Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-2.6-microblaze.git] / drivers / thermal / devfreq_cooling.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * devfreq_cooling: Thermal cooling device implementation for devices using
4  *                  devfreq
5  *
6  * Copyright (C) 2014-2015 ARM Limited
7  *
8  * TODO:
9  *    - If OPPs are added or removed after devfreq cooling has
10  *      registered, the devfreq cooling won't react to it.
11  */
12
13 #include <linux/devfreq.h>
14 #include <linux/devfreq_cooling.h>
15 #include <linux/energy_model.h>
16 #include <linux/export.h>
17 #include <linux/idr.h>
18 #include <linux/slab.h>
19 #include <linux/pm_opp.h>
20 #include <linux/pm_qos.h>
21 #include <linux/thermal.h>
22
23 #include <trace/events/thermal.h>
24
25 #define HZ_PER_KHZ              1000
26 #define SCALE_ERROR_MITIGATION  100
27
28 static DEFINE_IDA(devfreq_ida);
29
30 /**
31  * struct devfreq_cooling_device - Devfreq cooling device
32  * @id:         unique integer value corresponding to each
33  *              devfreq_cooling_device registered.
34  * @cdev:       Pointer to associated thermal cooling device.
35  * @devfreq:    Pointer to associated devfreq device.
36  * @cooling_state:      Current cooling state.
37  * @freq_table: Pointer to a table with the frequencies sorted in descending
38  *              order.  You can index the table by cooling device state
39  * @max_state:  It is the last index, that is, one less than the number of the
40  *              OPPs
41  * @power_ops:  Pointer to devfreq_cooling_power, a more precised model.
42  * @res_util:   Resource utilization scaling factor for the power.
43  *              It is multiplied by 100 to minimize the error. It is used
44  *              for estimation of the power budget instead of using
45  *              'utilization' (which is 'busy_time' / 'total_time').
46  *              The 'res_util' range is from 100 to power * 100 for the
47  *              corresponding 'state'.
48  * @capped_state:       index to cooling state with in dynamic power budget
49  * @req_max_freq:       PM QoS request for limiting the maximum frequency
50  *                      of the devfreq device.
51  * @em_pd:              Energy Model for the associated Devfreq device
52  */
53 struct devfreq_cooling_device {
54         int id;
55         struct thermal_cooling_device *cdev;
56         struct devfreq *devfreq;
57         unsigned long cooling_state;
58         u32 *freq_table;
59         size_t max_state;
60         struct devfreq_cooling_power *power_ops;
61         u32 res_util;
62         int capped_state;
63         struct dev_pm_qos_request req_max_freq;
64         struct em_perf_domain *em_pd;
65 };
66
67 static int devfreq_cooling_get_max_state(struct thermal_cooling_device *cdev,
68                                          unsigned long *state)
69 {
70         struct devfreq_cooling_device *dfc = cdev->devdata;
71
72         *state = dfc->max_state;
73
74         return 0;
75 }
76
77 static int devfreq_cooling_get_cur_state(struct thermal_cooling_device *cdev,
78                                          unsigned long *state)
79 {
80         struct devfreq_cooling_device *dfc = cdev->devdata;
81
82         *state = dfc->cooling_state;
83
84         return 0;
85 }
86
87 static int devfreq_cooling_set_cur_state(struct thermal_cooling_device *cdev,
88                                          unsigned long state)
89 {
90         struct devfreq_cooling_device *dfc = cdev->devdata;
91         struct devfreq *df = dfc->devfreq;
92         struct device *dev = df->dev.parent;
93         unsigned long freq;
94         int perf_idx;
95
96         if (state == dfc->cooling_state)
97                 return 0;
98
99         dev_dbg(dev, "Setting cooling state %lu\n", state);
100
101         if (state > dfc->max_state)
102                 return -EINVAL;
103
104         if (dfc->em_pd) {
105                 perf_idx = dfc->max_state - state;
106                 freq = dfc->em_pd->table[perf_idx].frequency * 1000;
107         } else {
108                 freq = dfc->freq_table[state];
109         }
110
111         dev_pm_qos_update_request(&dfc->req_max_freq,
112                                   DIV_ROUND_UP(freq, HZ_PER_KHZ));
113
114         dfc->cooling_state = state;
115
116         return 0;
117 }
118
119 /**
120  * get_perf_idx() - get the performance index corresponding to a frequency
121  * @em_pd:      Pointer to device's Energy Model
122  * @freq:       frequency in kHz
123  *
124  * Return: the performance index associated with the @freq, or
125  * -EINVAL if it wasn't found.
126  */
127 static int get_perf_idx(struct em_perf_domain *em_pd, unsigned long freq)
128 {
129         int i;
130
131         for (i = 0; i < em_pd->nr_perf_states; i++) {
132                 if (em_pd->table[i].frequency == freq)
133                         return i;
134         }
135
136         return -EINVAL;
137 }
138
139 static unsigned long get_voltage(struct devfreq *df, unsigned long freq)
140 {
141         struct device *dev = df->dev.parent;
142         unsigned long voltage;
143         struct dev_pm_opp *opp;
144
145         opp = dev_pm_opp_find_freq_exact(dev, freq, true);
146         if (PTR_ERR(opp) == -ERANGE)
147                 opp = dev_pm_opp_find_freq_exact(dev, freq, false);
148
149         if (IS_ERR(opp)) {
150                 dev_err_ratelimited(dev, "Failed to find OPP for frequency %lu: %ld\n",
151                                     freq, PTR_ERR(opp));
152                 return 0;
153         }
154
155         voltage = dev_pm_opp_get_voltage(opp) / 1000; /* mV */
156         dev_pm_opp_put(opp);
157
158         if (voltage == 0) {
159                 dev_err_ratelimited(dev,
160                                     "Failed to get voltage for frequency %lu\n",
161                                     freq);
162         }
163
164         return voltage;
165 }
166
167 static void _normalize_load(struct devfreq_dev_status *status)
168 {
169         if (status->total_time > 0xfffff) {
170                 status->total_time >>= 10;
171                 status->busy_time >>= 10;
172         }
173
174         status->busy_time <<= 10;
175         status->busy_time /= status->total_time ? : 1;
176
177         status->busy_time = status->busy_time ? : 1;
178         status->total_time = 1024;
179 }
180
181 static int devfreq_cooling_get_requested_power(struct thermal_cooling_device *cdev,
182                                                u32 *power)
183 {
184         struct devfreq_cooling_device *dfc = cdev->devdata;
185         struct devfreq *df = dfc->devfreq;
186         struct devfreq_dev_status status;
187         unsigned long state;
188         unsigned long freq;
189         unsigned long voltage;
190         int res, perf_idx;
191
192         mutex_lock(&df->lock);
193         status = df->last_status;
194         mutex_unlock(&df->lock);
195
196         freq = status.current_frequency;
197
198         if (dfc->power_ops && dfc->power_ops->get_real_power) {
199                 voltage = get_voltage(df, freq);
200                 if (voltage == 0) {
201                         res = -EINVAL;
202                         goto fail;
203                 }
204
205                 res = dfc->power_ops->get_real_power(df, power, freq, voltage);
206                 if (!res) {
207                         state = dfc->capped_state;
208                         dfc->res_util = dfc->em_pd->table[state].power;
209                         dfc->res_util *= SCALE_ERROR_MITIGATION;
210
211                         if (*power > 1)
212                                 dfc->res_util /= *power;
213                 } else {
214                         goto fail;
215                 }
216         } else {
217                 /* Energy Model frequencies are in kHz */
218                 perf_idx = get_perf_idx(dfc->em_pd, freq / 1000);
219                 if (perf_idx < 0) {
220                         res = -EAGAIN;
221                         goto fail;
222                 }
223
224                 _normalize_load(&status);
225
226                 /* Scale power for utilization */
227                 *power = dfc->em_pd->table[perf_idx].power;
228                 *power *= status.busy_time;
229                 *power >>= 10;
230         }
231
232         trace_thermal_power_devfreq_get_power(cdev, &status, freq, *power);
233
234         return 0;
235 fail:
236         /* It is safe to set max in this case */
237         dfc->res_util = SCALE_ERROR_MITIGATION;
238         return res;
239 }
240
241 static int devfreq_cooling_state2power(struct thermal_cooling_device *cdev,
242                                        unsigned long state, u32 *power)
243 {
244         struct devfreq_cooling_device *dfc = cdev->devdata;
245         int perf_idx;
246
247         if (state > dfc->max_state)
248                 return -EINVAL;
249
250         perf_idx = dfc->max_state - state;
251         *power = dfc->em_pd->table[perf_idx].power;
252
253         return 0;
254 }
255
256 static int devfreq_cooling_power2state(struct thermal_cooling_device *cdev,
257                                        u32 power, unsigned long *state)
258 {
259         struct devfreq_cooling_device *dfc = cdev->devdata;
260         struct devfreq *df = dfc->devfreq;
261         struct devfreq_dev_status status;
262         unsigned long freq;
263         s32 est_power;
264         int i;
265
266         mutex_lock(&df->lock);
267         status = df->last_status;
268         mutex_unlock(&df->lock);
269
270         freq = status.current_frequency;
271
272         if (dfc->power_ops && dfc->power_ops->get_real_power) {
273                 /* Scale for resource utilization */
274                 est_power = power * dfc->res_util;
275                 est_power /= SCALE_ERROR_MITIGATION;
276         } else {
277                 /* Scale dynamic power for utilization */
278                 _normalize_load(&status);
279                 est_power = power << 10;
280                 est_power /= status.busy_time;
281         }
282
283         /*
284          * Find the first cooling state that is within the power
285          * budget. The EM power table is sorted ascending.
286          */
287         for (i = dfc->max_state; i > 0; i--)
288                 if (est_power >= dfc->em_pd->table[i].power)
289                         break;
290
291         *state = dfc->max_state - i;
292         dfc->capped_state = *state;
293
294         trace_thermal_power_devfreq_limit(cdev, freq, *state, power);
295         return 0;
296 }
297
298 static struct thermal_cooling_device_ops devfreq_cooling_ops = {
299         .get_max_state = devfreq_cooling_get_max_state,
300         .get_cur_state = devfreq_cooling_get_cur_state,
301         .set_cur_state = devfreq_cooling_set_cur_state,
302 };
303
304 /**
305  * devfreq_cooling_gen_tables() - Generate frequency table.
306  * @dfc:        Pointer to devfreq cooling device.
307  * @num_opps:   Number of OPPs
308  *
309  * Generate frequency table which holds the frequencies in descending
310  * order. That way its indexed by cooling device state. This is for
311  * compatibility with drivers which do not register Energy Model.
312  *
313  * Return: 0 on success, negative error code on failure.
314  */
315 static int devfreq_cooling_gen_tables(struct devfreq_cooling_device *dfc,
316                                       int num_opps)
317 {
318         struct devfreq *df = dfc->devfreq;
319         struct device *dev = df->dev.parent;
320         unsigned long freq;
321         int i;
322
323         dfc->freq_table = kcalloc(num_opps, sizeof(*dfc->freq_table),
324                              GFP_KERNEL);
325         if (!dfc->freq_table)
326                 return -ENOMEM;
327
328         for (i = 0, freq = ULONG_MAX; i < num_opps; i++, freq--) {
329                 struct dev_pm_opp *opp;
330
331                 opp = dev_pm_opp_find_freq_floor(dev, &freq);
332                 if (IS_ERR(opp)) {
333                         kfree(dfc->freq_table);
334                         return PTR_ERR(opp);
335                 }
336
337                 dev_pm_opp_put(opp);
338                 dfc->freq_table[i] = freq;
339         }
340
341         return 0;
342 }
343
344 /**
345  * of_devfreq_cooling_register_power() - Register devfreq cooling device,
346  *                                      with OF and power information.
347  * @np: Pointer to OF device_node.
348  * @df: Pointer to devfreq device.
349  * @dfc_power:  Pointer to devfreq_cooling_power.
350  *
351  * Register a devfreq cooling device.  The available OPPs must be
352  * registered on the device.
353  *
354  * If @dfc_power is provided, the cooling device is registered with the
355  * power extensions.  For the power extensions to work correctly,
356  * devfreq should use the simple_ondemand governor, other governors
357  * are not currently supported.
358  */
359 struct thermal_cooling_device *
360 of_devfreq_cooling_register_power(struct device_node *np, struct devfreq *df,
361                                   struct devfreq_cooling_power *dfc_power)
362 {
363         struct thermal_cooling_device *cdev;
364         struct device *dev = df->dev.parent;
365         struct devfreq_cooling_device *dfc;
366         char dev_name[THERMAL_NAME_LENGTH];
367         int err, num_opps;
368
369         dfc = kzalloc(sizeof(*dfc), GFP_KERNEL);
370         if (!dfc)
371                 return ERR_PTR(-ENOMEM);
372
373         dfc->devfreq = df;
374
375         dfc->em_pd = em_pd_get(dev);
376         if (dfc->em_pd) {
377                 devfreq_cooling_ops.get_requested_power =
378                         devfreq_cooling_get_requested_power;
379                 devfreq_cooling_ops.state2power = devfreq_cooling_state2power;
380                 devfreq_cooling_ops.power2state = devfreq_cooling_power2state;
381
382                 dfc->power_ops = dfc_power;
383
384                 num_opps = em_pd_nr_perf_states(dfc->em_pd);
385         } else {
386                 /* Backward compatibility for drivers which do not use IPA */
387                 dev_dbg(dev, "missing EM for cooling device\n");
388
389                 num_opps = dev_pm_opp_get_opp_count(dev);
390
391                 err = devfreq_cooling_gen_tables(dfc, num_opps);
392                 if (err)
393                         goto free_dfc;
394         }
395
396         if (num_opps <= 0) {
397                 err = -EINVAL;
398                 goto free_dfc;
399         }
400
401         /* max_state is an index, not a counter */
402         dfc->max_state = num_opps - 1;
403
404         err = dev_pm_qos_add_request(dev, &dfc->req_max_freq,
405                                      DEV_PM_QOS_MAX_FREQUENCY,
406                                      PM_QOS_MAX_FREQUENCY_DEFAULT_VALUE);
407         if (err < 0)
408                 goto free_table;
409
410         err = ida_simple_get(&devfreq_ida, 0, 0, GFP_KERNEL);
411         if (err < 0)
412                 goto remove_qos_req;
413
414         dfc->id = err;
415
416         snprintf(dev_name, sizeof(dev_name), "thermal-devfreq-%d", dfc->id);
417
418         cdev = thermal_of_cooling_device_register(np, dev_name, dfc,
419                                                   &devfreq_cooling_ops);
420         if (IS_ERR(cdev)) {
421                 err = PTR_ERR(cdev);
422                 dev_err(dev,
423                         "Failed to register devfreq cooling device (%d)\n",
424                         err);
425                 goto release_ida;
426         }
427
428         dfc->cdev = cdev;
429
430         return cdev;
431
432 release_ida:
433         ida_simple_remove(&devfreq_ida, dfc->id);
434 remove_qos_req:
435         dev_pm_qos_remove_request(&dfc->req_max_freq);
436 free_table:
437         kfree(dfc->freq_table);
438 free_dfc:
439         kfree(dfc);
440
441         return ERR_PTR(err);
442 }
443 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register_power);
444
445 /**
446  * of_devfreq_cooling_register() - Register devfreq cooling device,
447  *                                with OF information.
448  * @np: Pointer to OF device_node.
449  * @df: Pointer to devfreq device.
450  */
451 struct thermal_cooling_device *
452 of_devfreq_cooling_register(struct device_node *np, struct devfreq *df)
453 {
454         return of_devfreq_cooling_register_power(np, df, NULL);
455 }
456 EXPORT_SYMBOL_GPL(of_devfreq_cooling_register);
457
458 /**
459  * devfreq_cooling_register() - Register devfreq cooling device.
460  * @df: Pointer to devfreq device.
461  */
462 struct thermal_cooling_device *devfreq_cooling_register(struct devfreq *df)
463 {
464         return of_devfreq_cooling_register(NULL, df);
465 }
466 EXPORT_SYMBOL_GPL(devfreq_cooling_register);
467
468 /**
469  * devfreq_cooling_em_register_power() - Register devfreq cooling device with
470  *              power information and automatically register Energy Model (EM)
471  * @df:         Pointer to devfreq device.
472  * @dfc_power:  Pointer to devfreq_cooling_power.
473  *
474  * Register a devfreq cooling device and automatically register EM. The
475  * available OPPs must be registered for the device.
476  *
477  * If @dfc_power is provided, the cooling device is registered with the
478  * power extensions. It is using the simple Energy Model which requires
479  * "dynamic-power-coefficient" a devicetree property. To not break drivers
480  * which miss that DT property, the function won't bail out when the EM
481  * registration failed. The cooling device will be registered if everything
482  * else is OK.
483  */
484 struct thermal_cooling_device *
485 devfreq_cooling_em_register(struct devfreq *df,
486                             struct devfreq_cooling_power *dfc_power)
487 {
488         struct thermal_cooling_device *cdev;
489         struct device *dev;
490         int ret;
491
492         if (IS_ERR_OR_NULL(df))
493                 return ERR_PTR(-EINVAL);
494
495         dev = df->dev.parent;
496
497         ret = dev_pm_opp_of_register_em(dev, NULL);
498         if (ret)
499                 dev_dbg(dev, "Unable to register EM for devfreq cooling device (%d)\n",
500                         ret);
501
502         cdev = of_devfreq_cooling_register_power(dev->of_node, df, dfc_power);
503
504         if (IS_ERR_OR_NULL(cdev))
505                 em_dev_unregister_perf_domain(dev);
506
507         return cdev;
508 }
509 EXPORT_SYMBOL_GPL(devfreq_cooling_em_register);
510
511 /**
512  * devfreq_cooling_unregister() - Unregister devfreq cooling device.
513  * @cdev: Pointer to devfreq cooling device to unregister.
514  *
515  * Unregisters devfreq cooling device and related Energy Model if it was
516  * present.
517  */
518 void devfreq_cooling_unregister(struct thermal_cooling_device *cdev)
519 {
520         struct devfreq_cooling_device *dfc;
521         struct device *dev;
522
523         if (IS_ERR_OR_NULL(cdev))
524                 return;
525
526         dfc = cdev->devdata;
527         dev = dfc->devfreq->dev.parent;
528
529         thermal_cooling_device_unregister(dfc->cdev);
530         ida_simple_remove(&devfreq_ida, dfc->id);
531         dev_pm_qos_remove_request(&dfc->req_max_freq);
532
533         em_dev_unregister_perf_domain(dev);
534
535         kfree(dfc->freq_table);
536         kfree(dfc);
537 }
538 EXPORT_SYMBOL_GPL(devfreq_cooling_unregister);