Merge tag '5.15-rc-smb3-fixes-part1' of git://git.samba.org/sfrench/cifs-2.6
[linux-2.6-microblaze.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48         struct spi_device       *spi = to_spi_device(dev);
49
50         spi_controller_put(spi->controller);
51         kfree(spi->driver_override);
52         kfree(spi);
53 }
54
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58         const struct spi_device *spi = to_spi_device(dev);
59         int len;
60
61         len = of_device_modalias(dev, buf, PAGE_SIZE);
62         if (len != -ENODEV)
63                 return len;
64
65         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66         if (len != -ENODEV)
67                 return len;
68
69         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
70 }
71 static DEVICE_ATTR_RO(modalias);
72
73 static ssize_t driver_override_store(struct device *dev,
74                                      struct device_attribute *a,
75                                      const char *buf, size_t count)
76 {
77         struct spi_device *spi = to_spi_device(dev);
78         const char *end = memchr(buf, '\n', count);
79         const size_t len = end ? end - buf : count;
80         const char *driver_override, *old;
81
82         /* We need to keep extra room for a newline when displaying value */
83         if (len >= (PAGE_SIZE - 1))
84                 return -EINVAL;
85
86         driver_override = kstrndup(buf, len, GFP_KERNEL);
87         if (!driver_override)
88                 return -ENOMEM;
89
90         device_lock(dev);
91         old = spi->driver_override;
92         if (len) {
93                 spi->driver_override = driver_override;
94         } else {
95                 /* Empty string, disable driver override */
96                 spi->driver_override = NULL;
97                 kfree(driver_override);
98         }
99         device_unlock(dev);
100         kfree(old);
101
102         return count;
103 }
104
105 static ssize_t driver_override_show(struct device *dev,
106                                     struct device_attribute *a, char *buf)
107 {
108         const struct spi_device *spi = to_spi_device(dev);
109         ssize_t len;
110
111         device_lock(dev);
112         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113         device_unlock(dev);
114         return len;
115 }
116 static DEVICE_ATTR_RW(driver_override);
117
118 #define SPI_STATISTICS_ATTRS(field, file)                               \
119 static ssize_t spi_controller_##field##_show(struct device *dev,        \
120                                              struct device_attribute *attr, \
121                                              char *buf)                 \
122 {                                                                       \
123         struct spi_controller *ctlr = container_of(dev,                 \
124                                          struct spi_controller, dev);   \
125         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
126 }                                                                       \
127 static struct device_attribute dev_attr_spi_controller_##field = {      \
128         .attr = { .name = file, .mode = 0444 },                         \
129         .show = spi_controller_##field##_show,                          \
130 };                                                                      \
131 static ssize_t spi_device_##field##_show(struct device *dev,            \
132                                          struct device_attribute *attr, \
133                                         char *buf)                      \
134 {                                                                       \
135         struct spi_device *spi = to_spi_device(dev);                    \
136         return spi_statistics_##field##_show(&spi->statistics, buf);    \
137 }                                                                       \
138 static struct device_attribute dev_attr_spi_device_##field = {          \
139         .attr = { .name = file, .mode = 0444 },                         \
140         .show = spi_device_##field##_show,                              \
141 }
142
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145                                             char *buf)                  \
146 {                                                                       \
147         unsigned long flags;                                            \
148         ssize_t len;                                                    \
149         spin_lock_irqsave(&stat->lock, flags);                          \
150         len = sprintf(buf, format_string, stat->field);                 \
151         spin_unlock_irqrestore(&stat->lock, flags);                     \
152         return len;                                                     \
153 }                                                                       \
154 SPI_STATISTICS_ATTRS(name, file)
155
156 #define SPI_STATISTICS_SHOW(field, format_string)                       \
157         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
158                                  field, format_string)
159
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
164
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
168
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
172
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
174         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
175                                  "transfer_bytes_histo_" number,        \
176                                  transfer_bytes_histo[index],  "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
194
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
196
197 static struct attribute *spi_dev_attrs[] = {
198         &dev_attr_modalias.attr,
199         &dev_attr_driver_override.attr,
200         NULL,
201 };
202
203 static const struct attribute_group spi_dev_group = {
204         .attrs  = spi_dev_attrs,
205 };
206
207 static struct attribute *spi_device_statistics_attrs[] = {
208         &dev_attr_spi_device_messages.attr,
209         &dev_attr_spi_device_transfers.attr,
210         &dev_attr_spi_device_errors.attr,
211         &dev_attr_spi_device_timedout.attr,
212         &dev_attr_spi_device_spi_sync.attr,
213         &dev_attr_spi_device_spi_sync_immediate.attr,
214         &dev_attr_spi_device_spi_async.attr,
215         &dev_attr_spi_device_bytes.attr,
216         &dev_attr_spi_device_bytes_rx.attr,
217         &dev_attr_spi_device_bytes_tx.attr,
218         &dev_attr_spi_device_transfer_bytes_histo0.attr,
219         &dev_attr_spi_device_transfer_bytes_histo1.attr,
220         &dev_attr_spi_device_transfer_bytes_histo2.attr,
221         &dev_attr_spi_device_transfer_bytes_histo3.attr,
222         &dev_attr_spi_device_transfer_bytes_histo4.attr,
223         &dev_attr_spi_device_transfer_bytes_histo5.attr,
224         &dev_attr_spi_device_transfer_bytes_histo6.attr,
225         &dev_attr_spi_device_transfer_bytes_histo7.attr,
226         &dev_attr_spi_device_transfer_bytes_histo8.attr,
227         &dev_attr_spi_device_transfer_bytes_histo9.attr,
228         &dev_attr_spi_device_transfer_bytes_histo10.attr,
229         &dev_attr_spi_device_transfer_bytes_histo11.attr,
230         &dev_attr_spi_device_transfer_bytes_histo12.attr,
231         &dev_attr_spi_device_transfer_bytes_histo13.attr,
232         &dev_attr_spi_device_transfer_bytes_histo14.attr,
233         &dev_attr_spi_device_transfer_bytes_histo15.attr,
234         &dev_attr_spi_device_transfer_bytes_histo16.attr,
235         &dev_attr_spi_device_transfers_split_maxsize.attr,
236         NULL,
237 };
238
239 static const struct attribute_group spi_device_statistics_group = {
240         .name  = "statistics",
241         .attrs  = spi_device_statistics_attrs,
242 };
243
244 static const struct attribute_group *spi_dev_groups[] = {
245         &spi_dev_group,
246         &spi_device_statistics_group,
247         NULL,
248 };
249
250 static struct attribute *spi_controller_statistics_attrs[] = {
251         &dev_attr_spi_controller_messages.attr,
252         &dev_attr_spi_controller_transfers.attr,
253         &dev_attr_spi_controller_errors.attr,
254         &dev_attr_spi_controller_timedout.attr,
255         &dev_attr_spi_controller_spi_sync.attr,
256         &dev_attr_spi_controller_spi_sync_immediate.attr,
257         &dev_attr_spi_controller_spi_async.attr,
258         &dev_attr_spi_controller_bytes.attr,
259         &dev_attr_spi_controller_bytes_rx.attr,
260         &dev_attr_spi_controller_bytes_tx.attr,
261         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278         &dev_attr_spi_controller_transfers_split_maxsize.attr,
279         NULL,
280 };
281
282 static const struct attribute_group spi_controller_statistics_group = {
283         .name  = "statistics",
284         .attrs  = spi_controller_statistics_attrs,
285 };
286
287 static const struct attribute_group *spi_master_groups[] = {
288         &spi_controller_statistics_group,
289         NULL,
290 };
291
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293                                        struct spi_transfer *xfer,
294                                        struct spi_controller *ctlr)
295 {
296         unsigned long flags;
297         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
298
299         if (l2len < 0)
300                 l2len = 0;
301
302         spin_lock_irqsave(&stats->lock, flags);
303
304         stats->transfers++;
305         stats->transfer_bytes_histo[l2len]++;
306
307         stats->bytes += xfer->len;
308         if ((xfer->tx_buf) &&
309             (xfer->tx_buf != ctlr->dummy_tx))
310                 stats->bytes_tx += xfer->len;
311         if ((xfer->rx_buf) &&
312             (xfer->rx_buf != ctlr->dummy_rx))
313                 stats->bytes_rx += xfer->len;
314
315         spin_unlock_irqrestore(&stats->lock, flags);
316 }
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
318
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320  * and the sysfs version makes coldplug work too.
321  */
322
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324                                                 const struct spi_device *sdev)
325 {
326         while (id->name[0]) {
327                 if (!strcmp(sdev->modalias, id->name))
328                         return id;
329                 id++;
330         }
331         return NULL;
332 }
333
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
335 {
336         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
337
338         return spi_match_id(sdrv->id_table, sdev);
339 }
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
341
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
343 {
344         const struct spi_device *spi = to_spi_device(dev);
345         const struct spi_driver *sdrv = to_spi_driver(drv);
346
347         /* Check override first, and if set, only use the named driver */
348         if (spi->driver_override)
349                 return strcmp(spi->driver_override, drv->name) == 0;
350
351         /* Attempt an OF style match */
352         if (of_driver_match_device(dev, drv))
353                 return 1;
354
355         /* Then try ACPI */
356         if (acpi_driver_match_device(dev, drv))
357                 return 1;
358
359         if (sdrv->id_table)
360                 return !!spi_match_id(sdrv->id_table, spi);
361
362         return strcmp(spi->modalias, drv->name) == 0;
363 }
364
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
366 {
367         const struct spi_device         *spi = to_spi_device(dev);
368         int rc;
369
370         rc = of_device_uevent_modalias(dev, env);
371         if (rc != -ENODEV)
372                 return rc;
373
374         rc = acpi_device_uevent_modalias(dev, env);
375         if (rc != -ENODEV)
376                 return rc;
377
378         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
379 }
380
381 static int spi_probe(struct device *dev)
382 {
383         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
384         struct spi_device               *spi = to_spi_device(dev);
385         int ret;
386
387         ret = of_clk_set_defaults(dev->of_node, false);
388         if (ret)
389                 return ret;
390
391         if (dev->of_node) {
392                 spi->irq = of_irq_get(dev->of_node, 0);
393                 if (spi->irq == -EPROBE_DEFER)
394                         return -EPROBE_DEFER;
395                 if (spi->irq < 0)
396                         spi->irq = 0;
397         }
398
399         ret = dev_pm_domain_attach(dev, true);
400         if (ret)
401                 return ret;
402
403         if (sdrv->probe) {
404                 ret = sdrv->probe(spi);
405                 if (ret)
406                         dev_pm_domain_detach(dev, true);
407         }
408
409         return ret;
410 }
411
412 static int spi_remove(struct device *dev)
413 {
414         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
415
416         if (sdrv->remove) {
417                 int ret;
418
419                 ret = sdrv->remove(to_spi_device(dev));
420                 if (ret)
421                         dev_warn(dev,
422                                  "Failed to unbind driver (%pe), ignoring\n",
423                                  ERR_PTR(ret));
424         }
425
426         dev_pm_domain_detach(dev, true);
427
428         return 0;
429 }
430
431 static void spi_shutdown(struct device *dev)
432 {
433         if (dev->driver) {
434                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
435
436                 if (sdrv->shutdown)
437                         sdrv->shutdown(to_spi_device(dev));
438         }
439 }
440
441 struct bus_type spi_bus_type = {
442         .name           = "spi",
443         .dev_groups     = spi_dev_groups,
444         .match          = spi_match_device,
445         .uevent         = spi_uevent,
446         .probe          = spi_probe,
447         .remove         = spi_remove,
448         .shutdown       = spi_shutdown,
449 };
450 EXPORT_SYMBOL_GPL(spi_bus_type);
451
452 /**
453  * __spi_register_driver - register a SPI driver
454  * @owner: owner module of the driver to register
455  * @sdrv: the driver to register
456  * Context: can sleep
457  *
458  * Return: zero on success, else a negative error code.
459  */
460 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
461 {
462         sdrv->driver.owner = owner;
463         sdrv->driver.bus = &spi_bus_type;
464         return driver_register(&sdrv->driver);
465 }
466 EXPORT_SYMBOL_GPL(__spi_register_driver);
467
468 /*-------------------------------------------------------------------------*/
469
470 /* SPI devices should normally not be created by SPI device drivers; that
471  * would make them board-specific.  Similarly with SPI controller drivers.
472  * Device registration normally goes into like arch/.../mach.../board-YYY.c
473  * with other readonly (flashable) information about mainboard devices.
474  */
475
476 struct boardinfo {
477         struct list_head        list;
478         struct spi_board_info   board_info;
479 };
480
481 static LIST_HEAD(board_list);
482 static LIST_HEAD(spi_controller_list);
483
484 /*
485  * Used to protect add/del operation for board_info list and
486  * spi_controller list, and their matching process
487  * also used to protect object of type struct idr
488  */
489 static DEFINE_MUTEX(board_lock);
490
491 /*
492  * Prevents addition of devices with same chip select and
493  * addition of devices below an unregistering controller.
494  */
495 static DEFINE_MUTEX(spi_add_lock);
496
497 /**
498  * spi_alloc_device - Allocate a new SPI device
499  * @ctlr: Controller to which device is connected
500  * Context: can sleep
501  *
502  * Allows a driver to allocate and initialize a spi_device without
503  * registering it immediately.  This allows a driver to directly
504  * fill the spi_device with device parameters before calling
505  * spi_add_device() on it.
506  *
507  * Caller is responsible to call spi_add_device() on the returned
508  * spi_device structure to add it to the SPI controller.  If the caller
509  * needs to discard the spi_device without adding it, then it should
510  * call spi_dev_put() on it.
511  *
512  * Return: a pointer to the new device, or NULL.
513  */
514 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
515 {
516         struct spi_device       *spi;
517
518         if (!spi_controller_get(ctlr))
519                 return NULL;
520
521         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
522         if (!spi) {
523                 spi_controller_put(ctlr);
524                 return NULL;
525         }
526
527         spi->master = spi->controller = ctlr;
528         spi->dev.parent = &ctlr->dev;
529         spi->dev.bus = &spi_bus_type;
530         spi->dev.release = spidev_release;
531         spi->cs_gpio = -ENOENT;
532         spi->mode = ctlr->buswidth_override_bits;
533
534         spin_lock_init(&spi->statistics.lock);
535
536         device_initialize(&spi->dev);
537         return spi;
538 }
539 EXPORT_SYMBOL_GPL(spi_alloc_device);
540
541 static void spi_dev_set_name(struct spi_device *spi)
542 {
543         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
544
545         if (adev) {
546                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
547                 return;
548         }
549
550         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
551                      spi->chip_select);
552 }
553
554 static int spi_dev_check(struct device *dev, void *data)
555 {
556         struct spi_device *spi = to_spi_device(dev);
557         struct spi_device *new_spi = data;
558
559         if (spi->controller == new_spi->controller &&
560             spi->chip_select == new_spi->chip_select)
561                 return -EBUSY;
562         return 0;
563 }
564
565 static void spi_cleanup(struct spi_device *spi)
566 {
567         if (spi->controller->cleanup)
568                 spi->controller->cleanup(spi);
569 }
570
571 static int __spi_add_device(struct spi_device *spi)
572 {
573         struct spi_controller *ctlr = spi->controller;
574         struct device *dev = ctlr->dev.parent;
575         int status;
576
577         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
578         if (status) {
579                 dev_err(dev, "chipselect %d already in use\n",
580                                 spi->chip_select);
581                 return status;
582         }
583
584         /* Controller may unregister concurrently */
585         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
586             !device_is_registered(&ctlr->dev)) {
587                 return -ENODEV;
588         }
589
590         /* Descriptors take precedence */
591         if (ctlr->cs_gpiods)
592                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
593         else if (ctlr->cs_gpios)
594                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
595
596         /* Drivers may modify this initial i/o setup, but will
597          * normally rely on the device being setup.  Devices
598          * using SPI_CS_HIGH can't coexist well otherwise...
599          */
600         status = spi_setup(spi);
601         if (status < 0) {
602                 dev_err(dev, "can't setup %s, status %d\n",
603                                 dev_name(&spi->dev), status);
604                 return status;
605         }
606
607         /* Device may be bound to an active driver when this returns */
608         status = device_add(&spi->dev);
609         if (status < 0) {
610                 dev_err(dev, "can't add %s, status %d\n",
611                                 dev_name(&spi->dev), status);
612                 spi_cleanup(spi);
613         } else {
614                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
615         }
616
617         return status;
618 }
619
620 /**
621  * spi_add_device - Add spi_device allocated with spi_alloc_device
622  * @spi: spi_device to register
623  *
624  * Companion function to spi_alloc_device.  Devices allocated with
625  * spi_alloc_device can be added onto the spi bus with this function.
626  *
627  * Return: 0 on success; negative errno on failure
628  */
629 int spi_add_device(struct spi_device *spi)
630 {
631         struct spi_controller *ctlr = spi->controller;
632         struct device *dev = ctlr->dev.parent;
633         int status;
634
635         /* Chipselects are numbered 0..max; validate. */
636         if (spi->chip_select >= ctlr->num_chipselect) {
637                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
638                         ctlr->num_chipselect);
639                 return -EINVAL;
640         }
641
642         /* Set the bus ID string */
643         spi_dev_set_name(spi);
644
645         /* We need to make sure there's no other device with this
646          * chipselect **BEFORE** we call setup(), else we'll trash
647          * its configuration.  Lock against concurrent add() calls.
648          */
649         mutex_lock(&spi_add_lock);
650         status = __spi_add_device(spi);
651         mutex_unlock(&spi_add_lock);
652         return status;
653 }
654 EXPORT_SYMBOL_GPL(spi_add_device);
655
656 static int spi_add_device_locked(struct spi_device *spi)
657 {
658         struct spi_controller *ctlr = spi->controller;
659         struct device *dev = ctlr->dev.parent;
660
661         /* Chipselects are numbered 0..max; validate. */
662         if (spi->chip_select >= ctlr->num_chipselect) {
663                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
664                         ctlr->num_chipselect);
665                 return -EINVAL;
666         }
667
668         /* Set the bus ID string */
669         spi_dev_set_name(spi);
670
671         WARN_ON(!mutex_is_locked(&spi_add_lock));
672         return __spi_add_device(spi);
673 }
674
675 /**
676  * spi_new_device - instantiate one new SPI device
677  * @ctlr: Controller to which device is connected
678  * @chip: Describes the SPI device
679  * Context: can sleep
680  *
681  * On typical mainboards, this is purely internal; and it's not needed
682  * after board init creates the hard-wired devices.  Some development
683  * platforms may not be able to use spi_register_board_info though, and
684  * this is exported so that for example a USB or parport based adapter
685  * driver could add devices (which it would learn about out-of-band).
686  *
687  * Return: the new device, or NULL.
688  */
689 struct spi_device *spi_new_device(struct spi_controller *ctlr,
690                                   struct spi_board_info *chip)
691 {
692         struct spi_device       *proxy;
693         int                     status;
694
695         /* NOTE:  caller did any chip->bus_num checks necessary.
696          *
697          * Also, unless we change the return value convention to use
698          * error-or-pointer (not NULL-or-pointer), troubleshootability
699          * suggests syslogged diagnostics are best here (ugh).
700          */
701
702         proxy = spi_alloc_device(ctlr);
703         if (!proxy)
704                 return NULL;
705
706         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
707
708         proxy->chip_select = chip->chip_select;
709         proxy->max_speed_hz = chip->max_speed_hz;
710         proxy->mode = chip->mode;
711         proxy->irq = chip->irq;
712         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
713         proxy->dev.platform_data = (void *) chip->platform_data;
714         proxy->controller_data = chip->controller_data;
715         proxy->controller_state = NULL;
716
717         if (chip->swnode) {
718                 status = device_add_software_node(&proxy->dev, chip->swnode);
719                 if (status) {
720                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
721                                 chip->modalias, status);
722                         goto err_dev_put;
723                 }
724         }
725
726         status = spi_add_device(proxy);
727         if (status < 0)
728                 goto err_dev_put;
729
730         return proxy;
731
732 err_dev_put:
733         device_remove_software_node(&proxy->dev);
734         spi_dev_put(proxy);
735         return NULL;
736 }
737 EXPORT_SYMBOL_GPL(spi_new_device);
738
739 /**
740  * spi_unregister_device - unregister a single SPI device
741  * @spi: spi_device to unregister
742  *
743  * Start making the passed SPI device vanish. Normally this would be handled
744  * by spi_unregister_controller().
745  */
746 void spi_unregister_device(struct spi_device *spi)
747 {
748         if (!spi)
749                 return;
750
751         if (spi->dev.of_node) {
752                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
753                 of_node_put(spi->dev.of_node);
754         }
755         if (ACPI_COMPANION(&spi->dev))
756                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
757         device_remove_software_node(&spi->dev);
758         device_del(&spi->dev);
759         spi_cleanup(spi);
760         put_device(&spi->dev);
761 }
762 EXPORT_SYMBOL_GPL(spi_unregister_device);
763
764 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
765                                               struct spi_board_info *bi)
766 {
767         struct spi_device *dev;
768
769         if (ctlr->bus_num != bi->bus_num)
770                 return;
771
772         dev = spi_new_device(ctlr, bi);
773         if (!dev)
774                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
775                         bi->modalias);
776 }
777
778 /**
779  * spi_register_board_info - register SPI devices for a given board
780  * @info: array of chip descriptors
781  * @n: how many descriptors are provided
782  * Context: can sleep
783  *
784  * Board-specific early init code calls this (probably during arch_initcall)
785  * with segments of the SPI device table.  Any device nodes are created later,
786  * after the relevant parent SPI controller (bus_num) is defined.  We keep
787  * this table of devices forever, so that reloading a controller driver will
788  * not make Linux forget about these hard-wired devices.
789  *
790  * Other code can also call this, e.g. a particular add-on board might provide
791  * SPI devices through its expansion connector, so code initializing that board
792  * would naturally declare its SPI devices.
793  *
794  * The board info passed can safely be __initdata ... but be careful of
795  * any embedded pointers (platform_data, etc), they're copied as-is.
796  *
797  * Return: zero on success, else a negative error code.
798  */
799 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
800 {
801         struct boardinfo *bi;
802         int i;
803
804         if (!n)
805                 return 0;
806
807         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
808         if (!bi)
809                 return -ENOMEM;
810
811         for (i = 0; i < n; i++, bi++, info++) {
812                 struct spi_controller *ctlr;
813
814                 memcpy(&bi->board_info, info, sizeof(*info));
815
816                 mutex_lock(&board_lock);
817                 list_add_tail(&bi->list, &board_list);
818                 list_for_each_entry(ctlr, &spi_controller_list, list)
819                         spi_match_controller_to_boardinfo(ctlr,
820                                                           &bi->board_info);
821                 mutex_unlock(&board_lock);
822         }
823
824         return 0;
825 }
826
827 /*-------------------------------------------------------------------------*/
828
829 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
830 {
831         bool activate = enable;
832
833         /*
834          * Avoid calling into the driver (or doing delays) if the chip select
835          * isn't actually changing from the last time this was called.
836          */
837         if (!force && (spi->controller->last_cs_enable == enable) &&
838             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
839                 return;
840
841         trace_spi_set_cs(spi, activate);
842
843         spi->controller->last_cs_enable = enable;
844         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
845
846         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
847             !spi->controller->set_cs_timing) {
848                 if (activate)
849                         spi_delay_exec(&spi->cs_setup, NULL);
850                 else
851                         spi_delay_exec(&spi->cs_hold, NULL);
852         }
853
854         if (spi->mode & SPI_CS_HIGH)
855                 enable = !enable;
856
857         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
858                 if (!(spi->mode & SPI_NO_CS)) {
859                         if (spi->cs_gpiod) {
860                                 /*
861                                  * Historically ACPI has no means of the GPIO polarity and
862                                  * thus the SPISerialBus() resource defines it on the per-chip
863                                  * basis. In order to avoid a chain of negations, the GPIO
864                                  * polarity is considered being Active High. Even for the cases
865                                  * when _DSD() is involved (in the updated versions of ACPI)
866                                  * the GPIO CS polarity must be defined Active High to avoid
867                                  * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
868                                  * into account.
869                                  */
870                                 if (has_acpi_companion(&spi->dev))
871                                         gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
872                                 else
873                                         /* Polarity handled by GPIO library */
874                                         gpiod_set_value_cansleep(spi->cs_gpiod, activate);
875                         } else {
876                                 /*
877                                  * invert the enable line, as active low is
878                                  * default for SPI.
879                                  */
880                                 gpio_set_value_cansleep(spi->cs_gpio, !enable);
881                         }
882                 }
883                 /* Some SPI masters need both GPIO CS & slave_select */
884                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
885                     spi->controller->set_cs)
886                         spi->controller->set_cs(spi, !enable);
887         } else if (spi->controller->set_cs) {
888                 spi->controller->set_cs(spi, !enable);
889         }
890
891         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
892             !spi->controller->set_cs_timing) {
893                 if (!activate)
894                         spi_delay_exec(&spi->cs_inactive, NULL);
895         }
896 }
897
898 #ifdef CONFIG_HAS_DMA
899 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
900                 struct sg_table *sgt, void *buf, size_t len,
901                 enum dma_data_direction dir)
902 {
903         const bool vmalloced_buf = is_vmalloc_addr(buf);
904         unsigned int max_seg_size = dma_get_max_seg_size(dev);
905 #ifdef CONFIG_HIGHMEM
906         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
907                                 (unsigned long)buf < (PKMAP_BASE +
908                                         (LAST_PKMAP * PAGE_SIZE)));
909 #else
910         const bool kmap_buf = false;
911 #endif
912         int desc_len;
913         int sgs;
914         struct page *vm_page;
915         struct scatterlist *sg;
916         void *sg_buf;
917         size_t min;
918         int i, ret;
919
920         if (vmalloced_buf || kmap_buf) {
921                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
922                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
923         } else if (virt_addr_valid(buf)) {
924                 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
925                 sgs = DIV_ROUND_UP(len, desc_len);
926         } else {
927                 return -EINVAL;
928         }
929
930         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
931         if (ret != 0)
932                 return ret;
933
934         sg = &sgt->sgl[0];
935         for (i = 0; i < sgs; i++) {
936
937                 if (vmalloced_buf || kmap_buf) {
938                         /*
939                          * Next scatterlist entry size is the minimum between
940                          * the desc_len and the remaining buffer length that
941                          * fits in a page.
942                          */
943                         min = min_t(size_t, desc_len,
944                                     min_t(size_t, len,
945                                           PAGE_SIZE - offset_in_page(buf)));
946                         if (vmalloced_buf)
947                                 vm_page = vmalloc_to_page(buf);
948                         else
949                                 vm_page = kmap_to_page(buf);
950                         if (!vm_page) {
951                                 sg_free_table(sgt);
952                                 return -ENOMEM;
953                         }
954                         sg_set_page(sg, vm_page,
955                                     min, offset_in_page(buf));
956                 } else {
957                         min = min_t(size_t, len, desc_len);
958                         sg_buf = buf;
959                         sg_set_buf(sg, sg_buf, min);
960                 }
961
962                 buf += min;
963                 len -= min;
964                 sg = sg_next(sg);
965         }
966
967         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
968         if (!ret)
969                 ret = -ENOMEM;
970         if (ret < 0) {
971                 sg_free_table(sgt);
972                 return ret;
973         }
974
975         sgt->nents = ret;
976
977         return 0;
978 }
979
980 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
981                    struct sg_table *sgt, enum dma_data_direction dir)
982 {
983         if (sgt->orig_nents) {
984                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
985                 sg_free_table(sgt);
986         }
987 }
988
989 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
990 {
991         struct device *tx_dev, *rx_dev;
992         struct spi_transfer *xfer;
993         int ret;
994
995         if (!ctlr->can_dma)
996                 return 0;
997
998         if (ctlr->dma_tx)
999                 tx_dev = ctlr->dma_tx->device->dev;
1000         else if (ctlr->dma_map_dev)
1001                 tx_dev = ctlr->dma_map_dev;
1002         else
1003                 tx_dev = ctlr->dev.parent;
1004
1005         if (ctlr->dma_rx)
1006                 rx_dev = ctlr->dma_rx->device->dev;
1007         else if (ctlr->dma_map_dev)
1008                 rx_dev = ctlr->dma_map_dev;
1009         else
1010                 rx_dev = ctlr->dev.parent;
1011
1012         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1013                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1014                         continue;
1015
1016                 if (xfer->tx_buf != NULL) {
1017                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1018                                           (void *)xfer->tx_buf, xfer->len,
1019                                           DMA_TO_DEVICE);
1020                         if (ret != 0)
1021                                 return ret;
1022                 }
1023
1024                 if (xfer->rx_buf != NULL) {
1025                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1026                                           xfer->rx_buf, xfer->len,
1027                                           DMA_FROM_DEVICE);
1028                         if (ret != 0) {
1029                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1030                                               DMA_TO_DEVICE);
1031                                 return ret;
1032                         }
1033                 }
1034         }
1035
1036         ctlr->cur_msg_mapped = true;
1037
1038         return 0;
1039 }
1040
1041 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1042 {
1043         struct spi_transfer *xfer;
1044         struct device *tx_dev, *rx_dev;
1045
1046         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1047                 return 0;
1048
1049         if (ctlr->dma_tx)
1050                 tx_dev = ctlr->dma_tx->device->dev;
1051         else
1052                 tx_dev = ctlr->dev.parent;
1053
1054         if (ctlr->dma_rx)
1055                 rx_dev = ctlr->dma_rx->device->dev;
1056         else
1057                 rx_dev = ctlr->dev.parent;
1058
1059         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1060                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1061                         continue;
1062
1063                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1064                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1065         }
1066
1067         ctlr->cur_msg_mapped = false;
1068
1069         return 0;
1070 }
1071 #else /* !CONFIG_HAS_DMA */
1072 static inline int __spi_map_msg(struct spi_controller *ctlr,
1073                                 struct spi_message *msg)
1074 {
1075         return 0;
1076 }
1077
1078 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1079                                   struct spi_message *msg)
1080 {
1081         return 0;
1082 }
1083 #endif /* !CONFIG_HAS_DMA */
1084
1085 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1086                                 struct spi_message *msg)
1087 {
1088         struct spi_transfer *xfer;
1089
1090         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1091                 /*
1092                  * Restore the original value of tx_buf or rx_buf if they are
1093                  * NULL.
1094                  */
1095                 if (xfer->tx_buf == ctlr->dummy_tx)
1096                         xfer->tx_buf = NULL;
1097                 if (xfer->rx_buf == ctlr->dummy_rx)
1098                         xfer->rx_buf = NULL;
1099         }
1100
1101         return __spi_unmap_msg(ctlr, msg);
1102 }
1103
1104 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1105 {
1106         struct spi_transfer *xfer;
1107         void *tmp;
1108         unsigned int max_tx, max_rx;
1109
1110         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1111                 && !(msg->spi->mode & SPI_3WIRE)) {
1112                 max_tx = 0;
1113                 max_rx = 0;
1114
1115                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1116                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1117                             !xfer->tx_buf)
1118                                 max_tx = max(xfer->len, max_tx);
1119                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1120                             !xfer->rx_buf)
1121                                 max_rx = max(xfer->len, max_rx);
1122                 }
1123
1124                 if (max_tx) {
1125                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1126                                        GFP_KERNEL | GFP_DMA);
1127                         if (!tmp)
1128                                 return -ENOMEM;
1129                         ctlr->dummy_tx = tmp;
1130                         memset(tmp, 0, max_tx);
1131                 }
1132
1133                 if (max_rx) {
1134                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1135                                        GFP_KERNEL | GFP_DMA);
1136                         if (!tmp)
1137                                 return -ENOMEM;
1138                         ctlr->dummy_rx = tmp;
1139                 }
1140
1141                 if (max_tx || max_rx) {
1142                         list_for_each_entry(xfer, &msg->transfers,
1143                                             transfer_list) {
1144                                 if (!xfer->len)
1145                                         continue;
1146                                 if (!xfer->tx_buf)
1147                                         xfer->tx_buf = ctlr->dummy_tx;
1148                                 if (!xfer->rx_buf)
1149                                         xfer->rx_buf = ctlr->dummy_rx;
1150                         }
1151                 }
1152         }
1153
1154         return __spi_map_msg(ctlr, msg);
1155 }
1156
1157 static int spi_transfer_wait(struct spi_controller *ctlr,
1158                              struct spi_message *msg,
1159                              struct spi_transfer *xfer)
1160 {
1161         struct spi_statistics *statm = &ctlr->statistics;
1162         struct spi_statistics *stats = &msg->spi->statistics;
1163         u32 speed_hz = xfer->speed_hz;
1164         unsigned long long ms;
1165
1166         if (spi_controller_is_slave(ctlr)) {
1167                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1168                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1169                         return -EINTR;
1170                 }
1171         } else {
1172                 if (!speed_hz)
1173                         speed_hz = 100000;
1174
1175                 /*
1176                  * For each byte we wait for 8 cycles of the SPI clock.
1177                  * Since speed is defined in Hz and we want milliseconds,
1178                  * use respective multiplier, but before the division,
1179                  * otherwise we may get 0 for short transfers.
1180                  */
1181                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1182                 do_div(ms, speed_hz);
1183
1184                 /*
1185                  * Increase it twice and add 200 ms tolerance, use
1186                  * predefined maximum in case of overflow.
1187                  */
1188                 ms += ms + 200;
1189                 if (ms > UINT_MAX)
1190                         ms = UINT_MAX;
1191
1192                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1193                                                  msecs_to_jiffies(ms));
1194
1195                 if (ms == 0) {
1196                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1197                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1198                         dev_err(&msg->spi->dev,
1199                                 "SPI transfer timed out\n");
1200                         return -ETIMEDOUT;
1201                 }
1202         }
1203
1204         return 0;
1205 }
1206
1207 static void _spi_transfer_delay_ns(u32 ns)
1208 {
1209         if (!ns)
1210                 return;
1211         if (ns <= NSEC_PER_USEC) {
1212                 ndelay(ns);
1213         } else {
1214                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1215
1216                 if (us <= 10)
1217                         udelay(us);
1218                 else
1219                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1220         }
1221 }
1222
1223 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1224 {
1225         u32 delay = _delay->value;
1226         u32 unit = _delay->unit;
1227         u32 hz;
1228
1229         if (!delay)
1230                 return 0;
1231
1232         switch (unit) {
1233         case SPI_DELAY_UNIT_USECS:
1234                 delay *= NSEC_PER_USEC;
1235                 break;
1236         case SPI_DELAY_UNIT_NSECS:
1237                 /* Nothing to do here */
1238                 break;
1239         case SPI_DELAY_UNIT_SCK:
1240                 /* clock cycles need to be obtained from spi_transfer */
1241                 if (!xfer)
1242                         return -EINVAL;
1243                 /*
1244                  * If there is unknown effective speed, approximate it
1245                  * by underestimating with half of the requested hz.
1246                  */
1247                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1248                 if (!hz)
1249                         return -EINVAL;
1250
1251                 /* Convert delay to nanoseconds */
1252                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1253                 break;
1254         default:
1255                 return -EINVAL;
1256         }
1257
1258         return delay;
1259 }
1260 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1261
1262 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1263 {
1264         int delay;
1265
1266         might_sleep();
1267
1268         if (!_delay)
1269                 return -EINVAL;
1270
1271         delay = spi_delay_to_ns(_delay, xfer);
1272         if (delay < 0)
1273                 return delay;
1274
1275         _spi_transfer_delay_ns(delay);
1276
1277         return 0;
1278 }
1279 EXPORT_SYMBOL_GPL(spi_delay_exec);
1280
1281 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1282                                           struct spi_transfer *xfer)
1283 {
1284         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1285         u32 delay = xfer->cs_change_delay.value;
1286         u32 unit = xfer->cs_change_delay.unit;
1287         int ret;
1288
1289         /* return early on "fast" mode - for everything but USECS */
1290         if (!delay) {
1291                 if (unit == SPI_DELAY_UNIT_USECS)
1292                         _spi_transfer_delay_ns(default_delay_ns);
1293                 return;
1294         }
1295
1296         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1297         if (ret) {
1298                 dev_err_once(&msg->spi->dev,
1299                              "Use of unsupported delay unit %i, using default of %luus\n",
1300                              unit, default_delay_ns / NSEC_PER_USEC);
1301                 _spi_transfer_delay_ns(default_delay_ns);
1302         }
1303 }
1304
1305 /*
1306  * spi_transfer_one_message - Default implementation of transfer_one_message()
1307  *
1308  * This is a standard implementation of transfer_one_message() for
1309  * drivers which implement a transfer_one() operation.  It provides
1310  * standard handling of delays and chip select management.
1311  */
1312 static int spi_transfer_one_message(struct spi_controller *ctlr,
1313                                     struct spi_message *msg)
1314 {
1315         struct spi_transfer *xfer;
1316         bool keep_cs = false;
1317         int ret = 0;
1318         struct spi_statistics *statm = &ctlr->statistics;
1319         struct spi_statistics *stats = &msg->spi->statistics;
1320
1321         spi_set_cs(msg->spi, true, false);
1322
1323         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1324         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1325
1326         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1327                 trace_spi_transfer_start(msg, xfer);
1328
1329                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1330                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1331
1332                 if (!ctlr->ptp_sts_supported) {
1333                         xfer->ptp_sts_word_pre = 0;
1334                         ptp_read_system_prets(xfer->ptp_sts);
1335                 }
1336
1337                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1338                         reinit_completion(&ctlr->xfer_completion);
1339
1340 fallback_pio:
1341                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1342                         if (ret < 0) {
1343                                 if (ctlr->cur_msg_mapped &&
1344                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1345                                         __spi_unmap_msg(ctlr, msg);
1346                                         ctlr->fallback = true;
1347                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1348                                         goto fallback_pio;
1349                                 }
1350
1351                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1352                                                                errors);
1353                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1354                                                                errors);
1355                                 dev_err(&msg->spi->dev,
1356                                         "SPI transfer failed: %d\n", ret);
1357                                 goto out;
1358                         }
1359
1360                         if (ret > 0) {
1361                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1362                                 if (ret < 0)
1363                                         msg->status = ret;
1364                         }
1365                 } else {
1366                         if (xfer->len)
1367                                 dev_err(&msg->spi->dev,
1368                                         "Bufferless transfer has length %u\n",
1369                                         xfer->len);
1370                 }
1371
1372                 if (!ctlr->ptp_sts_supported) {
1373                         ptp_read_system_postts(xfer->ptp_sts);
1374                         xfer->ptp_sts_word_post = xfer->len;
1375                 }
1376
1377                 trace_spi_transfer_stop(msg, xfer);
1378
1379                 if (msg->status != -EINPROGRESS)
1380                         goto out;
1381
1382                 spi_transfer_delay_exec(xfer);
1383
1384                 if (xfer->cs_change) {
1385                         if (list_is_last(&xfer->transfer_list,
1386                                          &msg->transfers)) {
1387                                 keep_cs = true;
1388                         } else {
1389                                 spi_set_cs(msg->spi, false, false);
1390                                 _spi_transfer_cs_change_delay(msg, xfer);
1391                                 spi_set_cs(msg->spi, true, false);
1392                         }
1393                 }
1394
1395                 msg->actual_length += xfer->len;
1396         }
1397
1398 out:
1399         if (ret != 0 || !keep_cs)
1400                 spi_set_cs(msg->spi, false, false);
1401
1402         if (msg->status == -EINPROGRESS)
1403                 msg->status = ret;
1404
1405         if (msg->status && ctlr->handle_err)
1406                 ctlr->handle_err(ctlr, msg);
1407
1408         spi_finalize_current_message(ctlr);
1409
1410         return ret;
1411 }
1412
1413 /**
1414  * spi_finalize_current_transfer - report completion of a transfer
1415  * @ctlr: the controller reporting completion
1416  *
1417  * Called by SPI drivers using the core transfer_one_message()
1418  * implementation to notify it that the current interrupt driven
1419  * transfer has finished and the next one may be scheduled.
1420  */
1421 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1422 {
1423         complete(&ctlr->xfer_completion);
1424 }
1425 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1426
1427 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1428 {
1429         if (ctlr->auto_runtime_pm) {
1430                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1431                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1432         }
1433 }
1434
1435 /**
1436  * __spi_pump_messages - function which processes spi message queue
1437  * @ctlr: controller to process queue for
1438  * @in_kthread: true if we are in the context of the message pump thread
1439  *
1440  * This function checks if there is any spi message in the queue that
1441  * needs processing and if so call out to the driver to initialize hardware
1442  * and transfer each message.
1443  *
1444  * Note that it is called both from the kthread itself and also from
1445  * inside spi_sync(); the queue extraction handling at the top of the
1446  * function should deal with this safely.
1447  */
1448 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1449 {
1450         struct spi_transfer *xfer;
1451         struct spi_message *msg;
1452         bool was_busy = false;
1453         unsigned long flags;
1454         int ret;
1455
1456         /* Lock queue */
1457         spin_lock_irqsave(&ctlr->queue_lock, flags);
1458
1459         /* Make sure we are not already running a message */
1460         if (ctlr->cur_msg) {
1461                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1462                 return;
1463         }
1464
1465         /* If another context is idling the device then defer */
1466         if (ctlr->idling) {
1467                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1468                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1469                 return;
1470         }
1471
1472         /* Check if the queue is idle */
1473         if (list_empty(&ctlr->queue) || !ctlr->running) {
1474                 if (!ctlr->busy) {
1475                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1476                         return;
1477                 }
1478
1479                 /* Defer any non-atomic teardown to the thread */
1480                 if (!in_kthread) {
1481                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1482                             !ctlr->unprepare_transfer_hardware) {
1483                                 spi_idle_runtime_pm(ctlr);
1484                                 ctlr->busy = false;
1485                                 trace_spi_controller_idle(ctlr);
1486                         } else {
1487                                 kthread_queue_work(ctlr->kworker,
1488                                                    &ctlr->pump_messages);
1489                         }
1490                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1491                         return;
1492                 }
1493
1494                 ctlr->busy = false;
1495                 ctlr->idling = true;
1496                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1497
1498                 kfree(ctlr->dummy_rx);
1499                 ctlr->dummy_rx = NULL;
1500                 kfree(ctlr->dummy_tx);
1501                 ctlr->dummy_tx = NULL;
1502                 if (ctlr->unprepare_transfer_hardware &&
1503                     ctlr->unprepare_transfer_hardware(ctlr))
1504                         dev_err(&ctlr->dev,
1505                                 "failed to unprepare transfer hardware\n");
1506                 spi_idle_runtime_pm(ctlr);
1507                 trace_spi_controller_idle(ctlr);
1508
1509                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1510                 ctlr->idling = false;
1511                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1512                 return;
1513         }
1514
1515         /* Extract head of queue */
1516         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1517         ctlr->cur_msg = msg;
1518
1519         list_del_init(&msg->queue);
1520         if (ctlr->busy)
1521                 was_busy = true;
1522         else
1523                 ctlr->busy = true;
1524         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1525
1526         mutex_lock(&ctlr->io_mutex);
1527
1528         if (!was_busy && ctlr->auto_runtime_pm) {
1529                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1530                 if (ret < 0) {
1531                         pm_runtime_put_noidle(ctlr->dev.parent);
1532                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1533                                 ret);
1534                         mutex_unlock(&ctlr->io_mutex);
1535                         return;
1536                 }
1537         }
1538
1539         if (!was_busy)
1540                 trace_spi_controller_busy(ctlr);
1541
1542         if (!was_busy && ctlr->prepare_transfer_hardware) {
1543                 ret = ctlr->prepare_transfer_hardware(ctlr);
1544                 if (ret) {
1545                         dev_err(&ctlr->dev,
1546                                 "failed to prepare transfer hardware: %d\n",
1547                                 ret);
1548
1549                         if (ctlr->auto_runtime_pm)
1550                                 pm_runtime_put(ctlr->dev.parent);
1551
1552                         msg->status = ret;
1553                         spi_finalize_current_message(ctlr);
1554
1555                         mutex_unlock(&ctlr->io_mutex);
1556                         return;
1557                 }
1558         }
1559
1560         trace_spi_message_start(msg);
1561
1562         if (ctlr->prepare_message) {
1563                 ret = ctlr->prepare_message(ctlr, msg);
1564                 if (ret) {
1565                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1566                                 ret);
1567                         msg->status = ret;
1568                         spi_finalize_current_message(ctlr);
1569                         goto out;
1570                 }
1571                 ctlr->cur_msg_prepared = true;
1572         }
1573
1574         ret = spi_map_msg(ctlr, msg);
1575         if (ret) {
1576                 msg->status = ret;
1577                 spi_finalize_current_message(ctlr);
1578                 goto out;
1579         }
1580
1581         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1582                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1583                         xfer->ptp_sts_word_pre = 0;
1584                         ptp_read_system_prets(xfer->ptp_sts);
1585                 }
1586         }
1587
1588         ret = ctlr->transfer_one_message(ctlr, msg);
1589         if (ret) {
1590                 dev_err(&ctlr->dev,
1591                         "failed to transfer one message from queue\n");
1592                 goto out;
1593         }
1594
1595 out:
1596         mutex_unlock(&ctlr->io_mutex);
1597
1598         /* Prod the scheduler in case transfer_one() was busy waiting */
1599         if (!ret)
1600                 cond_resched();
1601 }
1602
1603 /**
1604  * spi_pump_messages - kthread work function which processes spi message queue
1605  * @work: pointer to kthread work struct contained in the controller struct
1606  */
1607 static void spi_pump_messages(struct kthread_work *work)
1608 {
1609         struct spi_controller *ctlr =
1610                 container_of(work, struct spi_controller, pump_messages);
1611
1612         __spi_pump_messages(ctlr, true);
1613 }
1614
1615 /**
1616  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1617  *                          TX timestamp for the requested byte from the SPI
1618  *                          transfer. The frequency with which this function
1619  *                          must be called (once per word, once for the whole
1620  *                          transfer, once per batch of words etc) is arbitrary
1621  *                          as long as the @tx buffer offset is greater than or
1622  *                          equal to the requested byte at the time of the
1623  *                          call. The timestamp is only taken once, at the
1624  *                          first such call. It is assumed that the driver
1625  *                          advances its @tx buffer pointer monotonically.
1626  * @ctlr: Pointer to the spi_controller structure of the driver
1627  * @xfer: Pointer to the transfer being timestamped
1628  * @progress: How many words (not bytes) have been transferred so far
1629  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1630  *            transfer, for less jitter in time measurement. Only compatible
1631  *            with PIO drivers. If true, must follow up with
1632  *            spi_take_timestamp_post or otherwise system will crash.
1633  *            WARNING: for fully predictable results, the CPU frequency must
1634  *            also be under control (governor).
1635  */
1636 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1637                             struct spi_transfer *xfer,
1638                             size_t progress, bool irqs_off)
1639 {
1640         if (!xfer->ptp_sts)
1641                 return;
1642
1643         if (xfer->timestamped)
1644                 return;
1645
1646         if (progress > xfer->ptp_sts_word_pre)
1647                 return;
1648
1649         /* Capture the resolution of the timestamp */
1650         xfer->ptp_sts_word_pre = progress;
1651
1652         if (irqs_off) {
1653                 local_irq_save(ctlr->irq_flags);
1654                 preempt_disable();
1655         }
1656
1657         ptp_read_system_prets(xfer->ptp_sts);
1658 }
1659 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1660
1661 /**
1662  * spi_take_timestamp_post - helper for drivers to collect the end of the
1663  *                           TX timestamp for the requested byte from the SPI
1664  *                           transfer. Can be called with an arbitrary
1665  *                           frequency: only the first call where @tx exceeds
1666  *                           or is equal to the requested word will be
1667  *                           timestamped.
1668  * @ctlr: Pointer to the spi_controller structure of the driver
1669  * @xfer: Pointer to the transfer being timestamped
1670  * @progress: How many words (not bytes) have been transferred so far
1671  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1672  */
1673 void spi_take_timestamp_post(struct spi_controller *ctlr,
1674                              struct spi_transfer *xfer,
1675                              size_t progress, bool irqs_off)
1676 {
1677         if (!xfer->ptp_sts)
1678                 return;
1679
1680         if (xfer->timestamped)
1681                 return;
1682
1683         if (progress < xfer->ptp_sts_word_post)
1684                 return;
1685
1686         ptp_read_system_postts(xfer->ptp_sts);
1687
1688         if (irqs_off) {
1689                 local_irq_restore(ctlr->irq_flags);
1690                 preempt_enable();
1691         }
1692
1693         /* Capture the resolution of the timestamp */
1694         xfer->ptp_sts_word_post = progress;
1695
1696         xfer->timestamped = true;
1697 }
1698 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1699
1700 /**
1701  * spi_set_thread_rt - set the controller to pump at realtime priority
1702  * @ctlr: controller to boost priority of
1703  *
1704  * This can be called because the controller requested realtime priority
1705  * (by setting the ->rt value before calling spi_register_controller()) or
1706  * because a device on the bus said that its transfers needed realtime
1707  * priority.
1708  *
1709  * NOTE: at the moment if any device on a bus says it needs realtime then
1710  * the thread will be at realtime priority for all transfers on that
1711  * controller.  If this eventually becomes a problem we may see if we can
1712  * find a way to boost the priority only temporarily during relevant
1713  * transfers.
1714  */
1715 static void spi_set_thread_rt(struct spi_controller *ctlr)
1716 {
1717         dev_info(&ctlr->dev,
1718                 "will run message pump with realtime priority\n");
1719         sched_set_fifo(ctlr->kworker->task);
1720 }
1721
1722 static int spi_init_queue(struct spi_controller *ctlr)
1723 {
1724         ctlr->running = false;
1725         ctlr->busy = false;
1726
1727         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1728         if (IS_ERR(ctlr->kworker)) {
1729                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1730                 return PTR_ERR(ctlr->kworker);
1731         }
1732
1733         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1734
1735         /*
1736          * Controller config will indicate if this controller should run the
1737          * message pump with high (realtime) priority to reduce the transfer
1738          * latency on the bus by minimising the delay between a transfer
1739          * request and the scheduling of the message pump thread. Without this
1740          * setting the message pump thread will remain at default priority.
1741          */
1742         if (ctlr->rt)
1743                 spi_set_thread_rt(ctlr);
1744
1745         return 0;
1746 }
1747
1748 /**
1749  * spi_get_next_queued_message() - called by driver to check for queued
1750  * messages
1751  * @ctlr: the controller to check for queued messages
1752  *
1753  * If there are more messages in the queue, the next message is returned from
1754  * this call.
1755  *
1756  * Return: the next message in the queue, else NULL if the queue is empty.
1757  */
1758 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1759 {
1760         struct spi_message *next;
1761         unsigned long flags;
1762
1763         /* get a pointer to the next message, if any */
1764         spin_lock_irqsave(&ctlr->queue_lock, flags);
1765         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1766                                         queue);
1767         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1768
1769         return next;
1770 }
1771 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1772
1773 /**
1774  * spi_finalize_current_message() - the current message is complete
1775  * @ctlr: the controller to return the message to
1776  *
1777  * Called by the driver to notify the core that the message in the front of the
1778  * queue is complete and can be removed from the queue.
1779  */
1780 void spi_finalize_current_message(struct spi_controller *ctlr)
1781 {
1782         struct spi_transfer *xfer;
1783         struct spi_message *mesg;
1784         unsigned long flags;
1785         int ret;
1786
1787         spin_lock_irqsave(&ctlr->queue_lock, flags);
1788         mesg = ctlr->cur_msg;
1789         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1790
1791         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1792                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1793                         ptp_read_system_postts(xfer->ptp_sts);
1794                         xfer->ptp_sts_word_post = xfer->len;
1795                 }
1796         }
1797
1798         if (unlikely(ctlr->ptp_sts_supported))
1799                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1800                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1801
1802         spi_unmap_msg(ctlr, mesg);
1803
1804         /* In the prepare_messages callback the spi bus has the opportunity to
1805          * split a transfer to smaller chunks.
1806          * Release splited transfers here since spi_map_msg is done on the
1807          * splited transfers.
1808          */
1809         spi_res_release(ctlr, mesg);
1810
1811         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1812                 ret = ctlr->unprepare_message(ctlr, mesg);
1813                 if (ret) {
1814                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1815                                 ret);
1816                 }
1817         }
1818
1819         spin_lock_irqsave(&ctlr->queue_lock, flags);
1820         ctlr->cur_msg = NULL;
1821         ctlr->cur_msg_prepared = false;
1822         ctlr->fallback = false;
1823         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1824         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1825
1826         trace_spi_message_done(mesg);
1827
1828         mesg->state = NULL;
1829         if (mesg->complete)
1830                 mesg->complete(mesg->context);
1831 }
1832 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1833
1834 static int spi_start_queue(struct spi_controller *ctlr)
1835 {
1836         unsigned long flags;
1837
1838         spin_lock_irqsave(&ctlr->queue_lock, flags);
1839
1840         if (ctlr->running || ctlr->busy) {
1841                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1842                 return -EBUSY;
1843         }
1844
1845         ctlr->running = true;
1846         ctlr->cur_msg = NULL;
1847         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1848
1849         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1850
1851         return 0;
1852 }
1853
1854 static int spi_stop_queue(struct spi_controller *ctlr)
1855 {
1856         unsigned long flags;
1857         unsigned limit = 500;
1858         int ret = 0;
1859
1860         spin_lock_irqsave(&ctlr->queue_lock, flags);
1861
1862         /*
1863          * This is a bit lame, but is optimized for the common execution path.
1864          * A wait_queue on the ctlr->busy could be used, but then the common
1865          * execution path (pump_messages) would be required to call wake_up or
1866          * friends on every SPI message. Do this instead.
1867          */
1868         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1869                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1870                 usleep_range(10000, 11000);
1871                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1872         }
1873
1874         if (!list_empty(&ctlr->queue) || ctlr->busy)
1875                 ret = -EBUSY;
1876         else
1877                 ctlr->running = false;
1878
1879         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1880
1881         if (ret) {
1882                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1883                 return ret;
1884         }
1885         return ret;
1886 }
1887
1888 static int spi_destroy_queue(struct spi_controller *ctlr)
1889 {
1890         int ret;
1891
1892         ret = spi_stop_queue(ctlr);
1893
1894         /*
1895          * kthread_flush_worker will block until all work is done.
1896          * If the reason that stop_queue timed out is that the work will never
1897          * finish, then it does no good to call flush/stop thread, so
1898          * return anyway.
1899          */
1900         if (ret) {
1901                 dev_err(&ctlr->dev, "problem destroying queue\n");
1902                 return ret;
1903         }
1904
1905         kthread_destroy_worker(ctlr->kworker);
1906
1907         return 0;
1908 }
1909
1910 static int __spi_queued_transfer(struct spi_device *spi,
1911                                  struct spi_message *msg,
1912                                  bool need_pump)
1913 {
1914         struct spi_controller *ctlr = spi->controller;
1915         unsigned long flags;
1916
1917         spin_lock_irqsave(&ctlr->queue_lock, flags);
1918
1919         if (!ctlr->running) {
1920                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1921                 return -ESHUTDOWN;
1922         }
1923         msg->actual_length = 0;
1924         msg->status = -EINPROGRESS;
1925
1926         list_add_tail(&msg->queue, &ctlr->queue);
1927         if (!ctlr->busy && need_pump)
1928                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1929
1930         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1931         return 0;
1932 }
1933
1934 /**
1935  * spi_queued_transfer - transfer function for queued transfers
1936  * @spi: spi device which is requesting transfer
1937  * @msg: spi message which is to handled is queued to driver queue
1938  *
1939  * Return: zero on success, else a negative error code.
1940  */
1941 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1942 {
1943         return __spi_queued_transfer(spi, msg, true);
1944 }
1945
1946 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1947 {
1948         int ret;
1949
1950         ctlr->transfer = spi_queued_transfer;
1951         if (!ctlr->transfer_one_message)
1952                 ctlr->transfer_one_message = spi_transfer_one_message;
1953
1954         /* Initialize and start queue */
1955         ret = spi_init_queue(ctlr);
1956         if (ret) {
1957                 dev_err(&ctlr->dev, "problem initializing queue\n");
1958                 goto err_init_queue;
1959         }
1960         ctlr->queued = true;
1961         ret = spi_start_queue(ctlr);
1962         if (ret) {
1963                 dev_err(&ctlr->dev, "problem starting queue\n");
1964                 goto err_start_queue;
1965         }
1966
1967         return 0;
1968
1969 err_start_queue:
1970         spi_destroy_queue(ctlr);
1971 err_init_queue:
1972         return ret;
1973 }
1974
1975 /**
1976  * spi_flush_queue - Send all pending messages in the queue from the callers'
1977  *                   context
1978  * @ctlr: controller to process queue for
1979  *
1980  * This should be used when one wants to ensure all pending messages have been
1981  * sent before doing something. Is used by the spi-mem code to make sure SPI
1982  * memory operations do not preempt regular SPI transfers that have been queued
1983  * before the spi-mem operation.
1984  */
1985 void spi_flush_queue(struct spi_controller *ctlr)
1986 {
1987         if (ctlr->transfer == spi_queued_transfer)
1988                 __spi_pump_messages(ctlr, false);
1989 }
1990
1991 /*-------------------------------------------------------------------------*/
1992
1993 #if defined(CONFIG_OF)
1994 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1995                            struct device_node *nc)
1996 {
1997         u32 value;
1998         int rc;
1999
2000         /* Mode (clock phase/polarity/etc.) */
2001         if (of_property_read_bool(nc, "spi-cpha"))
2002                 spi->mode |= SPI_CPHA;
2003         if (of_property_read_bool(nc, "spi-cpol"))
2004                 spi->mode |= SPI_CPOL;
2005         if (of_property_read_bool(nc, "spi-3wire"))
2006                 spi->mode |= SPI_3WIRE;
2007         if (of_property_read_bool(nc, "spi-lsb-first"))
2008                 spi->mode |= SPI_LSB_FIRST;
2009         if (of_property_read_bool(nc, "spi-cs-high"))
2010                 spi->mode |= SPI_CS_HIGH;
2011
2012         /* Device DUAL/QUAD mode */
2013         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2014                 switch (value) {
2015                 case 0:
2016                         spi->mode |= SPI_NO_TX;
2017                         break;
2018                 case 1:
2019                         break;
2020                 case 2:
2021                         spi->mode |= SPI_TX_DUAL;
2022                         break;
2023                 case 4:
2024                         spi->mode |= SPI_TX_QUAD;
2025                         break;
2026                 case 8:
2027                         spi->mode |= SPI_TX_OCTAL;
2028                         break;
2029                 default:
2030                         dev_warn(&ctlr->dev,
2031                                 "spi-tx-bus-width %d not supported\n",
2032                                 value);
2033                         break;
2034                 }
2035         }
2036
2037         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2038                 switch (value) {
2039                 case 0:
2040                         spi->mode |= SPI_NO_RX;
2041                         break;
2042                 case 1:
2043                         break;
2044                 case 2:
2045                         spi->mode |= SPI_RX_DUAL;
2046                         break;
2047                 case 4:
2048                         spi->mode |= SPI_RX_QUAD;
2049                         break;
2050                 case 8:
2051                         spi->mode |= SPI_RX_OCTAL;
2052                         break;
2053                 default:
2054                         dev_warn(&ctlr->dev,
2055                                 "spi-rx-bus-width %d not supported\n",
2056                                 value);
2057                         break;
2058                 }
2059         }
2060
2061         if (spi_controller_is_slave(ctlr)) {
2062                 if (!of_node_name_eq(nc, "slave")) {
2063                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2064                                 nc);
2065                         return -EINVAL;
2066                 }
2067                 return 0;
2068         }
2069
2070         /* Device address */
2071         rc = of_property_read_u32(nc, "reg", &value);
2072         if (rc) {
2073                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2074                         nc, rc);
2075                 return rc;
2076         }
2077         spi->chip_select = value;
2078
2079         /* Device speed */
2080         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2081                 spi->max_speed_hz = value;
2082
2083         return 0;
2084 }
2085
2086 static struct spi_device *
2087 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2088 {
2089         struct spi_device *spi;
2090         int rc;
2091
2092         /* Alloc an spi_device */
2093         spi = spi_alloc_device(ctlr);
2094         if (!spi) {
2095                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2096                 rc = -ENOMEM;
2097                 goto err_out;
2098         }
2099
2100         /* Select device driver */
2101         rc = of_modalias_node(nc, spi->modalias,
2102                                 sizeof(spi->modalias));
2103         if (rc < 0) {
2104                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2105                 goto err_out;
2106         }
2107
2108         rc = of_spi_parse_dt(ctlr, spi, nc);
2109         if (rc)
2110                 goto err_out;
2111
2112         /* Store a pointer to the node in the device structure */
2113         of_node_get(nc);
2114         spi->dev.of_node = nc;
2115         spi->dev.fwnode = of_fwnode_handle(nc);
2116
2117         /* Register the new device */
2118         rc = spi_add_device(spi);
2119         if (rc) {
2120                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2121                 goto err_of_node_put;
2122         }
2123
2124         return spi;
2125
2126 err_of_node_put:
2127         of_node_put(nc);
2128 err_out:
2129         spi_dev_put(spi);
2130         return ERR_PTR(rc);
2131 }
2132
2133 /**
2134  * of_register_spi_devices() - Register child devices onto the SPI bus
2135  * @ctlr:       Pointer to spi_controller device
2136  *
2137  * Registers an spi_device for each child node of controller node which
2138  * represents a valid SPI slave.
2139  */
2140 static void of_register_spi_devices(struct spi_controller *ctlr)
2141 {
2142         struct spi_device *spi;
2143         struct device_node *nc;
2144
2145         if (!ctlr->dev.of_node)
2146                 return;
2147
2148         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2149                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2150                         continue;
2151                 spi = of_register_spi_device(ctlr, nc);
2152                 if (IS_ERR(spi)) {
2153                         dev_warn(&ctlr->dev,
2154                                  "Failed to create SPI device for %pOF\n", nc);
2155                         of_node_clear_flag(nc, OF_POPULATED);
2156                 }
2157         }
2158 }
2159 #else
2160 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2161 #endif
2162
2163 /**
2164  * spi_new_ancillary_device() - Register ancillary SPI device
2165  * @spi:         Pointer to the main SPI device registering the ancillary device
2166  * @chip_select: Chip Select of the ancillary device
2167  *
2168  * Register an ancillary SPI device; for example some chips have a chip-select
2169  * for normal device usage and another one for setup/firmware upload.
2170  *
2171  * This may only be called from main SPI device's probe routine.
2172  *
2173  * Return: 0 on success; negative errno on failure
2174  */
2175 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2176                                              u8 chip_select)
2177 {
2178         struct spi_device *ancillary;
2179         int rc = 0;
2180
2181         /* Alloc an spi_device */
2182         ancillary = spi_alloc_device(spi->controller);
2183         if (!ancillary) {
2184                 rc = -ENOMEM;
2185                 goto err_out;
2186         }
2187
2188         strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2189
2190         /* Use provided chip-select for ancillary device */
2191         ancillary->chip_select = chip_select;
2192
2193         /* Take over SPI mode/speed from SPI main device */
2194         ancillary->max_speed_hz = spi->max_speed_hz;
2195         ancillary->mode = spi->mode;
2196
2197         /* Register the new device */
2198         rc = spi_add_device_locked(ancillary);
2199         if (rc) {
2200                 dev_err(&spi->dev, "failed to register ancillary device\n");
2201                 goto err_out;
2202         }
2203
2204         return ancillary;
2205
2206 err_out:
2207         spi_dev_put(ancillary);
2208         return ERR_PTR(rc);
2209 }
2210 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2211
2212 #ifdef CONFIG_ACPI
2213 struct acpi_spi_lookup {
2214         struct spi_controller   *ctlr;
2215         u32                     max_speed_hz;
2216         u32                     mode;
2217         int                     irq;
2218         u8                      bits_per_word;
2219         u8                      chip_select;
2220 };
2221
2222 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2223                                             struct acpi_spi_lookup *lookup)
2224 {
2225         const union acpi_object *obj;
2226
2227         if (!x86_apple_machine)
2228                 return;
2229
2230         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2231             && obj->buffer.length >= 4)
2232                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2233
2234         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2235             && obj->buffer.length == 8)
2236                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2237
2238         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2239             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2240                 lookup->mode |= SPI_LSB_FIRST;
2241
2242         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2243             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2244                 lookup->mode |= SPI_CPOL;
2245
2246         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2247             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2248                 lookup->mode |= SPI_CPHA;
2249 }
2250
2251 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2252 {
2253         struct acpi_spi_lookup *lookup = data;
2254         struct spi_controller *ctlr = lookup->ctlr;
2255
2256         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2257                 struct acpi_resource_spi_serialbus *sb;
2258                 acpi_handle parent_handle;
2259                 acpi_status status;
2260
2261                 sb = &ares->data.spi_serial_bus;
2262                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2263
2264                         status = acpi_get_handle(NULL,
2265                                                  sb->resource_source.string_ptr,
2266                                                  &parent_handle);
2267
2268                         if (ACPI_FAILURE(status) ||
2269                             ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2270                                 return -ENODEV;
2271
2272                         /*
2273                          * ACPI DeviceSelection numbering is handled by the
2274                          * host controller driver in Windows and can vary
2275                          * from driver to driver. In Linux we always expect
2276                          * 0 .. max - 1 so we need to ask the driver to
2277                          * translate between the two schemes.
2278                          */
2279                         if (ctlr->fw_translate_cs) {
2280                                 int cs = ctlr->fw_translate_cs(ctlr,
2281                                                 sb->device_selection);
2282                                 if (cs < 0)
2283                                         return cs;
2284                                 lookup->chip_select = cs;
2285                         } else {
2286                                 lookup->chip_select = sb->device_selection;
2287                         }
2288
2289                         lookup->max_speed_hz = sb->connection_speed;
2290                         lookup->bits_per_word = sb->data_bit_length;
2291
2292                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2293                                 lookup->mode |= SPI_CPHA;
2294                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2295                                 lookup->mode |= SPI_CPOL;
2296                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2297                                 lookup->mode |= SPI_CS_HIGH;
2298                 }
2299         } else if (lookup->irq < 0) {
2300                 struct resource r;
2301
2302                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2303                         lookup->irq = r.start;
2304         }
2305
2306         /* Always tell the ACPI core to skip this resource */
2307         return 1;
2308 }
2309
2310 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2311                                             struct acpi_device *adev)
2312 {
2313         acpi_handle parent_handle = NULL;
2314         struct list_head resource_list;
2315         struct acpi_spi_lookup lookup = {};
2316         struct spi_device *spi;
2317         int ret;
2318
2319         if (acpi_bus_get_status(adev) || !adev->status.present ||
2320             acpi_device_enumerated(adev))
2321                 return AE_OK;
2322
2323         lookup.ctlr             = ctlr;
2324         lookup.irq              = -1;
2325
2326         INIT_LIST_HEAD(&resource_list);
2327         ret = acpi_dev_get_resources(adev, &resource_list,
2328                                      acpi_spi_add_resource, &lookup);
2329         acpi_dev_free_resource_list(&resource_list);
2330
2331         if (ret < 0)
2332                 /* found SPI in _CRS but it points to another controller */
2333                 return AE_OK;
2334
2335         if (!lookup.max_speed_hz &&
2336             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2337             ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2338                 /* Apple does not use _CRS but nested devices for SPI slaves */
2339                 acpi_spi_parse_apple_properties(adev, &lookup);
2340         }
2341
2342         if (!lookup.max_speed_hz)
2343                 return AE_OK;
2344
2345         spi = spi_alloc_device(ctlr);
2346         if (!spi) {
2347                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2348                         dev_name(&adev->dev));
2349                 return AE_NO_MEMORY;
2350         }
2351
2352
2353         ACPI_COMPANION_SET(&spi->dev, adev);
2354         spi->max_speed_hz       = lookup.max_speed_hz;
2355         spi->mode               |= lookup.mode;
2356         spi->irq                = lookup.irq;
2357         spi->bits_per_word      = lookup.bits_per_word;
2358         spi->chip_select        = lookup.chip_select;
2359
2360         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2361                           sizeof(spi->modalias));
2362
2363         if (spi->irq < 0)
2364                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2365
2366         acpi_device_set_enumerated(adev);
2367
2368         adev->power.flags.ignore_parent = true;
2369         if (spi_add_device(spi)) {
2370                 adev->power.flags.ignore_parent = false;
2371                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2372                         dev_name(&adev->dev));
2373                 spi_dev_put(spi);
2374         }
2375
2376         return AE_OK;
2377 }
2378
2379 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2380                                        void *data, void **return_value)
2381 {
2382         struct spi_controller *ctlr = data;
2383         struct acpi_device *adev;
2384
2385         if (acpi_bus_get_device(handle, &adev))
2386                 return AE_OK;
2387
2388         return acpi_register_spi_device(ctlr, adev);
2389 }
2390
2391 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2392
2393 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2394 {
2395         acpi_status status;
2396         acpi_handle handle;
2397
2398         handle = ACPI_HANDLE(ctlr->dev.parent);
2399         if (!handle)
2400                 return;
2401
2402         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2403                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2404                                      acpi_spi_add_device, NULL, ctlr, NULL);
2405         if (ACPI_FAILURE(status))
2406                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2407 }
2408 #else
2409 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2410 #endif /* CONFIG_ACPI */
2411
2412 static void spi_controller_release(struct device *dev)
2413 {
2414         struct spi_controller *ctlr;
2415
2416         ctlr = container_of(dev, struct spi_controller, dev);
2417         kfree(ctlr);
2418 }
2419
2420 static struct class spi_master_class = {
2421         .name           = "spi_master",
2422         .owner          = THIS_MODULE,
2423         .dev_release    = spi_controller_release,
2424         .dev_groups     = spi_master_groups,
2425 };
2426
2427 #ifdef CONFIG_SPI_SLAVE
2428 /**
2429  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2430  *                   controller
2431  * @spi: device used for the current transfer
2432  */
2433 int spi_slave_abort(struct spi_device *spi)
2434 {
2435         struct spi_controller *ctlr = spi->controller;
2436
2437         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2438                 return ctlr->slave_abort(ctlr);
2439
2440         return -ENOTSUPP;
2441 }
2442 EXPORT_SYMBOL_GPL(spi_slave_abort);
2443
2444 static int match_true(struct device *dev, void *data)
2445 {
2446         return 1;
2447 }
2448
2449 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2450                           char *buf)
2451 {
2452         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2453                                                    dev);
2454         struct device *child;
2455
2456         child = device_find_child(&ctlr->dev, NULL, match_true);
2457         return sprintf(buf, "%s\n",
2458                        child ? to_spi_device(child)->modalias : NULL);
2459 }
2460
2461 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2462                            const char *buf, size_t count)
2463 {
2464         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2465                                                    dev);
2466         struct spi_device *spi;
2467         struct device *child;
2468         char name[32];
2469         int rc;
2470
2471         rc = sscanf(buf, "%31s", name);
2472         if (rc != 1 || !name[0])
2473                 return -EINVAL;
2474
2475         child = device_find_child(&ctlr->dev, NULL, match_true);
2476         if (child) {
2477                 /* Remove registered slave */
2478                 device_unregister(child);
2479                 put_device(child);
2480         }
2481
2482         if (strcmp(name, "(null)")) {
2483                 /* Register new slave */
2484                 spi = spi_alloc_device(ctlr);
2485                 if (!spi)
2486                         return -ENOMEM;
2487
2488                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2489
2490                 rc = spi_add_device(spi);
2491                 if (rc) {
2492                         spi_dev_put(spi);
2493                         return rc;
2494                 }
2495         }
2496
2497         return count;
2498 }
2499
2500 static DEVICE_ATTR_RW(slave);
2501
2502 static struct attribute *spi_slave_attrs[] = {
2503         &dev_attr_slave.attr,
2504         NULL,
2505 };
2506
2507 static const struct attribute_group spi_slave_group = {
2508         .attrs = spi_slave_attrs,
2509 };
2510
2511 static const struct attribute_group *spi_slave_groups[] = {
2512         &spi_controller_statistics_group,
2513         &spi_slave_group,
2514         NULL,
2515 };
2516
2517 static struct class spi_slave_class = {
2518         .name           = "spi_slave",
2519         .owner          = THIS_MODULE,
2520         .dev_release    = spi_controller_release,
2521         .dev_groups     = spi_slave_groups,
2522 };
2523 #else
2524 extern struct class spi_slave_class;    /* dummy */
2525 #endif
2526
2527 /**
2528  * __spi_alloc_controller - allocate an SPI master or slave controller
2529  * @dev: the controller, possibly using the platform_bus
2530  * @size: how much zeroed driver-private data to allocate; the pointer to this
2531  *      memory is in the driver_data field of the returned device, accessible
2532  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2533  *      drivers granting DMA access to portions of their private data need to
2534  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2535  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2536  *      slave (true) controller
2537  * Context: can sleep
2538  *
2539  * This call is used only by SPI controller drivers, which are the
2540  * only ones directly touching chip registers.  It's how they allocate
2541  * an spi_controller structure, prior to calling spi_register_controller().
2542  *
2543  * This must be called from context that can sleep.
2544  *
2545  * The caller is responsible for assigning the bus number and initializing the
2546  * controller's methods before calling spi_register_controller(); and (after
2547  * errors adding the device) calling spi_controller_put() to prevent a memory
2548  * leak.
2549  *
2550  * Return: the SPI controller structure on success, else NULL.
2551  */
2552 struct spi_controller *__spi_alloc_controller(struct device *dev,
2553                                               unsigned int size, bool slave)
2554 {
2555         struct spi_controller   *ctlr;
2556         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2557
2558         if (!dev)
2559                 return NULL;
2560
2561         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2562         if (!ctlr)
2563                 return NULL;
2564
2565         device_initialize(&ctlr->dev);
2566         ctlr->bus_num = -1;
2567         ctlr->num_chipselect = 1;
2568         ctlr->slave = slave;
2569         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2570                 ctlr->dev.class = &spi_slave_class;
2571         else
2572                 ctlr->dev.class = &spi_master_class;
2573         ctlr->dev.parent = dev;
2574         pm_suspend_ignore_children(&ctlr->dev, true);
2575         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2576
2577         return ctlr;
2578 }
2579 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2580
2581 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2582 {
2583         spi_controller_put(*(struct spi_controller **)ctlr);
2584 }
2585
2586 /**
2587  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2588  * @dev: physical device of SPI controller
2589  * @size: how much zeroed driver-private data to allocate
2590  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2591  * Context: can sleep
2592  *
2593  * Allocate an SPI controller and automatically release a reference on it
2594  * when @dev is unbound from its driver.  Drivers are thus relieved from
2595  * having to call spi_controller_put().
2596  *
2597  * The arguments to this function are identical to __spi_alloc_controller().
2598  *
2599  * Return: the SPI controller structure on success, else NULL.
2600  */
2601 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2602                                                    unsigned int size,
2603                                                    bool slave)
2604 {
2605         struct spi_controller **ptr, *ctlr;
2606
2607         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2608                            GFP_KERNEL);
2609         if (!ptr)
2610                 return NULL;
2611
2612         ctlr = __spi_alloc_controller(dev, size, slave);
2613         if (ctlr) {
2614                 ctlr->devm_allocated = true;
2615                 *ptr = ctlr;
2616                 devres_add(dev, ptr);
2617         } else {
2618                 devres_free(ptr);
2619         }
2620
2621         return ctlr;
2622 }
2623 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2624
2625 #ifdef CONFIG_OF
2626 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2627 {
2628         int nb, i, *cs;
2629         struct device_node *np = ctlr->dev.of_node;
2630
2631         if (!np)
2632                 return 0;
2633
2634         nb = of_gpio_named_count(np, "cs-gpios");
2635         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2636
2637         /* Return error only for an incorrectly formed cs-gpios property */
2638         if (nb == 0 || nb == -ENOENT)
2639                 return 0;
2640         else if (nb < 0)
2641                 return nb;
2642
2643         cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2644                           GFP_KERNEL);
2645         ctlr->cs_gpios = cs;
2646
2647         if (!ctlr->cs_gpios)
2648                 return -ENOMEM;
2649
2650         for (i = 0; i < ctlr->num_chipselect; i++)
2651                 cs[i] = -ENOENT;
2652
2653         for (i = 0; i < nb; i++)
2654                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2655
2656         return 0;
2657 }
2658 #else
2659 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2660 {
2661         return 0;
2662 }
2663 #endif
2664
2665 /**
2666  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2667  * @ctlr: The SPI master to grab GPIO descriptors for
2668  */
2669 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2670 {
2671         int nb, i;
2672         struct gpio_desc **cs;
2673         struct device *dev = &ctlr->dev;
2674         unsigned long native_cs_mask = 0;
2675         unsigned int num_cs_gpios = 0;
2676
2677         nb = gpiod_count(dev, "cs");
2678         if (nb < 0) {
2679                 /* No GPIOs at all is fine, else return the error */
2680                 if (nb == -ENOENT)
2681                         return 0;
2682                 return nb;
2683         }
2684
2685         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2686
2687         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2688                           GFP_KERNEL);
2689         if (!cs)
2690                 return -ENOMEM;
2691         ctlr->cs_gpiods = cs;
2692
2693         for (i = 0; i < nb; i++) {
2694                 /*
2695                  * Most chipselects are active low, the inverted
2696                  * semantics are handled by special quirks in gpiolib,
2697                  * so initializing them GPIOD_OUT_LOW here means
2698                  * "unasserted", in most cases this will drive the physical
2699                  * line high.
2700                  */
2701                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2702                                                       GPIOD_OUT_LOW);
2703                 if (IS_ERR(cs[i]))
2704                         return PTR_ERR(cs[i]);
2705
2706                 if (cs[i]) {
2707                         /*
2708                          * If we find a CS GPIO, name it after the device and
2709                          * chip select line.
2710                          */
2711                         char *gpioname;
2712
2713                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2714                                                   dev_name(dev), i);
2715                         if (!gpioname)
2716                                 return -ENOMEM;
2717                         gpiod_set_consumer_name(cs[i], gpioname);
2718                         num_cs_gpios++;
2719                         continue;
2720                 }
2721
2722                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2723                         dev_err(dev, "Invalid native chip select %d\n", i);
2724                         return -EINVAL;
2725                 }
2726                 native_cs_mask |= BIT(i);
2727         }
2728
2729         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2730
2731         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2732             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2733                 dev_err(dev, "No unused native chip select available\n");
2734                 return -EINVAL;
2735         }
2736
2737         return 0;
2738 }
2739
2740 static int spi_controller_check_ops(struct spi_controller *ctlr)
2741 {
2742         /*
2743          * The controller may implement only the high-level SPI-memory like
2744          * operations if it does not support regular SPI transfers, and this is
2745          * valid use case.
2746          * If ->mem_ops is NULL, we request that at least one of the
2747          * ->transfer_xxx() method be implemented.
2748          */
2749         if (ctlr->mem_ops) {
2750                 if (!ctlr->mem_ops->exec_op)
2751                         return -EINVAL;
2752         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2753                    !ctlr->transfer_one_message) {
2754                 return -EINVAL;
2755         }
2756
2757         return 0;
2758 }
2759
2760 /**
2761  * spi_register_controller - register SPI master or slave controller
2762  * @ctlr: initialized master, originally from spi_alloc_master() or
2763  *      spi_alloc_slave()
2764  * Context: can sleep
2765  *
2766  * SPI controllers connect to their drivers using some non-SPI bus,
2767  * such as the platform bus.  The final stage of probe() in that code
2768  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2769  *
2770  * SPI controllers use board specific (often SOC specific) bus numbers,
2771  * and board-specific addressing for SPI devices combines those numbers
2772  * with chip select numbers.  Since SPI does not directly support dynamic
2773  * device identification, boards need configuration tables telling which
2774  * chip is at which address.
2775  *
2776  * This must be called from context that can sleep.  It returns zero on
2777  * success, else a negative error code (dropping the controller's refcount).
2778  * After a successful return, the caller is responsible for calling
2779  * spi_unregister_controller().
2780  *
2781  * Return: zero on success, else a negative error code.
2782  */
2783 int spi_register_controller(struct spi_controller *ctlr)
2784 {
2785         struct device           *dev = ctlr->dev.parent;
2786         struct boardinfo        *bi;
2787         int                     status;
2788         int                     id, first_dynamic;
2789
2790         if (!dev)
2791                 return -ENODEV;
2792
2793         /*
2794          * Make sure all necessary hooks are implemented before registering
2795          * the SPI controller.
2796          */
2797         status = spi_controller_check_ops(ctlr);
2798         if (status)
2799                 return status;
2800
2801         if (ctlr->bus_num >= 0) {
2802                 /* devices with a fixed bus num must check-in with the num */
2803                 mutex_lock(&board_lock);
2804                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2805                         ctlr->bus_num + 1, GFP_KERNEL);
2806                 mutex_unlock(&board_lock);
2807                 if (WARN(id < 0, "couldn't get idr"))
2808                         return id == -ENOSPC ? -EBUSY : id;
2809                 ctlr->bus_num = id;
2810         } else if (ctlr->dev.of_node) {
2811                 /* allocate dynamic bus number using Linux idr */
2812                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2813                 if (id >= 0) {
2814                         ctlr->bus_num = id;
2815                         mutex_lock(&board_lock);
2816                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2817                                        ctlr->bus_num + 1, GFP_KERNEL);
2818                         mutex_unlock(&board_lock);
2819                         if (WARN(id < 0, "couldn't get idr"))
2820                                 return id == -ENOSPC ? -EBUSY : id;
2821                 }
2822         }
2823         if (ctlr->bus_num < 0) {
2824                 first_dynamic = of_alias_get_highest_id("spi");
2825                 if (first_dynamic < 0)
2826                         first_dynamic = 0;
2827                 else
2828                         first_dynamic++;
2829
2830                 mutex_lock(&board_lock);
2831                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2832                                0, GFP_KERNEL);
2833                 mutex_unlock(&board_lock);
2834                 if (WARN(id < 0, "couldn't get idr"))
2835                         return id;
2836                 ctlr->bus_num = id;
2837         }
2838         INIT_LIST_HEAD(&ctlr->queue);
2839         spin_lock_init(&ctlr->queue_lock);
2840         spin_lock_init(&ctlr->bus_lock_spinlock);
2841         mutex_init(&ctlr->bus_lock_mutex);
2842         mutex_init(&ctlr->io_mutex);
2843         ctlr->bus_lock_flag = 0;
2844         init_completion(&ctlr->xfer_completion);
2845         if (!ctlr->max_dma_len)
2846                 ctlr->max_dma_len = INT_MAX;
2847
2848         /* register the device, then userspace will see it.
2849          * registration fails if the bus ID is in use.
2850          */
2851         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2852
2853         if (!spi_controller_is_slave(ctlr)) {
2854                 if (ctlr->use_gpio_descriptors) {
2855                         status = spi_get_gpio_descs(ctlr);
2856                         if (status)
2857                                 goto free_bus_id;
2858                         /*
2859                          * A controller using GPIO descriptors always
2860                          * supports SPI_CS_HIGH if need be.
2861                          */
2862                         ctlr->mode_bits |= SPI_CS_HIGH;
2863                 } else {
2864                         /* Legacy code path for GPIOs from DT */
2865                         status = of_spi_get_gpio_numbers(ctlr);
2866                         if (status)
2867                                 goto free_bus_id;
2868                 }
2869         }
2870
2871         /*
2872          * Even if it's just one always-selected device, there must
2873          * be at least one chipselect.
2874          */
2875         if (!ctlr->num_chipselect) {
2876                 status = -EINVAL;
2877                 goto free_bus_id;
2878         }
2879
2880         status = device_add(&ctlr->dev);
2881         if (status < 0)
2882                 goto free_bus_id;
2883         dev_dbg(dev, "registered %s %s\n",
2884                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2885                         dev_name(&ctlr->dev));
2886
2887         /*
2888          * If we're using a queued driver, start the queue. Note that we don't
2889          * need the queueing logic if the driver is only supporting high-level
2890          * memory operations.
2891          */
2892         if (ctlr->transfer) {
2893                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2894         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2895                 status = spi_controller_initialize_queue(ctlr);
2896                 if (status) {
2897                         device_del(&ctlr->dev);
2898                         goto free_bus_id;
2899                 }
2900         }
2901         /* add statistics */
2902         spin_lock_init(&ctlr->statistics.lock);
2903
2904         mutex_lock(&board_lock);
2905         list_add_tail(&ctlr->list, &spi_controller_list);
2906         list_for_each_entry(bi, &board_list, list)
2907                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2908         mutex_unlock(&board_lock);
2909
2910         /* Register devices from the device tree and ACPI */
2911         of_register_spi_devices(ctlr);
2912         acpi_register_spi_devices(ctlr);
2913         return status;
2914
2915 free_bus_id:
2916         mutex_lock(&board_lock);
2917         idr_remove(&spi_master_idr, ctlr->bus_num);
2918         mutex_unlock(&board_lock);
2919         return status;
2920 }
2921 EXPORT_SYMBOL_GPL(spi_register_controller);
2922
2923 static void devm_spi_unregister(void *ctlr)
2924 {
2925         spi_unregister_controller(ctlr);
2926 }
2927
2928 /**
2929  * devm_spi_register_controller - register managed SPI master or slave
2930  *      controller
2931  * @dev:    device managing SPI controller
2932  * @ctlr: initialized controller, originally from spi_alloc_master() or
2933  *      spi_alloc_slave()
2934  * Context: can sleep
2935  *
2936  * Register a SPI device as with spi_register_controller() which will
2937  * automatically be unregistered and freed.
2938  *
2939  * Return: zero on success, else a negative error code.
2940  */
2941 int devm_spi_register_controller(struct device *dev,
2942                                  struct spi_controller *ctlr)
2943 {
2944         int ret;
2945
2946         ret = spi_register_controller(ctlr);
2947         if (ret)
2948                 return ret;
2949
2950         return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
2951 }
2952 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2953
2954 static int __unregister(struct device *dev, void *null)
2955 {
2956         spi_unregister_device(to_spi_device(dev));
2957         return 0;
2958 }
2959
2960 /**
2961  * spi_unregister_controller - unregister SPI master or slave controller
2962  * @ctlr: the controller being unregistered
2963  * Context: can sleep
2964  *
2965  * This call is used only by SPI controller drivers, which are the
2966  * only ones directly touching chip registers.
2967  *
2968  * This must be called from context that can sleep.
2969  *
2970  * Note that this function also drops a reference to the controller.
2971  */
2972 void spi_unregister_controller(struct spi_controller *ctlr)
2973 {
2974         struct spi_controller *found;
2975         int id = ctlr->bus_num;
2976
2977         /* Prevent addition of new devices, unregister existing ones */
2978         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2979                 mutex_lock(&spi_add_lock);
2980
2981         device_for_each_child(&ctlr->dev, NULL, __unregister);
2982
2983         /* First make sure that this controller was ever added */
2984         mutex_lock(&board_lock);
2985         found = idr_find(&spi_master_idr, id);
2986         mutex_unlock(&board_lock);
2987         if (ctlr->queued) {
2988                 if (spi_destroy_queue(ctlr))
2989                         dev_err(&ctlr->dev, "queue remove failed\n");
2990         }
2991         mutex_lock(&board_lock);
2992         list_del(&ctlr->list);
2993         mutex_unlock(&board_lock);
2994
2995         device_del(&ctlr->dev);
2996
2997         /* Release the last reference on the controller if its driver
2998          * has not yet been converted to devm_spi_alloc_master/slave().
2999          */
3000         if (!ctlr->devm_allocated)
3001                 put_device(&ctlr->dev);
3002
3003         /* free bus id */
3004         mutex_lock(&board_lock);
3005         if (found == ctlr)
3006                 idr_remove(&spi_master_idr, id);
3007         mutex_unlock(&board_lock);
3008
3009         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3010                 mutex_unlock(&spi_add_lock);
3011 }
3012 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3013
3014 int spi_controller_suspend(struct spi_controller *ctlr)
3015 {
3016         int ret;
3017
3018         /* Basically no-ops for non-queued controllers */
3019         if (!ctlr->queued)
3020                 return 0;
3021
3022         ret = spi_stop_queue(ctlr);
3023         if (ret)
3024                 dev_err(&ctlr->dev, "queue stop failed\n");
3025
3026         return ret;
3027 }
3028 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3029
3030 int spi_controller_resume(struct spi_controller *ctlr)
3031 {
3032         int ret;
3033
3034         if (!ctlr->queued)
3035                 return 0;
3036
3037         ret = spi_start_queue(ctlr);
3038         if (ret)
3039                 dev_err(&ctlr->dev, "queue restart failed\n");
3040
3041         return ret;
3042 }
3043 EXPORT_SYMBOL_GPL(spi_controller_resume);
3044
3045 static int __spi_controller_match(struct device *dev, const void *data)
3046 {
3047         struct spi_controller *ctlr;
3048         const u16 *bus_num = data;
3049
3050         ctlr = container_of(dev, struct spi_controller, dev);
3051         return ctlr->bus_num == *bus_num;
3052 }
3053
3054 /**
3055  * spi_busnum_to_master - look up master associated with bus_num
3056  * @bus_num: the master's bus number
3057  * Context: can sleep
3058  *
3059  * This call may be used with devices that are registered after
3060  * arch init time.  It returns a refcounted pointer to the relevant
3061  * spi_controller (which the caller must release), or NULL if there is
3062  * no such master registered.
3063  *
3064  * Return: the SPI master structure on success, else NULL.
3065  */
3066 struct spi_controller *spi_busnum_to_master(u16 bus_num)
3067 {
3068         struct device           *dev;
3069         struct spi_controller   *ctlr = NULL;
3070
3071         dev = class_find_device(&spi_master_class, NULL, &bus_num,
3072                                 __spi_controller_match);
3073         if (dev)
3074                 ctlr = container_of(dev, struct spi_controller, dev);
3075         /* reference got in class_find_device */
3076         return ctlr;
3077 }
3078 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3079
3080 /*-------------------------------------------------------------------------*/
3081
3082 /* Core methods for SPI resource management */
3083
3084 /**
3085  * spi_res_alloc - allocate a spi resource that is life-cycle managed
3086  *                 during the processing of a spi_message while using
3087  *                 spi_transfer_one
3088  * @spi:     the spi device for which we allocate memory
3089  * @release: the release code to execute for this resource
3090  * @size:    size to alloc and return
3091  * @gfp:     GFP allocation flags
3092  *
3093  * Return: the pointer to the allocated data
3094  *
3095  * This may get enhanced in the future to allocate from a memory pool
3096  * of the @spi_device or @spi_controller to avoid repeated allocations.
3097  */
3098 void *spi_res_alloc(struct spi_device *spi,
3099                     spi_res_release_t release,
3100                     size_t size, gfp_t gfp)
3101 {
3102         struct spi_res *sres;
3103
3104         sres = kzalloc(sizeof(*sres) + size, gfp);
3105         if (!sres)
3106                 return NULL;
3107
3108         INIT_LIST_HEAD(&sres->entry);
3109         sres->release = release;
3110
3111         return sres->data;
3112 }
3113 EXPORT_SYMBOL_GPL(spi_res_alloc);
3114
3115 /**
3116  * spi_res_free - free an spi resource
3117  * @res: pointer to the custom data of a resource
3118  *
3119  */
3120 void spi_res_free(void *res)
3121 {
3122         struct spi_res *sres = container_of(res, struct spi_res, data);
3123
3124         if (!res)
3125                 return;
3126
3127         WARN_ON(!list_empty(&sres->entry));
3128         kfree(sres);
3129 }
3130 EXPORT_SYMBOL_GPL(spi_res_free);
3131
3132 /**
3133  * spi_res_add - add a spi_res to the spi_message
3134  * @message: the spi message
3135  * @res:     the spi_resource
3136  */
3137 void spi_res_add(struct spi_message *message, void *res)
3138 {
3139         struct spi_res *sres = container_of(res, struct spi_res, data);
3140
3141         WARN_ON(!list_empty(&sres->entry));
3142         list_add_tail(&sres->entry, &message->resources);
3143 }
3144 EXPORT_SYMBOL_GPL(spi_res_add);
3145
3146 /**
3147  * spi_res_release - release all spi resources for this message
3148  * @ctlr:  the @spi_controller
3149  * @message: the @spi_message
3150  */
3151 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3152 {
3153         struct spi_res *res, *tmp;
3154
3155         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3156                 if (res->release)
3157                         res->release(ctlr, message, res->data);
3158
3159                 list_del(&res->entry);
3160
3161                 kfree(res);
3162         }
3163 }
3164 EXPORT_SYMBOL_GPL(spi_res_release);
3165
3166 /*-------------------------------------------------------------------------*/
3167
3168 /* Core methods for spi_message alterations */
3169
3170 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3171                                             struct spi_message *msg,
3172                                             void *res)
3173 {
3174         struct spi_replaced_transfers *rxfer = res;
3175         size_t i;
3176
3177         /* call extra callback if requested */
3178         if (rxfer->release)
3179                 rxfer->release(ctlr, msg, res);
3180
3181         /* insert replaced transfers back into the message */
3182         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3183
3184         /* remove the formerly inserted entries */
3185         for (i = 0; i < rxfer->inserted; i++)
3186                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3187 }
3188
3189 /**
3190  * spi_replace_transfers - replace transfers with several transfers
3191  *                         and register change with spi_message.resources
3192  * @msg:           the spi_message we work upon
3193  * @xfer_first:    the first spi_transfer we want to replace
3194  * @remove:        number of transfers to remove
3195  * @insert:        the number of transfers we want to insert instead
3196  * @release:       extra release code necessary in some circumstances
3197  * @extradatasize: extra data to allocate (with alignment guarantees
3198  *                 of struct @spi_transfer)
3199  * @gfp:           gfp flags
3200  *
3201  * Returns: pointer to @spi_replaced_transfers,
3202  *          PTR_ERR(...) in case of errors.
3203  */
3204 struct spi_replaced_transfers *spi_replace_transfers(
3205         struct spi_message *msg,
3206         struct spi_transfer *xfer_first,
3207         size_t remove,
3208         size_t insert,
3209         spi_replaced_release_t release,
3210         size_t extradatasize,
3211         gfp_t gfp)
3212 {
3213         struct spi_replaced_transfers *rxfer;
3214         struct spi_transfer *xfer;
3215         size_t i;
3216
3217         /* allocate the structure using spi_res */
3218         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3219                               struct_size(rxfer, inserted_transfers, insert)
3220                               + extradatasize,
3221                               gfp);
3222         if (!rxfer)
3223                 return ERR_PTR(-ENOMEM);
3224
3225         /* the release code to invoke before running the generic release */
3226         rxfer->release = release;
3227
3228         /* assign extradata */
3229         if (extradatasize)
3230                 rxfer->extradata =
3231                         &rxfer->inserted_transfers[insert];
3232
3233         /* init the replaced_transfers list */
3234         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3235
3236         /* assign the list_entry after which we should reinsert
3237          * the @replaced_transfers - it may be spi_message.messages!
3238          */
3239         rxfer->replaced_after = xfer_first->transfer_list.prev;
3240
3241         /* remove the requested number of transfers */
3242         for (i = 0; i < remove; i++) {
3243                 /* if the entry after replaced_after it is msg->transfers
3244                  * then we have been requested to remove more transfers
3245                  * than are in the list
3246                  */
3247                 if (rxfer->replaced_after->next == &msg->transfers) {
3248                         dev_err(&msg->spi->dev,
3249                                 "requested to remove more spi_transfers than are available\n");
3250                         /* insert replaced transfers back into the message */
3251                         list_splice(&rxfer->replaced_transfers,
3252                                     rxfer->replaced_after);
3253
3254                         /* free the spi_replace_transfer structure */
3255                         spi_res_free(rxfer);
3256
3257                         /* and return with an error */
3258                         return ERR_PTR(-EINVAL);
3259                 }
3260
3261                 /* remove the entry after replaced_after from list of
3262                  * transfers and add it to list of replaced_transfers
3263                  */
3264                 list_move_tail(rxfer->replaced_after->next,
3265                                &rxfer->replaced_transfers);
3266         }
3267
3268         /* create copy of the given xfer with identical settings
3269          * based on the first transfer to get removed
3270          */
3271         for (i = 0; i < insert; i++) {
3272                 /* we need to run in reverse order */
3273                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3274
3275                 /* copy all spi_transfer data */
3276                 memcpy(xfer, xfer_first, sizeof(*xfer));
3277
3278                 /* add to list */
3279                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3280
3281                 /* clear cs_change and delay for all but the last */
3282                 if (i) {
3283                         xfer->cs_change = false;
3284                         xfer->delay.value = 0;
3285                 }
3286         }
3287
3288         /* set up inserted */
3289         rxfer->inserted = insert;
3290
3291         /* and register it with spi_res/spi_message */
3292         spi_res_add(msg, rxfer);
3293
3294         return rxfer;
3295 }
3296 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3297
3298 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3299                                         struct spi_message *msg,
3300                                         struct spi_transfer **xferp,
3301                                         size_t maxsize,
3302                                         gfp_t gfp)
3303 {
3304         struct spi_transfer *xfer = *xferp, *xfers;
3305         struct spi_replaced_transfers *srt;
3306         size_t offset;
3307         size_t count, i;
3308
3309         /* calculate how many we have to replace */
3310         count = DIV_ROUND_UP(xfer->len, maxsize);
3311
3312         /* create replacement */
3313         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3314         if (IS_ERR(srt))
3315                 return PTR_ERR(srt);
3316         xfers = srt->inserted_transfers;
3317
3318         /* now handle each of those newly inserted spi_transfers
3319          * note that the replacements spi_transfers all are preset
3320          * to the same values as *xferp, so tx_buf, rx_buf and len
3321          * are all identical (as well as most others)
3322          * so we just have to fix up len and the pointers.
3323          *
3324          * this also includes support for the depreciated
3325          * spi_message.is_dma_mapped interface
3326          */
3327
3328         /* the first transfer just needs the length modified, so we
3329          * run it outside the loop
3330          */
3331         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3332
3333         /* all the others need rx_buf/tx_buf also set */
3334         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3335                 /* update rx_buf, tx_buf and dma */
3336                 if (xfers[i].rx_buf)
3337                         xfers[i].rx_buf += offset;
3338                 if (xfers[i].rx_dma)
3339                         xfers[i].rx_dma += offset;
3340                 if (xfers[i].tx_buf)
3341                         xfers[i].tx_buf += offset;
3342                 if (xfers[i].tx_dma)
3343                         xfers[i].tx_dma += offset;
3344
3345                 /* update length */
3346                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3347         }
3348
3349         /* we set up xferp to the last entry we have inserted,
3350          * so that we skip those already split transfers
3351          */
3352         *xferp = &xfers[count - 1];
3353
3354         /* increment statistics counters */
3355         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3356                                        transfers_split_maxsize);
3357         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3358                                        transfers_split_maxsize);
3359
3360         return 0;
3361 }
3362
3363 /**
3364  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3365  *                               when an individual transfer exceeds a
3366  *                               certain size
3367  * @ctlr:    the @spi_controller for this transfer
3368  * @msg:   the @spi_message to transform
3369  * @maxsize:  the maximum when to apply this
3370  * @gfp: GFP allocation flags
3371  *
3372  * Return: status of transformation
3373  */
3374 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3375                                 struct spi_message *msg,
3376                                 size_t maxsize,
3377                                 gfp_t gfp)
3378 {
3379         struct spi_transfer *xfer;
3380         int ret;
3381
3382         /* iterate over the transfer_list,
3383          * but note that xfer is advanced to the last transfer inserted
3384          * to avoid checking sizes again unnecessarily (also xfer does
3385          * potentiall belong to a different list by the time the
3386          * replacement has happened
3387          */
3388         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3389                 if (xfer->len > maxsize) {
3390                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3391                                                            maxsize, gfp);
3392                         if (ret)
3393                                 return ret;
3394                 }
3395         }
3396
3397         return 0;
3398 }
3399 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3400
3401 /*-------------------------------------------------------------------------*/
3402
3403 /* Core methods for SPI controller protocol drivers.  Some of the
3404  * other core methods are currently defined as inline functions.
3405  */
3406
3407 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3408                                         u8 bits_per_word)
3409 {
3410         if (ctlr->bits_per_word_mask) {
3411                 /* Only 32 bits fit in the mask */
3412                 if (bits_per_word > 32)
3413                         return -EINVAL;
3414                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3415                         return -EINVAL;
3416         }
3417
3418         return 0;
3419 }
3420
3421 /**
3422  * spi_setup - setup SPI mode and clock rate
3423  * @spi: the device whose settings are being modified
3424  * Context: can sleep, and no requests are queued to the device
3425  *
3426  * SPI protocol drivers may need to update the transfer mode if the
3427  * device doesn't work with its default.  They may likewise need
3428  * to update clock rates or word sizes from initial values.  This function
3429  * changes those settings, and must be called from a context that can sleep.
3430  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3431  * effect the next time the device is selected and data is transferred to
3432  * or from it.  When this function returns, the spi device is deselected.
3433  *
3434  * Note that this call will fail if the protocol driver specifies an option
3435  * that the underlying controller or its driver does not support.  For
3436  * example, not all hardware supports wire transfers using nine bit words,
3437  * LSB-first wire encoding, or active-high chipselects.
3438  *
3439  * Return: zero on success, else a negative error code.
3440  */
3441 int spi_setup(struct spi_device *spi)
3442 {
3443         unsigned        bad_bits, ugly_bits;
3444         int             status;
3445
3446         /*
3447          * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3448          * are set at the same time
3449          */
3450         if ((hweight_long(spi->mode &
3451                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3452             (hweight_long(spi->mode &
3453                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3454                 dev_err(&spi->dev,
3455                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3456                 return -EINVAL;
3457         }
3458         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3459          */
3460         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3461                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3462                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3463                 return -EINVAL;
3464         /* help drivers fail *cleanly* when they need options
3465          * that aren't supported with their current controller
3466          * SPI_CS_WORD has a fallback software implementation,
3467          * so it is ignored here.
3468          */
3469         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3470                                  SPI_NO_TX | SPI_NO_RX);
3471         /* nothing prevents from working with active-high CS in case if it
3472          * is driven by GPIO.
3473          */
3474         if (gpio_is_valid(spi->cs_gpio))
3475                 bad_bits &= ~SPI_CS_HIGH;
3476         ugly_bits = bad_bits &
3477                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3478                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3479         if (ugly_bits) {
3480                 dev_warn(&spi->dev,
3481                          "setup: ignoring unsupported mode bits %x\n",
3482                          ugly_bits);
3483                 spi->mode &= ~ugly_bits;
3484                 bad_bits &= ~ugly_bits;
3485         }
3486         if (bad_bits) {
3487                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3488                         bad_bits);
3489                 return -EINVAL;
3490         }
3491
3492         if (!spi->bits_per_word)
3493                 spi->bits_per_word = 8;
3494
3495         status = __spi_validate_bits_per_word(spi->controller,
3496                                               spi->bits_per_word);
3497         if (status)
3498                 return status;
3499
3500         if (spi->controller->max_speed_hz &&
3501             (!spi->max_speed_hz ||
3502              spi->max_speed_hz > spi->controller->max_speed_hz))
3503                 spi->max_speed_hz = spi->controller->max_speed_hz;
3504
3505         mutex_lock(&spi->controller->io_mutex);
3506
3507         if (spi->controller->setup) {
3508                 status = spi->controller->setup(spi);
3509                 if (status) {
3510                         mutex_unlock(&spi->controller->io_mutex);
3511                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3512                                 status);
3513                         return status;
3514                 }
3515         }
3516
3517         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3518                 status = pm_runtime_get_sync(spi->controller->dev.parent);
3519                 if (status < 0) {
3520                         mutex_unlock(&spi->controller->io_mutex);
3521                         pm_runtime_put_noidle(spi->controller->dev.parent);
3522                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3523                                 status);
3524                         return status;
3525                 }
3526
3527                 /*
3528                  * We do not want to return positive value from pm_runtime_get,
3529                  * there are many instances of devices calling spi_setup() and
3530                  * checking for a non-zero return value instead of a negative
3531                  * return value.
3532                  */
3533                 status = 0;
3534
3535                 spi_set_cs(spi, false, true);
3536                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3537                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3538         } else {
3539                 spi_set_cs(spi, false, true);
3540         }
3541
3542         mutex_unlock(&spi->controller->io_mutex);
3543
3544         if (spi->rt && !spi->controller->rt) {
3545                 spi->controller->rt = true;
3546                 spi_set_thread_rt(spi->controller);
3547         }
3548
3549         trace_spi_setup(spi, status);
3550
3551         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3552                         spi->mode & SPI_MODE_X_MASK,
3553                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3554                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3555                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3556                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3557                         spi->bits_per_word, spi->max_speed_hz,
3558                         status);
3559
3560         return status;
3561 }
3562 EXPORT_SYMBOL_GPL(spi_setup);
3563
3564 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3565                                        struct spi_device *spi)
3566 {
3567         int delay1, delay2;
3568
3569         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3570         if (delay1 < 0)
3571                 return delay1;
3572
3573         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3574         if (delay2 < 0)
3575                 return delay2;
3576
3577         if (delay1 < delay2)
3578                 memcpy(&xfer->word_delay, &spi->word_delay,
3579                        sizeof(xfer->word_delay));
3580
3581         return 0;
3582 }
3583
3584 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3585 {
3586         struct spi_controller *ctlr = spi->controller;
3587         struct spi_transfer *xfer;
3588         int w_size;
3589
3590         if (list_empty(&message->transfers))
3591                 return -EINVAL;
3592
3593         /* If an SPI controller does not support toggling the CS line on each
3594          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3595          * for the CS line, we can emulate the CS-per-word hardware function by
3596          * splitting transfers into one-word transfers and ensuring that
3597          * cs_change is set for each transfer.
3598          */
3599         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3600                                           spi->cs_gpiod ||
3601                                           gpio_is_valid(spi->cs_gpio))) {
3602                 size_t maxsize;
3603                 int ret;
3604
3605                 maxsize = (spi->bits_per_word + 7) / 8;
3606
3607                 /* spi_split_transfers_maxsize() requires message->spi */
3608                 message->spi = spi;
3609
3610                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3611                                                   GFP_KERNEL);
3612                 if (ret)
3613                         return ret;
3614
3615                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3616                         /* don't change cs_change on the last entry in the list */
3617                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3618                                 break;
3619                         xfer->cs_change = 1;
3620                 }
3621         }
3622
3623         /* Half-duplex links include original MicroWire, and ones with
3624          * only one data pin like SPI_3WIRE (switches direction) or where
3625          * either MOSI or MISO is missing.  They can also be caused by
3626          * software limitations.
3627          */
3628         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3629             (spi->mode & SPI_3WIRE)) {
3630                 unsigned flags = ctlr->flags;
3631
3632                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3633                         if (xfer->rx_buf && xfer->tx_buf)
3634                                 return -EINVAL;
3635                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3636                                 return -EINVAL;
3637                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3638                                 return -EINVAL;
3639                 }
3640         }
3641
3642         /**
3643          * Set transfer bits_per_word and max speed as spi device default if
3644          * it is not set for this transfer.
3645          * Set transfer tx_nbits and rx_nbits as single transfer default
3646          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3647          * Ensure transfer word_delay is at least as long as that required by
3648          * device itself.
3649          */
3650         message->frame_length = 0;
3651         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3652                 xfer->effective_speed_hz = 0;
3653                 message->frame_length += xfer->len;
3654                 if (!xfer->bits_per_word)
3655                         xfer->bits_per_word = spi->bits_per_word;
3656
3657                 if (!xfer->speed_hz)
3658                         xfer->speed_hz = spi->max_speed_hz;
3659
3660                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3661                         xfer->speed_hz = ctlr->max_speed_hz;
3662
3663                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3664                         return -EINVAL;
3665
3666                 /*
3667                  * SPI transfer length should be multiple of SPI word size
3668                  * where SPI word size should be power-of-two multiple
3669                  */
3670                 if (xfer->bits_per_word <= 8)
3671                         w_size = 1;
3672                 else if (xfer->bits_per_word <= 16)
3673                         w_size = 2;
3674                 else
3675                         w_size = 4;
3676
3677                 /* No partial transfers accepted */
3678                 if (xfer->len % w_size)
3679                         return -EINVAL;
3680
3681                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3682                     xfer->speed_hz < ctlr->min_speed_hz)
3683                         return -EINVAL;
3684
3685                 if (xfer->tx_buf && !xfer->tx_nbits)
3686                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3687                 if (xfer->rx_buf && !xfer->rx_nbits)
3688                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3689                 /* check transfer tx/rx_nbits:
3690                  * 1. check the value matches one of single, dual and quad
3691                  * 2. check tx/rx_nbits match the mode in spi_device
3692                  */
3693                 if (xfer->tx_buf) {
3694                         if (spi->mode & SPI_NO_TX)
3695                                 return -EINVAL;
3696                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3697                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3698                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3699                                 return -EINVAL;
3700                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3701                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3702                                 return -EINVAL;
3703                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3704                                 !(spi->mode & SPI_TX_QUAD))
3705                                 return -EINVAL;
3706                 }
3707                 /* check transfer rx_nbits */
3708                 if (xfer->rx_buf) {
3709                         if (spi->mode & SPI_NO_RX)
3710                                 return -EINVAL;
3711                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3712                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3713                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3714                                 return -EINVAL;
3715                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3716                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3717                                 return -EINVAL;
3718                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3719                                 !(spi->mode & SPI_RX_QUAD))
3720                                 return -EINVAL;
3721                 }
3722
3723                 if (_spi_xfer_word_delay_update(xfer, spi))
3724                         return -EINVAL;
3725         }
3726
3727         message->status = -EINPROGRESS;
3728
3729         return 0;
3730 }
3731
3732 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3733 {
3734         struct spi_controller *ctlr = spi->controller;
3735         struct spi_transfer *xfer;
3736
3737         /*
3738          * Some controllers do not support doing regular SPI transfers. Return
3739          * ENOTSUPP when this is the case.
3740          */
3741         if (!ctlr->transfer)
3742                 return -ENOTSUPP;
3743
3744         message->spi = spi;
3745
3746         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3747         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3748
3749         trace_spi_message_submit(message);
3750
3751         if (!ctlr->ptp_sts_supported) {
3752                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3753                         xfer->ptp_sts_word_pre = 0;
3754                         ptp_read_system_prets(xfer->ptp_sts);
3755                 }
3756         }
3757
3758         return ctlr->transfer(spi, message);
3759 }
3760
3761 /**
3762  * spi_async - asynchronous SPI transfer
3763  * @spi: device with which data will be exchanged
3764  * @message: describes the data transfers, including completion callback
3765  * Context: any (irqs may be blocked, etc)
3766  *
3767  * This call may be used in_irq and other contexts which can't sleep,
3768  * as well as from task contexts which can sleep.
3769  *
3770  * The completion callback is invoked in a context which can't sleep.
3771  * Before that invocation, the value of message->status is undefined.
3772  * When the callback is issued, message->status holds either zero (to
3773  * indicate complete success) or a negative error code.  After that
3774  * callback returns, the driver which issued the transfer request may
3775  * deallocate the associated memory; it's no longer in use by any SPI
3776  * core or controller driver code.
3777  *
3778  * Note that although all messages to a spi_device are handled in
3779  * FIFO order, messages may go to different devices in other orders.
3780  * Some device might be higher priority, or have various "hard" access
3781  * time requirements, for example.
3782  *
3783  * On detection of any fault during the transfer, processing of
3784  * the entire message is aborted, and the device is deselected.
3785  * Until returning from the associated message completion callback,
3786  * no other spi_message queued to that device will be processed.
3787  * (This rule applies equally to all the synchronous transfer calls,
3788  * which are wrappers around this core asynchronous primitive.)
3789  *
3790  * Return: zero on success, else a negative error code.
3791  */
3792 int spi_async(struct spi_device *spi, struct spi_message *message)
3793 {
3794         struct spi_controller *ctlr = spi->controller;
3795         int ret;
3796         unsigned long flags;
3797
3798         ret = __spi_validate(spi, message);
3799         if (ret != 0)
3800                 return ret;
3801
3802         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3803
3804         if (ctlr->bus_lock_flag)
3805                 ret = -EBUSY;
3806         else
3807                 ret = __spi_async(spi, message);
3808
3809         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3810
3811         return ret;
3812 }
3813 EXPORT_SYMBOL_GPL(spi_async);
3814
3815 /**
3816  * spi_async_locked - version of spi_async with exclusive bus usage
3817  * @spi: device with which data will be exchanged
3818  * @message: describes the data transfers, including completion callback
3819  * Context: any (irqs may be blocked, etc)
3820  *
3821  * This call may be used in_irq and other contexts which can't sleep,
3822  * as well as from task contexts which can sleep.
3823  *
3824  * The completion callback is invoked in a context which can't sleep.
3825  * Before that invocation, the value of message->status is undefined.
3826  * When the callback is issued, message->status holds either zero (to
3827  * indicate complete success) or a negative error code.  After that
3828  * callback returns, the driver which issued the transfer request may
3829  * deallocate the associated memory; it's no longer in use by any SPI
3830  * core or controller driver code.
3831  *
3832  * Note that although all messages to a spi_device are handled in
3833  * FIFO order, messages may go to different devices in other orders.
3834  * Some device might be higher priority, or have various "hard" access
3835  * time requirements, for example.
3836  *
3837  * On detection of any fault during the transfer, processing of
3838  * the entire message is aborted, and the device is deselected.
3839  * Until returning from the associated message completion callback,
3840  * no other spi_message queued to that device will be processed.
3841  * (This rule applies equally to all the synchronous transfer calls,
3842  * which are wrappers around this core asynchronous primitive.)
3843  *
3844  * Return: zero on success, else a negative error code.
3845  */
3846 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3847 {
3848         struct spi_controller *ctlr = spi->controller;
3849         int ret;
3850         unsigned long flags;
3851
3852         ret = __spi_validate(spi, message);
3853         if (ret != 0)
3854                 return ret;
3855
3856         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3857
3858         ret = __spi_async(spi, message);
3859
3860         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3861
3862         return ret;
3863
3864 }
3865 EXPORT_SYMBOL_GPL(spi_async_locked);
3866
3867 /*-------------------------------------------------------------------------*/
3868
3869 /* Utility methods for SPI protocol drivers, layered on
3870  * top of the core.  Some other utility methods are defined as
3871  * inline functions.
3872  */
3873
3874 static void spi_complete(void *arg)
3875 {
3876         complete(arg);
3877 }
3878
3879 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3880 {
3881         DECLARE_COMPLETION_ONSTACK(done);
3882         int status;
3883         struct spi_controller *ctlr = spi->controller;
3884         unsigned long flags;
3885
3886         status = __spi_validate(spi, message);
3887         if (status != 0)
3888                 return status;
3889
3890         message->complete = spi_complete;
3891         message->context = &done;
3892         message->spi = spi;
3893
3894         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3895         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3896
3897         /* If we're not using the legacy transfer method then we will
3898          * try to transfer in the calling context so special case.
3899          * This code would be less tricky if we could remove the
3900          * support for driver implemented message queues.
3901          */
3902         if (ctlr->transfer == spi_queued_transfer) {
3903                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3904
3905                 trace_spi_message_submit(message);
3906
3907                 status = __spi_queued_transfer(spi, message, false);
3908
3909                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3910         } else {
3911                 status = spi_async_locked(spi, message);
3912         }
3913
3914         if (status == 0) {
3915                 /* Push out the messages in the calling context if we
3916                  * can.
3917                  */
3918                 if (ctlr->transfer == spi_queued_transfer) {
3919                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3920                                                        spi_sync_immediate);
3921                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3922                                                        spi_sync_immediate);
3923                         __spi_pump_messages(ctlr, false);
3924                 }
3925
3926                 wait_for_completion(&done);
3927                 status = message->status;
3928         }
3929         message->context = NULL;
3930         return status;
3931 }
3932
3933 /**
3934  * spi_sync - blocking/synchronous SPI data transfers
3935  * @spi: device with which data will be exchanged
3936  * @message: describes the data transfers
3937  * Context: can sleep
3938  *
3939  * This call may only be used from a context that may sleep.  The sleep
3940  * is non-interruptible, and has no timeout.  Low-overhead controller
3941  * drivers may DMA directly into and out of the message buffers.
3942  *
3943  * Note that the SPI device's chip select is active during the message,
3944  * and then is normally disabled between messages.  Drivers for some
3945  * frequently-used devices may want to minimize costs of selecting a chip,
3946  * by leaving it selected in anticipation that the next message will go
3947  * to the same chip.  (That may increase power usage.)
3948  *
3949  * Also, the caller is guaranteeing that the memory associated with the
3950  * message will not be freed before this call returns.
3951  *
3952  * Return: zero on success, else a negative error code.
3953  */
3954 int spi_sync(struct spi_device *spi, struct spi_message *message)
3955 {
3956         int ret;
3957
3958         mutex_lock(&spi->controller->bus_lock_mutex);
3959         ret = __spi_sync(spi, message);
3960         mutex_unlock(&spi->controller->bus_lock_mutex);
3961
3962         return ret;
3963 }
3964 EXPORT_SYMBOL_GPL(spi_sync);
3965
3966 /**
3967  * spi_sync_locked - version of spi_sync with exclusive bus usage
3968  * @spi: device with which data will be exchanged
3969  * @message: describes the data transfers
3970  * Context: can sleep
3971  *
3972  * This call may only be used from a context that may sleep.  The sleep
3973  * is non-interruptible, and has no timeout.  Low-overhead controller
3974  * drivers may DMA directly into and out of the message buffers.
3975  *
3976  * This call should be used by drivers that require exclusive access to the
3977  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3978  * be released by a spi_bus_unlock call when the exclusive access is over.
3979  *
3980  * Return: zero on success, else a negative error code.
3981  */
3982 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3983 {
3984         return __spi_sync(spi, message);
3985 }
3986 EXPORT_SYMBOL_GPL(spi_sync_locked);
3987
3988 /**
3989  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3990  * @ctlr: SPI bus master that should be locked for exclusive bus access
3991  * Context: can sleep
3992  *
3993  * This call may only be used from a context that may sleep.  The sleep
3994  * is non-interruptible, and has no timeout.
3995  *
3996  * This call should be used by drivers that require exclusive access to the
3997  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3998  * exclusive access is over. Data transfer must be done by spi_sync_locked
3999  * and spi_async_locked calls when the SPI bus lock is held.
4000  *
4001  * Return: always zero.
4002  */
4003 int spi_bus_lock(struct spi_controller *ctlr)
4004 {
4005         unsigned long flags;
4006
4007         mutex_lock(&ctlr->bus_lock_mutex);
4008
4009         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4010         ctlr->bus_lock_flag = 1;
4011         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4012
4013         /* mutex remains locked until spi_bus_unlock is called */
4014
4015         return 0;
4016 }
4017 EXPORT_SYMBOL_GPL(spi_bus_lock);
4018
4019 /**
4020  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4021  * @ctlr: SPI bus master that was locked for exclusive bus access
4022  * Context: can sleep
4023  *
4024  * This call may only be used from a context that may sleep.  The sleep
4025  * is non-interruptible, and has no timeout.
4026  *
4027  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4028  * call.
4029  *
4030  * Return: always zero.
4031  */
4032 int spi_bus_unlock(struct spi_controller *ctlr)
4033 {
4034         ctlr->bus_lock_flag = 0;
4035
4036         mutex_unlock(&ctlr->bus_lock_mutex);
4037
4038         return 0;
4039 }
4040 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4041
4042 /* portable code must never pass more than 32 bytes */
4043 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4044
4045 static u8       *buf;
4046
4047 /**
4048  * spi_write_then_read - SPI synchronous write followed by read
4049  * @spi: device with which data will be exchanged
4050  * @txbuf: data to be written (need not be dma-safe)
4051  * @n_tx: size of txbuf, in bytes
4052  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4053  * @n_rx: size of rxbuf, in bytes
4054  * Context: can sleep
4055  *
4056  * This performs a half duplex MicroWire style transaction with the
4057  * device, sending txbuf and then reading rxbuf.  The return value
4058  * is zero for success, else a negative errno status code.
4059  * This call may only be used from a context that may sleep.
4060  *
4061  * Parameters to this routine are always copied using a small buffer.
4062  * Performance-sensitive or bulk transfer code should instead use
4063  * spi_{async,sync}() calls with dma-safe buffers.
4064  *
4065  * Return: zero on success, else a negative error code.
4066  */
4067 int spi_write_then_read(struct spi_device *spi,
4068                 const void *txbuf, unsigned n_tx,
4069                 void *rxbuf, unsigned n_rx)
4070 {
4071         static DEFINE_MUTEX(lock);
4072
4073         int                     status;
4074         struct spi_message      message;
4075         struct spi_transfer     x[2];
4076         u8                      *local_buf;
4077
4078         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
4079          * copying here, (as a pure convenience thing), but we can
4080          * keep heap costs out of the hot path unless someone else is
4081          * using the pre-allocated buffer or the transfer is too large.
4082          */
4083         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4084                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4085                                     GFP_KERNEL | GFP_DMA);
4086                 if (!local_buf)
4087                         return -ENOMEM;
4088         } else {
4089                 local_buf = buf;
4090         }
4091
4092         spi_message_init(&message);
4093         memset(x, 0, sizeof(x));
4094         if (n_tx) {
4095                 x[0].len = n_tx;
4096                 spi_message_add_tail(&x[0], &message);
4097         }
4098         if (n_rx) {
4099                 x[1].len = n_rx;
4100                 spi_message_add_tail(&x[1], &message);
4101         }
4102
4103         memcpy(local_buf, txbuf, n_tx);
4104         x[0].tx_buf = local_buf;
4105         x[1].rx_buf = local_buf + n_tx;
4106
4107         /* do the i/o */
4108         status = spi_sync(spi, &message);
4109         if (status == 0)
4110                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4111
4112         if (x[0].tx_buf == buf)
4113                 mutex_unlock(&lock);
4114         else
4115                 kfree(local_buf);
4116
4117         return status;
4118 }
4119 EXPORT_SYMBOL_GPL(spi_write_then_read);
4120
4121 /*-------------------------------------------------------------------------*/
4122
4123 #if IS_ENABLED(CONFIG_OF)
4124 /* must call put_device() when done with returned spi_device device */
4125 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4126 {
4127         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4128
4129         return dev ? to_spi_device(dev) : NULL;
4130 }
4131 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4132 #endif /* IS_ENABLED(CONFIG_OF) */
4133
4134 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4135 /* the spi controllers are not using spi_bus, so we find it with another way */
4136 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4137 {
4138         struct device *dev;
4139
4140         dev = class_find_device_by_of_node(&spi_master_class, node);
4141         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4142                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4143         if (!dev)
4144                 return NULL;
4145
4146         /* reference got in class_find_device */
4147         return container_of(dev, struct spi_controller, dev);
4148 }
4149
4150 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4151                          void *arg)
4152 {
4153         struct of_reconfig_data *rd = arg;
4154         struct spi_controller *ctlr;
4155         struct spi_device *spi;
4156
4157         switch (of_reconfig_get_state_change(action, arg)) {
4158         case OF_RECONFIG_CHANGE_ADD:
4159                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4160                 if (ctlr == NULL)
4161                         return NOTIFY_OK;       /* not for us */
4162
4163                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4164                         put_device(&ctlr->dev);
4165                         return NOTIFY_OK;
4166                 }
4167
4168                 spi = of_register_spi_device(ctlr, rd->dn);
4169                 put_device(&ctlr->dev);
4170
4171                 if (IS_ERR(spi)) {
4172                         pr_err("%s: failed to create for '%pOF'\n",
4173                                         __func__, rd->dn);
4174                         of_node_clear_flag(rd->dn, OF_POPULATED);
4175                         return notifier_from_errno(PTR_ERR(spi));
4176                 }
4177                 break;
4178
4179         case OF_RECONFIG_CHANGE_REMOVE:
4180                 /* already depopulated? */
4181                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4182                         return NOTIFY_OK;
4183
4184                 /* find our device by node */
4185                 spi = of_find_spi_device_by_node(rd->dn);
4186                 if (spi == NULL)
4187                         return NOTIFY_OK;       /* no? not meant for us */
4188
4189                 /* unregister takes one ref away */
4190                 spi_unregister_device(spi);
4191
4192                 /* and put the reference of the find */
4193                 put_device(&spi->dev);
4194                 break;
4195         }
4196
4197         return NOTIFY_OK;
4198 }
4199
4200 static struct notifier_block spi_of_notifier = {
4201         .notifier_call = of_spi_notify,
4202 };
4203 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4204 extern struct notifier_block spi_of_notifier;
4205 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4206
4207 #if IS_ENABLED(CONFIG_ACPI)
4208 static int spi_acpi_controller_match(struct device *dev, const void *data)
4209 {
4210         return ACPI_COMPANION(dev->parent) == data;
4211 }
4212
4213 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4214 {
4215         struct device *dev;
4216
4217         dev = class_find_device(&spi_master_class, NULL, adev,
4218                                 spi_acpi_controller_match);
4219         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4220                 dev = class_find_device(&spi_slave_class, NULL, adev,
4221                                         spi_acpi_controller_match);
4222         if (!dev)
4223                 return NULL;
4224
4225         return container_of(dev, struct spi_controller, dev);
4226 }
4227
4228 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4229 {
4230         struct device *dev;
4231
4232         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4233         return to_spi_device(dev);
4234 }
4235
4236 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4237                            void *arg)
4238 {
4239         struct acpi_device *adev = arg;
4240         struct spi_controller *ctlr;
4241         struct spi_device *spi;
4242
4243         switch (value) {
4244         case ACPI_RECONFIG_DEVICE_ADD:
4245                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4246                 if (!ctlr)
4247                         break;
4248
4249                 acpi_register_spi_device(ctlr, adev);
4250                 put_device(&ctlr->dev);
4251                 break;
4252         case ACPI_RECONFIG_DEVICE_REMOVE:
4253                 if (!acpi_device_enumerated(adev))
4254                         break;
4255
4256                 spi = acpi_spi_find_device_by_adev(adev);
4257                 if (!spi)
4258                         break;
4259
4260                 spi_unregister_device(spi);
4261                 put_device(&spi->dev);
4262                 break;
4263         }
4264
4265         return NOTIFY_OK;
4266 }
4267
4268 static struct notifier_block spi_acpi_notifier = {
4269         .notifier_call = acpi_spi_notify,
4270 };
4271 #else
4272 extern struct notifier_block spi_acpi_notifier;
4273 #endif
4274
4275 static int __init spi_init(void)
4276 {
4277         int     status;
4278
4279         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4280         if (!buf) {
4281                 status = -ENOMEM;
4282                 goto err0;
4283         }
4284
4285         status = bus_register(&spi_bus_type);
4286         if (status < 0)
4287                 goto err1;
4288
4289         status = class_register(&spi_master_class);
4290         if (status < 0)
4291                 goto err2;
4292
4293         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4294                 status = class_register(&spi_slave_class);
4295                 if (status < 0)
4296                         goto err3;
4297         }
4298
4299         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4300                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4301         if (IS_ENABLED(CONFIG_ACPI))
4302                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4303
4304         return 0;
4305
4306 err3:
4307         class_unregister(&spi_master_class);
4308 err2:
4309         bus_unregister(&spi_bus_type);
4310 err1:
4311         kfree(buf);
4312         buf = NULL;
4313 err0:
4314         return status;
4315 }
4316
4317 /* board_info is normally registered in arch_initcall(),
4318  * but even essential drivers wait till later
4319  *
4320  * REVISIT only boardinfo really needs static linking. the rest (device and
4321  * driver registration) _could_ be dynamically linked (modular) ... costs
4322  * include needing to have boardinfo data structures be much more public.
4323  */
4324 postcore_initcall(spi_init);