Merge tag 'exfat-for-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/linki...
[linux-2.6-microblaze.git] / drivers / spi / spi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41
42 #include "internals.h"
43
44 static DEFINE_IDR(spi_master_idr);
45
46 static void spidev_release(struct device *dev)
47 {
48         struct spi_device       *spi = to_spi_device(dev);
49
50         spi_controller_put(spi->controller);
51         kfree(spi->driver_override);
52         kfree(spi);
53 }
54
55 static ssize_t
56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58         const struct spi_device *spi = to_spi_device(dev);
59         int len;
60
61         len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62         if (len != -ENODEV)
63                 return len;
64
65         return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68
69 static ssize_t driver_override_store(struct device *dev,
70                                      struct device_attribute *a,
71                                      const char *buf, size_t count)
72 {
73         struct spi_device *spi = to_spi_device(dev);
74         const char *end = memchr(buf, '\n', count);
75         const size_t len = end ? end - buf : count;
76         const char *driver_override, *old;
77
78         /* We need to keep extra room for a newline when displaying value */
79         if (len >= (PAGE_SIZE - 1))
80                 return -EINVAL;
81
82         driver_override = kstrndup(buf, len, GFP_KERNEL);
83         if (!driver_override)
84                 return -ENOMEM;
85
86         device_lock(dev);
87         old = spi->driver_override;
88         if (len) {
89                 spi->driver_override = driver_override;
90         } else {
91                 /* Empty string, disable driver override */
92                 spi->driver_override = NULL;
93                 kfree(driver_override);
94         }
95         device_unlock(dev);
96         kfree(old);
97
98         return count;
99 }
100
101 static ssize_t driver_override_show(struct device *dev,
102                                     struct device_attribute *a, char *buf)
103 {
104         const struct spi_device *spi = to_spi_device(dev);
105         ssize_t len;
106
107         device_lock(dev);
108         len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109         device_unlock(dev);
110         return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113
114 #define SPI_STATISTICS_ATTRS(field, file)                               \
115 static ssize_t spi_controller_##field##_show(struct device *dev,        \
116                                              struct device_attribute *attr, \
117                                              char *buf)                 \
118 {                                                                       \
119         struct spi_controller *ctlr = container_of(dev,                 \
120                                          struct spi_controller, dev);   \
121         return spi_statistics_##field##_show(&ctlr->statistics, buf);   \
122 }                                                                       \
123 static struct device_attribute dev_attr_spi_controller_##field = {      \
124         .attr = { .name = file, .mode = 0444 },                         \
125         .show = spi_controller_##field##_show,                          \
126 };                                                                      \
127 static ssize_t spi_device_##field##_show(struct device *dev,            \
128                                          struct device_attribute *attr, \
129                                         char *buf)                      \
130 {                                                                       \
131         struct spi_device *spi = to_spi_device(dev);                    \
132         return spi_statistics_##field##_show(&spi->statistics, buf);    \
133 }                                                                       \
134 static struct device_attribute dev_attr_spi_device_##field = {          \
135         .attr = { .name = file, .mode = 0444 },                         \
136         .show = spi_device_##field##_show,                              \
137 }
138
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)      \
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141                                             char *buf)                  \
142 {                                                                       \
143         unsigned long flags;                                            \
144         ssize_t len;                                                    \
145         spin_lock_irqsave(&stat->lock, flags);                          \
146         len = sprintf(buf, format_string, stat->field);                 \
147         spin_unlock_irqrestore(&stat->lock, flags);                     \
148         return len;                                                     \
149 }                                                                       \
150 SPI_STATISTICS_ATTRS(name, file)
151
152 #define SPI_STATISTICS_SHOW(field, format_string)                       \
153         SPI_STATISTICS_SHOW_NAME(field, __stringify(field),             \
154                                  field, format_string)
155
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)              \
170         SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,           \
171                                  "transfer_bytes_histo_" number,        \
172                                  transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192
193 static struct attribute *spi_dev_attrs[] = {
194         &dev_attr_modalias.attr,
195         &dev_attr_driver_override.attr,
196         NULL,
197 };
198
199 static const struct attribute_group spi_dev_group = {
200         .attrs  = spi_dev_attrs,
201 };
202
203 static struct attribute *spi_device_statistics_attrs[] = {
204         &dev_attr_spi_device_messages.attr,
205         &dev_attr_spi_device_transfers.attr,
206         &dev_attr_spi_device_errors.attr,
207         &dev_attr_spi_device_timedout.attr,
208         &dev_attr_spi_device_spi_sync.attr,
209         &dev_attr_spi_device_spi_sync_immediate.attr,
210         &dev_attr_spi_device_spi_async.attr,
211         &dev_attr_spi_device_bytes.attr,
212         &dev_attr_spi_device_bytes_rx.attr,
213         &dev_attr_spi_device_bytes_tx.attr,
214         &dev_attr_spi_device_transfer_bytes_histo0.attr,
215         &dev_attr_spi_device_transfer_bytes_histo1.attr,
216         &dev_attr_spi_device_transfer_bytes_histo2.attr,
217         &dev_attr_spi_device_transfer_bytes_histo3.attr,
218         &dev_attr_spi_device_transfer_bytes_histo4.attr,
219         &dev_attr_spi_device_transfer_bytes_histo5.attr,
220         &dev_attr_spi_device_transfer_bytes_histo6.attr,
221         &dev_attr_spi_device_transfer_bytes_histo7.attr,
222         &dev_attr_spi_device_transfer_bytes_histo8.attr,
223         &dev_attr_spi_device_transfer_bytes_histo9.attr,
224         &dev_attr_spi_device_transfer_bytes_histo10.attr,
225         &dev_attr_spi_device_transfer_bytes_histo11.attr,
226         &dev_attr_spi_device_transfer_bytes_histo12.attr,
227         &dev_attr_spi_device_transfer_bytes_histo13.attr,
228         &dev_attr_spi_device_transfer_bytes_histo14.attr,
229         &dev_attr_spi_device_transfer_bytes_histo15.attr,
230         &dev_attr_spi_device_transfer_bytes_histo16.attr,
231         &dev_attr_spi_device_transfers_split_maxsize.attr,
232         NULL,
233 };
234
235 static const struct attribute_group spi_device_statistics_group = {
236         .name  = "statistics",
237         .attrs  = spi_device_statistics_attrs,
238 };
239
240 static const struct attribute_group *spi_dev_groups[] = {
241         &spi_dev_group,
242         &spi_device_statistics_group,
243         NULL,
244 };
245
246 static struct attribute *spi_controller_statistics_attrs[] = {
247         &dev_attr_spi_controller_messages.attr,
248         &dev_attr_spi_controller_transfers.attr,
249         &dev_attr_spi_controller_errors.attr,
250         &dev_attr_spi_controller_timedout.attr,
251         &dev_attr_spi_controller_spi_sync.attr,
252         &dev_attr_spi_controller_spi_sync_immediate.attr,
253         &dev_attr_spi_controller_spi_async.attr,
254         &dev_attr_spi_controller_bytes.attr,
255         &dev_attr_spi_controller_bytes_rx.attr,
256         &dev_attr_spi_controller_bytes_tx.attr,
257         &dev_attr_spi_controller_transfer_bytes_histo0.attr,
258         &dev_attr_spi_controller_transfer_bytes_histo1.attr,
259         &dev_attr_spi_controller_transfer_bytes_histo2.attr,
260         &dev_attr_spi_controller_transfer_bytes_histo3.attr,
261         &dev_attr_spi_controller_transfer_bytes_histo4.attr,
262         &dev_attr_spi_controller_transfer_bytes_histo5.attr,
263         &dev_attr_spi_controller_transfer_bytes_histo6.attr,
264         &dev_attr_spi_controller_transfer_bytes_histo7.attr,
265         &dev_attr_spi_controller_transfer_bytes_histo8.attr,
266         &dev_attr_spi_controller_transfer_bytes_histo9.attr,
267         &dev_attr_spi_controller_transfer_bytes_histo10.attr,
268         &dev_attr_spi_controller_transfer_bytes_histo11.attr,
269         &dev_attr_spi_controller_transfer_bytes_histo12.attr,
270         &dev_attr_spi_controller_transfer_bytes_histo13.attr,
271         &dev_attr_spi_controller_transfer_bytes_histo14.attr,
272         &dev_attr_spi_controller_transfer_bytes_histo15.attr,
273         &dev_attr_spi_controller_transfer_bytes_histo16.attr,
274         &dev_attr_spi_controller_transfers_split_maxsize.attr,
275         NULL,
276 };
277
278 static const struct attribute_group spi_controller_statistics_group = {
279         .name  = "statistics",
280         .attrs  = spi_controller_statistics_attrs,
281 };
282
283 static const struct attribute_group *spi_master_groups[] = {
284         &spi_controller_statistics_group,
285         NULL,
286 };
287
288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289                                        struct spi_transfer *xfer,
290                                        struct spi_controller *ctlr)
291 {
292         unsigned long flags;
293         int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294
295         if (l2len < 0)
296                 l2len = 0;
297
298         spin_lock_irqsave(&stats->lock, flags);
299
300         stats->transfers++;
301         stats->transfer_bytes_histo[l2len]++;
302
303         stats->bytes += xfer->len;
304         if ((xfer->tx_buf) &&
305             (xfer->tx_buf != ctlr->dummy_tx))
306                 stats->bytes_tx += xfer->len;
307         if ((xfer->rx_buf) &&
308             (xfer->rx_buf != ctlr->dummy_rx))
309                 stats->bytes_rx += xfer->len;
310
311         spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316  * and the sysfs version makes coldplug work too.
317  */
318
319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320                                                 const struct spi_device *sdev)
321 {
322         while (id->name[0]) {
323                 if (!strcmp(sdev->modalias, id->name))
324                         return id;
325                 id++;
326         }
327         return NULL;
328 }
329
330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332         const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333
334         return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337
338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340         const struct spi_device *spi = to_spi_device(dev);
341         const struct spi_driver *sdrv = to_spi_driver(drv);
342
343         /* Check override first, and if set, only use the named driver */
344         if (spi->driver_override)
345                 return strcmp(spi->driver_override, drv->name) == 0;
346
347         /* Attempt an OF style match */
348         if (of_driver_match_device(dev, drv))
349                 return 1;
350
351         /* Then try ACPI */
352         if (acpi_driver_match_device(dev, drv))
353                 return 1;
354
355         if (sdrv->id_table)
356                 return !!spi_match_id(sdrv->id_table, spi);
357
358         return strcmp(spi->modalias, drv->name) == 0;
359 }
360
361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363         const struct spi_device         *spi = to_spi_device(dev);
364         int rc;
365
366         rc = of_device_uevent_modalias(dev, env);
367         if (rc != -ENODEV)
368                 return rc;
369
370         rc = acpi_device_uevent_modalias(dev, env);
371         if (rc != -ENODEV)
372                 return rc;
373
374         return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
375 }
376
377 static int spi_probe(struct device *dev)
378 {
379         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
380         struct spi_device               *spi = to_spi_device(dev);
381         int ret;
382
383         ret = of_clk_set_defaults(dev->of_node, false);
384         if (ret)
385                 return ret;
386
387         if (dev->of_node) {
388                 spi->irq = of_irq_get(dev->of_node, 0);
389                 if (spi->irq == -EPROBE_DEFER)
390                         return -EPROBE_DEFER;
391                 if (spi->irq < 0)
392                         spi->irq = 0;
393         }
394
395         ret = dev_pm_domain_attach(dev, true);
396         if (ret)
397                 return ret;
398
399         if (sdrv->probe) {
400                 ret = sdrv->probe(spi);
401                 if (ret)
402                         dev_pm_domain_detach(dev, true);
403         }
404
405         return ret;
406 }
407
408 static int spi_remove(struct device *dev)
409 {
410         const struct spi_driver         *sdrv = to_spi_driver(dev->driver);
411
412         if (sdrv->remove) {
413                 int ret;
414
415                 ret = sdrv->remove(to_spi_device(dev));
416                 if (ret)
417                         dev_warn(dev,
418                                  "Failed to unbind driver (%pe), ignoring\n",
419                                  ERR_PTR(ret));
420         }
421
422         dev_pm_domain_detach(dev, true);
423
424         return 0;
425 }
426
427 static void spi_shutdown(struct device *dev)
428 {
429         if (dev->driver) {
430                 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
431
432                 if (sdrv->shutdown)
433                         sdrv->shutdown(to_spi_device(dev));
434         }
435 }
436
437 struct bus_type spi_bus_type = {
438         .name           = "spi",
439         .dev_groups     = spi_dev_groups,
440         .match          = spi_match_device,
441         .uevent         = spi_uevent,
442         .probe          = spi_probe,
443         .remove         = spi_remove,
444         .shutdown       = spi_shutdown,
445 };
446 EXPORT_SYMBOL_GPL(spi_bus_type);
447
448 /**
449  * __spi_register_driver - register a SPI driver
450  * @owner: owner module of the driver to register
451  * @sdrv: the driver to register
452  * Context: can sleep
453  *
454  * Return: zero on success, else a negative error code.
455  */
456 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
457 {
458         sdrv->driver.owner = owner;
459         sdrv->driver.bus = &spi_bus_type;
460         return driver_register(&sdrv->driver);
461 }
462 EXPORT_SYMBOL_GPL(__spi_register_driver);
463
464 /*-------------------------------------------------------------------------*/
465
466 /* SPI devices should normally not be created by SPI device drivers; that
467  * would make them board-specific.  Similarly with SPI controller drivers.
468  * Device registration normally goes into like arch/.../mach.../board-YYY.c
469  * with other readonly (flashable) information about mainboard devices.
470  */
471
472 struct boardinfo {
473         struct list_head        list;
474         struct spi_board_info   board_info;
475 };
476
477 static LIST_HEAD(board_list);
478 static LIST_HEAD(spi_controller_list);
479
480 /*
481  * Used to protect add/del operation for board_info list and
482  * spi_controller list, and their matching process
483  * also used to protect object of type struct idr
484  */
485 static DEFINE_MUTEX(board_lock);
486
487 /*
488  * Prevents addition of devices with same chip select and
489  * addition of devices below an unregistering controller.
490  */
491 static DEFINE_MUTEX(spi_add_lock);
492
493 /**
494  * spi_alloc_device - Allocate a new SPI device
495  * @ctlr: Controller to which device is connected
496  * Context: can sleep
497  *
498  * Allows a driver to allocate and initialize a spi_device without
499  * registering it immediately.  This allows a driver to directly
500  * fill the spi_device with device parameters before calling
501  * spi_add_device() on it.
502  *
503  * Caller is responsible to call spi_add_device() on the returned
504  * spi_device structure to add it to the SPI controller.  If the caller
505  * needs to discard the spi_device without adding it, then it should
506  * call spi_dev_put() on it.
507  *
508  * Return: a pointer to the new device, or NULL.
509  */
510 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
511 {
512         struct spi_device       *spi;
513
514         if (!spi_controller_get(ctlr))
515                 return NULL;
516
517         spi = kzalloc(sizeof(*spi), GFP_KERNEL);
518         if (!spi) {
519                 spi_controller_put(ctlr);
520                 return NULL;
521         }
522
523         spi->master = spi->controller = ctlr;
524         spi->dev.parent = &ctlr->dev;
525         spi->dev.bus = &spi_bus_type;
526         spi->dev.release = spidev_release;
527         spi->cs_gpio = -ENOENT;
528         spi->mode = ctlr->buswidth_override_bits;
529
530         spin_lock_init(&spi->statistics.lock);
531
532         device_initialize(&spi->dev);
533         return spi;
534 }
535 EXPORT_SYMBOL_GPL(spi_alloc_device);
536
537 static void spi_dev_set_name(struct spi_device *spi)
538 {
539         struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
540
541         if (adev) {
542                 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
543                 return;
544         }
545
546         dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
547                      spi->chip_select);
548 }
549
550 static int spi_dev_check(struct device *dev, void *data)
551 {
552         struct spi_device *spi = to_spi_device(dev);
553         struct spi_device *new_spi = data;
554
555         if (spi->controller == new_spi->controller &&
556             spi->chip_select == new_spi->chip_select)
557                 return -EBUSY;
558         return 0;
559 }
560
561 static void spi_cleanup(struct spi_device *spi)
562 {
563         if (spi->controller->cleanup)
564                 spi->controller->cleanup(spi);
565 }
566
567 static int __spi_add_device(struct spi_device *spi)
568 {
569         struct spi_controller *ctlr = spi->controller;
570         struct device *dev = ctlr->dev.parent;
571         int status;
572
573         status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
574         if (status) {
575                 dev_err(dev, "chipselect %d already in use\n",
576                                 spi->chip_select);
577                 return status;
578         }
579
580         /* Controller may unregister concurrently */
581         if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
582             !device_is_registered(&ctlr->dev)) {
583                 return -ENODEV;
584         }
585
586         /* Descriptors take precedence */
587         if (ctlr->cs_gpiods)
588                 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
589         else if (ctlr->cs_gpios)
590                 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
591
592         /* Drivers may modify this initial i/o setup, but will
593          * normally rely on the device being setup.  Devices
594          * using SPI_CS_HIGH can't coexist well otherwise...
595          */
596         status = spi_setup(spi);
597         if (status < 0) {
598                 dev_err(dev, "can't setup %s, status %d\n",
599                                 dev_name(&spi->dev), status);
600                 return status;
601         }
602
603         /* Device may be bound to an active driver when this returns */
604         status = device_add(&spi->dev);
605         if (status < 0) {
606                 dev_err(dev, "can't add %s, status %d\n",
607                                 dev_name(&spi->dev), status);
608                 spi_cleanup(spi);
609         } else {
610                 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
611         }
612
613         return status;
614 }
615
616 /**
617  * spi_add_device - Add spi_device allocated with spi_alloc_device
618  * @spi: spi_device to register
619  *
620  * Companion function to spi_alloc_device.  Devices allocated with
621  * spi_alloc_device can be added onto the spi bus with this function.
622  *
623  * Return: 0 on success; negative errno on failure
624  */
625 int spi_add_device(struct spi_device *spi)
626 {
627         struct spi_controller *ctlr = spi->controller;
628         struct device *dev = ctlr->dev.parent;
629         int status;
630
631         /* Chipselects are numbered 0..max; validate. */
632         if (spi->chip_select >= ctlr->num_chipselect) {
633                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
634                         ctlr->num_chipselect);
635                 return -EINVAL;
636         }
637
638         /* Set the bus ID string */
639         spi_dev_set_name(spi);
640
641         /* We need to make sure there's no other device with this
642          * chipselect **BEFORE** we call setup(), else we'll trash
643          * its configuration.  Lock against concurrent add() calls.
644          */
645         mutex_lock(&spi_add_lock);
646         status = __spi_add_device(spi);
647         mutex_unlock(&spi_add_lock);
648         return status;
649 }
650 EXPORT_SYMBOL_GPL(spi_add_device);
651
652 static int spi_add_device_locked(struct spi_device *spi)
653 {
654         struct spi_controller *ctlr = spi->controller;
655         struct device *dev = ctlr->dev.parent;
656
657         /* Chipselects are numbered 0..max; validate. */
658         if (spi->chip_select >= ctlr->num_chipselect) {
659                 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
660                         ctlr->num_chipselect);
661                 return -EINVAL;
662         }
663
664         /* Set the bus ID string */
665         spi_dev_set_name(spi);
666
667         WARN_ON(!mutex_is_locked(&spi_add_lock));
668         return __spi_add_device(spi);
669 }
670
671 /**
672  * spi_new_device - instantiate one new SPI device
673  * @ctlr: Controller to which device is connected
674  * @chip: Describes the SPI device
675  * Context: can sleep
676  *
677  * On typical mainboards, this is purely internal; and it's not needed
678  * after board init creates the hard-wired devices.  Some development
679  * platforms may not be able to use spi_register_board_info though, and
680  * this is exported so that for example a USB or parport based adapter
681  * driver could add devices (which it would learn about out-of-band).
682  *
683  * Return: the new device, or NULL.
684  */
685 struct spi_device *spi_new_device(struct spi_controller *ctlr,
686                                   struct spi_board_info *chip)
687 {
688         struct spi_device       *proxy;
689         int                     status;
690
691         /* NOTE:  caller did any chip->bus_num checks necessary.
692          *
693          * Also, unless we change the return value convention to use
694          * error-or-pointer (not NULL-or-pointer), troubleshootability
695          * suggests syslogged diagnostics are best here (ugh).
696          */
697
698         proxy = spi_alloc_device(ctlr);
699         if (!proxy)
700                 return NULL;
701
702         WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
703
704         proxy->chip_select = chip->chip_select;
705         proxy->max_speed_hz = chip->max_speed_hz;
706         proxy->mode = chip->mode;
707         proxy->irq = chip->irq;
708         strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
709         proxy->dev.platform_data = (void *) chip->platform_data;
710         proxy->controller_data = chip->controller_data;
711         proxy->controller_state = NULL;
712
713         if (chip->swnode) {
714                 status = device_add_software_node(&proxy->dev, chip->swnode);
715                 if (status) {
716                         dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
717                                 chip->modalias, status);
718                         goto err_dev_put;
719                 }
720         }
721
722         status = spi_add_device(proxy);
723         if (status < 0)
724                 goto err_dev_put;
725
726         return proxy;
727
728 err_dev_put:
729         device_remove_software_node(&proxy->dev);
730         spi_dev_put(proxy);
731         return NULL;
732 }
733 EXPORT_SYMBOL_GPL(spi_new_device);
734
735 /**
736  * spi_unregister_device - unregister a single SPI device
737  * @spi: spi_device to unregister
738  *
739  * Start making the passed SPI device vanish. Normally this would be handled
740  * by spi_unregister_controller().
741  */
742 void spi_unregister_device(struct spi_device *spi)
743 {
744         if (!spi)
745                 return;
746
747         if (spi->dev.of_node) {
748                 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
749                 of_node_put(spi->dev.of_node);
750         }
751         if (ACPI_COMPANION(&spi->dev))
752                 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
753         device_remove_software_node(&spi->dev);
754         device_del(&spi->dev);
755         spi_cleanup(spi);
756         put_device(&spi->dev);
757 }
758 EXPORT_SYMBOL_GPL(spi_unregister_device);
759
760 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
761                                               struct spi_board_info *bi)
762 {
763         struct spi_device *dev;
764
765         if (ctlr->bus_num != bi->bus_num)
766                 return;
767
768         dev = spi_new_device(ctlr, bi);
769         if (!dev)
770                 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
771                         bi->modalias);
772 }
773
774 /**
775  * spi_register_board_info - register SPI devices for a given board
776  * @info: array of chip descriptors
777  * @n: how many descriptors are provided
778  * Context: can sleep
779  *
780  * Board-specific early init code calls this (probably during arch_initcall)
781  * with segments of the SPI device table.  Any device nodes are created later,
782  * after the relevant parent SPI controller (bus_num) is defined.  We keep
783  * this table of devices forever, so that reloading a controller driver will
784  * not make Linux forget about these hard-wired devices.
785  *
786  * Other code can also call this, e.g. a particular add-on board might provide
787  * SPI devices through its expansion connector, so code initializing that board
788  * would naturally declare its SPI devices.
789  *
790  * The board info passed can safely be __initdata ... but be careful of
791  * any embedded pointers (platform_data, etc), they're copied as-is.
792  *
793  * Return: zero on success, else a negative error code.
794  */
795 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
796 {
797         struct boardinfo *bi;
798         int i;
799
800         if (!n)
801                 return 0;
802
803         bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
804         if (!bi)
805                 return -ENOMEM;
806
807         for (i = 0; i < n; i++, bi++, info++) {
808                 struct spi_controller *ctlr;
809
810                 memcpy(&bi->board_info, info, sizeof(*info));
811
812                 mutex_lock(&board_lock);
813                 list_add_tail(&bi->list, &board_list);
814                 list_for_each_entry(ctlr, &spi_controller_list, list)
815                         spi_match_controller_to_boardinfo(ctlr,
816                                                           &bi->board_info);
817                 mutex_unlock(&board_lock);
818         }
819
820         return 0;
821 }
822
823 /*-------------------------------------------------------------------------*/
824
825 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
826 {
827         bool activate = enable;
828
829         /*
830          * Avoid calling into the driver (or doing delays) if the chip select
831          * isn't actually changing from the last time this was called.
832          */
833         if (!force && (spi->controller->last_cs_enable == enable) &&
834             (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
835                 return;
836
837         trace_spi_set_cs(spi, activate);
838
839         spi->controller->last_cs_enable = enable;
840         spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
841
842         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
843             !spi->controller->set_cs_timing) {
844                 if (activate)
845                         spi_delay_exec(&spi->controller->cs_setup, NULL);
846                 else
847                         spi_delay_exec(&spi->controller->cs_hold, NULL);
848         }
849
850         if (spi->mode & SPI_CS_HIGH)
851                 enable = !enable;
852
853         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
854                 if (!(spi->mode & SPI_NO_CS)) {
855                         if (spi->cs_gpiod) {
856                                 /*
857                                  * Historically ACPI has no means of the GPIO polarity and
858                                  * thus the SPISerialBus() resource defines it on the per-chip
859                                  * basis. In order to avoid a chain of negations, the GPIO
860                                  * polarity is considered being Active High. Even for the cases
861                                  * when _DSD() is involved (in the updated versions of ACPI)
862                                  * the GPIO CS polarity must be defined Active High to avoid
863                                  * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
864                                  * into account.
865                                  */
866                                 if (has_acpi_companion(&spi->dev))
867                                         gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
868                                 else
869                                         /* Polarity handled by GPIO library */
870                                         gpiod_set_value_cansleep(spi->cs_gpiod, activate);
871                         } else {
872                                 /*
873                                  * invert the enable line, as active low is
874                                  * default for SPI.
875                                  */
876                                 gpio_set_value_cansleep(spi->cs_gpio, !enable);
877                         }
878                 }
879                 /* Some SPI masters need both GPIO CS & slave_select */
880                 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
881                     spi->controller->set_cs)
882                         spi->controller->set_cs(spi, !enable);
883         } else if (spi->controller->set_cs) {
884                 spi->controller->set_cs(spi, !enable);
885         }
886
887         if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
888             !spi->controller->set_cs_timing) {
889                 if (!activate)
890                         spi_delay_exec(&spi->controller->cs_inactive, NULL);
891         }
892 }
893
894 #ifdef CONFIG_HAS_DMA
895 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
896                 struct sg_table *sgt, void *buf, size_t len,
897                 enum dma_data_direction dir)
898 {
899         const bool vmalloced_buf = is_vmalloc_addr(buf);
900         unsigned int max_seg_size = dma_get_max_seg_size(dev);
901 #ifdef CONFIG_HIGHMEM
902         const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
903                                 (unsigned long)buf < (PKMAP_BASE +
904                                         (LAST_PKMAP * PAGE_SIZE)));
905 #else
906         const bool kmap_buf = false;
907 #endif
908         int desc_len;
909         int sgs;
910         struct page *vm_page;
911         struct scatterlist *sg;
912         void *sg_buf;
913         size_t min;
914         int i, ret;
915
916         if (vmalloced_buf || kmap_buf) {
917                 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
918                 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
919         } else if (virt_addr_valid(buf)) {
920                 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
921                 sgs = DIV_ROUND_UP(len, desc_len);
922         } else {
923                 return -EINVAL;
924         }
925
926         ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
927         if (ret != 0)
928                 return ret;
929
930         sg = &sgt->sgl[0];
931         for (i = 0; i < sgs; i++) {
932
933                 if (vmalloced_buf || kmap_buf) {
934                         /*
935                          * Next scatterlist entry size is the minimum between
936                          * the desc_len and the remaining buffer length that
937                          * fits in a page.
938                          */
939                         min = min_t(size_t, desc_len,
940                                     min_t(size_t, len,
941                                           PAGE_SIZE - offset_in_page(buf)));
942                         if (vmalloced_buf)
943                                 vm_page = vmalloc_to_page(buf);
944                         else
945                                 vm_page = kmap_to_page(buf);
946                         if (!vm_page) {
947                                 sg_free_table(sgt);
948                                 return -ENOMEM;
949                         }
950                         sg_set_page(sg, vm_page,
951                                     min, offset_in_page(buf));
952                 } else {
953                         min = min_t(size_t, len, desc_len);
954                         sg_buf = buf;
955                         sg_set_buf(sg, sg_buf, min);
956                 }
957
958                 buf += min;
959                 len -= min;
960                 sg = sg_next(sg);
961         }
962
963         ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
964         if (!ret)
965                 ret = -ENOMEM;
966         if (ret < 0) {
967                 sg_free_table(sgt);
968                 return ret;
969         }
970
971         sgt->nents = ret;
972
973         return 0;
974 }
975
976 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
977                    struct sg_table *sgt, enum dma_data_direction dir)
978 {
979         if (sgt->orig_nents) {
980                 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
981                 sg_free_table(sgt);
982         }
983 }
984
985 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
986 {
987         struct device *tx_dev, *rx_dev;
988         struct spi_transfer *xfer;
989         int ret;
990
991         if (!ctlr->can_dma)
992                 return 0;
993
994         if (ctlr->dma_tx)
995                 tx_dev = ctlr->dma_tx->device->dev;
996         else if (ctlr->dma_map_dev)
997                 tx_dev = ctlr->dma_map_dev;
998         else
999                 tx_dev = ctlr->dev.parent;
1000
1001         if (ctlr->dma_rx)
1002                 rx_dev = ctlr->dma_rx->device->dev;
1003         else if (ctlr->dma_map_dev)
1004                 rx_dev = ctlr->dma_map_dev;
1005         else
1006                 rx_dev = ctlr->dev.parent;
1007
1008         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1009                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1010                         continue;
1011
1012                 if (xfer->tx_buf != NULL) {
1013                         ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1014                                           (void *)xfer->tx_buf, xfer->len,
1015                                           DMA_TO_DEVICE);
1016                         if (ret != 0)
1017                                 return ret;
1018                 }
1019
1020                 if (xfer->rx_buf != NULL) {
1021                         ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1022                                           xfer->rx_buf, xfer->len,
1023                                           DMA_FROM_DEVICE);
1024                         if (ret != 0) {
1025                                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1026                                               DMA_TO_DEVICE);
1027                                 return ret;
1028                         }
1029                 }
1030         }
1031
1032         ctlr->cur_msg_mapped = true;
1033
1034         return 0;
1035 }
1036
1037 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1038 {
1039         struct spi_transfer *xfer;
1040         struct device *tx_dev, *rx_dev;
1041
1042         if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1043                 return 0;
1044
1045         if (ctlr->dma_tx)
1046                 tx_dev = ctlr->dma_tx->device->dev;
1047         else
1048                 tx_dev = ctlr->dev.parent;
1049
1050         if (ctlr->dma_rx)
1051                 rx_dev = ctlr->dma_rx->device->dev;
1052         else
1053                 rx_dev = ctlr->dev.parent;
1054
1055         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1056                 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1057                         continue;
1058
1059                 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1060                 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1061         }
1062
1063         ctlr->cur_msg_mapped = false;
1064
1065         return 0;
1066 }
1067 #else /* !CONFIG_HAS_DMA */
1068 static inline int __spi_map_msg(struct spi_controller *ctlr,
1069                                 struct spi_message *msg)
1070 {
1071         return 0;
1072 }
1073
1074 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1075                                   struct spi_message *msg)
1076 {
1077         return 0;
1078 }
1079 #endif /* !CONFIG_HAS_DMA */
1080
1081 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1082                                 struct spi_message *msg)
1083 {
1084         struct spi_transfer *xfer;
1085
1086         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1087                 /*
1088                  * Restore the original value of tx_buf or rx_buf if they are
1089                  * NULL.
1090                  */
1091                 if (xfer->tx_buf == ctlr->dummy_tx)
1092                         xfer->tx_buf = NULL;
1093                 if (xfer->rx_buf == ctlr->dummy_rx)
1094                         xfer->rx_buf = NULL;
1095         }
1096
1097         return __spi_unmap_msg(ctlr, msg);
1098 }
1099
1100 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1101 {
1102         struct spi_transfer *xfer;
1103         void *tmp;
1104         unsigned int max_tx, max_rx;
1105
1106         if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1107                 && !(msg->spi->mode & SPI_3WIRE)) {
1108                 max_tx = 0;
1109                 max_rx = 0;
1110
1111                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1112                         if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1113                             !xfer->tx_buf)
1114                                 max_tx = max(xfer->len, max_tx);
1115                         if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1116                             !xfer->rx_buf)
1117                                 max_rx = max(xfer->len, max_rx);
1118                 }
1119
1120                 if (max_tx) {
1121                         tmp = krealloc(ctlr->dummy_tx, max_tx,
1122                                        GFP_KERNEL | GFP_DMA);
1123                         if (!tmp)
1124                                 return -ENOMEM;
1125                         ctlr->dummy_tx = tmp;
1126                         memset(tmp, 0, max_tx);
1127                 }
1128
1129                 if (max_rx) {
1130                         tmp = krealloc(ctlr->dummy_rx, max_rx,
1131                                        GFP_KERNEL | GFP_DMA);
1132                         if (!tmp)
1133                                 return -ENOMEM;
1134                         ctlr->dummy_rx = tmp;
1135                 }
1136
1137                 if (max_tx || max_rx) {
1138                         list_for_each_entry(xfer, &msg->transfers,
1139                                             transfer_list) {
1140                                 if (!xfer->len)
1141                                         continue;
1142                                 if (!xfer->tx_buf)
1143                                         xfer->tx_buf = ctlr->dummy_tx;
1144                                 if (!xfer->rx_buf)
1145                                         xfer->rx_buf = ctlr->dummy_rx;
1146                         }
1147                 }
1148         }
1149
1150         return __spi_map_msg(ctlr, msg);
1151 }
1152
1153 static int spi_transfer_wait(struct spi_controller *ctlr,
1154                              struct spi_message *msg,
1155                              struct spi_transfer *xfer)
1156 {
1157         struct spi_statistics *statm = &ctlr->statistics;
1158         struct spi_statistics *stats = &msg->spi->statistics;
1159         u32 speed_hz = xfer->speed_hz;
1160         unsigned long long ms;
1161
1162         if (spi_controller_is_slave(ctlr)) {
1163                 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1164                         dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1165                         return -EINTR;
1166                 }
1167         } else {
1168                 if (!speed_hz)
1169                         speed_hz = 100000;
1170
1171                 /*
1172                  * For each byte we wait for 8 cycles of the SPI clock.
1173                  * Since speed is defined in Hz and we want milliseconds,
1174                  * use respective multiplier, but before the division,
1175                  * otherwise we may get 0 for short transfers.
1176                  */
1177                 ms = 8LL * MSEC_PER_SEC * xfer->len;
1178                 do_div(ms, speed_hz);
1179
1180                 /*
1181                  * Increase it twice and add 200 ms tolerance, use
1182                  * predefined maximum in case of overflow.
1183                  */
1184                 ms += ms + 200;
1185                 if (ms > UINT_MAX)
1186                         ms = UINT_MAX;
1187
1188                 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1189                                                  msecs_to_jiffies(ms));
1190
1191                 if (ms == 0) {
1192                         SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1193                         SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1194                         dev_err(&msg->spi->dev,
1195                                 "SPI transfer timed out\n");
1196                         return -ETIMEDOUT;
1197                 }
1198         }
1199
1200         return 0;
1201 }
1202
1203 static void _spi_transfer_delay_ns(u32 ns)
1204 {
1205         if (!ns)
1206                 return;
1207         if (ns <= NSEC_PER_USEC) {
1208                 ndelay(ns);
1209         } else {
1210                 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1211
1212                 if (us <= 10)
1213                         udelay(us);
1214                 else
1215                         usleep_range(us, us + DIV_ROUND_UP(us, 10));
1216         }
1217 }
1218
1219 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1220 {
1221         u32 delay = _delay->value;
1222         u32 unit = _delay->unit;
1223         u32 hz;
1224
1225         if (!delay)
1226                 return 0;
1227
1228         switch (unit) {
1229         case SPI_DELAY_UNIT_USECS:
1230                 delay *= NSEC_PER_USEC;
1231                 break;
1232         case SPI_DELAY_UNIT_NSECS:
1233                 /* Nothing to do here */
1234                 break;
1235         case SPI_DELAY_UNIT_SCK:
1236                 /* clock cycles need to be obtained from spi_transfer */
1237                 if (!xfer)
1238                         return -EINVAL;
1239                 /*
1240                  * If there is unknown effective speed, approximate it
1241                  * by underestimating with half of the requested hz.
1242                  */
1243                 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1244                 if (!hz)
1245                         return -EINVAL;
1246
1247                 /* Convert delay to nanoseconds */
1248                 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1249                 break;
1250         default:
1251                 return -EINVAL;
1252         }
1253
1254         return delay;
1255 }
1256 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1257
1258 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1259 {
1260         int delay;
1261
1262         might_sleep();
1263
1264         if (!_delay)
1265                 return -EINVAL;
1266
1267         delay = spi_delay_to_ns(_delay, xfer);
1268         if (delay < 0)
1269                 return delay;
1270
1271         _spi_transfer_delay_ns(delay);
1272
1273         return 0;
1274 }
1275 EXPORT_SYMBOL_GPL(spi_delay_exec);
1276
1277 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1278                                           struct spi_transfer *xfer)
1279 {
1280         u32 default_delay_ns = 10 * NSEC_PER_USEC;
1281         u32 delay = xfer->cs_change_delay.value;
1282         u32 unit = xfer->cs_change_delay.unit;
1283         int ret;
1284
1285         /* return early on "fast" mode - for everything but USECS */
1286         if (!delay) {
1287                 if (unit == SPI_DELAY_UNIT_USECS)
1288                         _spi_transfer_delay_ns(default_delay_ns);
1289                 return;
1290         }
1291
1292         ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1293         if (ret) {
1294                 dev_err_once(&msg->spi->dev,
1295                              "Use of unsupported delay unit %i, using default of %luus\n",
1296                              unit, default_delay_ns / NSEC_PER_USEC);
1297                 _spi_transfer_delay_ns(default_delay_ns);
1298         }
1299 }
1300
1301 /*
1302  * spi_transfer_one_message - Default implementation of transfer_one_message()
1303  *
1304  * This is a standard implementation of transfer_one_message() for
1305  * drivers which implement a transfer_one() operation.  It provides
1306  * standard handling of delays and chip select management.
1307  */
1308 static int spi_transfer_one_message(struct spi_controller *ctlr,
1309                                     struct spi_message *msg)
1310 {
1311         struct spi_transfer *xfer;
1312         bool keep_cs = false;
1313         int ret = 0;
1314         struct spi_statistics *statm = &ctlr->statistics;
1315         struct spi_statistics *stats = &msg->spi->statistics;
1316
1317         spi_set_cs(msg->spi, true, false);
1318
1319         SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1320         SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1321
1322         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1323                 trace_spi_transfer_start(msg, xfer);
1324
1325                 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1326                 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1327
1328                 if (!ctlr->ptp_sts_supported) {
1329                         xfer->ptp_sts_word_pre = 0;
1330                         ptp_read_system_prets(xfer->ptp_sts);
1331                 }
1332
1333                 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1334                         reinit_completion(&ctlr->xfer_completion);
1335
1336 fallback_pio:
1337                         ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1338                         if (ret < 0) {
1339                                 if (ctlr->cur_msg_mapped &&
1340                                    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1341                                         __spi_unmap_msg(ctlr, msg);
1342                                         ctlr->fallback = true;
1343                                         xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1344                                         goto fallback_pio;
1345                                 }
1346
1347                                 SPI_STATISTICS_INCREMENT_FIELD(statm,
1348                                                                errors);
1349                                 SPI_STATISTICS_INCREMENT_FIELD(stats,
1350                                                                errors);
1351                                 dev_err(&msg->spi->dev,
1352                                         "SPI transfer failed: %d\n", ret);
1353                                 goto out;
1354                         }
1355
1356                         if (ret > 0) {
1357                                 ret = spi_transfer_wait(ctlr, msg, xfer);
1358                                 if (ret < 0)
1359                                         msg->status = ret;
1360                         }
1361                 } else {
1362                         if (xfer->len)
1363                                 dev_err(&msg->spi->dev,
1364                                         "Bufferless transfer has length %u\n",
1365                                         xfer->len);
1366                 }
1367
1368                 if (!ctlr->ptp_sts_supported) {
1369                         ptp_read_system_postts(xfer->ptp_sts);
1370                         xfer->ptp_sts_word_post = xfer->len;
1371                 }
1372
1373                 trace_spi_transfer_stop(msg, xfer);
1374
1375                 if (msg->status != -EINPROGRESS)
1376                         goto out;
1377
1378                 spi_transfer_delay_exec(xfer);
1379
1380                 if (xfer->cs_change) {
1381                         if (list_is_last(&xfer->transfer_list,
1382                                          &msg->transfers)) {
1383                                 keep_cs = true;
1384                         } else {
1385                                 spi_set_cs(msg->spi, false, false);
1386                                 _spi_transfer_cs_change_delay(msg, xfer);
1387                                 spi_set_cs(msg->spi, true, false);
1388                         }
1389                 }
1390
1391                 msg->actual_length += xfer->len;
1392         }
1393
1394 out:
1395         if (ret != 0 || !keep_cs)
1396                 spi_set_cs(msg->spi, false, false);
1397
1398         if (msg->status == -EINPROGRESS)
1399                 msg->status = ret;
1400
1401         if (msg->status && ctlr->handle_err)
1402                 ctlr->handle_err(ctlr, msg);
1403
1404         spi_finalize_current_message(ctlr);
1405
1406         return ret;
1407 }
1408
1409 /**
1410  * spi_finalize_current_transfer - report completion of a transfer
1411  * @ctlr: the controller reporting completion
1412  *
1413  * Called by SPI drivers using the core transfer_one_message()
1414  * implementation to notify it that the current interrupt driven
1415  * transfer has finished and the next one may be scheduled.
1416  */
1417 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1418 {
1419         complete(&ctlr->xfer_completion);
1420 }
1421 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1422
1423 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1424 {
1425         if (ctlr->auto_runtime_pm) {
1426                 pm_runtime_mark_last_busy(ctlr->dev.parent);
1427                 pm_runtime_put_autosuspend(ctlr->dev.parent);
1428         }
1429 }
1430
1431 /**
1432  * __spi_pump_messages - function which processes spi message queue
1433  * @ctlr: controller to process queue for
1434  * @in_kthread: true if we are in the context of the message pump thread
1435  *
1436  * This function checks if there is any spi message in the queue that
1437  * needs processing and if so call out to the driver to initialize hardware
1438  * and transfer each message.
1439  *
1440  * Note that it is called both from the kthread itself and also from
1441  * inside spi_sync(); the queue extraction handling at the top of the
1442  * function should deal with this safely.
1443  */
1444 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1445 {
1446         struct spi_transfer *xfer;
1447         struct spi_message *msg;
1448         bool was_busy = false;
1449         unsigned long flags;
1450         int ret;
1451
1452         /* Lock queue */
1453         spin_lock_irqsave(&ctlr->queue_lock, flags);
1454
1455         /* Make sure we are not already running a message */
1456         if (ctlr->cur_msg) {
1457                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1458                 return;
1459         }
1460
1461         /* If another context is idling the device then defer */
1462         if (ctlr->idling) {
1463                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1464                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1465                 return;
1466         }
1467
1468         /* Check if the queue is idle */
1469         if (list_empty(&ctlr->queue) || !ctlr->running) {
1470                 if (!ctlr->busy) {
1471                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1472                         return;
1473                 }
1474
1475                 /* Defer any non-atomic teardown to the thread */
1476                 if (!in_kthread) {
1477                         if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1478                             !ctlr->unprepare_transfer_hardware) {
1479                                 spi_idle_runtime_pm(ctlr);
1480                                 ctlr->busy = false;
1481                                 trace_spi_controller_idle(ctlr);
1482                         } else {
1483                                 kthread_queue_work(ctlr->kworker,
1484                                                    &ctlr->pump_messages);
1485                         }
1486                         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1487                         return;
1488                 }
1489
1490                 ctlr->busy = false;
1491                 ctlr->idling = true;
1492                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1493
1494                 kfree(ctlr->dummy_rx);
1495                 ctlr->dummy_rx = NULL;
1496                 kfree(ctlr->dummy_tx);
1497                 ctlr->dummy_tx = NULL;
1498                 if (ctlr->unprepare_transfer_hardware &&
1499                     ctlr->unprepare_transfer_hardware(ctlr))
1500                         dev_err(&ctlr->dev,
1501                                 "failed to unprepare transfer hardware\n");
1502                 spi_idle_runtime_pm(ctlr);
1503                 trace_spi_controller_idle(ctlr);
1504
1505                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1506                 ctlr->idling = false;
1507                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1508                 return;
1509         }
1510
1511         /* Extract head of queue */
1512         msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1513         ctlr->cur_msg = msg;
1514
1515         list_del_init(&msg->queue);
1516         if (ctlr->busy)
1517                 was_busy = true;
1518         else
1519                 ctlr->busy = true;
1520         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1521
1522         mutex_lock(&ctlr->io_mutex);
1523
1524         if (!was_busy && ctlr->auto_runtime_pm) {
1525                 ret = pm_runtime_get_sync(ctlr->dev.parent);
1526                 if (ret < 0) {
1527                         pm_runtime_put_noidle(ctlr->dev.parent);
1528                         dev_err(&ctlr->dev, "Failed to power device: %d\n",
1529                                 ret);
1530                         mutex_unlock(&ctlr->io_mutex);
1531                         return;
1532                 }
1533         }
1534
1535         if (!was_busy)
1536                 trace_spi_controller_busy(ctlr);
1537
1538         if (!was_busy && ctlr->prepare_transfer_hardware) {
1539                 ret = ctlr->prepare_transfer_hardware(ctlr);
1540                 if (ret) {
1541                         dev_err(&ctlr->dev,
1542                                 "failed to prepare transfer hardware: %d\n",
1543                                 ret);
1544
1545                         if (ctlr->auto_runtime_pm)
1546                                 pm_runtime_put(ctlr->dev.parent);
1547
1548                         msg->status = ret;
1549                         spi_finalize_current_message(ctlr);
1550
1551                         mutex_unlock(&ctlr->io_mutex);
1552                         return;
1553                 }
1554         }
1555
1556         trace_spi_message_start(msg);
1557
1558         if (ctlr->prepare_message) {
1559                 ret = ctlr->prepare_message(ctlr, msg);
1560                 if (ret) {
1561                         dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1562                                 ret);
1563                         msg->status = ret;
1564                         spi_finalize_current_message(ctlr);
1565                         goto out;
1566                 }
1567                 ctlr->cur_msg_prepared = true;
1568         }
1569
1570         ret = spi_map_msg(ctlr, msg);
1571         if (ret) {
1572                 msg->status = ret;
1573                 spi_finalize_current_message(ctlr);
1574                 goto out;
1575         }
1576
1577         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1578                 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1579                         xfer->ptp_sts_word_pre = 0;
1580                         ptp_read_system_prets(xfer->ptp_sts);
1581                 }
1582         }
1583
1584         ret = ctlr->transfer_one_message(ctlr, msg);
1585         if (ret) {
1586                 dev_err(&ctlr->dev,
1587                         "failed to transfer one message from queue\n");
1588                 goto out;
1589         }
1590
1591 out:
1592         mutex_unlock(&ctlr->io_mutex);
1593
1594         /* Prod the scheduler in case transfer_one() was busy waiting */
1595         if (!ret)
1596                 cond_resched();
1597 }
1598
1599 /**
1600  * spi_pump_messages - kthread work function which processes spi message queue
1601  * @work: pointer to kthread work struct contained in the controller struct
1602  */
1603 static void spi_pump_messages(struct kthread_work *work)
1604 {
1605         struct spi_controller *ctlr =
1606                 container_of(work, struct spi_controller, pump_messages);
1607
1608         __spi_pump_messages(ctlr, true);
1609 }
1610
1611 /**
1612  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1613  *                          TX timestamp for the requested byte from the SPI
1614  *                          transfer. The frequency with which this function
1615  *                          must be called (once per word, once for the whole
1616  *                          transfer, once per batch of words etc) is arbitrary
1617  *                          as long as the @tx buffer offset is greater than or
1618  *                          equal to the requested byte at the time of the
1619  *                          call. The timestamp is only taken once, at the
1620  *                          first such call. It is assumed that the driver
1621  *                          advances its @tx buffer pointer monotonically.
1622  * @ctlr: Pointer to the spi_controller structure of the driver
1623  * @xfer: Pointer to the transfer being timestamped
1624  * @progress: How many words (not bytes) have been transferred so far
1625  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1626  *            transfer, for less jitter in time measurement. Only compatible
1627  *            with PIO drivers. If true, must follow up with
1628  *            spi_take_timestamp_post or otherwise system will crash.
1629  *            WARNING: for fully predictable results, the CPU frequency must
1630  *            also be under control (governor).
1631  */
1632 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1633                             struct spi_transfer *xfer,
1634                             size_t progress, bool irqs_off)
1635 {
1636         if (!xfer->ptp_sts)
1637                 return;
1638
1639         if (xfer->timestamped)
1640                 return;
1641
1642         if (progress > xfer->ptp_sts_word_pre)
1643                 return;
1644
1645         /* Capture the resolution of the timestamp */
1646         xfer->ptp_sts_word_pre = progress;
1647
1648         if (irqs_off) {
1649                 local_irq_save(ctlr->irq_flags);
1650                 preempt_disable();
1651         }
1652
1653         ptp_read_system_prets(xfer->ptp_sts);
1654 }
1655 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1656
1657 /**
1658  * spi_take_timestamp_post - helper for drivers to collect the end of the
1659  *                           TX timestamp for the requested byte from the SPI
1660  *                           transfer. Can be called with an arbitrary
1661  *                           frequency: only the first call where @tx exceeds
1662  *                           or is equal to the requested word will be
1663  *                           timestamped.
1664  * @ctlr: Pointer to the spi_controller structure of the driver
1665  * @xfer: Pointer to the transfer being timestamped
1666  * @progress: How many words (not bytes) have been transferred so far
1667  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1668  */
1669 void spi_take_timestamp_post(struct spi_controller *ctlr,
1670                              struct spi_transfer *xfer,
1671                              size_t progress, bool irqs_off)
1672 {
1673         if (!xfer->ptp_sts)
1674                 return;
1675
1676         if (xfer->timestamped)
1677                 return;
1678
1679         if (progress < xfer->ptp_sts_word_post)
1680                 return;
1681
1682         ptp_read_system_postts(xfer->ptp_sts);
1683
1684         if (irqs_off) {
1685                 local_irq_restore(ctlr->irq_flags);
1686                 preempt_enable();
1687         }
1688
1689         /* Capture the resolution of the timestamp */
1690         xfer->ptp_sts_word_post = progress;
1691
1692         xfer->timestamped = true;
1693 }
1694 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1695
1696 /**
1697  * spi_set_thread_rt - set the controller to pump at realtime priority
1698  * @ctlr: controller to boost priority of
1699  *
1700  * This can be called because the controller requested realtime priority
1701  * (by setting the ->rt value before calling spi_register_controller()) or
1702  * because a device on the bus said that its transfers needed realtime
1703  * priority.
1704  *
1705  * NOTE: at the moment if any device on a bus says it needs realtime then
1706  * the thread will be at realtime priority for all transfers on that
1707  * controller.  If this eventually becomes a problem we may see if we can
1708  * find a way to boost the priority only temporarily during relevant
1709  * transfers.
1710  */
1711 static void spi_set_thread_rt(struct spi_controller *ctlr)
1712 {
1713         dev_info(&ctlr->dev,
1714                 "will run message pump with realtime priority\n");
1715         sched_set_fifo(ctlr->kworker->task);
1716 }
1717
1718 static int spi_init_queue(struct spi_controller *ctlr)
1719 {
1720         ctlr->running = false;
1721         ctlr->busy = false;
1722
1723         ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1724         if (IS_ERR(ctlr->kworker)) {
1725                 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1726                 return PTR_ERR(ctlr->kworker);
1727         }
1728
1729         kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1730
1731         /*
1732          * Controller config will indicate if this controller should run the
1733          * message pump with high (realtime) priority to reduce the transfer
1734          * latency on the bus by minimising the delay between a transfer
1735          * request and the scheduling of the message pump thread. Without this
1736          * setting the message pump thread will remain at default priority.
1737          */
1738         if (ctlr->rt)
1739                 spi_set_thread_rt(ctlr);
1740
1741         return 0;
1742 }
1743
1744 /**
1745  * spi_get_next_queued_message() - called by driver to check for queued
1746  * messages
1747  * @ctlr: the controller to check for queued messages
1748  *
1749  * If there are more messages in the queue, the next message is returned from
1750  * this call.
1751  *
1752  * Return: the next message in the queue, else NULL if the queue is empty.
1753  */
1754 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1755 {
1756         struct spi_message *next;
1757         unsigned long flags;
1758
1759         /* get a pointer to the next message, if any */
1760         spin_lock_irqsave(&ctlr->queue_lock, flags);
1761         next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1762                                         queue);
1763         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1764
1765         return next;
1766 }
1767 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1768
1769 /**
1770  * spi_finalize_current_message() - the current message is complete
1771  * @ctlr: the controller to return the message to
1772  *
1773  * Called by the driver to notify the core that the message in the front of the
1774  * queue is complete and can be removed from the queue.
1775  */
1776 void spi_finalize_current_message(struct spi_controller *ctlr)
1777 {
1778         struct spi_transfer *xfer;
1779         struct spi_message *mesg;
1780         unsigned long flags;
1781         int ret;
1782
1783         spin_lock_irqsave(&ctlr->queue_lock, flags);
1784         mesg = ctlr->cur_msg;
1785         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1786
1787         if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1788                 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1789                         ptp_read_system_postts(xfer->ptp_sts);
1790                         xfer->ptp_sts_word_post = xfer->len;
1791                 }
1792         }
1793
1794         if (unlikely(ctlr->ptp_sts_supported))
1795                 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1796                         WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1797
1798         spi_unmap_msg(ctlr, mesg);
1799
1800         /* In the prepare_messages callback the spi bus has the opportunity to
1801          * split a transfer to smaller chunks.
1802          * Release splited transfers here since spi_map_msg is done on the
1803          * splited transfers.
1804          */
1805         spi_res_release(ctlr, mesg);
1806
1807         if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1808                 ret = ctlr->unprepare_message(ctlr, mesg);
1809                 if (ret) {
1810                         dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1811                                 ret);
1812                 }
1813         }
1814
1815         spin_lock_irqsave(&ctlr->queue_lock, flags);
1816         ctlr->cur_msg = NULL;
1817         ctlr->cur_msg_prepared = false;
1818         ctlr->fallback = false;
1819         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1820         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1821
1822         trace_spi_message_done(mesg);
1823
1824         mesg->state = NULL;
1825         if (mesg->complete)
1826                 mesg->complete(mesg->context);
1827 }
1828 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1829
1830 static int spi_start_queue(struct spi_controller *ctlr)
1831 {
1832         unsigned long flags;
1833
1834         spin_lock_irqsave(&ctlr->queue_lock, flags);
1835
1836         if (ctlr->running || ctlr->busy) {
1837                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1838                 return -EBUSY;
1839         }
1840
1841         ctlr->running = true;
1842         ctlr->cur_msg = NULL;
1843         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1844
1845         kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1846
1847         return 0;
1848 }
1849
1850 static int spi_stop_queue(struct spi_controller *ctlr)
1851 {
1852         unsigned long flags;
1853         unsigned limit = 500;
1854         int ret = 0;
1855
1856         spin_lock_irqsave(&ctlr->queue_lock, flags);
1857
1858         /*
1859          * This is a bit lame, but is optimized for the common execution path.
1860          * A wait_queue on the ctlr->busy could be used, but then the common
1861          * execution path (pump_messages) would be required to call wake_up or
1862          * friends on every SPI message. Do this instead.
1863          */
1864         while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1865                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1866                 usleep_range(10000, 11000);
1867                 spin_lock_irqsave(&ctlr->queue_lock, flags);
1868         }
1869
1870         if (!list_empty(&ctlr->queue) || ctlr->busy)
1871                 ret = -EBUSY;
1872         else
1873                 ctlr->running = false;
1874
1875         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1876
1877         if (ret) {
1878                 dev_warn(&ctlr->dev, "could not stop message queue\n");
1879                 return ret;
1880         }
1881         return ret;
1882 }
1883
1884 static int spi_destroy_queue(struct spi_controller *ctlr)
1885 {
1886         int ret;
1887
1888         ret = spi_stop_queue(ctlr);
1889
1890         /*
1891          * kthread_flush_worker will block until all work is done.
1892          * If the reason that stop_queue timed out is that the work will never
1893          * finish, then it does no good to call flush/stop thread, so
1894          * return anyway.
1895          */
1896         if (ret) {
1897                 dev_err(&ctlr->dev, "problem destroying queue\n");
1898                 return ret;
1899         }
1900
1901         kthread_destroy_worker(ctlr->kworker);
1902
1903         return 0;
1904 }
1905
1906 static int __spi_queued_transfer(struct spi_device *spi,
1907                                  struct spi_message *msg,
1908                                  bool need_pump)
1909 {
1910         struct spi_controller *ctlr = spi->controller;
1911         unsigned long flags;
1912
1913         spin_lock_irqsave(&ctlr->queue_lock, flags);
1914
1915         if (!ctlr->running) {
1916                 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1917                 return -ESHUTDOWN;
1918         }
1919         msg->actual_length = 0;
1920         msg->status = -EINPROGRESS;
1921
1922         list_add_tail(&msg->queue, &ctlr->queue);
1923         if (!ctlr->busy && need_pump)
1924                 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1925
1926         spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1927         return 0;
1928 }
1929
1930 /**
1931  * spi_queued_transfer - transfer function for queued transfers
1932  * @spi: spi device which is requesting transfer
1933  * @msg: spi message which is to handled is queued to driver queue
1934  *
1935  * Return: zero on success, else a negative error code.
1936  */
1937 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1938 {
1939         return __spi_queued_transfer(spi, msg, true);
1940 }
1941
1942 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1943 {
1944         int ret;
1945
1946         ctlr->transfer = spi_queued_transfer;
1947         if (!ctlr->transfer_one_message)
1948                 ctlr->transfer_one_message = spi_transfer_one_message;
1949
1950         /* Initialize and start queue */
1951         ret = spi_init_queue(ctlr);
1952         if (ret) {
1953                 dev_err(&ctlr->dev, "problem initializing queue\n");
1954                 goto err_init_queue;
1955         }
1956         ctlr->queued = true;
1957         ret = spi_start_queue(ctlr);
1958         if (ret) {
1959                 dev_err(&ctlr->dev, "problem starting queue\n");
1960                 goto err_start_queue;
1961         }
1962
1963         return 0;
1964
1965 err_start_queue:
1966         spi_destroy_queue(ctlr);
1967 err_init_queue:
1968         return ret;
1969 }
1970
1971 /**
1972  * spi_flush_queue - Send all pending messages in the queue from the callers'
1973  *                   context
1974  * @ctlr: controller to process queue for
1975  *
1976  * This should be used when one wants to ensure all pending messages have been
1977  * sent before doing something. Is used by the spi-mem code to make sure SPI
1978  * memory operations do not preempt regular SPI transfers that have been queued
1979  * before the spi-mem operation.
1980  */
1981 void spi_flush_queue(struct spi_controller *ctlr)
1982 {
1983         if (ctlr->transfer == spi_queued_transfer)
1984                 __spi_pump_messages(ctlr, false);
1985 }
1986
1987 /*-------------------------------------------------------------------------*/
1988
1989 #if defined(CONFIG_OF)
1990 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1991                            struct device_node *nc)
1992 {
1993         u32 value;
1994         int rc;
1995
1996         /* Mode (clock phase/polarity/etc.) */
1997         if (of_property_read_bool(nc, "spi-cpha"))
1998                 spi->mode |= SPI_CPHA;
1999         if (of_property_read_bool(nc, "spi-cpol"))
2000                 spi->mode |= SPI_CPOL;
2001         if (of_property_read_bool(nc, "spi-3wire"))
2002                 spi->mode |= SPI_3WIRE;
2003         if (of_property_read_bool(nc, "spi-lsb-first"))
2004                 spi->mode |= SPI_LSB_FIRST;
2005         if (of_property_read_bool(nc, "spi-cs-high"))
2006                 spi->mode |= SPI_CS_HIGH;
2007
2008         /* Device DUAL/QUAD mode */
2009         if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2010                 switch (value) {
2011                 case 0:
2012                         spi->mode |= SPI_NO_TX;
2013                         break;
2014                 case 1:
2015                         break;
2016                 case 2:
2017                         spi->mode |= SPI_TX_DUAL;
2018                         break;
2019                 case 4:
2020                         spi->mode |= SPI_TX_QUAD;
2021                         break;
2022                 case 8:
2023                         spi->mode |= SPI_TX_OCTAL;
2024                         break;
2025                 default:
2026                         dev_warn(&ctlr->dev,
2027                                 "spi-tx-bus-width %d not supported\n",
2028                                 value);
2029                         break;
2030                 }
2031         }
2032
2033         if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2034                 switch (value) {
2035                 case 0:
2036                         spi->mode |= SPI_NO_RX;
2037                         break;
2038                 case 1:
2039                         break;
2040                 case 2:
2041                         spi->mode |= SPI_RX_DUAL;
2042                         break;
2043                 case 4:
2044                         spi->mode |= SPI_RX_QUAD;
2045                         break;
2046                 case 8:
2047                         spi->mode |= SPI_RX_OCTAL;
2048                         break;
2049                 default:
2050                         dev_warn(&ctlr->dev,
2051                                 "spi-rx-bus-width %d not supported\n",
2052                                 value);
2053                         break;
2054                 }
2055         }
2056
2057         if (spi_controller_is_slave(ctlr)) {
2058                 if (!of_node_name_eq(nc, "slave")) {
2059                         dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2060                                 nc);
2061                         return -EINVAL;
2062                 }
2063                 return 0;
2064         }
2065
2066         /* Device address */
2067         rc = of_property_read_u32(nc, "reg", &value);
2068         if (rc) {
2069                 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2070                         nc, rc);
2071                 return rc;
2072         }
2073         spi->chip_select = value;
2074
2075         /* Device speed */
2076         if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2077                 spi->max_speed_hz = value;
2078
2079         return 0;
2080 }
2081
2082 static struct spi_device *
2083 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2084 {
2085         struct spi_device *spi;
2086         int rc;
2087
2088         /* Alloc an spi_device */
2089         spi = spi_alloc_device(ctlr);
2090         if (!spi) {
2091                 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2092                 rc = -ENOMEM;
2093                 goto err_out;
2094         }
2095
2096         /* Select device driver */
2097         rc = of_modalias_node(nc, spi->modalias,
2098                                 sizeof(spi->modalias));
2099         if (rc < 0) {
2100                 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2101                 goto err_out;
2102         }
2103
2104         rc = of_spi_parse_dt(ctlr, spi, nc);
2105         if (rc)
2106                 goto err_out;
2107
2108         /* Store a pointer to the node in the device structure */
2109         of_node_get(nc);
2110         spi->dev.of_node = nc;
2111         spi->dev.fwnode = of_fwnode_handle(nc);
2112
2113         /* Register the new device */
2114         rc = spi_add_device(spi);
2115         if (rc) {
2116                 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2117                 goto err_of_node_put;
2118         }
2119
2120         return spi;
2121
2122 err_of_node_put:
2123         of_node_put(nc);
2124 err_out:
2125         spi_dev_put(spi);
2126         return ERR_PTR(rc);
2127 }
2128
2129 /**
2130  * of_register_spi_devices() - Register child devices onto the SPI bus
2131  * @ctlr:       Pointer to spi_controller device
2132  *
2133  * Registers an spi_device for each child node of controller node which
2134  * represents a valid SPI slave.
2135  */
2136 static void of_register_spi_devices(struct spi_controller *ctlr)
2137 {
2138         struct spi_device *spi;
2139         struct device_node *nc;
2140
2141         if (!ctlr->dev.of_node)
2142                 return;
2143
2144         for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2145                 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2146                         continue;
2147                 spi = of_register_spi_device(ctlr, nc);
2148                 if (IS_ERR(spi)) {
2149                         dev_warn(&ctlr->dev,
2150                                  "Failed to create SPI device for %pOF\n", nc);
2151                         of_node_clear_flag(nc, OF_POPULATED);
2152                 }
2153         }
2154 }
2155 #else
2156 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2157 #endif
2158
2159 /**
2160  * spi_new_ancillary_device() - Register ancillary SPI device
2161  * @spi:         Pointer to the main SPI device registering the ancillary device
2162  * @chip_select: Chip Select of the ancillary device
2163  *
2164  * Register an ancillary SPI device; for example some chips have a chip-select
2165  * for normal device usage and another one for setup/firmware upload.
2166  *
2167  * This may only be called from main SPI device's probe routine.
2168  *
2169  * Return: 0 on success; negative errno on failure
2170  */
2171 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2172                                              u8 chip_select)
2173 {
2174         struct spi_device *ancillary;
2175         int rc = 0;
2176
2177         /* Alloc an spi_device */
2178         ancillary = spi_alloc_device(spi->controller);
2179         if (!ancillary) {
2180                 rc = -ENOMEM;
2181                 goto err_out;
2182         }
2183
2184         strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2185
2186         /* Use provided chip-select for ancillary device */
2187         ancillary->chip_select = chip_select;
2188
2189         /* Take over SPI mode/speed from SPI main device */
2190         ancillary->max_speed_hz = spi->max_speed_hz;
2191         ancillary->mode = spi->mode;
2192
2193         /* Register the new device */
2194         rc = spi_add_device_locked(ancillary);
2195         if (rc) {
2196                 dev_err(&spi->dev, "failed to register ancillary device\n");
2197                 goto err_out;
2198         }
2199
2200         return ancillary;
2201
2202 err_out:
2203         spi_dev_put(ancillary);
2204         return ERR_PTR(rc);
2205 }
2206 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2207
2208 #ifdef CONFIG_ACPI
2209 struct acpi_spi_lookup {
2210         struct spi_controller   *ctlr;
2211         u32                     max_speed_hz;
2212         u32                     mode;
2213         int                     irq;
2214         u8                      bits_per_word;
2215         u8                      chip_select;
2216 };
2217
2218 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2219                                             struct acpi_spi_lookup *lookup)
2220 {
2221         const union acpi_object *obj;
2222
2223         if (!x86_apple_machine)
2224                 return;
2225
2226         if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2227             && obj->buffer.length >= 4)
2228                 lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2229
2230         if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2231             && obj->buffer.length == 8)
2232                 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2233
2234         if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2235             && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2236                 lookup->mode |= SPI_LSB_FIRST;
2237
2238         if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2239             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2240                 lookup->mode |= SPI_CPOL;
2241
2242         if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2243             && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2244                 lookup->mode |= SPI_CPHA;
2245 }
2246
2247 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2248 {
2249         struct acpi_spi_lookup *lookup = data;
2250         struct spi_controller *ctlr = lookup->ctlr;
2251
2252         if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2253                 struct acpi_resource_spi_serialbus *sb;
2254                 acpi_handle parent_handle;
2255                 acpi_status status;
2256
2257                 sb = &ares->data.spi_serial_bus;
2258                 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2259
2260                         status = acpi_get_handle(NULL,
2261                                                  sb->resource_source.string_ptr,
2262                                                  &parent_handle);
2263
2264                         if (ACPI_FAILURE(status) ||
2265                             ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2266                                 return -ENODEV;
2267
2268                         /*
2269                          * ACPI DeviceSelection numbering is handled by the
2270                          * host controller driver in Windows and can vary
2271                          * from driver to driver. In Linux we always expect
2272                          * 0 .. max - 1 so we need to ask the driver to
2273                          * translate between the two schemes.
2274                          */
2275                         if (ctlr->fw_translate_cs) {
2276                                 int cs = ctlr->fw_translate_cs(ctlr,
2277                                                 sb->device_selection);
2278                                 if (cs < 0)
2279                                         return cs;
2280                                 lookup->chip_select = cs;
2281                         } else {
2282                                 lookup->chip_select = sb->device_selection;
2283                         }
2284
2285                         lookup->max_speed_hz = sb->connection_speed;
2286                         lookup->bits_per_word = sb->data_bit_length;
2287
2288                         if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2289                                 lookup->mode |= SPI_CPHA;
2290                         if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2291                                 lookup->mode |= SPI_CPOL;
2292                         if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2293                                 lookup->mode |= SPI_CS_HIGH;
2294                 }
2295         } else if (lookup->irq < 0) {
2296                 struct resource r;
2297
2298                 if (acpi_dev_resource_interrupt(ares, 0, &r))
2299                         lookup->irq = r.start;
2300         }
2301
2302         /* Always tell the ACPI core to skip this resource */
2303         return 1;
2304 }
2305
2306 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2307                                             struct acpi_device *adev)
2308 {
2309         acpi_handle parent_handle = NULL;
2310         struct list_head resource_list;
2311         struct acpi_spi_lookup lookup = {};
2312         struct spi_device *spi;
2313         int ret;
2314
2315         if (acpi_bus_get_status(adev) || !adev->status.present ||
2316             acpi_device_enumerated(adev))
2317                 return AE_OK;
2318
2319         lookup.ctlr             = ctlr;
2320         lookup.irq              = -1;
2321
2322         INIT_LIST_HEAD(&resource_list);
2323         ret = acpi_dev_get_resources(adev, &resource_list,
2324                                      acpi_spi_add_resource, &lookup);
2325         acpi_dev_free_resource_list(&resource_list);
2326
2327         if (ret < 0)
2328                 /* found SPI in _CRS but it points to another controller */
2329                 return AE_OK;
2330
2331         if (!lookup.max_speed_hz &&
2332             ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2333             ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2334                 /* Apple does not use _CRS but nested devices for SPI slaves */
2335                 acpi_spi_parse_apple_properties(adev, &lookup);
2336         }
2337
2338         if (!lookup.max_speed_hz)
2339                 return AE_OK;
2340
2341         spi = spi_alloc_device(ctlr);
2342         if (!spi) {
2343                 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2344                         dev_name(&adev->dev));
2345                 return AE_NO_MEMORY;
2346         }
2347
2348
2349         ACPI_COMPANION_SET(&spi->dev, adev);
2350         spi->max_speed_hz       = lookup.max_speed_hz;
2351         spi->mode               |= lookup.mode;
2352         spi->irq                = lookup.irq;
2353         spi->bits_per_word      = lookup.bits_per_word;
2354         spi->chip_select        = lookup.chip_select;
2355
2356         acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2357                           sizeof(spi->modalias));
2358
2359         if (spi->irq < 0)
2360                 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2361
2362         acpi_device_set_enumerated(adev);
2363
2364         adev->power.flags.ignore_parent = true;
2365         if (spi_add_device(spi)) {
2366                 adev->power.flags.ignore_parent = false;
2367                 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2368                         dev_name(&adev->dev));
2369                 spi_dev_put(spi);
2370         }
2371
2372         return AE_OK;
2373 }
2374
2375 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2376                                        void *data, void **return_value)
2377 {
2378         struct spi_controller *ctlr = data;
2379         struct acpi_device *adev;
2380
2381         if (acpi_bus_get_device(handle, &adev))
2382                 return AE_OK;
2383
2384         return acpi_register_spi_device(ctlr, adev);
2385 }
2386
2387 #define SPI_ACPI_ENUMERATE_MAX_DEPTH            32
2388
2389 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2390 {
2391         acpi_status status;
2392         acpi_handle handle;
2393
2394         handle = ACPI_HANDLE(ctlr->dev.parent);
2395         if (!handle)
2396                 return;
2397
2398         status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2399                                      SPI_ACPI_ENUMERATE_MAX_DEPTH,
2400                                      acpi_spi_add_device, NULL, ctlr, NULL);
2401         if (ACPI_FAILURE(status))
2402                 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2403 }
2404 #else
2405 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2406 #endif /* CONFIG_ACPI */
2407
2408 static void spi_controller_release(struct device *dev)
2409 {
2410         struct spi_controller *ctlr;
2411
2412         ctlr = container_of(dev, struct spi_controller, dev);
2413         kfree(ctlr);
2414 }
2415
2416 static struct class spi_master_class = {
2417         .name           = "spi_master",
2418         .owner          = THIS_MODULE,
2419         .dev_release    = spi_controller_release,
2420         .dev_groups     = spi_master_groups,
2421 };
2422
2423 #ifdef CONFIG_SPI_SLAVE
2424 /**
2425  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2426  *                   controller
2427  * @spi: device used for the current transfer
2428  */
2429 int spi_slave_abort(struct spi_device *spi)
2430 {
2431         struct spi_controller *ctlr = spi->controller;
2432
2433         if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2434                 return ctlr->slave_abort(ctlr);
2435
2436         return -ENOTSUPP;
2437 }
2438 EXPORT_SYMBOL_GPL(spi_slave_abort);
2439
2440 static int match_true(struct device *dev, void *data)
2441 {
2442         return 1;
2443 }
2444
2445 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2446                           char *buf)
2447 {
2448         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2449                                                    dev);
2450         struct device *child;
2451
2452         child = device_find_child(&ctlr->dev, NULL, match_true);
2453         return sprintf(buf, "%s\n",
2454                        child ? to_spi_device(child)->modalias : NULL);
2455 }
2456
2457 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2458                            const char *buf, size_t count)
2459 {
2460         struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2461                                                    dev);
2462         struct spi_device *spi;
2463         struct device *child;
2464         char name[32];
2465         int rc;
2466
2467         rc = sscanf(buf, "%31s", name);
2468         if (rc != 1 || !name[0])
2469                 return -EINVAL;
2470
2471         child = device_find_child(&ctlr->dev, NULL, match_true);
2472         if (child) {
2473                 /* Remove registered slave */
2474                 device_unregister(child);
2475                 put_device(child);
2476         }
2477
2478         if (strcmp(name, "(null)")) {
2479                 /* Register new slave */
2480                 spi = spi_alloc_device(ctlr);
2481                 if (!spi)
2482                         return -ENOMEM;
2483
2484                 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2485
2486                 rc = spi_add_device(spi);
2487                 if (rc) {
2488                         spi_dev_put(spi);
2489                         return rc;
2490                 }
2491         }
2492
2493         return count;
2494 }
2495
2496 static DEVICE_ATTR_RW(slave);
2497
2498 static struct attribute *spi_slave_attrs[] = {
2499         &dev_attr_slave.attr,
2500         NULL,
2501 };
2502
2503 static const struct attribute_group spi_slave_group = {
2504         .attrs = spi_slave_attrs,
2505 };
2506
2507 static const struct attribute_group *spi_slave_groups[] = {
2508         &spi_controller_statistics_group,
2509         &spi_slave_group,
2510         NULL,
2511 };
2512
2513 static struct class spi_slave_class = {
2514         .name           = "spi_slave",
2515         .owner          = THIS_MODULE,
2516         .dev_release    = spi_controller_release,
2517         .dev_groups     = spi_slave_groups,
2518 };
2519 #else
2520 extern struct class spi_slave_class;    /* dummy */
2521 #endif
2522
2523 /**
2524  * __spi_alloc_controller - allocate an SPI master or slave controller
2525  * @dev: the controller, possibly using the platform_bus
2526  * @size: how much zeroed driver-private data to allocate; the pointer to this
2527  *      memory is in the driver_data field of the returned device, accessible
2528  *      with spi_controller_get_devdata(); the memory is cacheline aligned;
2529  *      drivers granting DMA access to portions of their private data need to
2530  *      round up @size using ALIGN(size, dma_get_cache_alignment()).
2531  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2532  *      slave (true) controller
2533  * Context: can sleep
2534  *
2535  * This call is used only by SPI controller drivers, which are the
2536  * only ones directly touching chip registers.  It's how they allocate
2537  * an spi_controller structure, prior to calling spi_register_controller().
2538  *
2539  * This must be called from context that can sleep.
2540  *
2541  * The caller is responsible for assigning the bus number and initializing the
2542  * controller's methods before calling spi_register_controller(); and (after
2543  * errors adding the device) calling spi_controller_put() to prevent a memory
2544  * leak.
2545  *
2546  * Return: the SPI controller structure on success, else NULL.
2547  */
2548 struct spi_controller *__spi_alloc_controller(struct device *dev,
2549                                               unsigned int size, bool slave)
2550 {
2551         struct spi_controller   *ctlr;
2552         size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2553
2554         if (!dev)
2555                 return NULL;
2556
2557         ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2558         if (!ctlr)
2559                 return NULL;
2560
2561         device_initialize(&ctlr->dev);
2562         ctlr->bus_num = -1;
2563         ctlr->num_chipselect = 1;
2564         ctlr->slave = slave;
2565         if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2566                 ctlr->dev.class = &spi_slave_class;
2567         else
2568                 ctlr->dev.class = &spi_master_class;
2569         ctlr->dev.parent = dev;
2570         pm_suspend_ignore_children(&ctlr->dev, true);
2571         spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2572
2573         return ctlr;
2574 }
2575 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2576
2577 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2578 {
2579         spi_controller_put(*(struct spi_controller **)ctlr);
2580 }
2581
2582 /**
2583  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2584  * @dev: physical device of SPI controller
2585  * @size: how much zeroed driver-private data to allocate
2586  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2587  * Context: can sleep
2588  *
2589  * Allocate an SPI controller and automatically release a reference on it
2590  * when @dev is unbound from its driver.  Drivers are thus relieved from
2591  * having to call spi_controller_put().
2592  *
2593  * The arguments to this function are identical to __spi_alloc_controller().
2594  *
2595  * Return: the SPI controller structure on success, else NULL.
2596  */
2597 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2598                                                    unsigned int size,
2599                                                    bool slave)
2600 {
2601         struct spi_controller **ptr, *ctlr;
2602
2603         ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2604                            GFP_KERNEL);
2605         if (!ptr)
2606                 return NULL;
2607
2608         ctlr = __spi_alloc_controller(dev, size, slave);
2609         if (ctlr) {
2610                 ctlr->devm_allocated = true;
2611                 *ptr = ctlr;
2612                 devres_add(dev, ptr);
2613         } else {
2614                 devres_free(ptr);
2615         }
2616
2617         return ctlr;
2618 }
2619 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2620
2621 #ifdef CONFIG_OF
2622 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2623 {
2624         int nb, i, *cs;
2625         struct device_node *np = ctlr->dev.of_node;
2626
2627         if (!np)
2628                 return 0;
2629
2630         nb = of_gpio_named_count(np, "cs-gpios");
2631         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2632
2633         /* Return error only for an incorrectly formed cs-gpios property */
2634         if (nb == 0 || nb == -ENOENT)
2635                 return 0;
2636         else if (nb < 0)
2637                 return nb;
2638
2639         cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2640                           GFP_KERNEL);
2641         ctlr->cs_gpios = cs;
2642
2643         if (!ctlr->cs_gpios)
2644                 return -ENOMEM;
2645
2646         for (i = 0; i < ctlr->num_chipselect; i++)
2647                 cs[i] = -ENOENT;
2648
2649         for (i = 0; i < nb; i++)
2650                 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2651
2652         return 0;
2653 }
2654 #else
2655 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2656 {
2657         return 0;
2658 }
2659 #endif
2660
2661 /**
2662  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2663  * @ctlr: The SPI master to grab GPIO descriptors for
2664  */
2665 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2666 {
2667         int nb, i;
2668         struct gpio_desc **cs;
2669         struct device *dev = &ctlr->dev;
2670         unsigned long native_cs_mask = 0;
2671         unsigned int num_cs_gpios = 0;
2672
2673         nb = gpiod_count(dev, "cs");
2674         if (nb < 0) {
2675                 /* No GPIOs at all is fine, else return the error */
2676                 if (nb == -ENOENT)
2677                         return 0;
2678                 return nb;
2679         }
2680
2681         ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2682
2683         cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2684                           GFP_KERNEL);
2685         if (!cs)
2686                 return -ENOMEM;
2687         ctlr->cs_gpiods = cs;
2688
2689         for (i = 0; i < nb; i++) {
2690                 /*
2691                  * Most chipselects are active low, the inverted
2692                  * semantics are handled by special quirks in gpiolib,
2693                  * so initializing them GPIOD_OUT_LOW here means
2694                  * "unasserted", in most cases this will drive the physical
2695                  * line high.
2696                  */
2697                 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2698                                                       GPIOD_OUT_LOW);
2699                 if (IS_ERR(cs[i]))
2700                         return PTR_ERR(cs[i]);
2701
2702                 if (cs[i]) {
2703                         /*
2704                          * If we find a CS GPIO, name it after the device and
2705                          * chip select line.
2706                          */
2707                         char *gpioname;
2708
2709                         gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2710                                                   dev_name(dev), i);
2711                         if (!gpioname)
2712                                 return -ENOMEM;
2713                         gpiod_set_consumer_name(cs[i], gpioname);
2714                         num_cs_gpios++;
2715                         continue;
2716                 }
2717
2718                 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2719                         dev_err(dev, "Invalid native chip select %d\n", i);
2720                         return -EINVAL;
2721                 }
2722                 native_cs_mask |= BIT(i);
2723         }
2724
2725         ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2726
2727         if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2728             ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2729                 dev_err(dev, "No unused native chip select available\n");
2730                 return -EINVAL;
2731         }
2732
2733         return 0;
2734 }
2735
2736 static int spi_controller_check_ops(struct spi_controller *ctlr)
2737 {
2738         /*
2739          * The controller may implement only the high-level SPI-memory like
2740          * operations if it does not support regular SPI transfers, and this is
2741          * valid use case.
2742          * If ->mem_ops is NULL, we request that at least one of the
2743          * ->transfer_xxx() method be implemented.
2744          */
2745         if (ctlr->mem_ops) {
2746                 if (!ctlr->mem_ops->exec_op)
2747                         return -EINVAL;
2748         } else if (!ctlr->transfer && !ctlr->transfer_one &&
2749                    !ctlr->transfer_one_message) {
2750                 return -EINVAL;
2751         }
2752
2753         return 0;
2754 }
2755
2756 /**
2757  * spi_register_controller - register SPI master or slave controller
2758  * @ctlr: initialized master, originally from spi_alloc_master() or
2759  *      spi_alloc_slave()
2760  * Context: can sleep
2761  *
2762  * SPI controllers connect to their drivers using some non-SPI bus,
2763  * such as the platform bus.  The final stage of probe() in that code
2764  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2765  *
2766  * SPI controllers use board specific (often SOC specific) bus numbers,
2767  * and board-specific addressing for SPI devices combines those numbers
2768  * with chip select numbers.  Since SPI does not directly support dynamic
2769  * device identification, boards need configuration tables telling which
2770  * chip is at which address.
2771  *
2772  * This must be called from context that can sleep.  It returns zero on
2773  * success, else a negative error code (dropping the controller's refcount).
2774  * After a successful return, the caller is responsible for calling
2775  * spi_unregister_controller().
2776  *
2777  * Return: zero on success, else a negative error code.
2778  */
2779 int spi_register_controller(struct spi_controller *ctlr)
2780 {
2781         struct device           *dev = ctlr->dev.parent;
2782         struct boardinfo        *bi;
2783         int                     status;
2784         int                     id, first_dynamic;
2785
2786         if (!dev)
2787                 return -ENODEV;
2788
2789         /*
2790          * Make sure all necessary hooks are implemented before registering
2791          * the SPI controller.
2792          */
2793         status = spi_controller_check_ops(ctlr);
2794         if (status)
2795                 return status;
2796
2797         if (ctlr->bus_num >= 0) {
2798                 /* devices with a fixed bus num must check-in with the num */
2799                 mutex_lock(&board_lock);
2800                 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2801                         ctlr->bus_num + 1, GFP_KERNEL);
2802                 mutex_unlock(&board_lock);
2803                 if (WARN(id < 0, "couldn't get idr"))
2804                         return id == -ENOSPC ? -EBUSY : id;
2805                 ctlr->bus_num = id;
2806         } else if (ctlr->dev.of_node) {
2807                 /* allocate dynamic bus number using Linux idr */
2808                 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2809                 if (id >= 0) {
2810                         ctlr->bus_num = id;
2811                         mutex_lock(&board_lock);
2812                         id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2813                                        ctlr->bus_num + 1, GFP_KERNEL);
2814                         mutex_unlock(&board_lock);
2815                         if (WARN(id < 0, "couldn't get idr"))
2816                                 return id == -ENOSPC ? -EBUSY : id;
2817                 }
2818         }
2819         if (ctlr->bus_num < 0) {
2820                 first_dynamic = of_alias_get_highest_id("spi");
2821                 if (first_dynamic < 0)
2822                         first_dynamic = 0;
2823                 else
2824                         first_dynamic++;
2825
2826                 mutex_lock(&board_lock);
2827                 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2828                                0, GFP_KERNEL);
2829                 mutex_unlock(&board_lock);
2830                 if (WARN(id < 0, "couldn't get idr"))
2831                         return id;
2832                 ctlr->bus_num = id;
2833         }
2834         INIT_LIST_HEAD(&ctlr->queue);
2835         spin_lock_init(&ctlr->queue_lock);
2836         spin_lock_init(&ctlr->bus_lock_spinlock);
2837         mutex_init(&ctlr->bus_lock_mutex);
2838         mutex_init(&ctlr->io_mutex);
2839         ctlr->bus_lock_flag = 0;
2840         init_completion(&ctlr->xfer_completion);
2841         if (!ctlr->max_dma_len)
2842                 ctlr->max_dma_len = INT_MAX;
2843
2844         /* register the device, then userspace will see it.
2845          * registration fails if the bus ID is in use.
2846          */
2847         dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2848
2849         if (!spi_controller_is_slave(ctlr)) {
2850                 if (ctlr->use_gpio_descriptors) {
2851                         status = spi_get_gpio_descs(ctlr);
2852                         if (status)
2853                                 goto free_bus_id;
2854                         /*
2855                          * A controller using GPIO descriptors always
2856                          * supports SPI_CS_HIGH if need be.
2857                          */
2858                         ctlr->mode_bits |= SPI_CS_HIGH;
2859                 } else {
2860                         /* Legacy code path for GPIOs from DT */
2861                         status = of_spi_get_gpio_numbers(ctlr);
2862                         if (status)
2863                                 goto free_bus_id;
2864                 }
2865         }
2866
2867         /*
2868          * Even if it's just one always-selected device, there must
2869          * be at least one chipselect.
2870          */
2871         if (!ctlr->num_chipselect) {
2872                 status = -EINVAL;
2873                 goto free_bus_id;
2874         }
2875
2876         status = device_add(&ctlr->dev);
2877         if (status < 0)
2878                 goto free_bus_id;
2879         dev_dbg(dev, "registered %s %s\n",
2880                         spi_controller_is_slave(ctlr) ? "slave" : "master",
2881                         dev_name(&ctlr->dev));
2882
2883         /*
2884          * If we're using a queued driver, start the queue. Note that we don't
2885          * need the queueing logic if the driver is only supporting high-level
2886          * memory operations.
2887          */
2888         if (ctlr->transfer) {
2889                 dev_info(dev, "controller is unqueued, this is deprecated\n");
2890         } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2891                 status = spi_controller_initialize_queue(ctlr);
2892                 if (status) {
2893                         device_del(&ctlr->dev);
2894                         goto free_bus_id;
2895                 }
2896         }
2897         /* add statistics */
2898         spin_lock_init(&ctlr->statistics.lock);
2899
2900         mutex_lock(&board_lock);
2901         list_add_tail(&ctlr->list, &spi_controller_list);
2902         list_for_each_entry(bi, &board_list, list)
2903                 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2904         mutex_unlock(&board_lock);
2905
2906         /* Register devices from the device tree and ACPI */
2907         of_register_spi_devices(ctlr);
2908         acpi_register_spi_devices(ctlr);
2909         return status;
2910
2911 free_bus_id:
2912         mutex_lock(&board_lock);
2913         idr_remove(&spi_master_idr, ctlr->bus_num);
2914         mutex_unlock(&board_lock);
2915         return status;
2916 }
2917 EXPORT_SYMBOL_GPL(spi_register_controller);
2918
2919 static void devm_spi_unregister(void *ctlr)
2920 {
2921         spi_unregister_controller(ctlr);
2922 }
2923
2924 /**
2925  * devm_spi_register_controller - register managed SPI master or slave
2926  *      controller
2927  * @dev:    device managing SPI controller
2928  * @ctlr: initialized controller, originally from spi_alloc_master() or
2929  *      spi_alloc_slave()
2930  * Context: can sleep
2931  *
2932  * Register a SPI device as with spi_register_controller() which will
2933  * automatically be unregistered and freed.
2934  *
2935  * Return: zero on success, else a negative error code.
2936  */
2937 int devm_spi_register_controller(struct device *dev,
2938                                  struct spi_controller *ctlr)
2939 {
2940         int ret;
2941
2942         ret = spi_register_controller(ctlr);
2943         if (ret)
2944                 return ret;
2945
2946         return devm_add_action_or_reset(dev, devm_spi_unregister, ctlr);
2947 }
2948 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2949
2950 static int __unregister(struct device *dev, void *null)
2951 {
2952         spi_unregister_device(to_spi_device(dev));
2953         return 0;
2954 }
2955
2956 /**
2957  * spi_unregister_controller - unregister SPI master or slave controller
2958  * @ctlr: the controller being unregistered
2959  * Context: can sleep
2960  *
2961  * This call is used only by SPI controller drivers, which are the
2962  * only ones directly touching chip registers.
2963  *
2964  * This must be called from context that can sleep.
2965  *
2966  * Note that this function also drops a reference to the controller.
2967  */
2968 void spi_unregister_controller(struct spi_controller *ctlr)
2969 {
2970         struct spi_controller *found;
2971         int id = ctlr->bus_num;
2972
2973         /* Prevent addition of new devices, unregister existing ones */
2974         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2975                 mutex_lock(&spi_add_lock);
2976
2977         device_for_each_child(&ctlr->dev, NULL, __unregister);
2978
2979         /* First make sure that this controller was ever added */
2980         mutex_lock(&board_lock);
2981         found = idr_find(&spi_master_idr, id);
2982         mutex_unlock(&board_lock);
2983         if (ctlr->queued) {
2984                 if (spi_destroy_queue(ctlr))
2985                         dev_err(&ctlr->dev, "queue remove failed\n");
2986         }
2987         mutex_lock(&board_lock);
2988         list_del(&ctlr->list);
2989         mutex_unlock(&board_lock);
2990
2991         device_del(&ctlr->dev);
2992
2993         /* Release the last reference on the controller if its driver
2994          * has not yet been converted to devm_spi_alloc_master/slave().
2995          */
2996         if (!ctlr->devm_allocated)
2997                 put_device(&ctlr->dev);
2998
2999         /* free bus id */
3000         mutex_lock(&board_lock);
3001         if (found == ctlr)
3002                 idr_remove(&spi_master_idr, id);
3003         mutex_unlock(&board_lock);
3004
3005         if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3006                 mutex_unlock(&spi_add_lock);
3007 }
3008 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3009
3010 int spi_controller_suspend(struct spi_controller *ctlr)
3011 {
3012         int ret;
3013
3014         /* Basically no-ops for non-queued controllers */
3015         if (!ctlr->queued)
3016                 return 0;
3017
3018         ret = spi_stop_queue(ctlr);
3019         if (ret)
3020                 dev_err(&ctlr->dev, "queue stop failed\n");
3021
3022         return ret;
3023 }
3024 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3025
3026 int spi_controller_resume(struct spi_controller *ctlr)
3027 {
3028         int ret;
3029
3030         if (!ctlr->queued)
3031                 return 0;
3032
3033         ret = spi_start_queue(ctlr);
3034         if (ret)
3035                 dev_err(&ctlr->dev, "queue restart failed\n");
3036
3037         return ret;
3038 }
3039 EXPORT_SYMBOL_GPL(spi_controller_resume);
3040
3041 static int __spi_controller_match(struct device *dev, const void *data)
3042 {
3043         struct spi_controller *ctlr;
3044         const u16 *bus_num = data;
3045
3046         ctlr = container_of(dev, struct spi_controller, dev);
3047         return ctlr->bus_num == *bus_num;
3048 }
3049
3050 /**
3051  * spi_busnum_to_master - look up master associated with bus_num
3052  * @bus_num: the master's bus number
3053  * Context: can sleep
3054  *
3055  * This call may be used with devices that are registered after
3056  * arch init time.  It returns a refcounted pointer to the relevant
3057  * spi_controller (which the caller must release), or NULL if there is
3058  * no such master registered.
3059  *
3060  * Return: the SPI master structure on success, else NULL.
3061  */
3062 struct spi_controller *spi_busnum_to_master(u16 bus_num)
3063 {
3064         struct device           *dev;
3065         struct spi_controller   *ctlr = NULL;
3066
3067         dev = class_find_device(&spi_master_class, NULL, &bus_num,
3068                                 __spi_controller_match);
3069         if (dev)
3070                 ctlr = container_of(dev, struct spi_controller, dev);
3071         /* reference got in class_find_device */
3072         return ctlr;
3073 }
3074 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3075
3076 /*-------------------------------------------------------------------------*/
3077
3078 /* Core methods for SPI resource management */
3079
3080 /**
3081  * spi_res_alloc - allocate a spi resource that is life-cycle managed
3082  *                 during the processing of a spi_message while using
3083  *                 spi_transfer_one
3084  * @spi:     the spi device for which we allocate memory
3085  * @release: the release code to execute for this resource
3086  * @size:    size to alloc and return
3087  * @gfp:     GFP allocation flags
3088  *
3089  * Return: the pointer to the allocated data
3090  *
3091  * This may get enhanced in the future to allocate from a memory pool
3092  * of the @spi_device or @spi_controller to avoid repeated allocations.
3093  */
3094 void *spi_res_alloc(struct spi_device *spi,
3095                     spi_res_release_t release,
3096                     size_t size, gfp_t gfp)
3097 {
3098         struct spi_res *sres;
3099
3100         sres = kzalloc(sizeof(*sres) + size, gfp);
3101         if (!sres)
3102                 return NULL;
3103
3104         INIT_LIST_HEAD(&sres->entry);
3105         sres->release = release;
3106
3107         return sres->data;
3108 }
3109 EXPORT_SYMBOL_GPL(spi_res_alloc);
3110
3111 /**
3112  * spi_res_free - free an spi resource
3113  * @res: pointer to the custom data of a resource
3114  *
3115  */
3116 void spi_res_free(void *res)
3117 {
3118         struct spi_res *sres = container_of(res, struct spi_res, data);
3119
3120         if (!res)
3121                 return;
3122
3123         WARN_ON(!list_empty(&sres->entry));
3124         kfree(sres);
3125 }
3126 EXPORT_SYMBOL_GPL(spi_res_free);
3127
3128 /**
3129  * spi_res_add - add a spi_res to the spi_message
3130  * @message: the spi message
3131  * @res:     the spi_resource
3132  */
3133 void spi_res_add(struct spi_message *message, void *res)
3134 {
3135         struct spi_res *sres = container_of(res, struct spi_res, data);
3136
3137         WARN_ON(!list_empty(&sres->entry));
3138         list_add_tail(&sres->entry, &message->resources);
3139 }
3140 EXPORT_SYMBOL_GPL(spi_res_add);
3141
3142 /**
3143  * spi_res_release - release all spi resources for this message
3144  * @ctlr:  the @spi_controller
3145  * @message: the @spi_message
3146  */
3147 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3148 {
3149         struct spi_res *res, *tmp;
3150
3151         list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3152                 if (res->release)
3153                         res->release(ctlr, message, res->data);
3154
3155                 list_del(&res->entry);
3156
3157                 kfree(res);
3158         }
3159 }
3160 EXPORT_SYMBOL_GPL(spi_res_release);
3161
3162 /*-------------------------------------------------------------------------*/
3163
3164 /* Core methods for spi_message alterations */
3165
3166 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3167                                             struct spi_message *msg,
3168                                             void *res)
3169 {
3170         struct spi_replaced_transfers *rxfer = res;
3171         size_t i;
3172
3173         /* call extra callback if requested */
3174         if (rxfer->release)
3175                 rxfer->release(ctlr, msg, res);
3176
3177         /* insert replaced transfers back into the message */
3178         list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3179
3180         /* remove the formerly inserted entries */
3181         for (i = 0; i < rxfer->inserted; i++)
3182                 list_del(&rxfer->inserted_transfers[i].transfer_list);
3183 }
3184
3185 /**
3186  * spi_replace_transfers - replace transfers with several transfers
3187  *                         and register change with spi_message.resources
3188  * @msg:           the spi_message we work upon
3189  * @xfer_first:    the first spi_transfer we want to replace
3190  * @remove:        number of transfers to remove
3191  * @insert:        the number of transfers we want to insert instead
3192  * @release:       extra release code necessary in some circumstances
3193  * @extradatasize: extra data to allocate (with alignment guarantees
3194  *                 of struct @spi_transfer)
3195  * @gfp:           gfp flags
3196  *
3197  * Returns: pointer to @spi_replaced_transfers,
3198  *          PTR_ERR(...) in case of errors.
3199  */
3200 struct spi_replaced_transfers *spi_replace_transfers(
3201         struct spi_message *msg,
3202         struct spi_transfer *xfer_first,
3203         size_t remove,
3204         size_t insert,
3205         spi_replaced_release_t release,
3206         size_t extradatasize,
3207         gfp_t gfp)
3208 {
3209         struct spi_replaced_transfers *rxfer;
3210         struct spi_transfer *xfer;
3211         size_t i;
3212
3213         /* allocate the structure using spi_res */
3214         rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3215                               struct_size(rxfer, inserted_transfers, insert)
3216                               + extradatasize,
3217                               gfp);
3218         if (!rxfer)
3219                 return ERR_PTR(-ENOMEM);
3220
3221         /* the release code to invoke before running the generic release */
3222         rxfer->release = release;
3223
3224         /* assign extradata */
3225         if (extradatasize)
3226                 rxfer->extradata =
3227                         &rxfer->inserted_transfers[insert];
3228
3229         /* init the replaced_transfers list */
3230         INIT_LIST_HEAD(&rxfer->replaced_transfers);
3231
3232         /* assign the list_entry after which we should reinsert
3233          * the @replaced_transfers - it may be spi_message.messages!
3234          */
3235         rxfer->replaced_after = xfer_first->transfer_list.prev;
3236
3237         /* remove the requested number of transfers */
3238         for (i = 0; i < remove; i++) {
3239                 /* if the entry after replaced_after it is msg->transfers
3240                  * then we have been requested to remove more transfers
3241                  * than are in the list
3242                  */
3243                 if (rxfer->replaced_after->next == &msg->transfers) {
3244                         dev_err(&msg->spi->dev,
3245                                 "requested to remove more spi_transfers than are available\n");
3246                         /* insert replaced transfers back into the message */
3247                         list_splice(&rxfer->replaced_transfers,
3248                                     rxfer->replaced_after);
3249
3250                         /* free the spi_replace_transfer structure */
3251                         spi_res_free(rxfer);
3252
3253                         /* and return with an error */
3254                         return ERR_PTR(-EINVAL);
3255                 }
3256
3257                 /* remove the entry after replaced_after from list of
3258                  * transfers and add it to list of replaced_transfers
3259                  */
3260                 list_move_tail(rxfer->replaced_after->next,
3261                                &rxfer->replaced_transfers);
3262         }
3263
3264         /* create copy of the given xfer with identical settings
3265          * based on the first transfer to get removed
3266          */
3267         for (i = 0; i < insert; i++) {
3268                 /* we need to run in reverse order */
3269                 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3270
3271                 /* copy all spi_transfer data */
3272                 memcpy(xfer, xfer_first, sizeof(*xfer));
3273
3274                 /* add to list */
3275                 list_add(&xfer->transfer_list, rxfer->replaced_after);
3276
3277                 /* clear cs_change and delay for all but the last */
3278                 if (i) {
3279                         xfer->cs_change = false;
3280                         xfer->delay.value = 0;
3281                 }
3282         }
3283
3284         /* set up inserted */
3285         rxfer->inserted = insert;
3286
3287         /* and register it with spi_res/spi_message */
3288         spi_res_add(msg, rxfer);
3289
3290         return rxfer;
3291 }
3292 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3293
3294 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3295                                         struct spi_message *msg,
3296                                         struct spi_transfer **xferp,
3297                                         size_t maxsize,
3298                                         gfp_t gfp)
3299 {
3300         struct spi_transfer *xfer = *xferp, *xfers;
3301         struct spi_replaced_transfers *srt;
3302         size_t offset;
3303         size_t count, i;
3304
3305         /* calculate how many we have to replace */
3306         count = DIV_ROUND_UP(xfer->len, maxsize);
3307
3308         /* create replacement */
3309         srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3310         if (IS_ERR(srt))
3311                 return PTR_ERR(srt);
3312         xfers = srt->inserted_transfers;
3313
3314         /* now handle each of those newly inserted spi_transfers
3315          * note that the replacements spi_transfers all are preset
3316          * to the same values as *xferp, so tx_buf, rx_buf and len
3317          * are all identical (as well as most others)
3318          * so we just have to fix up len and the pointers.
3319          *
3320          * this also includes support for the depreciated
3321          * spi_message.is_dma_mapped interface
3322          */
3323
3324         /* the first transfer just needs the length modified, so we
3325          * run it outside the loop
3326          */
3327         xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3328
3329         /* all the others need rx_buf/tx_buf also set */
3330         for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3331                 /* update rx_buf, tx_buf and dma */
3332                 if (xfers[i].rx_buf)
3333                         xfers[i].rx_buf += offset;
3334                 if (xfers[i].rx_dma)
3335                         xfers[i].rx_dma += offset;
3336                 if (xfers[i].tx_buf)
3337                         xfers[i].tx_buf += offset;
3338                 if (xfers[i].tx_dma)
3339                         xfers[i].tx_dma += offset;
3340
3341                 /* update length */
3342                 xfers[i].len = min(maxsize, xfers[i].len - offset);
3343         }
3344
3345         /* we set up xferp to the last entry we have inserted,
3346          * so that we skip those already split transfers
3347          */
3348         *xferp = &xfers[count - 1];
3349
3350         /* increment statistics counters */
3351         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3352                                        transfers_split_maxsize);
3353         SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3354                                        transfers_split_maxsize);
3355
3356         return 0;
3357 }
3358
3359 /**
3360  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3361  *                               when an individual transfer exceeds a
3362  *                               certain size
3363  * @ctlr:    the @spi_controller for this transfer
3364  * @msg:   the @spi_message to transform
3365  * @maxsize:  the maximum when to apply this
3366  * @gfp: GFP allocation flags
3367  *
3368  * Return: status of transformation
3369  */
3370 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3371                                 struct spi_message *msg,
3372                                 size_t maxsize,
3373                                 gfp_t gfp)
3374 {
3375         struct spi_transfer *xfer;
3376         int ret;
3377
3378         /* iterate over the transfer_list,
3379          * but note that xfer is advanced to the last transfer inserted
3380          * to avoid checking sizes again unnecessarily (also xfer does
3381          * potentiall belong to a different list by the time the
3382          * replacement has happened
3383          */
3384         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3385                 if (xfer->len > maxsize) {
3386                         ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3387                                                            maxsize, gfp);
3388                         if (ret)
3389                                 return ret;
3390                 }
3391         }
3392
3393         return 0;
3394 }
3395 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3396
3397 /*-------------------------------------------------------------------------*/
3398
3399 /* Core methods for SPI controller protocol drivers.  Some of the
3400  * other core methods are currently defined as inline functions.
3401  */
3402
3403 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3404                                         u8 bits_per_word)
3405 {
3406         if (ctlr->bits_per_word_mask) {
3407                 /* Only 32 bits fit in the mask */
3408                 if (bits_per_word > 32)
3409                         return -EINVAL;
3410                 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3411                         return -EINVAL;
3412         }
3413
3414         return 0;
3415 }
3416
3417 /**
3418  * spi_setup - setup SPI mode and clock rate
3419  * @spi: the device whose settings are being modified
3420  * Context: can sleep, and no requests are queued to the device
3421  *
3422  * SPI protocol drivers may need to update the transfer mode if the
3423  * device doesn't work with its default.  They may likewise need
3424  * to update clock rates or word sizes from initial values.  This function
3425  * changes those settings, and must be called from a context that can sleep.
3426  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3427  * effect the next time the device is selected and data is transferred to
3428  * or from it.  When this function returns, the spi device is deselected.
3429  *
3430  * Note that this call will fail if the protocol driver specifies an option
3431  * that the underlying controller or its driver does not support.  For
3432  * example, not all hardware supports wire transfers using nine bit words,
3433  * LSB-first wire encoding, or active-high chipselects.
3434  *
3435  * Return: zero on success, else a negative error code.
3436  */
3437 int spi_setup(struct spi_device *spi)
3438 {
3439         unsigned        bad_bits, ugly_bits;
3440         int             status;
3441
3442         /*
3443          * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3444          * are set at the same time
3445          */
3446         if ((hweight_long(spi->mode &
3447                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3448             (hweight_long(spi->mode &
3449                 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3450                 dev_err(&spi->dev,
3451                 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3452                 return -EINVAL;
3453         }
3454         /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3455          */
3456         if ((spi->mode & SPI_3WIRE) && (spi->mode &
3457                 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3458                  SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3459                 return -EINVAL;
3460         /* help drivers fail *cleanly* when they need options
3461          * that aren't supported with their current controller
3462          * SPI_CS_WORD has a fallback software implementation,
3463          * so it is ignored here.
3464          */
3465         bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3466                                  SPI_NO_TX | SPI_NO_RX);
3467         /* nothing prevents from working with active-high CS in case if it
3468          * is driven by GPIO.
3469          */
3470         if (gpio_is_valid(spi->cs_gpio))
3471                 bad_bits &= ~SPI_CS_HIGH;
3472         ugly_bits = bad_bits &
3473                     (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3474                      SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3475         if (ugly_bits) {
3476                 dev_warn(&spi->dev,
3477                          "setup: ignoring unsupported mode bits %x\n",
3478                          ugly_bits);
3479                 spi->mode &= ~ugly_bits;
3480                 bad_bits &= ~ugly_bits;
3481         }
3482         if (bad_bits) {
3483                 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3484                         bad_bits);
3485                 return -EINVAL;
3486         }
3487
3488         if (!spi->bits_per_word)
3489                 spi->bits_per_word = 8;
3490
3491         status = __spi_validate_bits_per_word(spi->controller,
3492                                               spi->bits_per_word);
3493         if (status)
3494                 return status;
3495
3496         if (spi->controller->max_speed_hz &&
3497             (!spi->max_speed_hz ||
3498              spi->max_speed_hz > spi->controller->max_speed_hz))
3499                 spi->max_speed_hz = spi->controller->max_speed_hz;
3500
3501         mutex_lock(&spi->controller->io_mutex);
3502
3503         if (spi->controller->setup) {
3504                 status = spi->controller->setup(spi);
3505                 if (status) {
3506                         mutex_unlock(&spi->controller->io_mutex);
3507                         dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3508                                 status);
3509                         return status;
3510                 }
3511         }
3512
3513         if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3514                 status = pm_runtime_get_sync(spi->controller->dev.parent);
3515                 if (status < 0) {
3516                         mutex_unlock(&spi->controller->io_mutex);
3517                         pm_runtime_put_noidle(spi->controller->dev.parent);
3518                         dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3519                                 status);
3520                         return status;
3521                 }
3522
3523                 /*
3524                  * We do not want to return positive value from pm_runtime_get,
3525                  * there are many instances of devices calling spi_setup() and
3526                  * checking for a non-zero return value instead of a negative
3527                  * return value.
3528                  */
3529                 status = 0;
3530
3531                 spi_set_cs(spi, false, true);
3532                 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3533                 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3534         } else {
3535                 spi_set_cs(spi, false, true);
3536         }
3537
3538         mutex_unlock(&spi->controller->io_mutex);
3539
3540         if (spi->rt && !spi->controller->rt) {
3541                 spi->controller->rt = true;
3542                 spi_set_thread_rt(spi->controller);
3543         }
3544
3545         trace_spi_setup(spi, status);
3546
3547         dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3548                         spi->mode & SPI_MODE_X_MASK,
3549                         (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3550                         (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3551                         (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3552                         (spi->mode & SPI_LOOP) ? "loopback, " : "",
3553                         spi->bits_per_word, spi->max_speed_hz,
3554                         status);
3555
3556         return status;
3557 }
3558 EXPORT_SYMBOL_GPL(spi_setup);
3559
3560 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3561                                        struct spi_device *spi)
3562 {
3563         int delay1, delay2;
3564
3565         delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3566         if (delay1 < 0)
3567                 return delay1;
3568
3569         delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3570         if (delay2 < 0)
3571                 return delay2;
3572
3573         if (delay1 < delay2)
3574                 memcpy(&xfer->word_delay, &spi->word_delay,
3575                        sizeof(xfer->word_delay));
3576
3577         return 0;
3578 }
3579
3580 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3581 {
3582         struct spi_controller *ctlr = spi->controller;
3583         struct spi_transfer *xfer;
3584         int w_size;
3585
3586         if (list_empty(&message->transfers))
3587                 return -EINVAL;
3588
3589         /* If an SPI controller does not support toggling the CS line on each
3590          * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3591          * for the CS line, we can emulate the CS-per-word hardware function by
3592          * splitting transfers into one-word transfers and ensuring that
3593          * cs_change is set for each transfer.
3594          */
3595         if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3596                                           spi->cs_gpiod ||
3597                                           gpio_is_valid(spi->cs_gpio))) {
3598                 size_t maxsize;
3599                 int ret;
3600
3601                 maxsize = (spi->bits_per_word + 7) / 8;
3602
3603                 /* spi_split_transfers_maxsize() requires message->spi */
3604                 message->spi = spi;
3605
3606                 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3607                                                   GFP_KERNEL);
3608                 if (ret)
3609                         return ret;
3610
3611                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3612                         /* don't change cs_change on the last entry in the list */
3613                         if (list_is_last(&xfer->transfer_list, &message->transfers))
3614                                 break;
3615                         xfer->cs_change = 1;
3616                 }
3617         }
3618
3619         /* Half-duplex links include original MicroWire, and ones with
3620          * only one data pin like SPI_3WIRE (switches direction) or where
3621          * either MOSI or MISO is missing.  They can also be caused by
3622          * software limitations.
3623          */
3624         if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3625             (spi->mode & SPI_3WIRE)) {
3626                 unsigned flags = ctlr->flags;
3627
3628                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3629                         if (xfer->rx_buf && xfer->tx_buf)
3630                                 return -EINVAL;
3631                         if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3632                                 return -EINVAL;
3633                         if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3634                                 return -EINVAL;
3635                 }
3636         }
3637
3638         /**
3639          * Set transfer bits_per_word and max speed as spi device default if
3640          * it is not set for this transfer.
3641          * Set transfer tx_nbits and rx_nbits as single transfer default
3642          * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3643          * Ensure transfer word_delay is at least as long as that required by
3644          * device itself.
3645          */
3646         message->frame_length = 0;
3647         list_for_each_entry(xfer, &message->transfers, transfer_list) {
3648                 xfer->effective_speed_hz = 0;
3649                 message->frame_length += xfer->len;
3650                 if (!xfer->bits_per_word)
3651                         xfer->bits_per_word = spi->bits_per_word;
3652
3653                 if (!xfer->speed_hz)
3654                         xfer->speed_hz = spi->max_speed_hz;
3655
3656                 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3657                         xfer->speed_hz = ctlr->max_speed_hz;
3658
3659                 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3660                         return -EINVAL;
3661
3662                 /*
3663                  * SPI transfer length should be multiple of SPI word size
3664                  * where SPI word size should be power-of-two multiple
3665                  */
3666                 if (xfer->bits_per_word <= 8)
3667                         w_size = 1;
3668                 else if (xfer->bits_per_word <= 16)
3669                         w_size = 2;
3670                 else
3671                         w_size = 4;
3672
3673                 /* No partial transfers accepted */
3674                 if (xfer->len % w_size)
3675                         return -EINVAL;
3676
3677                 if (xfer->speed_hz && ctlr->min_speed_hz &&
3678                     xfer->speed_hz < ctlr->min_speed_hz)
3679                         return -EINVAL;
3680
3681                 if (xfer->tx_buf && !xfer->tx_nbits)
3682                         xfer->tx_nbits = SPI_NBITS_SINGLE;
3683                 if (xfer->rx_buf && !xfer->rx_nbits)
3684                         xfer->rx_nbits = SPI_NBITS_SINGLE;
3685                 /* check transfer tx/rx_nbits:
3686                  * 1. check the value matches one of single, dual and quad
3687                  * 2. check tx/rx_nbits match the mode in spi_device
3688                  */
3689                 if (xfer->tx_buf) {
3690                         if (spi->mode & SPI_NO_TX)
3691                                 return -EINVAL;
3692                         if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3693                                 xfer->tx_nbits != SPI_NBITS_DUAL &&
3694                                 xfer->tx_nbits != SPI_NBITS_QUAD)
3695                                 return -EINVAL;
3696                         if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3697                                 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3698                                 return -EINVAL;
3699                         if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3700                                 !(spi->mode & SPI_TX_QUAD))
3701                                 return -EINVAL;
3702                 }
3703                 /* check transfer rx_nbits */
3704                 if (xfer->rx_buf) {
3705                         if (spi->mode & SPI_NO_RX)
3706                                 return -EINVAL;
3707                         if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3708                                 xfer->rx_nbits != SPI_NBITS_DUAL &&
3709                                 xfer->rx_nbits != SPI_NBITS_QUAD)
3710                                 return -EINVAL;
3711                         if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3712                                 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3713                                 return -EINVAL;
3714                         if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3715                                 !(spi->mode & SPI_RX_QUAD))
3716                                 return -EINVAL;
3717                 }
3718
3719                 if (_spi_xfer_word_delay_update(xfer, spi))
3720                         return -EINVAL;
3721         }
3722
3723         message->status = -EINPROGRESS;
3724
3725         return 0;
3726 }
3727
3728 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3729 {
3730         struct spi_controller *ctlr = spi->controller;
3731         struct spi_transfer *xfer;
3732
3733         /*
3734          * Some controllers do not support doing regular SPI transfers. Return
3735          * ENOTSUPP when this is the case.
3736          */
3737         if (!ctlr->transfer)
3738                 return -ENOTSUPP;
3739
3740         message->spi = spi;
3741
3742         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3743         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3744
3745         trace_spi_message_submit(message);
3746
3747         if (!ctlr->ptp_sts_supported) {
3748                 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3749                         xfer->ptp_sts_word_pre = 0;
3750                         ptp_read_system_prets(xfer->ptp_sts);
3751                 }
3752         }
3753
3754         return ctlr->transfer(spi, message);
3755 }
3756
3757 /**
3758  * spi_async - asynchronous SPI transfer
3759  * @spi: device with which data will be exchanged
3760  * @message: describes the data transfers, including completion callback
3761  * Context: any (irqs may be blocked, etc)
3762  *
3763  * This call may be used in_irq and other contexts which can't sleep,
3764  * as well as from task contexts which can sleep.
3765  *
3766  * The completion callback is invoked in a context which can't sleep.
3767  * Before that invocation, the value of message->status is undefined.
3768  * When the callback is issued, message->status holds either zero (to
3769  * indicate complete success) or a negative error code.  After that
3770  * callback returns, the driver which issued the transfer request may
3771  * deallocate the associated memory; it's no longer in use by any SPI
3772  * core or controller driver code.
3773  *
3774  * Note that although all messages to a spi_device are handled in
3775  * FIFO order, messages may go to different devices in other orders.
3776  * Some device might be higher priority, or have various "hard" access
3777  * time requirements, for example.
3778  *
3779  * On detection of any fault during the transfer, processing of
3780  * the entire message is aborted, and the device is deselected.
3781  * Until returning from the associated message completion callback,
3782  * no other spi_message queued to that device will be processed.
3783  * (This rule applies equally to all the synchronous transfer calls,
3784  * which are wrappers around this core asynchronous primitive.)
3785  *
3786  * Return: zero on success, else a negative error code.
3787  */
3788 int spi_async(struct spi_device *spi, struct spi_message *message)
3789 {
3790         struct spi_controller *ctlr = spi->controller;
3791         int ret;
3792         unsigned long flags;
3793
3794         ret = __spi_validate(spi, message);
3795         if (ret != 0)
3796                 return ret;
3797
3798         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3799
3800         if (ctlr->bus_lock_flag)
3801                 ret = -EBUSY;
3802         else
3803                 ret = __spi_async(spi, message);
3804
3805         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3806
3807         return ret;
3808 }
3809 EXPORT_SYMBOL_GPL(spi_async);
3810
3811 /**
3812  * spi_async_locked - version of spi_async with exclusive bus usage
3813  * @spi: device with which data will be exchanged
3814  * @message: describes the data transfers, including completion callback
3815  * Context: any (irqs may be blocked, etc)
3816  *
3817  * This call may be used in_irq and other contexts which can't sleep,
3818  * as well as from task contexts which can sleep.
3819  *
3820  * The completion callback is invoked in a context which can't sleep.
3821  * Before that invocation, the value of message->status is undefined.
3822  * When the callback is issued, message->status holds either zero (to
3823  * indicate complete success) or a negative error code.  After that
3824  * callback returns, the driver which issued the transfer request may
3825  * deallocate the associated memory; it's no longer in use by any SPI
3826  * core or controller driver code.
3827  *
3828  * Note that although all messages to a spi_device are handled in
3829  * FIFO order, messages may go to different devices in other orders.
3830  * Some device might be higher priority, or have various "hard" access
3831  * time requirements, for example.
3832  *
3833  * On detection of any fault during the transfer, processing of
3834  * the entire message is aborted, and the device is deselected.
3835  * Until returning from the associated message completion callback,
3836  * no other spi_message queued to that device will be processed.
3837  * (This rule applies equally to all the synchronous transfer calls,
3838  * which are wrappers around this core asynchronous primitive.)
3839  *
3840  * Return: zero on success, else a negative error code.
3841  */
3842 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3843 {
3844         struct spi_controller *ctlr = spi->controller;
3845         int ret;
3846         unsigned long flags;
3847
3848         ret = __spi_validate(spi, message);
3849         if (ret != 0)
3850                 return ret;
3851
3852         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3853
3854         ret = __spi_async(spi, message);
3855
3856         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3857
3858         return ret;
3859
3860 }
3861 EXPORT_SYMBOL_GPL(spi_async_locked);
3862
3863 /*-------------------------------------------------------------------------*/
3864
3865 /* Utility methods for SPI protocol drivers, layered on
3866  * top of the core.  Some other utility methods are defined as
3867  * inline functions.
3868  */
3869
3870 static void spi_complete(void *arg)
3871 {
3872         complete(arg);
3873 }
3874
3875 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3876 {
3877         DECLARE_COMPLETION_ONSTACK(done);
3878         int status;
3879         struct spi_controller *ctlr = spi->controller;
3880         unsigned long flags;
3881
3882         status = __spi_validate(spi, message);
3883         if (status != 0)
3884                 return status;
3885
3886         message->complete = spi_complete;
3887         message->context = &done;
3888         message->spi = spi;
3889
3890         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3891         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3892
3893         /* If we're not using the legacy transfer method then we will
3894          * try to transfer in the calling context so special case.
3895          * This code would be less tricky if we could remove the
3896          * support for driver implemented message queues.
3897          */
3898         if (ctlr->transfer == spi_queued_transfer) {
3899                 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3900
3901                 trace_spi_message_submit(message);
3902
3903                 status = __spi_queued_transfer(spi, message, false);
3904
3905                 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3906         } else {
3907                 status = spi_async_locked(spi, message);
3908         }
3909
3910         if (status == 0) {
3911                 /* Push out the messages in the calling context if we
3912                  * can.
3913                  */
3914                 if (ctlr->transfer == spi_queued_transfer) {
3915                         SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3916                                                        spi_sync_immediate);
3917                         SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3918                                                        spi_sync_immediate);
3919                         __spi_pump_messages(ctlr, false);
3920                 }
3921
3922                 wait_for_completion(&done);
3923                 status = message->status;
3924         }
3925         message->context = NULL;
3926         return status;
3927 }
3928
3929 /**
3930  * spi_sync - blocking/synchronous SPI data transfers
3931  * @spi: device with which data will be exchanged
3932  * @message: describes the data transfers
3933  * Context: can sleep
3934  *
3935  * This call may only be used from a context that may sleep.  The sleep
3936  * is non-interruptible, and has no timeout.  Low-overhead controller
3937  * drivers may DMA directly into and out of the message buffers.
3938  *
3939  * Note that the SPI device's chip select is active during the message,
3940  * and then is normally disabled between messages.  Drivers for some
3941  * frequently-used devices may want to minimize costs of selecting a chip,
3942  * by leaving it selected in anticipation that the next message will go
3943  * to the same chip.  (That may increase power usage.)
3944  *
3945  * Also, the caller is guaranteeing that the memory associated with the
3946  * message will not be freed before this call returns.
3947  *
3948  * Return: zero on success, else a negative error code.
3949  */
3950 int spi_sync(struct spi_device *spi, struct spi_message *message)
3951 {
3952         int ret;
3953
3954         mutex_lock(&spi->controller->bus_lock_mutex);
3955         ret = __spi_sync(spi, message);
3956         mutex_unlock(&spi->controller->bus_lock_mutex);
3957
3958         return ret;
3959 }
3960 EXPORT_SYMBOL_GPL(spi_sync);
3961
3962 /**
3963  * spi_sync_locked - version of spi_sync with exclusive bus usage
3964  * @spi: device with which data will be exchanged
3965  * @message: describes the data transfers
3966  * Context: can sleep
3967  *
3968  * This call may only be used from a context that may sleep.  The sleep
3969  * is non-interruptible, and has no timeout.  Low-overhead controller
3970  * drivers may DMA directly into and out of the message buffers.
3971  *
3972  * This call should be used by drivers that require exclusive access to the
3973  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3974  * be released by a spi_bus_unlock call when the exclusive access is over.
3975  *
3976  * Return: zero on success, else a negative error code.
3977  */
3978 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3979 {
3980         return __spi_sync(spi, message);
3981 }
3982 EXPORT_SYMBOL_GPL(spi_sync_locked);
3983
3984 /**
3985  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3986  * @ctlr: SPI bus master that should be locked for exclusive bus access
3987  * Context: can sleep
3988  *
3989  * This call may only be used from a context that may sleep.  The sleep
3990  * is non-interruptible, and has no timeout.
3991  *
3992  * This call should be used by drivers that require exclusive access to the
3993  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3994  * exclusive access is over. Data transfer must be done by spi_sync_locked
3995  * and spi_async_locked calls when the SPI bus lock is held.
3996  *
3997  * Return: always zero.
3998  */
3999 int spi_bus_lock(struct spi_controller *ctlr)
4000 {
4001         unsigned long flags;
4002
4003         mutex_lock(&ctlr->bus_lock_mutex);
4004
4005         spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4006         ctlr->bus_lock_flag = 1;
4007         spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4008
4009         /* mutex remains locked until spi_bus_unlock is called */
4010
4011         return 0;
4012 }
4013 EXPORT_SYMBOL_GPL(spi_bus_lock);
4014
4015 /**
4016  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4017  * @ctlr: SPI bus master that was locked for exclusive bus access
4018  * Context: can sleep
4019  *
4020  * This call may only be used from a context that may sleep.  The sleep
4021  * is non-interruptible, and has no timeout.
4022  *
4023  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4024  * call.
4025  *
4026  * Return: always zero.
4027  */
4028 int spi_bus_unlock(struct spi_controller *ctlr)
4029 {
4030         ctlr->bus_lock_flag = 0;
4031
4032         mutex_unlock(&ctlr->bus_lock_mutex);
4033
4034         return 0;
4035 }
4036 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4037
4038 /* portable code must never pass more than 32 bytes */
4039 #define SPI_BUFSIZ      max(32, SMP_CACHE_BYTES)
4040
4041 static u8       *buf;
4042
4043 /**
4044  * spi_write_then_read - SPI synchronous write followed by read
4045  * @spi: device with which data will be exchanged
4046  * @txbuf: data to be written (need not be dma-safe)
4047  * @n_tx: size of txbuf, in bytes
4048  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4049  * @n_rx: size of rxbuf, in bytes
4050  * Context: can sleep
4051  *
4052  * This performs a half duplex MicroWire style transaction with the
4053  * device, sending txbuf and then reading rxbuf.  The return value
4054  * is zero for success, else a negative errno status code.
4055  * This call may only be used from a context that may sleep.
4056  *
4057  * Parameters to this routine are always copied using a small buffer.
4058  * Performance-sensitive or bulk transfer code should instead use
4059  * spi_{async,sync}() calls with dma-safe buffers.
4060  *
4061  * Return: zero on success, else a negative error code.
4062  */
4063 int spi_write_then_read(struct spi_device *spi,
4064                 const void *txbuf, unsigned n_tx,
4065                 void *rxbuf, unsigned n_rx)
4066 {
4067         static DEFINE_MUTEX(lock);
4068
4069         int                     status;
4070         struct spi_message      message;
4071         struct spi_transfer     x[2];
4072         u8                      *local_buf;
4073
4074         /* Use preallocated DMA-safe buffer if we can.  We can't avoid
4075          * copying here, (as a pure convenience thing), but we can
4076          * keep heap costs out of the hot path unless someone else is
4077          * using the pre-allocated buffer or the transfer is too large.
4078          */
4079         if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4080                 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4081                                     GFP_KERNEL | GFP_DMA);
4082                 if (!local_buf)
4083                         return -ENOMEM;
4084         } else {
4085                 local_buf = buf;
4086         }
4087
4088         spi_message_init(&message);
4089         memset(x, 0, sizeof(x));
4090         if (n_tx) {
4091                 x[0].len = n_tx;
4092                 spi_message_add_tail(&x[0], &message);
4093         }
4094         if (n_rx) {
4095                 x[1].len = n_rx;
4096                 spi_message_add_tail(&x[1], &message);
4097         }
4098
4099         memcpy(local_buf, txbuf, n_tx);
4100         x[0].tx_buf = local_buf;
4101         x[1].rx_buf = local_buf + n_tx;
4102
4103         /* do the i/o */
4104         status = spi_sync(spi, &message);
4105         if (status == 0)
4106                 memcpy(rxbuf, x[1].rx_buf, n_rx);
4107
4108         if (x[0].tx_buf == buf)
4109                 mutex_unlock(&lock);
4110         else
4111                 kfree(local_buf);
4112
4113         return status;
4114 }
4115 EXPORT_SYMBOL_GPL(spi_write_then_read);
4116
4117 /*-------------------------------------------------------------------------*/
4118
4119 #if IS_ENABLED(CONFIG_OF)
4120 /* must call put_device() when done with returned spi_device device */
4121 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4122 {
4123         struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4124
4125         return dev ? to_spi_device(dev) : NULL;
4126 }
4127 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4128 #endif /* IS_ENABLED(CONFIG_OF) */
4129
4130 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4131 /* the spi controllers are not using spi_bus, so we find it with another way */
4132 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4133 {
4134         struct device *dev;
4135
4136         dev = class_find_device_by_of_node(&spi_master_class, node);
4137         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4138                 dev = class_find_device_by_of_node(&spi_slave_class, node);
4139         if (!dev)
4140                 return NULL;
4141
4142         /* reference got in class_find_device */
4143         return container_of(dev, struct spi_controller, dev);
4144 }
4145
4146 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4147                          void *arg)
4148 {
4149         struct of_reconfig_data *rd = arg;
4150         struct spi_controller *ctlr;
4151         struct spi_device *spi;
4152
4153         switch (of_reconfig_get_state_change(action, arg)) {
4154         case OF_RECONFIG_CHANGE_ADD:
4155                 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4156                 if (ctlr == NULL)
4157                         return NOTIFY_OK;       /* not for us */
4158
4159                 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4160                         put_device(&ctlr->dev);
4161                         return NOTIFY_OK;
4162                 }
4163
4164                 spi = of_register_spi_device(ctlr, rd->dn);
4165                 put_device(&ctlr->dev);
4166
4167                 if (IS_ERR(spi)) {
4168                         pr_err("%s: failed to create for '%pOF'\n",
4169                                         __func__, rd->dn);
4170                         of_node_clear_flag(rd->dn, OF_POPULATED);
4171                         return notifier_from_errno(PTR_ERR(spi));
4172                 }
4173                 break;
4174
4175         case OF_RECONFIG_CHANGE_REMOVE:
4176                 /* already depopulated? */
4177                 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4178                         return NOTIFY_OK;
4179
4180                 /* find our device by node */
4181                 spi = of_find_spi_device_by_node(rd->dn);
4182                 if (spi == NULL)
4183                         return NOTIFY_OK;       /* no? not meant for us */
4184
4185                 /* unregister takes one ref away */
4186                 spi_unregister_device(spi);
4187
4188                 /* and put the reference of the find */
4189                 put_device(&spi->dev);
4190                 break;
4191         }
4192
4193         return NOTIFY_OK;
4194 }
4195
4196 static struct notifier_block spi_of_notifier = {
4197         .notifier_call = of_spi_notify,
4198 };
4199 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4200 extern struct notifier_block spi_of_notifier;
4201 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4202
4203 #if IS_ENABLED(CONFIG_ACPI)
4204 static int spi_acpi_controller_match(struct device *dev, const void *data)
4205 {
4206         return ACPI_COMPANION(dev->parent) == data;
4207 }
4208
4209 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4210 {
4211         struct device *dev;
4212
4213         dev = class_find_device(&spi_master_class, NULL, adev,
4214                                 spi_acpi_controller_match);
4215         if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4216                 dev = class_find_device(&spi_slave_class, NULL, adev,
4217                                         spi_acpi_controller_match);
4218         if (!dev)
4219                 return NULL;
4220
4221         return container_of(dev, struct spi_controller, dev);
4222 }
4223
4224 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4225 {
4226         struct device *dev;
4227
4228         dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4229         return to_spi_device(dev);
4230 }
4231
4232 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4233                            void *arg)
4234 {
4235         struct acpi_device *adev = arg;
4236         struct spi_controller *ctlr;
4237         struct spi_device *spi;
4238
4239         switch (value) {
4240         case ACPI_RECONFIG_DEVICE_ADD:
4241                 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4242                 if (!ctlr)
4243                         break;
4244
4245                 acpi_register_spi_device(ctlr, adev);
4246                 put_device(&ctlr->dev);
4247                 break;
4248         case ACPI_RECONFIG_DEVICE_REMOVE:
4249                 if (!acpi_device_enumerated(adev))
4250                         break;
4251
4252                 spi = acpi_spi_find_device_by_adev(adev);
4253                 if (!spi)
4254                         break;
4255
4256                 spi_unregister_device(spi);
4257                 put_device(&spi->dev);
4258                 break;
4259         }
4260
4261         return NOTIFY_OK;
4262 }
4263
4264 static struct notifier_block spi_acpi_notifier = {
4265         .notifier_call = acpi_spi_notify,
4266 };
4267 #else
4268 extern struct notifier_block spi_acpi_notifier;
4269 #endif
4270
4271 static int __init spi_init(void)
4272 {
4273         int     status;
4274
4275         buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4276         if (!buf) {
4277                 status = -ENOMEM;
4278                 goto err0;
4279         }
4280
4281         status = bus_register(&spi_bus_type);
4282         if (status < 0)
4283                 goto err1;
4284
4285         status = class_register(&spi_master_class);
4286         if (status < 0)
4287                 goto err2;
4288
4289         if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4290                 status = class_register(&spi_slave_class);
4291                 if (status < 0)
4292                         goto err3;
4293         }
4294
4295         if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4296                 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4297         if (IS_ENABLED(CONFIG_ACPI))
4298                 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4299
4300         return 0;
4301
4302 err3:
4303         class_unregister(&spi_master_class);
4304 err2:
4305         bus_unregister(&spi_bus_type);
4306 err1:
4307         kfree(buf);
4308         buf = NULL;
4309 err0:
4310         return status;
4311 }
4312
4313 /* board_info is normally registered in arch_initcall(),
4314  * but even essential drivers wait till later
4315  *
4316  * REVISIT only boardinfo really needs static linking. the rest (device and
4317  * driver registration) _could_ be dynamically linked (modular) ... costs
4318  * include needing to have boardinfo data structures be much more public.
4319  */
4320 postcore_initcall(spi_init);