Merge tag 'objtool-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / thermal / cpufreq_cooling.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/drivers/thermal/cpufreq_cooling.c
4  *
5  *  Copyright (C) 2012  Samsung Electronics Co., Ltd(http://www.samsung.com)
6  *
7  *  Copyright (C) 2012-2018 Linaro Limited.
8  *
9  *  Authors:    Amit Daniel <amit.kachhap@linaro.org>
10  *              Viresh Kumar <viresh.kumar@linaro.org>
11  *
12  */
13 #include <linux/cpu.h>
14 #include <linux/cpufreq.h>
15 #include <linux/cpu_cooling.h>
16 #include <linux/energy_model.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
19 #include <linux/idr.h>
20 #include <linux/pm_opp.h>
21 #include <linux/pm_qos.h>
22 #include <linux/slab.h>
23 #include <linux/thermal.h>
24
25 #include <trace/events/thermal.h>
26
27 /*
28  * Cooling state <-> CPUFreq frequency
29  *
30  * Cooling states are translated to frequencies throughout this driver and this
31  * is the relation between them.
32  *
33  * Highest cooling state corresponds to lowest possible frequency.
34  *
35  * i.e.
36  *      level 0 --> 1st Max Freq
37  *      level 1 --> 2nd Max Freq
38  *      ...
39  */
40
41 /**
42  * struct time_in_idle - Idle time stats
43  * @time: previous reading of the absolute time that this cpu was idle
44  * @timestamp: wall time of the last invocation of get_cpu_idle_time_us()
45  */
46 struct time_in_idle {
47         u64 time;
48         u64 timestamp;
49 };
50
51 /**
52  * struct cpufreq_cooling_device - data for cooling device with cpufreq
53  * @id: unique integer value corresponding to each cpufreq_cooling_device
54  *      registered.
55  * @last_load: load measured by the latest call to cpufreq_get_requested_power()
56  * @cpufreq_state: integer value representing the current state of cpufreq
57  *      cooling devices.
58  * @max_level: maximum cooling level. One less than total number of valid
59  *      cpufreq frequencies.
60  * @em: Reference on the Energy Model of the device
61  * @cdev: thermal_cooling_device pointer to keep track of the
62  *      registered cooling device.
63  * @policy: cpufreq policy.
64  * @node: list_head to link all cpufreq_cooling_device together.
65  * @idle_time: idle time stats
66  * @qos_req: PM QoS contraint to apply
67  *
68  * This structure is required for keeping information of each registered
69  * cpufreq_cooling_device.
70  */
71 struct cpufreq_cooling_device {
72         int id;
73         u32 last_load;
74         unsigned int cpufreq_state;
75         unsigned int max_level;
76         struct em_perf_domain *em;
77         struct cpufreq_policy *policy;
78         struct list_head node;
79 #ifndef CONFIG_SMP
80         struct time_in_idle *idle_time;
81 #endif
82         struct freq_qos_request qos_req;
83 };
84
85 static DEFINE_IDA(cpufreq_ida);
86 static DEFINE_MUTEX(cooling_list_lock);
87 static LIST_HEAD(cpufreq_cdev_list);
88
89 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
90 /**
91  * get_level: Find the level for a particular frequency
92  * @cpufreq_cdev: cpufreq_cdev for which the property is required
93  * @freq: Frequency
94  *
95  * Return: level corresponding to the frequency.
96  */
97 static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_cdev,
98                                unsigned int freq)
99 {
100         int i;
101
102         for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
103                 if (freq > cpufreq_cdev->em->table[i].frequency)
104                         break;
105         }
106
107         return cpufreq_cdev->max_level - i - 1;
108 }
109
110 static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_cdev,
111                              u32 freq)
112 {
113         int i;
114
115         for (i = cpufreq_cdev->max_level - 1; i >= 0; i--) {
116                 if (freq > cpufreq_cdev->em->table[i].frequency)
117                         break;
118         }
119
120         return cpufreq_cdev->em->table[i + 1].power;
121 }
122
123 static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_cdev,
124                              u32 power)
125 {
126         int i;
127
128         for (i = cpufreq_cdev->max_level; i >= 0; i--) {
129                 if (power >= cpufreq_cdev->em->table[i].power)
130                         break;
131         }
132
133         return cpufreq_cdev->em->table[i].frequency;
134 }
135
136 /**
137  * get_load() - get load for a cpu
138  * @cpufreq_cdev: struct cpufreq_cooling_device for the cpu
139  * @cpu: cpu number
140  * @cpu_idx: index of the cpu in time_in_idle array
141  *
142  * Return: The average load of cpu @cpu in percentage since this
143  * function was last called.
144  */
145 #ifdef CONFIG_SMP
146 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
147                     int cpu_idx)
148 {
149         unsigned long max = arch_scale_cpu_capacity(cpu);
150         unsigned long util;
151
152         util = sched_cpu_util(cpu, max);
153         return (util * 100) / max;
154 }
155 #else /* !CONFIG_SMP */
156 static u32 get_load(struct cpufreq_cooling_device *cpufreq_cdev, int cpu,
157                     int cpu_idx)
158 {
159         u32 load;
160         u64 now, now_idle, delta_time, delta_idle;
161         struct time_in_idle *idle_time = &cpufreq_cdev->idle_time[cpu_idx];
162
163         now_idle = get_cpu_idle_time(cpu, &now, 0);
164         delta_idle = now_idle - idle_time->time;
165         delta_time = now - idle_time->timestamp;
166
167         if (delta_time <= delta_idle)
168                 load = 0;
169         else
170                 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
171
172         idle_time->time = now_idle;
173         idle_time->timestamp = now;
174
175         return load;
176 }
177 #endif /* CONFIG_SMP */
178
179 /**
180  * get_dynamic_power() - calculate the dynamic power
181  * @cpufreq_cdev:       &cpufreq_cooling_device for this cdev
182  * @freq:       current frequency
183  *
184  * Return: the dynamic power consumed by the cpus described by
185  * @cpufreq_cdev.
186  */
187 static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_cdev,
188                              unsigned long freq)
189 {
190         u32 raw_cpu_power;
191
192         raw_cpu_power = cpu_freq_to_power(cpufreq_cdev, freq);
193         return (raw_cpu_power * cpufreq_cdev->last_load) / 100;
194 }
195
196 /**
197  * cpufreq_get_requested_power() - get the current power
198  * @cdev:       &thermal_cooling_device pointer
199  * @power:      pointer in which to store the resulting power
200  *
201  * Calculate the current power consumption of the cpus in milliwatts
202  * and store it in @power.  This function should actually calculate
203  * the requested power, but it's hard to get the frequency that
204  * cpufreq would have assigned if there were no thermal limits.
205  * Instead, we calculate the current power on the assumption that the
206  * immediate future will look like the immediate past.
207  *
208  * We use the current frequency and the average load since this
209  * function was last called.  In reality, there could have been
210  * multiple opps since this function was last called and that affects
211  * the load calculation.  While it's not perfectly accurate, this
212  * simplification is good enough and works.  REVISIT this, as more
213  * complex code may be needed if experiments show that it's not
214  * accurate enough.
215  *
216  * Return: 0 on success, -E* if getting the static power failed.
217  */
218 static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
219                                        u32 *power)
220 {
221         unsigned long freq;
222         int i = 0, cpu;
223         u32 total_load = 0;
224         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
225         struct cpufreq_policy *policy = cpufreq_cdev->policy;
226         u32 *load_cpu = NULL;
227
228         freq = cpufreq_quick_get(policy->cpu);
229
230         if (trace_thermal_power_cpu_get_power_enabled()) {
231                 u32 ncpus = cpumask_weight(policy->related_cpus);
232
233                 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
234         }
235
236         for_each_cpu(cpu, policy->related_cpus) {
237                 u32 load;
238
239                 if (cpu_online(cpu))
240                         load = get_load(cpufreq_cdev, cpu, i);
241                 else
242                         load = 0;
243
244                 total_load += load;
245                 if (load_cpu)
246                         load_cpu[i] = load;
247
248                 i++;
249         }
250
251         cpufreq_cdev->last_load = total_load;
252
253         *power = get_dynamic_power(cpufreq_cdev, freq);
254
255         if (load_cpu) {
256                 trace_thermal_power_cpu_get_power(policy->related_cpus, freq,
257                                                   load_cpu, i, *power);
258
259                 kfree(load_cpu);
260         }
261
262         return 0;
263 }
264
265 /**
266  * cpufreq_state2power() - convert a cpu cdev state to power consumed
267  * @cdev:       &thermal_cooling_device pointer
268  * @state:      cooling device state to be converted
269  * @power:      pointer in which to store the resulting power
270  *
271  * Convert cooling device state @state into power consumption in
272  * milliwatts assuming 100% load.  Store the calculated power in
273  * @power.
274  *
275  * Return: 0 on success, -EINVAL if the cooling device state could not
276  * be converted into a frequency or other -E* if there was an error
277  * when calculating the static power.
278  */
279 static int cpufreq_state2power(struct thermal_cooling_device *cdev,
280                                unsigned long state, u32 *power)
281 {
282         unsigned int freq, num_cpus, idx;
283         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
284
285         /* Request state should be less than max_level */
286         if (state > cpufreq_cdev->max_level)
287                 return -EINVAL;
288
289         num_cpus = cpumask_weight(cpufreq_cdev->policy->cpus);
290
291         idx = cpufreq_cdev->max_level - state;
292         freq = cpufreq_cdev->em->table[idx].frequency;
293         *power = cpu_freq_to_power(cpufreq_cdev, freq) * num_cpus;
294
295         return 0;
296 }
297
298 /**
299  * cpufreq_power2state() - convert power to a cooling device state
300  * @cdev:       &thermal_cooling_device pointer
301  * @power:      power in milliwatts to be converted
302  * @state:      pointer in which to store the resulting state
303  *
304  * Calculate a cooling device state for the cpus described by @cdev
305  * that would allow them to consume at most @power mW and store it in
306  * @state.  Note that this calculation depends on external factors
307  * such as the cpu load or the current static power.  Calling this
308  * function with the same power as input can yield different cooling
309  * device states depending on those external factors.
310  *
311  * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
312  * the calculated frequency could not be converted to a valid state.
313  * The latter should not happen unless the frequencies available to
314  * cpufreq have changed since the initialization of the cpu cooling
315  * device.
316  */
317 static int cpufreq_power2state(struct thermal_cooling_device *cdev,
318                                u32 power, unsigned long *state)
319 {
320         unsigned int target_freq;
321         u32 last_load, normalised_power;
322         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
323         struct cpufreq_policy *policy = cpufreq_cdev->policy;
324
325         last_load = cpufreq_cdev->last_load ?: 1;
326         normalised_power = (power * 100) / last_load;
327         target_freq = cpu_power_to_freq(cpufreq_cdev, normalised_power);
328
329         *state = get_level(cpufreq_cdev, target_freq);
330         trace_thermal_power_cpu_limit(policy->related_cpus, target_freq, *state,
331                                       power);
332         return 0;
333 }
334
335 static inline bool em_is_sane(struct cpufreq_cooling_device *cpufreq_cdev,
336                               struct em_perf_domain *em) {
337         struct cpufreq_policy *policy;
338         unsigned int nr_levels;
339
340         if (!em)
341                 return false;
342
343         policy = cpufreq_cdev->policy;
344         if (!cpumask_equal(policy->related_cpus, em_span_cpus(em))) {
345                 pr_err("The span of pd %*pbl is misaligned with cpufreq policy %*pbl\n",
346                         cpumask_pr_args(em_span_cpus(em)),
347                         cpumask_pr_args(policy->related_cpus));
348                 return false;
349         }
350
351         nr_levels = cpufreq_cdev->max_level + 1;
352         if (em_pd_nr_perf_states(em) != nr_levels) {
353                 pr_err("The number of performance states in pd %*pbl (%u) doesn't match the number of cooling levels (%u)\n",
354                         cpumask_pr_args(em_span_cpus(em)),
355                         em_pd_nr_perf_states(em), nr_levels);
356                 return false;
357         }
358
359         return true;
360 }
361 #endif /* CONFIG_THERMAL_GOV_POWER_ALLOCATOR */
362
363 #ifdef CONFIG_SMP
364 static inline int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
365 {
366         return 0;
367 }
368
369 static inline void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
370 {
371 }
372 #else
373 static int allocate_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
374 {
375         unsigned int num_cpus = cpumask_weight(cpufreq_cdev->policy->related_cpus);
376
377         cpufreq_cdev->idle_time = kcalloc(num_cpus,
378                                           sizeof(*cpufreq_cdev->idle_time),
379                                           GFP_KERNEL);
380         if (!cpufreq_cdev->idle_time)
381                 return -ENOMEM;
382
383         return 0;
384 }
385
386 static void free_idle_time(struct cpufreq_cooling_device *cpufreq_cdev)
387 {
388         kfree(cpufreq_cdev->idle_time);
389         cpufreq_cdev->idle_time = NULL;
390 }
391 #endif /* CONFIG_SMP */
392
393 static unsigned int get_state_freq(struct cpufreq_cooling_device *cpufreq_cdev,
394                                    unsigned long state)
395 {
396         struct cpufreq_policy *policy;
397         unsigned long idx;
398
399 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
400         /* Use the Energy Model table if available */
401         if (cpufreq_cdev->em) {
402                 idx = cpufreq_cdev->max_level - state;
403                 return cpufreq_cdev->em->table[idx].frequency;
404         }
405 #endif
406
407         /* Otherwise, fallback on the CPUFreq table */
408         policy = cpufreq_cdev->policy;
409         if (policy->freq_table_sorted == CPUFREQ_TABLE_SORTED_ASCENDING)
410                 idx = cpufreq_cdev->max_level - state;
411         else
412                 idx = state;
413
414         return policy->freq_table[idx].frequency;
415 }
416
417 /* cpufreq cooling device callback functions are defined below */
418
419 /**
420  * cpufreq_get_max_state - callback function to get the max cooling state.
421  * @cdev: thermal cooling device pointer.
422  * @state: fill this variable with the max cooling state.
423  *
424  * Callback for the thermal cooling device to return the cpufreq
425  * max cooling state.
426  *
427  * Return: 0 on success, an error code otherwise.
428  */
429 static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
430                                  unsigned long *state)
431 {
432         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
433
434         *state = cpufreq_cdev->max_level;
435         return 0;
436 }
437
438 /**
439  * cpufreq_get_cur_state - callback function to get the current cooling state.
440  * @cdev: thermal cooling device pointer.
441  * @state: fill this variable with the current cooling state.
442  *
443  * Callback for the thermal cooling device to return the cpufreq
444  * current cooling state.
445  *
446  * Return: 0 on success, an error code otherwise.
447  */
448 static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
449                                  unsigned long *state)
450 {
451         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
452
453         *state = cpufreq_cdev->cpufreq_state;
454
455         return 0;
456 }
457
458 /**
459  * cpufreq_set_cur_state - callback function to set the current cooling state.
460  * @cdev: thermal cooling device pointer.
461  * @state: set this variable to the current cooling state.
462  *
463  * Callback for the thermal cooling device to change the cpufreq
464  * current cooling state.
465  *
466  * Return: 0 on success, an error code otherwise.
467  */
468 static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
469                                  unsigned long state)
470 {
471         struct cpufreq_cooling_device *cpufreq_cdev = cdev->devdata;
472         struct cpumask *cpus;
473         unsigned int frequency;
474         unsigned long max_capacity, capacity;
475         int ret;
476
477         /* Request state should be less than max_level */
478         if (state > cpufreq_cdev->max_level)
479                 return -EINVAL;
480
481         /* Check if the old cooling action is same as new cooling action */
482         if (cpufreq_cdev->cpufreq_state == state)
483                 return 0;
484
485         frequency = get_state_freq(cpufreq_cdev, state);
486
487         ret = freq_qos_update_request(&cpufreq_cdev->qos_req, frequency);
488         if (ret >= 0) {
489                 cpufreq_cdev->cpufreq_state = state;
490                 cpus = cpufreq_cdev->policy->cpus;
491                 max_capacity = arch_scale_cpu_capacity(cpumask_first(cpus));
492                 capacity = frequency * max_capacity;
493                 capacity /= cpufreq_cdev->policy->cpuinfo.max_freq;
494                 arch_set_thermal_pressure(cpus, max_capacity - capacity);
495                 ret = 0;
496         }
497
498         return ret;
499 }
500
501 /* Bind cpufreq callbacks to thermal cooling device ops */
502
503 static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
504         .get_max_state          = cpufreq_get_max_state,
505         .get_cur_state          = cpufreq_get_cur_state,
506         .set_cur_state          = cpufreq_set_cur_state,
507 };
508
509 /**
510  * __cpufreq_cooling_register - helper function to create cpufreq cooling device
511  * @np: a valid struct device_node to the cooling device device tree node
512  * @policy: cpufreq policy
513  * Normally this should be same as cpufreq policy->related_cpus.
514  * @em: Energy Model of the cpufreq policy
515  *
516  * This interface function registers the cpufreq cooling device with the name
517  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
518  * cooling devices. It also gives the opportunity to link the cooling device
519  * with a device tree node, in order to bind it via the thermal DT code.
520  *
521  * Return: a valid struct thermal_cooling_device pointer on success,
522  * on failure, it returns a corresponding ERR_PTR().
523  */
524 static struct thermal_cooling_device *
525 __cpufreq_cooling_register(struct device_node *np,
526                         struct cpufreq_policy *policy,
527                         struct em_perf_domain *em)
528 {
529         struct thermal_cooling_device *cdev;
530         struct cpufreq_cooling_device *cpufreq_cdev;
531         char dev_name[THERMAL_NAME_LENGTH];
532         unsigned int i;
533         struct device *dev;
534         int ret;
535         struct thermal_cooling_device_ops *cooling_ops;
536
537         dev = get_cpu_device(policy->cpu);
538         if (unlikely(!dev)) {
539                 pr_warn("No cpu device for cpu %d\n", policy->cpu);
540                 return ERR_PTR(-ENODEV);
541         }
542
543         if (IS_ERR_OR_NULL(policy)) {
544                 pr_err("%s: cpufreq policy isn't valid: %p\n", __func__, policy);
545                 return ERR_PTR(-EINVAL);
546         }
547
548         i = cpufreq_table_count_valid_entries(policy);
549         if (!i) {
550                 pr_debug("%s: CPUFreq table not found or has no valid entries\n",
551                          __func__);
552                 return ERR_PTR(-ENODEV);
553         }
554
555         cpufreq_cdev = kzalloc(sizeof(*cpufreq_cdev), GFP_KERNEL);
556         if (!cpufreq_cdev)
557                 return ERR_PTR(-ENOMEM);
558
559         cpufreq_cdev->policy = policy;
560
561         ret = allocate_idle_time(cpufreq_cdev);
562         if (ret) {
563                 cdev = ERR_PTR(ret);
564                 goto free_cdev;
565         }
566
567         /* max_level is an index, not a counter */
568         cpufreq_cdev->max_level = i - 1;
569
570         ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
571         if (ret < 0) {
572                 cdev = ERR_PTR(ret);
573                 goto free_idle_time;
574         }
575         cpufreq_cdev->id = ret;
576
577         snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
578                  cpufreq_cdev->id);
579
580         cooling_ops = &cpufreq_cooling_ops;
581
582 #ifdef CONFIG_THERMAL_GOV_POWER_ALLOCATOR
583         if (em_is_sane(cpufreq_cdev, em)) {
584                 cpufreq_cdev->em = em;
585                 cooling_ops->get_requested_power = cpufreq_get_requested_power;
586                 cooling_ops->state2power = cpufreq_state2power;
587                 cooling_ops->power2state = cpufreq_power2state;
588         } else
589 #endif
590         if (policy->freq_table_sorted == CPUFREQ_TABLE_UNSORTED) {
591                 pr_err("%s: unsorted frequency tables are not supported\n",
592                        __func__);
593                 cdev = ERR_PTR(-EINVAL);
594                 goto remove_ida;
595         }
596
597         ret = freq_qos_add_request(&policy->constraints,
598                                    &cpufreq_cdev->qos_req, FREQ_QOS_MAX,
599                                    get_state_freq(cpufreq_cdev, 0));
600         if (ret < 0) {
601                 pr_err("%s: Failed to add freq constraint (%d)\n", __func__,
602                        ret);
603                 cdev = ERR_PTR(ret);
604                 goto remove_ida;
605         }
606
607         cdev = thermal_of_cooling_device_register(np, dev_name, cpufreq_cdev,
608                                                   cooling_ops);
609         if (IS_ERR(cdev))
610                 goto remove_qos_req;
611
612         mutex_lock(&cooling_list_lock);
613         list_add(&cpufreq_cdev->node, &cpufreq_cdev_list);
614         mutex_unlock(&cooling_list_lock);
615
616         return cdev;
617
618 remove_qos_req:
619         freq_qos_remove_request(&cpufreq_cdev->qos_req);
620 remove_ida:
621         ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
622 free_idle_time:
623         free_idle_time(cpufreq_cdev);
624 free_cdev:
625         kfree(cpufreq_cdev);
626         return cdev;
627 }
628
629 /**
630  * cpufreq_cooling_register - function to create cpufreq cooling device.
631  * @policy: cpufreq policy
632  *
633  * This interface function registers the cpufreq cooling device with the name
634  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
635  * cooling devices.
636  *
637  * Return: a valid struct thermal_cooling_device pointer on success,
638  * on failure, it returns a corresponding ERR_PTR().
639  */
640 struct thermal_cooling_device *
641 cpufreq_cooling_register(struct cpufreq_policy *policy)
642 {
643         return __cpufreq_cooling_register(NULL, policy, NULL);
644 }
645 EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
646
647 /**
648  * of_cpufreq_cooling_register - function to create cpufreq cooling device.
649  * @policy: cpufreq policy
650  *
651  * This interface function registers the cpufreq cooling device with the name
652  * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
653  * cooling devices. Using this API, the cpufreq cooling device will be
654  * linked to the device tree node provided.
655  *
656  * Using this function, the cooling device will implement the power
657  * extensions by using a simple cpu power model.  The cpus must have
658  * registered their OPPs using the OPP library.
659  *
660  * It also takes into account, if property present in policy CPU node, the
661  * static power consumed by the cpu.
662  *
663  * Return: a valid struct thermal_cooling_device pointer on success,
664  * and NULL on failure.
665  */
666 struct thermal_cooling_device *
667 of_cpufreq_cooling_register(struct cpufreq_policy *policy)
668 {
669         struct device_node *np = of_get_cpu_node(policy->cpu, NULL);
670         struct thermal_cooling_device *cdev = NULL;
671
672         if (!np) {
673                 pr_err("cpufreq_cooling: OF node not available for cpu%d\n",
674                        policy->cpu);
675                 return NULL;
676         }
677
678         if (of_find_property(np, "#cooling-cells", NULL)) {
679                 struct em_perf_domain *em = em_cpu_get(policy->cpu);
680
681                 cdev = __cpufreq_cooling_register(np, policy, em);
682                 if (IS_ERR(cdev)) {
683                         pr_err("cpufreq_cooling: cpu%d failed to register as cooling device: %ld\n",
684                                policy->cpu, PTR_ERR(cdev));
685                         cdev = NULL;
686                 }
687         }
688
689         of_node_put(np);
690         return cdev;
691 }
692 EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
693
694 /**
695  * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
696  * @cdev: thermal cooling device pointer.
697  *
698  * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
699  */
700 void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
701 {
702         struct cpufreq_cooling_device *cpufreq_cdev;
703
704         if (!cdev)
705                 return;
706
707         cpufreq_cdev = cdev->devdata;
708
709         mutex_lock(&cooling_list_lock);
710         list_del(&cpufreq_cdev->node);
711         mutex_unlock(&cooling_list_lock);
712
713         thermal_cooling_device_unregister(cdev);
714         freq_qos_remove_request(&cpufreq_cdev->qos_req);
715         ida_simple_remove(&cpufreq_ida, cpufreq_cdev->id);
716         free_idle_time(cpufreq_cdev);
717         kfree(cpufreq_cdev);
718 }
719 EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);