTL_LVL0_CPU0_EN_MASK              BIT(8)
79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK       (0x3 << 5)
80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT      0x1
81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY      0x2
82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK       (0x3 << 3)
83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT      0x1
84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY      0x2
85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK       BIT(2)
86 #define THERMCTL_LVL0_CPU0_STATUS_MASK          0x3
87
88 #define THERMCTL_LVL0_UP_STATS                  0x10
89 #define THERMCTL_LVL0_DN_STATS                  0x14
90
91 #define THERMCTL_INTR_STATUS                    0x84
92
93 #define TH_INTR_MD0_MASK                        BIT(25)
94 #define TH_INTR_MU0_MASK                        BIT(24)
95 #define TH_INTR_GD0_MASK                        BIT(17)
96 #define TH_INTR_GU0_MASK                        BIT(16)
97 #define TH_INTR_CD0_MASK                        BIT(9)
98 #define TH_INTR_CU0_MASK                        BIT(8)
99 #define TH_INTR_PD0_MASK                        BIT(1)
100 #define TH_INTR_PU0_MASK                        BIT(0)
101 #define TH_INTR_IGNORE_MASK                     0xFCFCFCFC
102
103 #define THERMCTL_STATS_CTL                      0x94
104 #define STATS_CTL_CLR_DN                        0x8
105 #define STATS_CTL_EN_DN                         0x4
106 #define STATS_CTL_CLR_UP                        0x2
107 #define STATS_CTL_EN_UP                         0x1
108
109 #define OC1_CFG                                 0x310
110 #define OC1_CFG_LONG_LATENCY_MASK               BIT(6)
111 #define OC1_CFG_HW_RESTORE_MASK                 BIT(5)
112 #define OC1_CFG_PWR_GOOD_MASK_MASK              BIT(4)
113 #define OC1_CFG_THROTTLE_MODE_MASK              (0x3 << 2)
114 #define OC1_CFG_ALARM_POLARITY_MASK             BIT(1)
115 #define OC1_CFG_EN_THROTTLE_MASK                BIT(0)
116
117 #define OC1_CNT_THRESHOLD                       0x314
118 #define OC1_THROTTLE_PERIOD                     0x318
119 #define OC1_ALARM_COUNT                         0x31c
120 #define OC1_FILTER                              0x320
121 #define OC1_STATS                               0x3a8
122
123 #define OC_INTR_STATUS                          0x39c
124 #define OC_INTR_ENABLE                          0x3a0
125 #define OC_INTR_DISABLE                         0x3a4
126 #define OC_STATS_CTL                            0x3c4
127 #define OC_STATS_CTL_CLR_ALL                    0x2
128 #define OC_STATS_CTL_EN_ALL                     0x1
129
130 #define OC_INTR_OC1_MASK                        BIT(0)
131 #define OC_INTR_OC2_MASK                        BIT(1)
132 #define OC_INTR_OC3_MASK                        BIT(2)
133 #define OC_INTR_OC4_MASK                        BIT(3)
134 #define OC_INTR_OC5_MASK                        BIT(4)
135
136 #define THROT_GLOBAL_CFG                        0x400
137 #define THROT_GLOBAL_ENB_MASK                   BIT(0)
138
139 #define CPU_PSKIP_STATUS                        0x418
140 #define XPU_PSKIP_STATUS_M_MASK                 (0xff << 12)
141 #define XPU_PSKIP_STATUS_N_MASK                 (0xff << 4)
142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK       BIT(1)
143 #define XPU_PSKIP_STATUS_ENABLED_MASK           BIT(0)
144
145 #define THROT_PRIORITY_LOCK                     0x424
146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK       0xff
147
148 #define THROT_STATUS                            0x428
149 #define THROT_STATUS_BREACH_MASK                BIT(12)
150 #define THROT_STATUS_STATE_MASK                 (0xff << 4)
151 #define THROT_STATUS_ENABLED_MASK               BIT(0)
152
153 #define THROT_PSKIP_CTRL_LITE_CPU               0x430
154 #define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
156 #define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
160
161 #define THROT_VECT_NONE                         0x0 /* 3'b000 */
162 #define THROT_VECT_LOW                          0x1 /* 3'b001 */
163 #define THROT_VECT_MED                          0x3 /* 3'b011 */
164 #define THROT_VECT_HIGH                         0x7 /* 3'b111 */
165
166 #define THROT_PSKIP_RAMP_LITE_CPU               0x434
167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK   BIT(31)
168 #define THROT_PSKIP_RAMP_DURATION_MASK          (0xffff << 8)
169 #define THROT_PSKIP_RAMP_STEP_MASK              0xff
170
171 #define THROT_PRIORITY_LITE                     0x444
172 #define THROT_PRIORITY_LITE_PRIO_MASK           0xff
173
174 #define THROT_DELAY_LITE                        0x448
175 #define THROT_DELAY_LITE_DELAY_MASK             0xff
176
177 /* car register offsets needed for enabling HW throttling */
178 #define CAR_SUPER_CCLKG_DIVIDER                 0x36c
179 #define CDIVG_USE_THERM_CONTROLS_MASK           BIT(30)
180
181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
182 #define CCROC_SUPER_CCLKG_DIVIDER               0x024
183
184 #define CCROC_GLOBAL_CFG                        0x148
185
186 #define CCROC_THROT_PSKIP_RAMP_CPU              0x150
187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK     BIT(31)
188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK    (0xffff << 8)
189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK        0xff
190
191 #define CCROC_THROT_PSKIP_CTRL_CPU              0x154
192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK         BIT(31)
193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK    (0xff << 8)
194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK     0xff
195
196 /* get val from register(r) mask bits(m) */
197 #define REG_GET_MASK(r, m)      (((r) & (m)) >> (ffs(m) - 1))
198 /* set val(v) to mask bits(m) of register(r) */
199 #define REG_SET_MASK(r, m, v)   (((r) & ~(m)) | \
200                                  (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
201
202 /* get dividend from the depth */
203 #define THROT_DEPTH_DIVIDEND(depth)     ((256 * (100 - (depth)) / 100) - 1)
204
205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h
206  * level        vector
207  * NONE         3'b000
208  * LOW          3'b001
209  * MED          3'b011
210  * HIGH         3'b111
211  */
212 #define THROT_LEVEL_TO_DEPTH(level)     ((0x1 << (level)) - 1)
213
214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
215 #define THROT_OFFSET                    0x30
216 #define THROT_PSKIP_CTRL(throt, dev)    (THROT_PSKIP_CTRL_LITE_CPU + \
217                                         (THROT_OFFSET * throt) + (8 * dev))
218 #define THROT_PSKIP_RAMP(throt, dev)    (THROT_PSKIP_RAMP_LITE_CPU + \
219                                         (THROT_OFFSET * throt) + (8 * dev))
220
221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
222 #define THROT_PRIORITY_CTRL(throt)      (THROT_PRIORITY_LITE + \
223                                         (THROT_OFFSET * throt))
224 #define THROT_DELAY_CTRL(throt)         (THROT_DELAY_LITE + \
225                                         (THROT_OFFSET * throt))
226
227 #define ALARM_OFFSET                    0x14
228 #define ALARM_CFG(throt)                (OC1_CFG + \
229                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
230
231 #define ALARM_CNT_THRESHOLD(throt)      (OC1_CNT_THRESHOLD + \
232                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
233
234 #define ALARM_THROTTLE_PERIOD(throt)    (OC1_THROTTLE_PERIOD + \
235                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
236
237 #define ALARM_ALARM_COUNT(throt)        (OC1_ALARM_COUNT + \
238                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
239
240 #define ALARM_FILTER(throt)             (OC1_FILTER + \
241                                         (ALARM_OFFSET * (throt - THROTTLE_OC1)))
242
243 #define ALARM_STATS(throt)              (OC1_STATS + \
244                                         (4 * (throt - THROTTLE_OC1)))
245
246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
247 #define CCROC_THROT_OFFSET                      0x0c
248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
249                                                 (CCROC_THROT_OFFSET * vect))
250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
251                                                 (CCROC_THROT_OFFSET * vect))
252
253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
254 #define THERMCTL_LVL_REGS_SIZE          0x20
255 #define THERMCTL_LVL_REG(rg, lv)        ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
256
257 #define OC_THROTTLE_MODE_DISABLED       0
258 #define OC_THROTTLE_MODE_BRIEF          2
259
260 static const int min_low_temp = -127000;
261 static const int max_high_temp = 127000;
262
263 enum soctherm_throttle_id {
264         THROTTLE_LIGHT = 0,
265         THROTTLE_HEAVY,
266         THROTTLE_OC1,
267         THROTTLE_OC2,
268         THROTTLE_OC3,
269         THROTTLE_OC4,
270         THROTTLE_OC5, /* OC5 is reserved */
271         THROTTLE_SIZE,
272 };
273
274 enum soctherm_oc_irq_id {
275         TEGRA_SOC_OC_IRQ_1,
276         TEGRA_SOC_OC_IRQ_2,
277         TEGRA_SOC_OC_IRQ_3,
278         TEGRA_SOC_OC_IRQ_4,
279         TEGRA_SOC_OC_IRQ_5,
280         TEGRA_SOC_OC_IRQ_MAX,
281 };
282
283 enum soctherm_throttle_dev_id {
284         THROTTLE_DEV_CPU = 0,
285         THROTTLE_DEV_GPU,
286         THROTTLE_DEV_SIZE,
287 };
288
289 static const char *const throt_names[] = {
290         [THROTTLE_LIGHT] = "light",
291         [THROTTLE_HEAVY] = "heavy",
292         [THROTTLE_OC1]   = "oc1",
293         [THROTTLE_OC2]   = "oc2",
294         [THROTTLE_OC3]   = "oc3",
295         [THROTTLE_OC4]   = "oc4",
296         [THROTTLE_OC5]   = "oc5",
297 };
298
299 struct tegra_soctherm;
300 struct tegra_thermctl_zone {
301         void __iomem *reg;
302         struct device *dev;
303         struct tegra_soctherm *ts;
304         struct thermal_zone_device *tz;
305         const struct tegra_tsensor_group *sg;
306 };
307
308 struct soctherm_oc_cfg {
309         u32 active_low;
310         u32 throt_period;
311         u32 alarm_cnt_thresh;
312         u32 alarm_filter;
313         u32 mode;
314         bool intr_en;
315 };
316
317 struct soctherm_throt_cfg {
318         const char *name;
319         unsigned int id;
320         u8 priority;
321         u8 cpu_throt_level;
322         u32 cpu_throt_depth;
323         u32 gpu_throt_level;
324         struct soctherm_oc_cfg oc_cfg;
325         struct thermal_cooling_device *cdev;
326         bool init;
327 };
328
329 struct tegra_soctherm {
330         struct reset_control *reset;
331         struct clk *clock_tsensor;
332         struct clk *clock_soctherm;
333         void __iomem *regs;
334         void __iomem *clk_regs;
335         void __iomem *ccroc_regs;
336
337         int thermal_irq;
338         int edp_irq;
339
340         u32 *calib;
341         struct thermal_zone_device **thermctl_tzs;
342         struct tegra_soctherm_soc *soc;
343
344         struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
345
346         struct dentry *debugfs_dir;
347
348         struct mutex thermctl_lock;
349 };
350
351 struct soctherm_oc_irq_chip_data {
352         struct mutex            irq_lock; /* serialize OC IRQs */
353         struct irq_chip         irq_chip;
354         struct irq_domain       *domain;
355         int                     irq_enable;
356 };
357
358 static struct soctherm_oc_irq_chip_data soc_irq_cdata;
359
360 /**
361  * ccroc_writel() - writes a value to a CCROC register
362  * @ts: pointer to a struct tegra_soctherm
363  * @value: the value to write
364  * @reg: the register offset
365  *
366  * Writes @v to @reg.  No return value.
367  */
368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
369 {
370         writel(value, (ts->ccroc_regs + reg));
371 }
372
373 /**
374  * ccroc_readl() - reads specified register from CCROC IP block
375  * @ts: pointer to a struct tegra_soctherm
376  * @reg: register address to be read
377  *
378  * Return: the value of the register
379  */
380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
381 {
382         return readl(ts->ccroc_regs + reg);
383 }
384
385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
386 {
387         const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
388         void __iomem *base = tegra->regs + sensor->base;
389         unsigned int val;
390
391         val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
392         writel(val, base + SENSOR_CONFIG0);
393
394         val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
395         val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
396         val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
397         val |= SENSOR_CONFIG1_TEMP_ENABLE;
398         writel(val, base + SENSOR_CONFIG1);
399
400         writel(tegra->calib[i], base + SENSOR_CONFIG2);
401 }
402
403 /*
404  * Translate from soctherm readback format to millicelsius.
405  * The soctherm readback format in bits is as follows:
406  *   TTTTTTTT H______N
407  * where T's contain the temperature in Celsius,
408  * H denotes an addition of 0.5 Celsius and N denotes negation
409  * of the final value.
410  */
411 static int translate_temp(u16 val)
412 {
413         int t;
414
415         t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
416         if (val & READBACK_ADD_HALF)
417                 t += 500;
418         if (val & READBACK_NEGATE)
419                 t *= -1;
420
421         return t;
422 }
423
424 static int tegra_thermctl_get_temp(void *data, int *out_temp)
425 {
426         struct tegra_thermctl_zone *zone = data;
427         u32 val;
428
429         val = readl(zone->reg);
430         val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
431         *out_temp = translate_temp(val);
432
433         return 0;
434 }
435
436 /**
437  * enforce_temp_range() - check and enforce temperature range [min, max]
438  * @dev: struct device * of the SOC_THERM instance
439  * @trip_temp: the trip temperature to check
440  *
441  * Checks and enforces the permitted temperature range that SOC_THERM
442  * HW can support This is
443  * done while taking care of precision.
444  *
445  * Return: The precision adjusted capped temperature in millicelsius.
446  */
447 static int enforce_temp_range(struct device *dev, int trip_temp)
448 {
449         int temp;
450
451         temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
452         if (temp != trip_temp)
453                 dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n",
454                         trip_temp, temp);
455         return temp;
456 }
457
458 /**
459  * thermtrip_program() - Configures the hardware to shut down the
460  * system if a given sensor group reaches a given temperature
461  * @dev: ptr to the struct device for the SOC_THERM IP block
462  * @sg: pointer to the sensor group to set the thermtrip temperature for
463  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
464  *
465  * Sets the thermal trip threshold of the given sensor group to be the
466  * @trip_temp.  If this threshold is crossed, the hardware will shut
467  * down.
468  *
469  * Note that, although @trip_temp is specified in millicelsius, the
470  * hardware is programmed in degrees Celsius.
471  *
472  * Return: 0 upon success, or %-EINVAL upon failure.
473  */
474 static int thermtrip_program(struct device *dev,
475                              const struct tegra_tsensor_group *sg,
476                              int trip_temp)
477 {
478         struct tegra_soctherm *ts = dev_get_drvdata(dev);
479         int temp;
480         u32 r;
481
482         if (!sg || !sg->thermtrip_threshold_mask)
483                 return -EINVAL;
484
485         temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
486
487         r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
488         r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
489         r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
490         r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
491         writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
492
493         return 0;
494 }
495
496 /**
497  * throttrip_program() - Configures the hardware to throttle the
498  * pulse if a given sensor group reaches a given temperature
499  * @dev: ptr to the struct device for the SOC_THERM IP block
500  * @sg: pointer to the sensor group to set the thermtrip temperature for
501  * @stc: pointer to the throttle need to be triggered
502  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
503  *
504  * Sets the thermal trip threshold and throttle event of the given sensor
505  * group. If this threshold is crossed, the hardware will trigger the
506  * throttle.
507  *
508  * Note that, although @trip_temp is specified in millicelsius, the
509  * hardware is programmed in degrees Celsius.
510  *
511  * Return: 0 upon success, or %-EINVAL upon failure.
512  */
513 static int throttrip_program(struct device *dev,
514                              const struct tegra_tsensor_group *sg,
515                              struct soctherm_throt_cfg *stc,
516                              int trip_temp)
517 {
518         struct tegra_soctherm *ts = dev_get_drvdata(dev);
519         int temp, cpu_throt, gpu_throt;
520         unsigned int throt;
521         u32 r, reg_off;
522
523         if (!sg || !stc || !stc->init)
524                 return -EINVAL;
525
526         temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
527
528         /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
529         throt = stc->id;
530         reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
531
532         if (throt == THROTTLE_LIGHT) {
533                 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
534                 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
535         } else {
536                 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
537                 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
538                 if (throt != THROTTLE_HEAVY)
539                         dev_warn(dev,
540                                  "invalid throt id %d - assuming HEAVY",
541                                  throt);
542         }
543
544         r = readl(ts->regs + reg_off);
545         r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
546         r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
547         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
548         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
549         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
550         writel(r, ts->regs + reg_off);
551
552         return 0;
553 }
554
555 static struct soctherm_throt_cfg *
556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
557 {
558         unsigned int i;
559
560         for (i = 0; ts->throt_cfgs[i].name; i++)
561                 if (!strcmp(ts->throt_cfgs[i].name, name))
562                         return &ts->throt_cfgs[i];
563
564         return NULL;
565 }
566
567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id)
568 {
569         int i, temp = min_low_temp;
570         struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
571
572         if (id >= TEGRA124_SOCTHERM_SENSOR_NUM)
573                 return temp;
574
575         if (tt) {
576                 for (i = 0; i < ts->soc->num_ttgs; i++) {
577                         if (tt[i].id == id)
578                                 return tt[i].temp;
579                 }
580         }
581
582         return temp;
583 }
584
585 static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
586 {
587         struct tegra_thermctl_zone *zone = data;
588         struct thermal_zone_device *tz = zone->tz;
589         struct tegra_soctherm *ts = zone->ts;
590         const struct tegra_tsensor_group *sg = zone->sg;
591         struct device *dev = zone->dev;
592         enum thermal_trip_type type;
593         int ret;
594
595         if (!tz)
596                 return -EINVAL;
597
598         ret = tz->ops->get_trip_type(tz, trip, &type);
599         if (ret)
600                 return ret;
601
602         if (type == THERMAL_TRIP_CRITICAL) {
603                 /*
604                  * If thermtrips property is set in DT,
605                  * doesn't need to program critical type trip to HW,
606                  * if not, program critical trip to HW.
607                  */
608                 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id))
609                         return thermtrip_program(dev, sg, temp);
610                 else
611                         return 0;
612
613         } else if (type == THERMAL_TRIP_HOT) {
614                 int i;
615
616                 for (i = 0; i < THROTTLE_SIZE; i++) {
617                         struct thermal_cooling_device *cdev;
618                         struct soctherm_throt_cfg *stc;
619
620                         if (!ts->throt_cfgs[i].init)
621                                 continue;
622
623                         cdev = ts->throt_cfgs[i].cdev;
624                         if (get_thermal_instance(tz, cdev, trip))
625                                 stc = find_throttle_cfg_by_name(ts, cdev->type);
626                         else
627                                 continue;
628
629                         return throttrip_program(dev, sg, stc, temp);
630                 }
631         }
632
633         return 0;
634 }
635
636 static int tegra_thermctl_get_trend(void *data, int trip,
637                                     enum thermal_trend *trend)
638 {
639         struct tegra_thermctl_zone *zone = data;
640         struct thermal_zone_device *tz = zone->tz;
641         int trip_temp, temp, last_temp, ret;
642
643         if (!tz)
644                 return -EINVAL;
645
646         ret = tz->ops->get_trip_temp(zone->tz, trip, &trip_temp);
647         if (ret)
648                 return ret;
649
650         temp = READ_ONCE(tz->temperature);
651         last_temp = READ_ONCE(tz->last_temperature);
652
653         if (temp > trip_temp) {
654                 if (temp >= last_temp)
655                         *trend = THERMAL_TREND_RAISING;
656                 else
657                         *trend = THERMAL_TREND_STABLE;
658         } else if (temp < trip_temp) {
659                 *trend = THERMAL_TREND_DROPPING;
660         } else {
661                 *trend = THERMAL_TREND_STABLE;
662         }
663
664         return 0;
665 }
666
667 static void thermal_irq_enable(struct tegra_thermctl_zone *zn)
668 {
669         u32 r;
670
671         /* multiple zones could be handling and setting trips at once */
672         mutex_lock(&zn->ts->thermctl_lock);
673         r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE);
674         r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN);
675         writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE);
676         mutex_unlock(&zn->ts->thermctl_lock);
677 }
678
679 static void thermal_irq_disable(struct tegra_thermctl_zone *zn)
680 {
681         u32 r;
682
683         /* multiple zones could be handling and setting trips at once */
684         mutex_lock(&zn->ts->thermctl_lock);
685         r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE);
686         r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0);
687         writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE);
688         mutex_unlock(&zn->ts->thermctl_lock);
689 }
690
691 static int tegra_thermctl_set_trips(void *data, int lo, int hi)
692 {
693         struct tegra_thermctl_zone *zone = data;
694         u32 r;
695
696         thermal_irq_disable(zone);
697
698         r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset);
699         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0);
700         writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
701
702         lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain;
703         hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain;
704         dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo);
705
706         r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi);
707         r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo);
708         r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
709         writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset);
710
711         thermal_irq_enable(zone);
712
713         return 0;
714 }
715
716 static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
717         .get_temp = tegra_thermctl_get_temp,
718         .set_trip_temp = tegra_thermctl_set_trip_temp,
719         .get_trend = tegra_thermctl_get_trend,
720         .set_trips = tegra_thermctl_set_trips,
721 };
722
723 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
724 {
725         int ntrips, i, ret;
726         enum thermal_trip_type type;
727
728         ntrips = of_thermal_get_ntrips(tz);
729         if (ntrips <= 0)
730                 return -EINVAL;
731
732         for (i = 0; i < ntrips; i++) {
733                 ret = tz->ops->get_trip_type(tz, i, &type);
734                 if (ret)
735                         return -EINVAL;
736                 if (type == THERMAL_TRIP_HOT) {
737                         ret = tz->ops->get_trip_temp(tz, i, temp);
738                         if (!ret)
739                                 *trip = i;
740
741                         return ret;
742                 }
743         }
744
745         return -EINVAL;
746 }
747
748 /**
749  * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
750  * @dev: struct device * of the SOC_THERM instance
751  * @sg: pointer to the sensor group to set the thermtrip temperature for
752  * @tz: struct thermal_zone_device *
753  *
754  * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
755  * "THROTTLE" trip points , using "thermtrips", "critical" or "hot"
756  * type trip_temp
757  * from thermal zone.
758  * After they have been configured, THERMTRIP or THROTTLE will take
759  * action when the configured SoC thermal sensor group reaches a
760  * certain temperature.
761  *
762  * Return: 0 upon success, or a negative error code on failure.
763  * "Success" does not mean that trips was enabled; it could also
764  * mean that no node was found in DT.
765  * THERMTRIP has been enabled successfully when a message similar to
766  * this one appears on the serial console:
767  * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
768  * THROTTLE has been enabled successfully when a message similar to
769  * this one appears on the serial console:
770  * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
771  */
772 static int tegra_soctherm_set_hwtrips(struct device *dev,
773                                       const struct tegra_tsensor_group *sg,
774                                       struct thermal_zone_device *tz)
775 {
776         struct tegra_soctherm *ts = dev_get_drvdata(dev);
777         struct soctherm_throt_cfg *stc;
778         int i, trip, temperature, ret;
779
780         /* Get thermtrips. If missing, try to get critical trips. */
781         temperature = tsensor_group_thermtrip_get(ts, sg->id);
782         if (min_low_temp == temperature)
783                 if (tz->ops->get_crit_temp(tz, &temperature))
784                         temperature = max_high_temp;
785
786         ret = thermtrip_program(dev, sg, temperature);
787         if (ret) {
788                 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name);
789                 return ret;
790         }
791
792         dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n",
793                  sg->name, temperature);
794
795         ret = get_hot_temp(tz, &trip, &temperature);
796         if (ret) {
797                 dev_info(dev, "throttrip: %s: missing hot temperature\n",
798                          sg->name);
799                 return 0;
800         }
801
802         for (i = 0; i < THROTTLE_OC1; i++) {
803                 struct thermal_cooling_device *cdev;
804
805                 if (!ts->throt_cfgs[i].init)
806                         continue;
807
808                 cdev = ts->throt_cfgs[i].cdev;
809                 if (get_thermal_instance(tz, cdev, trip))
810                         stc = find_throttle_cfg_by_name(ts, cdev->type);
811                 else
812                         continue;
813
814                 ret = throttrip_program(dev, sg, stc, temperature);
815                 if (ret) {
816                         dev_err(dev, "throttrip: %s: error during enable\n",
817                                 sg->name);
818                         return ret;
819                 }
820
821                 dev_info(dev,
822                          "throttrip: will throttle when %s reaches %d mC\n",
823                          sg->name, temperature);
824                 break;
825         }
826
827         if (i == THROTTLE_SIZE)
828                 dev_info(dev, "throttrip: %s: missing throttle cdev\n",
829                          sg->name);
830
831         return 0;
832 }
833
834 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id)
835 {
836         struct tegra_soctherm *ts = dev_id;
837         u32 r;
838
839         /* Case for no lock:
840          * Although interrupts are enabled in set_trips, there is still no need
841          * to lock here because the interrupts are disabled before programming
842          * new trip points. Hence there cant be a interrupt on the same sensor.
843          * An interrupt can however occur on a sensor while trips are being
844          * programmed on a different one. This beign a LEVEL interrupt won't
845          * cause a new interrupt but this is taken care of by the re-reading of
846          * the STATUS register in the thread function.
847          */
848         r = readl(ts->regs + THERMCTL_INTR_STATUS);
849         writel(r, ts->regs + THERMCTL_INTR_DISABLE);
850
851         return IRQ_WAKE_THREAD;
852 }
853
854 /**
855  * soctherm_thermal_isr_thread() - Handles a thermal interrupt request
856  * @irq:       The interrupt number being requested; not used
857  * @dev_id:    Opaque pointer to tegra_soctherm;
858  *
859  * Clears the interrupt status register if there are expected
860  * interrupt bits set.
861  * The interrupt(s) are then handled by updating the corresponding
862  * thermal zones.
863  *
864  * An error is logged if any unexpected interrupt bits are set.
865  *
866  * Disabled interrupts are re-enabled.
867  *
868  * Return: %IRQ_HANDLED. Interrupt was handled and no further processing
869  * is needed.
870  */
871 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id)
872 {
873         struct tegra_soctherm *ts = dev_id;
874         struct thermal_zone_device *tz;
875         u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0;
876
877         st = readl(ts->regs + THERMCTL_INTR_STATUS);
878
879         /* deliberately clear expected interrupts handled in SW */
880         cp |= st & TH_INTR_CD0_MASK;
881         cp |= st & TH_INTR_CU0_MASK;
882
883         gp |= st & TH_INTR_GD0_MASK;
884         gp |= st & TH_INTR_GU0_MASK;
885
886         pl |= st & TH_INTR_PD0_MASK;
887         pl |= st & TH_INTR_PU0_MASK;
888
889         me |= st & TH_INTR_MD0_MASK;
890         me |= st & TH_INTR_MU0_MASK;
891
892         ex |= cp | gp | pl | me;
893         if (ex) {
894                 writel(ex, ts->regs + THERMCTL_INTR_STATUS);
895                 st &= ~ex;
896
897                 if (cp) {
898                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU];
899                         thermal_zone_device_update(tz,
900                                                    THERMAL_EVENT_UNSPECIFIED);
901                 }
902
903                 if (gp) {
904                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU];
905                         thermal_zone_device_update(tz,
906                                                    THERMAL_EVENT_UNSPECIFIED);
907                 }
908
909                 if (pl) {
910                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX];
911                         thermal_zone_device_update(tz,
912                                                    THERMAL_EVENT_UNSPECIFIED);
913                 }
914
915                 if (me) {
916                         tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM];
917                         thermal_zone_device_update(tz,
918                                                    THERMAL_EVENT_UNSPECIFIED);
919                 }
920         }
921
922         /* deliberately ignore expected interrupts NOT handled in SW */
923         ex |= TH_INTR_IGNORE_MASK;
924         st &= ~ex;
925
926         if (st) {
927                 /* Whine about any other unexpected INTR bits still set */
928                 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st);
929                 writel(st, ts->regs + THERMCTL_INTR_STATUS);
930         }
931
932         return IRQ_HANDLED;
933 }
934
935 /**
936  * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt
937  * @ts:         pointer to a struct tegra_soctherm
938  * @alarm:              The soctherm throttle id
939  * @enable:             Flag indicating enable the soctherm over-current
940  *                      interrupt or disable it
941  *
942  * Enables a specific over-current pins @alarm to raise an interrupt if the flag
943  * is set and the alarm corresponds to OC1, OC2, OC3, or OC4.
944  */
945 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts,
946                                     enum soctherm_throttle_id alarm,
947                                     bool enable)
948 {
949         u32 r;
950
951         if (!enable)
952                 return;
953
954         r = readl(ts->regs + OC_INTR_ENABLE);
955         switch (alarm) {
956         case THROTTLE_OC1:
957                 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1);
958                 break;
959         case THROTTLE_OC2:
960                 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1);
961                 break;
962         case THROTTLE_OC3:
963                 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1);
964                 break;
965         case THROTTLE_OC4:
966                 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1);
967                 break;
968         default:
969                 r = 0;
970                 break;
971         }
972         writel(r, ts->regs + OC_INTR_ENABLE);
973 }
974
975 /**
976  * soctherm_handle_alarm() - Handles soctherm alarms
977  * @alarm:              The soctherm throttle id
978  *
979  * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing
980  * a warning or informative message.
981  *
982  * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success).
983  */
984 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm)
985 {
986         int rv = -EINVAL;
987
988         switch (alarm) {
989         case THROTTLE_OC1:
990                 pr_debug("soctherm: Successfully handled OC1 alarm\n");
991                 rv = 0;
992                 break;
993
994         case THROTTLE_OC2:
995                 pr_debug("soctherm: Successfully handled OC2 alarm\n");
996                 rv = 0;
997                 break;
998
999         case THROTTLE_OC3:
1000                 pr_debug("soctherm: Successfully handled OC3 alarm\n");
1001                 rv = 0;
1002                 break;
1003
1004         case THROTTLE_OC4:
1005                 pr_debug("soctherm: Successfully handled OC4 alarm\n");
1006                 rv = 0;
1007                 break;
1008
1009         default:
1010                 break;
1011         }
1012
1013         if (rv)
1014                 pr_err("soctherm: ERROR in handling %s alarm\n",
1015                        throt_names[alarm]);
1016
1017         return rv;
1018 }
1019
1020 /**
1021  * soctherm_edp_isr_thread() - log an over-current interrupt request
1022  * @irq:        OC irq number. Currently not being used. See description
1023  * @arg:        a void pointer for callback, currently not being used
1024  *
1025  * Over-current events are handled in hardware. This function is called to log
1026  * and handle any OC events that happened. Additionally, it checks every
1027  * over-current interrupt registers for registers are set but
1028  * was not expected (i.e. any discrepancy in interrupt status) by the function,
1029  * the discrepancy will logged.
1030  *
1031  * Return: %IRQ_HANDLED
1032  */
1033 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg)
1034 {
1035         struct tegra_soctherm *ts = arg;
1036         u32 st, ex, oc1, oc2, oc3, oc4;
1037
1038         st = readl(ts->regs + OC_INTR_STATUS);
1039
1040         /* deliberately clear expected interrupts handled in SW */
1041         oc1 = st & OC_INTR_OC1_MASK;
1042         oc2 = st & OC_INTR_OC2_MASK;
1043         oc3 = st & OC_INTR_OC3_MASK;
1044         oc4 = st & OC_INTR_OC4_MASK;
1045         ex = oc1 | oc2 | oc3 | oc4;
1046
1047         pr_err("soctherm: OC ALARM 0x%08x\n", ex);
1048         if (ex) {
1049                 writel(st, ts->regs + OC_INTR_STATUS);
1050                 st &= ~ex;
1051
1052                 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1))
1053                         soctherm_oc_intr_enable(ts, THROTTLE_OC1, true);
1054
1055                 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2))
1056                         soctherm_oc_intr_enable(ts, THROTTLE_OC2, true);
1057
1058                 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3))
1059                         soctherm_oc_intr_enable(ts, THROTTLE_OC3, true);
1060
1061                 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4))
1062                         soctherm_oc_intr_enable(ts, THROTTLE_OC4, true);
1063
1064                 if (oc1 && soc_irq_cdata.irq_enable & BIT(0))
1065                         handle_nested_irq(
1066                                 irq_find_mapping(soc_irq_cdata.domain, 0));
1067
1068                 if (oc2 && soc_irq_cdata.irq_enable & BIT(1))
1069                         handle_nested_irq(
1070                                 irq_find_mapping(soc_irq_cdata.domain, 1));
1071
1072                 if (oc3 && soc_irq_cdata.irq_enable & BIT(2))
1073                         handle_nested_irq(
1074                                 irq_find_mapping(soc_irq_cdata.domain, 2));
1075
1076                 if (oc4 && soc_irq_cdata.irq_enable & BIT(3))
1077                         handle_nested_irq(
1078                                 irq_find_mapping(soc_irq_cdata.domain, 3));
1079         }
1080
1081         if (st) {
1082                 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st);
1083                 writel(st, ts->regs + OC_INTR_STATUS);
1084         }
1085
1086         return IRQ_HANDLED;
1087 }
1088
1089 /**
1090  * soctherm_edp_isr() - Disables any active interrupts
1091  * @irq:        The interrupt request number
1092  * @arg:        Opaque pointer to an argument
1093  *
1094  * Writes to the OC_INTR_DISABLE register the over current interrupt status,
1095  * masking any asserted interrupts. Doing this prevents the same interrupts
1096  * from triggering this isr repeatedly. The thread woken by this isr will
1097  * handle asserted interrupts and subsequently unmask/re-enable them.
1098  *
1099  * The OC_INTR_DISABLE register indicates which OC interrupts
1100  * have been disabled.
1101  *
1102  * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread
1103  */
1104 static irqreturn_t soctherm_edp_isr(int irq, void *arg)
1105 {
1106         struct tegra_soctherm *ts = arg;
1107         u32 r;
1108
1109         if (!ts)
1110                 return IRQ_NONE;
1111
1112         r = readl(ts->regs + OC_INTR_STATUS);
1113         writel(r, ts->regs + OC_INTR_DISABLE);
1114
1115         return IRQ_WAKE_THREAD;
1116 }
1117
1118 /**
1119  * soctherm_oc_irq_lock() - locks the over-current interrupt request
1120  * @data:       Interrupt request data
1121  *
1122  * Looks up the chip data from @data and locks the mutex associated with
1123  * a particular over-current interrupt request.
1124  */
1125 static void soctherm_oc_irq_lock(struct irq_data *data)
1126 {
1127         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1128
1129         mutex_lock(&d->irq_lock);
1130 }
1131
1132 /**
1133  * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request
1134  * @data:               Interrupt request data
1135  *
1136  * Looks up the interrupt request data @data and unlocks the mutex associated
1137  * with a particular over-current interrupt request.
1138  */
1139 static void soctherm_oc_irq_sync_unlock(struct irq_data *data)
1140 {
1141         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1142
1143         mutex_unlock(&d->irq_lock);
1144 }
1145
1146 /**
1147  * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue
1148  * @data:       irq_data structure of the chip
1149  *
1150  * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM
1151  * to respond to over-current interrupts.
1152  *
1153  */
1154 static void soctherm_oc_irq_enable(struct irq_data *data)
1155 {
1156         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1157
1158         d->irq_enable |= BIT(data->hwirq);
1159 }
1160
1161 /**
1162  * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests
1163  * @data:       The interrupt request information
1164  *
1165  * Clears the interrupt request enable bit of the overcurrent
1166  * interrupt request chip data.
1167  *
1168  * Return: Nothing is returned (void)
1169  */
1170 static void soctherm_oc_irq_disable(struct irq_data *data)
1171 {
1172         struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data);
1173
1174         d->irq_enable &= ~BIT(data->hwirq);
1175 }
1176
1177 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type)
1178 {
1179         return 0;
1180 }
1181
1182 /**
1183  * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper
1184  * @h:          Interrupt request domain
1185  * @virq:       Virtual interrupt request number
1186  * @hw:         Hardware interrupt request number
1187  *
1188  * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM
1189  * interrupt request is called, the irq_domain takes the request's virtual
1190  * request number (much like a virtual memory address) and maps it to a
1191  * physical hardware request number.
1192  *
1193  * When a mapping doesn't already exist for a virtual request number, the
1194  * irq_domain calls this function to associate the virtual request number with
1195  * a hardware request number.
1196  *
1197  * Return: 0
1198  */
1199 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq,
1200                 irq_hw_number_t hw)
1201 {
1202         struct soctherm_oc_irq_chip_data *data = h->host_data;
1203
1204         irq_set_chip_data(virq, data);
1205         irq_set_chip(virq, &data->irq_chip);
1206         irq_set_nested_thread(virq, 1);
1207         return 0;
1208 }
1209
1210 /**
1211  * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts
1212  * @d:      Interrupt request domain
1213  * @ctrlr:      Controller device tree node
1214  * @intspec:    Array of u32s from DTs "interrupt" property
1215  * @intsize:    Number of values inside the intspec array
1216  * @out_hwirq:  HW IRQ value associated with this interrupt
1217  * @out_type:   The IRQ SENSE type for this interrupt.
1218  *
1219  * This Device Tree IRQ specifier translation function will translate a
1220  * specific "interrupt" as defined by 2 DT values where the cell values map
1221  * the hwirq number + 1 and linux irq flags. Since the output is the hwirq
1222  * number, this function will subtract 1 from the value listed in DT.
1223  *
1224  * Return: 0
1225  */
1226 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d,
1227         struct device_node *ctrlr, const u32 *intspec, unsigned int intsize,
1228         irq_hw_number_t *out_hwirq, unsigned int *out_type)
1229 {
1230         if (WARN_ON(intsize < 2))
1231                 return -EINVAL;
1232
1233         /*
1234          * The HW value is 1 index less than the DT IRQ values.
1235          * i.e. OC4 goes to HW index 3.
1236          */
1237         *out_hwirq = intspec[0] - 1;
1238         *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK;
1239         return 0;
1240 }
1241
1242 static const struct irq_domain_ops soctherm_oc_domain_ops = {
1243         .map    = soctherm_oc_irq_map,
1244         .xlate  = soctherm_irq_domain_xlate_twocell,
1245 };
1246
1247 /**
1248  * soctherm_oc_int_init() - Initial enabling of the over
1249  * current interrupts
1250  * @np: The devicetree node for soctherm
1251  * @num_irqs:   The number of new interrupt requests
1252  *
1253  * Sets the over current interrupt request chip data
1254  *
1255  * Return: 0 on success or if overcurrent interrupts are not enabled,
1256  * -ENOMEM (out of memory), or irq_base if the function failed to
1257  * allocate the irqs
1258  */
1259 static int soctherm_oc_int_init(struct device_node *np, int num_irqs)
1260 {
1261         if (!num_irqs) {
1262                 pr_info("%s(): OC interrupts are not enabled\n", __func__);
1263                 return 0;
1264         }
1265
1266         mutex_init(&soc_irq_cdata.irq_lock);
1267         soc_irq_cdata.irq_enable = 0;
1268
1269         soc_irq_cdata.irq_chip.name = "soc_therm_oc";
1270         soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock;
1271         soc_irq_cdata.irq_chip.irq_bus_sync_unlock =
1272                 soctherm_oc_irq_sync_unlock;
1273         soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable;
1274         soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable;
1275         soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type;
1276         soc_irq_cdata.irq_chip.irq_set_wake = NULL;
1277
1278         soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs,
1279                                                      &soctherm_oc_domain_ops,
1280                                                      &soc_irq_cdata);
1281
1282         if (!soc_irq_cdata.domain) {
1283                 pr_err("%s: Failed to create IRQ domain\n", __func__);
1284                 return -ENOMEM;
1285         }
1286
1287         pr_debug("%s(): OC interrupts enabled successful\n", __func__);
1288         return 0;
1289 }
1290
1291 #ifdef CONFIG_DEBUG_FS
1292 static int regs_show(struct seq_file *s, void *data)
1293 {
1294         struct platform_device *pdev = s->private;
1295         struct tegra_soctherm *ts = platform_get_drvdata(pdev);
1296         const struct tegra_tsensor *tsensors = ts->soc->tsensors;
1297         const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
1298         u32 r, state;
1299         int i, level;
1300
1301         seq_puts(s, "-----TSENSE (convert HW)-----\n");
1302
1303         for (i = 0; i < ts->soc->num_tsensors; i++) {
1304                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
1305                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
1306
1307                 seq_printf(s, "%s: ", tsensors[i].name);
1308                 seq_printf(s, "En(%d) ", state);
1309
1310                 if (!state) {
1311                         seq_puts(s, "\n");
1312                         continue;
1313                 }
1314
1315                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
1316                 seq_printf(s, "tiddq(%d) ", state);
1317                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
1318                 seq_printf(s, "ten_count(%d) ", state);
1319                 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
1320                 seq_printf(s, "tsample(%d) ", state + 1);
1321
1322                 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
1323                 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
1324                 seq_printf(s, "Temp(%d/", state);
1325                 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
1326                 seq_printf(s, "%d) ", translate_temp(state));
1327
1328                 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
1329                 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
1330                 seq_printf(s, "Capture(%d/", state);
1331                 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
1332                 seq_printf(s, "%d) ", state);
1333
1334                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
1335                 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
1336                 seq_printf(s, "Stop(%d) ", state);
1337                 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
1338                 seq_printf(s, "Tall(%d) ", state);
1339                 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
1340                 seq_printf(s, "Over(%d/", state);
1341                 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
1342                 seq_printf(s, "%d/", state);
1343                 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
1344                 seq_printf(s, "%d) ", state);
1345
1346                 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
1347                 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
1348                 seq_printf(s, "Therm_A/B(%d/", state);
1349                 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
1350                 seq_printf(s, "%d)\n", (s16)state);
1351         }
1352
1353         r = readl(ts->regs + SENSOR_PDIV);
1354         seq_printf(s, "PDIV: 0x%x\n", r);
1355
1356         r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
1357         seq_printf(s, "HOTSPOT: 0x%x\n", r);
1358
1359         seq_puts(s, "\n");
1360         seq_puts(s, "-----SOC_THERM-----\n");
1361
1362         r = readl(ts->regs + SENSOR_TEMP1);
1363         state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
1364         seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
1365         state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
1366         seq_printf(s, " GPU(%d) ", translate_temp(state));
1367         r = readl(ts->regs + SENSOR_TEMP2);
1368         state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
1369         seq_printf(s, " PLLX(%d) ", translate_temp(state));
1370         state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
1371         seq_printf(s, " MEM(%d)\n", translate_temp(state));
1372
1373         for (i = 0; i < ts->soc->num_ttgs; i++) {
1374                 seq_printf(s, "%s:\n", ttgs[i]->name);
1375                 for (level = 0; level < 4; level++) {
1376                         s32 v;
1377                         u32 mask;
1378                         u16 off = ttgs[i]->thermctl_lvl0_offset;
1379
1380                         r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1381
1382                         mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
1383                         state = REG_GET_MASK(r, mask);
1384                         v = sign_extend32(state, ts->soc->bptt - 1);
1385                         v *= ts->soc->thresh_grain;
1386                         seq_printf(s, "   %d: Up/Dn(%d /", level, v);
1387
1388                         mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
1389                         state = REG_GET_MASK(r, mask);
1390                         v = sign_extend32(state, ts->soc->bptt - 1);
1391                         v *= ts->soc->thresh_grain;
1392                         seq_printf(s, "%d ) ", v);
1393
1394                         mask = THERMCTL_LVL0_CPU0_EN_MASK;
1395                         state = REG_GET_MASK(r, mask);
1396                         seq_printf(s, "En(%d) ", state);
1397
1398                         mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
1399                         state = REG_GET_MASK(r, mask);
1400                         seq_puts(s, "CPU Throt");
1401                         if (!state)
1402                                 seq_printf(s, "(%s) ", "none");
1403                         else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
1404                                 seq_printf(s, "(%s) ", "L");
1405                         else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
1406                                 seq_printf(s, "(%s) ", "H");
1407                         else
1408                                 seq_printf(s, "(%s) ", "H+L");
1409
1410                         mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
1411                         state = REG_GET_MASK(r, mask);
1412                         seq_puts(s, "GPU Throt");
1413                         if (!state)
1414                                 seq_printf(s, "(%s) ", "none");
1415                         else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
1416                                 seq_printf(s, "(%s) ", "L");
1417                         else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
1418                                 seq_printf(s, "(%s) ", "H");
1419                         else
1420                                 seq_printf(s, "(%s) ", "H+L");
1421
1422                         mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
1423                         state = REG_GET_MASK(r, mask);
1424                         seq_printf(s, "Status(%s)\n",
1425                                    state == 0 ? "LO" :
1426                                    state == 1 ? "In" :
1427                                    state == 2 ? "Res" : "HI");
1428                 }
1429         }
1430
1431         r = readl(ts->regs + THERMCTL_STATS_CTL);
1432         seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
1433                    r & STATS_CTL_EN_UP ? "En" : "--",
1434                    r & STATS_CTL_EN_DN ? "En" : "--");
1435
1436         for (level = 0; level < 4; level++) {
1437                 u16 off;
1438
1439                 off = THERMCTL_LVL0_UP_STATS;
1440                 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1441                 seq_printf(s, "  Level_%d Up(%d) ", level, r);
1442
1443                 off = THERMCTL_LVL0_DN_STATS;
1444                 r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
1445                 seq_printf(s, "Dn(%d)\n", r);
1446         }
1447
1448         r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
1449         state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
1450         seq_printf(s, "Thermtrip Any En(%d)\n", state);
1451         for (i = 0; i < ts->soc->num_ttgs; i++) {
1452                 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
1453                 seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
1454                 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
1455                 state *= ts->soc->thresh_grain;
1456                 seq_printf(s, "Thresh(%d)\n", state);
1457         }
1458
1459         r = readl(ts->regs + THROT_GLOBAL_CFG);
1460         seq_puts(s, "\n");
1461         seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
1462
1463         seq_puts(s, "---------------------------------------------------\n");
1464         r = readl(ts->regs + THROT_STATUS);
1465         state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
1466         seq_printf(s, "THROT STATUS: breach(%d) ", state);
1467         state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
1468         seq_printf(s, "state(%d) ", state);
1469         state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
1470         seq_printf(s, "enabled(%d)\n", state);
1471
1472         r = readl(ts->regs + CPU_PSKIP_STATUS);
1473         if (ts->soc->use_ccroc) {
1474                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1475                 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
1476         } else {
1477                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
1478                 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
1479                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
1480                 seq_printf(s, "N(%d) ", state);
1481                 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
1482                 seq_printf(s, "enabled(%d)\n", state);
1483         }
1484
1485         return 0;
1486 }
1487
1488 DEFINE_SHOW_ATTRIBUTE(regs);
1489
1490 static void soctherm_debug_init(struct platform_device *pdev)
1491 {
1492         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1493         struct dentry *root;
1494
1495         root = debugfs_create_dir("soctherm", NULL);
1496
1497         tegra->debugfs_dir = root;
1498
1499         debugfs_create_file("reg_contents", 0644, root, pdev, &regs_fops);
1500 }
1501 #else
1502 static inline void soctherm_debug_init(struct platform_device *pdev) {}
1503 #endif
1504
1505 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
1506 {
1507         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1508         int err;
1509
1510         if (!tegra->clock_soctherm || !tegra->clock_tsensor)
1511                 return -EINVAL;
1512
1513         reset_control_assert(tegra->reset);
1514
1515         if (enable) {
1516                 err = clk_prepare_enable(tegra->clock_soctherm);
1517                 if (err) {
1518                         reset_control_deassert(tegra->reset);
1519                         return err;
1520                 }
1521
1522                 err = clk_prepare_enable(tegra->clock_tsensor);
1523                 if (err) {
1524                         clk_disable_unprepare(tegra->clock_soctherm);
1525                         reset_control_deassert(tegra->reset);
1526                         return err;
1527                 }
1528         } else {
1529                 clk_disable_unprepare(tegra->clock_tsensor);
1530                 clk_disable_unprepare(tegra->clock_soctherm);
1531         }
1532
1533         reset_control_deassert(tegra->reset);
1534
1535         return 0;
1536 }
1537
1538 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
1539                                     unsigned long *max_state)
1540 {
1541         *max_state = 1;
1542         return 0;
1543 }
1544
1545 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
1546                                     unsigned long *cur_state)
1547 {
1548         struct tegra_soctherm *ts = cdev->devdata;
1549         u32 r;
1550
1551         r = readl(ts->regs + THROT_STATUS);
1552         if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
1553                 *cur_state = 1;
1554         else
1555                 *cur_state = 0;
1556
1557         return 0;
1558 }
1559
1560 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
1561                                 unsigned long cur_state)
1562 {
1563         return 0;
1564 }
1565
1566 static const struct thermal_cooling_device_ops throt_cooling_ops = {
1567         .get_max_state = throt_get_cdev_max_state,
1568         .get_cur_state = throt_get_cdev_cur_state,
1569         .set_cur_state = throt_set_cdev_state,
1570 };
1571
1572 static int soctherm_thermtrips_parse(struct platform_device *pdev)
1573 {
1574         struct device *dev = &pdev->dev;
1575         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1576         struct tsensor_group_thermtrips *tt = ts->soc->thermtrips;
1577         const int max_num_prop = ts->soc->num_ttgs * 2;
1578         u32 *tlb;
1579         int i, j, n, ret;
1580
1581         if (!tt)
1582                 return -ENOMEM;
1583
1584         n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips");
1585         if (n <= 0) {
1586                 dev_info(dev,
1587                          "missing thermtrips, will use critical trips as shut down temp\n");
1588                 return n;
1589         }
1590
1591         n = min(max_num_prop, n);
1592
1593         tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL);
1594         if (!tlb)
1595                 return -ENOMEM;
1596         ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips",
1597                                          tlb, n);
1598         if (ret) {
1599                 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret);
1600                 return ret;
1601         }
1602
1603         i = 0;
1604         for (j = 0; j < n; j = j + 2) {
1605                 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM)
1606                         continue;
1607
1608                 tt[i].id = tlb[j];
1609                 tt[i].temp = tlb[j + 1];
1610                 i++;
1611         }
1612
1613         return 0;
1614 }
1615
1616 static void soctherm_oc_cfg_parse(struct device *dev,
1617                                 struct device_node *np_oc,
1618                                 struct soctherm_throt_cfg *stc)
1619 {
1620         u32 val;
1621
1622         if (of_property_read_bool(np_oc, "nvidia,polarity-active-low"))
1623                 stc->oc_cfg.active_low = 1;
1624         else
1625                 stc->oc_cfg.active_low = 0;
1626
1627         if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) {
1628                 stc->oc_cfg.intr_en = 1;
1629                 stc->oc_cfg.alarm_cnt_thresh = val;
1630         }
1631
1632         if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val))
1633                 stc->oc_cfg.throt_period = val;
1634
1635         if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val))
1636                 stc->oc_cfg.alarm_filter = val;
1637
1638         /* BRIEF throttling by default, do not support STICKY */
1639         stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF;
1640 }
1641
1642 static int soctherm_throt_cfg_parse(struct device *dev,
1643                                     struct device_node *np,
1644                                     struct soctherm_throt_cfg *stc)
1645 {
1646         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1647         int ret;
1648         u32 val;
1649
1650         ret = of_property_read_u32(np, "nvidia,priority", &val);
1651         if (ret) {
1652                 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name);
1653                 return -EINVAL;
1654         }
1655         stc->priority = val;
1656
1657         ret = of_property_read_u32(np, ts->soc->use_ccroc ?
1658                                    "nvidia,cpu-throt-level" :
1659                                    "nvidia,cpu-throt-percent", &val);
1660         if (!ret) {
1661                 if (ts->soc->use_ccroc &&
1662                     val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1663                         stc->cpu_throt_level = val;
1664                 else if (!ts->soc->use_ccroc && val <= 100)
1665                         stc->cpu_throt_depth = val;
1666                 else
1667                         goto err;
1668         } else {
1669                 goto err;
1670         }
1671
1672         ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val);
1673         if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH)
1674                 stc->gpu_throt_level = val;
1675         else
1676                 goto err;
1677
1678         return 0;
1679
1680 err:
1681         dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n",
1682                 stc->name);
1683         return -EINVAL;
1684 }
1685
1686 /**
1687  * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
1688  * and register them as cooling devices.
1689  * @pdev: Pointer to platform_device struct
1690  */
1691 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
1692 {
1693         struct device *dev = &pdev->dev;
1694         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1695         struct device_node *np_stc, *np_stcc;
1696         const char *name;
1697         int i;
1698
1699         for (i = 0; i < THROTTLE_SIZE; i++) {
1700                 ts->throt_cfgs[i].name = throt_names[i];
1701                 ts->throt_cfgs[i].id = i;
1702                 ts->throt_cfgs[i].init = false;
1703         }
1704
1705         np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
1706         if (!np_stc) {
1707                 dev_info(dev,
1708                          "throttle-cfg: no throttle-cfgs - not enabling\n");
1709                 return;
1710         }
1711
1712         for_each_child_of_node(np_stc, np_stcc) {
1713                 struct soctherm_throt_cfg *stc;
1714                 struct thermal_cooling_device *tcd;
1715                 int err;
1716
1717                 name = np_stcc->name;
1718                 stc = find_throttle_cfg_by_name(ts, name);
1719                 if (!stc) {
1720                         dev_err(dev,
1721                                 "throttle-cfg: could not find %s\n", name);
1722                         continue;
1723                 }
1724
1725                 if (stc->init) {
1726                         dev_err(dev, "throttle-cfg: %s: redefined!\n", name);
1727                         of_node_put(np_stcc);
1728                         break;
1729                 }
1730
1731                 err = soctherm_throt_cfg_parse(dev, np_stcc, stc);
1732                 if (err)
1733                         continue;
1734
1735                 if (stc->id >= THROTTLE_OC1) {
1736                         soctherm_oc_cfg_parse(dev, np_stcc, stc);
1737                         stc->init = true;
1738                 } else {
1739
1740                         tcd = thermal_of_cooling_device_register(np_stcc,
1741                                                          (char *)name, ts,
1742                                                          &throt_cooling_ops);
1743                         if (IS_ERR_OR_NULL(tcd)) {
1744                                 dev_err(dev,
1745                                         "throttle-cfg: %s: failed to register cooling device\n",
1746                                         name);
1747                                 continue;
1748                         }
1749                         stc->cdev = tcd;
1750                         stc->init = true;
1751                 }
1752
1753         }
1754
1755         of_node_put(np_stc);
1756 }
1757
1758 /**
1759  * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1760  * @ts: pointer to a struct tegra_soctherm
1761  * @level: describing the level LOW/MED/HIGH of throttling
1762  *
1763  * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1764  * the M/N values desired for each level. This function does this.
1765  *
1766  * This function pre-programs the CCROC NV_THERM levels in terms of
1767  * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1768  * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1769  */
1770 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1771 {
1772         u8 depth, dividend;
1773         u32 r;
1774
1775         switch (level) {
1776         case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1777                 depth = 50;
1778                 break;
1779         case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1780                 depth = 75;
1781                 break;
1782         case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1783                 depth = 80;
1784                 break;
1785         case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1786                 return;
1787         default:
1788                 return;
1789         }
1790
1791         dividend = THROT_DEPTH_DIVIDEND(depth);
1792
1793         /* setup PSKIP in ccroc nv_therm registers */
1794         r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1795         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1796         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1797         ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1798
1799         r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1800         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1801         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1802         r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1803         ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1804 }
1805
1806 /**
1807  * throttlectl_cpu_level_select() - program CPU pulse skipper config
1808  * @ts: pointer to a struct tegra_soctherm
1809  * @throt: the LIGHT/HEAVY of throttle event id
1810  *
1811  * Pulse skippers are used to throttle clock frequencies.  This
1812  * function programs the pulse skippers based on @throt and platform
1813  * data.  This function is used on SoCs which have CPU-local pulse
1814  * skipper control, such as T13x. It programs soctherm's interface to
1815  * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1816  * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1817  */
1818 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1819                                          enum soctherm_throttle_id throt)
1820 {
1821         u32 r, throt_vect;
1822
1823         /* Denver:CCROC NV_THERM interface N:3 Mapping */
1824         switch (ts->throt_cfgs[throt].cpu_throt_level) {
1825         case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1826                 throt_vect = THROT_VECT_LOW;
1827                 break;
1828         case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1829                 throt_vect = THROT_VECT_MED;
1830                 break;
1831         case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1832                 throt_vect = THROT_VECT_HIGH;
1833                 break;
1834         default:
1835                 throt_vect = THROT_VECT_NONE;
1836                 break;
1837         }
1838
1839         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1840         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1841         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1842         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1843         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1844
1845         /* bypass sequencer in soc_therm as it is programmed in ccroc */
1846         r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1847         writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1848 }
1849
1850 /**
1851  * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1852  * @ts: pointer to a struct tegra_soctherm
1853  * @throt: the LIGHT/HEAVY of throttle event id
1854  *
1855  * Pulse skippers are used to throttle clock frequencies.  This
1856  * function programs the pulse skippers based on @throt and platform
1857  * data.  This function is used for CPUs that have "remote" pulse
1858  * skipper control, e.g., the CPU pulse skipper is controlled by the
1859  * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1860  * complex.)
1861  */
1862 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1863                                enum soctherm_throttle_id throt)
1864 {
1865         u32 r;
1866         int depth;
1867         u8 dividend;
1868
1869         depth = ts->throt_cfgs[throt].cpu_throt_depth;
1870         dividend = THROT_DEPTH_DIVIDEND(depth);
1871
1872         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1873         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1874         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1875         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1876         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1877
1878         r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1879         r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1880         r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1881         writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1882 }
1883
1884 /**
1885  * throttlectl_gpu_level_select() - selects throttling level for GPU
1886  * @ts: pointer to a struct tegra_soctherm
1887  * @throt: the LIGHT/HEAVY of throttle event id
1888  *
1889  * This function programs soctherm's interface to GK20a NV_THERM to select
1890  * pre-configured "Low", "Medium" or "Heavy" throttle levels.
1891  *
1892  * Return: boolean true if HW was programmed
1893  */
1894 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts,
1895                                          enum soctherm_throttle_id throt)
1896 {
1897         u32 r, level, throt_vect;
1898
1899         level = ts->throt_cfgs[throt].gpu_throt_level;
1900         throt_vect = THROT_LEVEL_TO_DEPTH(level);
1901         r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1902         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1903         r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect);
1904         writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU));
1905 }
1906
1907 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts,
1908                                       enum soctherm_throttle_id throt)
1909 {
1910         u32 r;
1911         struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg;
1912
1913         if (oc->mode == OC_THROTTLE_MODE_DISABLED)
1914                 return -EINVAL;
1915
1916         r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1);
1917         r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode);
1918         r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low);
1919         r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1);
1920         writel(r, ts->regs + ALARM_CFG(throt));
1921         writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt));
1922         writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt));
1923         writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt));
1924         soctherm_oc_intr_enable(ts, throt, oc->intr_en);
1925
1926         return 0;
1927 }
1928
1929 /**
1930  * soctherm_throttle_program() - programs pulse skippers' configuration
1931  * @ts: pointer to a struct tegra_soctherm
1932  * @throt: the LIGHT/HEAVY of the throttle event id.
1933  *
1934  * Pulse skippers are used to throttle clock frequencies.
1935  * This function programs the pulse skippers.
1936  */
1937 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1938                                       enum soctherm_throttle_id throt)
1939 {
1940         u32 r;
1941         struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1942
1943         if (!stc.init)
1944                 return;
1945
1946         if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt)))
1947                 return;
1948
1949         /* Setup PSKIP parameters */
1950         if (ts->soc->use_ccroc)
1951                 throttlectl_cpu_level_select(ts, throt);
1952         else
1953                 throttlectl_cpu_mn(ts, throt);
1954
1955         throttlectl_gpu_level_select(ts, throt);
1956
1957         r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1958         writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1959
1960         r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1961         writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1962
1963         r = readl(ts->regs + THROT_PRIORITY_LOCK);
1964         r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1965         if (r >= stc.priority)
1966                 return;
1967         r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1968                          stc.priority);
1969         writel(r, ts->regs + THROT_PRIORITY_LOCK);
1970 }
1971
1972 static void tegra_soctherm_throttle(struct device *dev)
1973 {
1974         struct tegra_soctherm *ts = dev_get_drvdata(dev);
1975         u32 v;
1976         int i;
1977
1978         /* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1979         if (ts->soc->use_ccroc) {
1980                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1981                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1982                 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1983         }
1984
1985         /* Thermal HW throttle programming */
1986         for (i = 0; i < THROTTLE_SIZE; i++)
1987                 soctherm_throttle_program(ts, i);
1988
1989         v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1990         if (ts->soc->use_ccroc) {
1991                 ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1992
1993                 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1994                 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1995                 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1996         } else {
1997                 writel(v, ts->regs + THROT_GLOBAL_CFG);
1998
1999                 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
2000                 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
2001                 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
2002         }
2003
2004         /* initialize stats collection */
2005         v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
2006             STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
2007         writel(v, ts->regs + THERMCTL_STATS_CTL);
2008 }
2009
2010 static int soctherm_interrupts_init(struct platform_device *pdev,
2011                                     struct tegra_soctherm *tegra)
2012 {
2013         struct device_node *np = pdev->dev.of_node;
2014         int ret;
2015
2016         ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX);
2017         if (ret < 0) {
2018                 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n");
2019                 return ret;
2020         }
2021
2022         tegra->thermal_irq = platform_get_irq(pdev, 0);
2023         if (tegra->thermal_irq < 0) {
2024                 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n");
2025                 return 0;
2026         }
2027
2028         tegra->edp_irq = platform_get_irq(pdev, 1);
2029         if (tegra->edp_irq < 0) {
2030                 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n");
2031                 return 0;
2032         }
2033
2034         ret = devm_request_threaded_irq(&pdev->dev,
2035                                         tegra->thermal_irq,
2036                                         soctherm_thermal_isr,
2037                                         soctherm_thermal_isr_thread,
2038                                         IRQF_ONESHOT,
2039                                         dev_name(&pdev->dev),
2040                                         tegra);
2041         if (ret < 0) {
2042                 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n");
2043                 return ret;
2044         }
2045
2046         ret = devm_request_threaded_irq(&pdev->dev,
2047                                         tegra->edp_irq,
2048                                         soctherm_edp_isr,
2049                                         soctherm_edp_isr_thread,
2050                                         IRQF_ONESHOT,
2051                                         "soctherm_edp",
2052                                         tegra);
2053         if (ret < 0) {
2054                 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n");
2055                 return ret;
2056         }
2057
2058         return 0;
2059 }
2060
2061 static void soctherm_init(struct platform_device *pdev)
2062 {
2063         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2064         const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
2065         int i;
2066         u32 pdiv, hotspot;
2067
2068         /* Initialize raw sensors */
2069         for (i = 0; i < tegra->soc->num_tsensors; ++i)
2070                 enable_tsensor(tegra, i);
2071
2072         /* program pdiv and hotspot offsets per THERM */
2073         pdiv = readl(tegra->regs + SENSOR_PDIV);
2074         hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
2075         for (i = 0; i < tegra->soc->num_ttgs; ++i) {
2076                 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
2077                                     ttgs[i]->pdiv);
2078                 /* hotspot offset from PLLX, doesn't need to configure PLLX */
2079                 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
2080                         continue;
2081                 hotspot =  REG_SET_MASK(hotspot,
2082                                         ttgs[i]->pllx_hotspot_mask,
2083                                         ttgs[i]->pllx_hotspot_diff);
2084         }
2085         writel(pdiv, tegra->regs + SENSOR_PDIV);
2086         writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
2087
2088         /* Configure hw throttle */
2089         tegra_soctherm_throttle(&pdev->dev);
2090 }
2091
2092 static const struct of_device_id tegra_soctherm_of_match[] = {
2093 #ifdef CONFIG_ARCH_TEGRA_124_SOC
2094         {
2095                 .compatible = "nvidia,tegra124-soctherm",
2096                 .data = &tegra124_soctherm,
2097         },
2098 #endif
2099 #ifdef CONFIG_ARCH_TEGRA_132_SOC
2100         {
2101                 .compatible = "nvidia,tegra132-soctherm",
2102                 .data = &tegra132_soctherm,
2103         },
2104 #endif
2105 #ifdef CONFIG_ARCH_TEGRA_210_SOC
2106         {
2107                 .compatible = "nvidia,tegra210-soctherm",
2108                 .data = &tegra210_soctherm,
2109         },
2110 #endif
2111         { },
2112 };
2113 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
2114
2115 static int tegra_soctherm_probe(struct platform_device *pdev)
2116 {
2117         const struct of_device_id *match;
2118         struct tegra_soctherm *tegra;
2119         struct thermal_zone_device *z;
2120         struct tsensor_shared_calib shared_calib;
2121         struct tegra_soctherm_soc *soc;
2122         unsigned int i;
2123         int err;
2124
2125         match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
2126         if (!match)
2127                 return -ENODEV;
2128
2129         soc = (struct tegra_soctherm_soc *)match->data;
2130         if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
2131                 return -EINVAL;
2132
2133         tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
2134         if (!tegra)
2135                 return -ENOMEM;
2136
2137         mutex_init(&tegra->thermctl_lock);
2138         dev_set_drvdata(&pdev->dev, tegra);
2139
2140         tegra->soc = soc;
2141
2142         tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg");
2143         if (IS_ERR(tegra->regs)) {
2144                 dev_err(&pdev->dev, "can't get soctherm registers");
2145                 return PTR_ERR(tegra->regs);
2146         }
2147
2148         if (!tegra->soc->use_ccroc) {
2149                 tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg");
2150                 if (IS_ERR(tegra->clk_regs)) {
2151                         dev_err(&pdev->dev, "can't get car clk registers");
2152                         return PTR_ERR(tegra->clk_regs);
2153                 }
2154         } else {
2155                 tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg");
2156                 if (IS_ERR(tegra->ccroc_regs)) {
2157                         dev_err(&pdev->dev, "can't get ccroc registers");
2158                         return PTR_ERR(tegra->ccroc_regs);
2159                 }
2160         }
2161
2162         tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
2163         if (IS_ERR(tegra->reset)) {
2164                 dev_err(&pdev->dev, "can't get soctherm reset\n");
2165                 return PTR_ERR(tegra->reset);
2166         }
2167
2168         tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
2169         if (IS_ERR(tegra->clock_tsensor)) {
2170                 dev_err(&pdev->dev, "can't get tsensor clock\n");
2171                 return PTR_ERR(tegra->clock_tsensor);
2172         }
2173
2174         tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
2175         if (IS_ERR(tegra->clock_soctherm)) {
2176                 dev_err(&pdev->dev, "can't get soctherm clock\n");
2177                 return PTR_ERR(tegra->clock_soctherm);
2178         }
2179
2180         tegra->calib = devm_kcalloc(&pdev->dev,
2181                                     soc->num_tsensors, sizeof(u32),
2182                                     GFP_KERNEL);
2183         if (!tegra->calib)
2184                 return -ENOMEM;
2185
2186         /* calculate shared calibration data */
2187         err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
2188         if (err)
2189                 return err;
2190
2191         /* calculate tsensor calibration data */
2192         for (i = 0; i < soc->num_tsensors; ++i) {
2193                 err = tegra_calc_tsensor_calib(&soc->tsensors[i],
2194                                                &shared_calib,
2195                                                &tegra->calib[i]);
2196                 if (err)
2197                         return err;
2198         }
2199
2200         tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
2201                                            soc->num_ttgs, sizeof(z),
2202                                            GFP_KERNEL);
2203         if (!tegra->thermctl_tzs)
2204                 return -ENOMEM;
2205
2206         err = soctherm_clk_enable(pdev, true);
2207         if (err)
2208                 return err;
2209
2210         soctherm_thermtrips_parse(pdev);
2211
2212         soctherm_init_hw_throt_cdev(pdev);
2213
2214         soctherm_init(pdev);
2215
2216         for (i = 0; i < soc->num_ttgs; ++i) {
2217                 struct tegra_thermctl_zone *zone =
2218                         devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
2219                 if (!zone) {
2220                         err = -ENOMEM;
2221                         goto disable_clocks;
2222                 }
2223
2224                 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
2225                 zone->dev = &pdev->dev;
2226                 zone->sg = soc->ttgs[i];
2227                 zone->ts = tegra;
2228
2229                 z = devm_thermal_zone_of_sensor_register(&pdev->dev,
2230                                                          soc->ttgs[i]->id, zone,
2231                                                          &tegra_of_thermal_ops);
2232                 if (IS_ERR(z)) {
2233                         err = PTR_ERR(z);
2234                         dev_err(&pdev->dev, "failed to register sensor: %d\n",
2235                                 err);
2236                         goto disable_clocks;
2237                 }
2238
2239                 zone->tz = z;
2240                 tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
2241
2242                 /* Configure hw trip points */
2243                 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
2244                 if (err)
2245                         goto disable_clocks;
2246         }
2247
2248         err = soctherm_interrupts_init(pdev, tegra);
2249
2250         soctherm_debug_init(pdev);
2251
2252         return 0;
2253
2254 disable_clocks:
2255         soctherm_clk_enable(pdev, false);
2256
2257         return err;
2258 }
2259
2260 static int tegra_soctherm_remove(struct platform_device *pdev)
2261 {
2262         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2263
2264         debugfs_remove_recursive(tegra->debugfs_dir);
2265
2266         soctherm_clk_enable(pdev, false);
2267
2268         return 0;
2269 }
2270
2271 static int __maybe_unused soctherm_suspend(struct device *dev)
2272 {
2273         struct platform_device *pdev = to_platform_device(dev);
2274
2275         soctherm_clk_enable(pdev, false);
2276
2277         return 0;
2278 }
2279
2280 static int __maybe_unused soctherm_resume(struct device *dev)
2281 {
2282         struct platform_device *pdev = to_platform_device(dev);
2283         struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
2284         struct tegra_soctherm_soc *soc = tegra->soc;
2285         int err, i;
2286
2287         err = soctherm_clk_enable(pdev, true);
2288         if (err) {
2289                 dev_err(&pdev->dev,
2290                         "Resume failed: enable clocks failed\n");
2291                 return err;
2292         }
2293
2294         soctherm_init(pdev);
2295
2296         for (i = 0; i < soc->num_ttgs; ++i) {
2297                 struct thermal_zone_device *tz;
2298
2299                 tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
2300                 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
2301                 if (err) {
2302                         dev_err(&pdev->dev,
2303                                 "Resume failed: set hwtrips failed\n");
2304                         return err;
2305                 }
2306         }
2307
2308         return 0;
2309 }
2310
2311 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
2312
2313 static struct platform_driver tegra_soctherm_driver = {
2314         .probe = tegra_soctherm_probe,
2315         .remove = tegra_soctherm_remove,
2316         .driver = {
2317                 .name = "tegra_soctherm",
2318                 .pm = &tegra_soctherm_pm,
2319                 .of_match_table = tegra_soctherm_of_match,
2320         },
2321 };
2322 module_platform_driver(tegra_soctherm_driver);
2323
2324 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
2325 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
2326 MODULE_LICENSE("GPL v2");