Merge tag 's390-5.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-microblaze.git] / drivers / spi / spi-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/dmaengine.h>
22
23 #include <linux/spi/spi.h>
24
25 #define SUN6I_AUTOSUSPEND_TIMEOUT       2000
26
27 #define SUN6I_FIFO_DEPTH                128
28 #define SUN8I_FIFO_DEPTH                64
29
30 #define SUN6I_GBL_CTL_REG               0x04
31 #define SUN6I_GBL_CTL_BUS_ENABLE                BIT(0)
32 #define SUN6I_GBL_CTL_MASTER                    BIT(1)
33 #define SUN6I_GBL_CTL_TP                        BIT(7)
34 #define SUN6I_GBL_CTL_RST                       BIT(31)
35
36 #define SUN6I_TFR_CTL_REG               0x08
37 #define SUN6I_TFR_CTL_CPHA                      BIT(0)
38 #define SUN6I_TFR_CTL_CPOL                      BIT(1)
39 #define SUN6I_TFR_CTL_SPOL                      BIT(2)
40 #define SUN6I_TFR_CTL_CS_MASK                   0x30
41 #define SUN6I_TFR_CTL_CS(cs)                    (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
42 #define SUN6I_TFR_CTL_CS_MANUAL                 BIT(6)
43 #define SUN6I_TFR_CTL_CS_LEVEL                  BIT(7)
44 #define SUN6I_TFR_CTL_DHB                       BIT(8)
45 #define SUN6I_TFR_CTL_FBS                       BIT(12)
46 #define SUN6I_TFR_CTL_XCH                       BIT(31)
47
48 #define SUN6I_INT_CTL_REG               0x10
49 #define SUN6I_INT_CTL_RF_RDY                    BIT(0)
50 #define SUN6I_INT_CTL_TF_ERQ                    BIT(4)
51 #define SUN6I_INT_CTL_RF_OVF                    BIT(8)
52 #define SUN6I_INT_CTL_TC                        BIT(12)
53
54 #define SUN6I_INT_STA_REG               0x14
55
56 #define SUN6I_FIFO_CTL_REG              0x18
57 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK   0xff
58 #define SUN6I_FIFO_CTL_RF_DRQ_EN                BIT(8)
59 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS   0
60 #define SUN6I_FIFO_CTL_RF_RST                   BIT(15)
61 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK   0xff
62 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS   16
63 #define SUN6I_FIFO_CTL_TF_DRQ_EN                BIT(24)
64 #define SUN6I_FIFO_CTL_TF_RST                   BIT(31)
65
66 #define SUN6I_FIFO_STA_REG              0x1c
67 #define SUN6I_FIFO_STA_RF_CNT_MASK              GENMASK(7, 0)
68 #define SUN6I_FIFO_STA_TF_CNT_MASK              GENMASK(23, 16)
69
70 #define SUN6I_CLK_CTL_REG               0x24
71 #define SUN6I_CLK_CTL_CDR2_MASK                 0xff
72 #define SUN6I_CLK_CTL_CDR2(div)                 (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
73 #define SUN6I_CLK_CTL_CDR1_MASK                 0xf
74 #define SUN6I_CLK_CTL_CDR1(div)                 (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
75 #define SUN6I_CLK_CTL_DRS                       BIT(12)
76
77 #define SUN6I_MAX_XFER_SIZE             0xffffff
78
79 #define SUN6I_BURST_CNT_REG             0x30
80
81 #define SUN6I_XMIT_CNT_REG              0x34
82
83 #define SUN6I_BURST_CTL_CNT_REG         0x38
84
85 #define SUN6I_TXDATA_REG                0x200
86 #define SUN6I_RXDATA_REG                0x300
87
88 struct sun6i_spi {
89         struct spi_master       *master;
90         void __iomem            *base_addr;
91         dma_addr_t              dma_addr_rx;
92         dma_addr_t              dma_addr_tx;
93         struct clk              *hclk;
94         struct clk              *mclk;
95         struct reset_control    *rstc;
96
97         struct completion       done;
98
99         const u8                *tx_buf;
100         u8                      *rx_buf;
101         int                     len;
102         unsigned long           fifo_depth;
103 };
104
105 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
106 {
107         return readl(sspi->base_addr + reg);
108 }
109
110 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
111 {
112         writel(value, sspi->base_addr + reg);
113 }
114
115 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
116 {
117         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
118
119         return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
120 }
121
122 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
123 {
124         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
125
126         return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
127 }
128
129 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
130 {
131         u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
132
133         reg &= ~mask;
134         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
135 }
136
137 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi)
138 {
139         u32 len;
140         u8 byte;
141
142         /* See how much data is available */
143         len = sun6i_spi_get_rx_fifo_count(sspi);
144
145         while (len--) {
146                 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
147                 if (sspi->rx_buf)
148                         *sspi->rx_buf++ = byte;
149         }
150 }
151
152 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi)
153 {
154         u32 cnt;
155         int len;
156         u8 byte;
157
158         /* See how much data we can fit */
159         cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
160
161         len = min((int)cnt, sspi->len);
162
163         while (len--) {
164                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
165                 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
166                 sspi->len--;
167         }
168 }
169
170 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
171 {
172         struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
173         u32 reg;
174
175         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
176         reg &= ~SUN6I_TFR_CTL_CS_MASK;
177         reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
178
179         if (enable)
180                 reg |= SUN6I_TFR_CTL_CS_LEVEL;
181         else
182                 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
183
184         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
185 }
186
187 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
188 {
189         return SUN6I_MAX_XFER_SIZE - 1;
190 }
191
192 static int sun6i_spi_prepare_dma(struct sun6i_spi *sspi,
193                                  struct spi_transfer *tfr)
194 {
195         struct dma_async_tx_descriptor *rxdesc, *txdesc;
196         struct spi_master *master = sspi->master;
197
198         rxdesc = NULL;
199         if (tfr->rx_buf) {
200                 struct dma_slave_config rxconf = {
201                         .direction = DMA_DEV_TO_MEM,
202                         .src_addr = sspi->dma_addr_rx,
203                         .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
204                         .src_maxburst = 8,
205                 };
206
207                 dmaengine_slave_config(master->dma_rx, &rxconf);
208
209                 rxdesc = dmaengine_prep_slave_sg(master->dma_rx,
210                                                  tfr->rx_sg.sgl,
211                                                  tfr->rx_sg.nents,
212                                                  DMA_DEV_TO_MEM,
213                                                  DMA_PREP_INTERRUPT);
214                 if (!rxdesc)
215                         return -EINVAL;
216         }
217
218         txdesc = NULL;
219         if (tfr->tx_buf) {
220                 struct dma_slave_config txconf = {
221                         .direction = DMA_MEM_TO_DEV,
222                         .dst_addr = sspi->dma_addr_tx,
223                         .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
224                         .dst_maxburst = 8,
225                 };
226
227                 dmaengine_slave_config(master->dma_tx, &txconf);
228
229                 txdesc = dmaengine_prep_slave_sg(master->dma_tx,
230                                                  tfr->tx_sg.sgl,
231                                                  tfr->tx_sg.nents,
232                                                  DMA_MEM_TO_DEV,
233                                                  DMA_PREP_INTERRUPT);
234                 if (!txdesc) {
235                         if (rxdesc)
236                                 dmaengine_terminate_sync(master->dma_rx);
237                         return -EINVAL;
238                 }
239         }
240
241         if (tfr->rx_buf) {
242                 dmaengine_submit(rxdesc);
243                 dma_async_issue_pending(master->dma_rx);
244         }
245
246         if (tfr->tx_buf) {
247                 dmaengine_submit(txdesc);
248                 dma_async_issue_pending(master->dma_tx);
249         }
250
251         return 0;
252 }
253
254 static int sun6i_spi_transfer_one(struct spi_master *master,
255                                   struct spi_device *spi,
256                                   struct spi_transfer *tfr)
257 {
258         struct sun6i_spi *sspi = spi_master_get_devdata(master);
259         unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
260         unsigned int start, end, tx_time;
261         unsigned int trig_level;
262         unsigned int tx_len = 0, rx_len = 0;
263         bool use_dma;
264         int ret = 0;
265         u32 reg;
266
267         if (tfr->len > SUN6I_MAX_XFER_SIZE)
268                 return -EINVAL;
269
270         reinit_completion(&sspi->done);
271         sspi->tx_buf = tfr->tx_buf;
272         sspi->rx_buf = tfr->rx_buf;
273         sspi->len = tfr->len;
274         use_dma = master->can_dma ? master->can_dma(master, spi, tfr) : false;
275
276         /* Clear pending interrupts */
277         sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
278
279         /* Reset FIFO */
280         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
281                         SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
282
283         reg = 0;
284
285         if (!use_dma) {
286                 /*
287                  * Setup FIFO interrupt trigger level
288                  * Here we choose 3/4 of the full fifo depth, as it's
289                  * the hardcoded value used in old generation of Allwinner
290                  * SPI controller. (See spi-sun4i.c)
291                  */
292                 trig_level = sspi->fifo_depth / 4 * 3;
293         } else {
294                 /*
295                  * Setup FIFO DMA request trigger level
296                  * We choose 1/2 of the full fifo depth, that value will
297                  * be used as DMA burst length.
298                  */
299                 trig_level = sspi->fifo_depth / 2;
300
301                 if (tfr->tx_buf)
302                         reg |= SUN6I_FIFO_CTL_TF_DRQ_EN;
303                 if (tfr->rx_buf)
304                         reg |= SUN6I_FIFO_CTL_RF_DRQ_EN;
305         }
306
307         reg |= (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
308                (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS);
309
310         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG, reg);
311
312         /*
313          * Setup the transfer control register: Chip Select,
314          * polarities, etc.
315          */
316         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
317
318         if (spi->mode & SPI_CPOL)
319                 reg |= SUN6I_TFR_CTL_CPOL;
320         else
321                 reg &= ~SUN6I_TFR_CTL_CPOL;
322
323         if (spi->mode & SPI_CPHA)
324                 reg |= SUN6I_TFR_CTL_CPHA;
325         else
326                 reg &= ~SUN6I_TFR_CTL_CPHA;
327
328         if (spi->mode & SPI_LSB_FIRST)
329                 reg |= SUN6I_TFR_CTL_FBS;
330         else
331                 reg &= ~SUN6I_TFR_CTL_FBS;
332
333         /*
334          * If it's a TX only transfer, we don't want to fill the RX
335          * FIFO with bogus data
336          */
337         if (sspi->rx_buf) {
338                 reg &= ~SUN6I_TFR_CTL_DHB;
339                 rx_len = tfr->len;
340         } else {
341                 reg |= SUN6I_TFR_CTL_DHB;
342         }
343
344         /* We want to control the chip select manually */
345         reg |= SUN6I_TFR_CTL_CS_MANUAL;
346
347         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
348
349         /* Ensure that we have a parent clock fast enough */
350         mclk_rate = clk_get_rate(sspi->mclk);
351         if (mclk_rate < (2 * tfr->speed_hz)) {
352                 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
353                 mclk_rate = clk_get_rate(sspi->mclk);
354         }
355
356         /*
357          * Setup clock divider.
358          *
359          * We have two choices there. Either we can use the clock
360          * divide rate 1, which is calculated thanks to this formula:
361          * SPI_CLK = MOD_CLK / (2 ^ cdr)
362          * Or we can use CDR2, which is calculated with the formula:
363          * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
364          * Wether we use the former or the latter is set through the
365          * DRS bit.
366          *
367          * First try CDR2, and if we can't reach the expected
368          * frequency, fall back to CDR1.
369          */
370         div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
371         div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
372         if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
373                 reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
374                 tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
375         } else {
376                 div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
377                 reg = SUN6I_CLK_CTL_CDR1(div);
378                 tfr->effective_speed_hz = mclk_rate / (1 << div);
379         }
380
381         sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
382
383         /* Setup the transfer now... */
384         if (sspi->tx_buf)
385                 tx_len = tfr->len;
386
387         /* Setup the counters */
388         sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
389         sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
390         sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
391
392         if (!use_dma) {
393                 /* Fill the TX FIFO */
394                 sun6i_spi_fill_fifo(sspi);
395         } else {
396                 ret = sun6i_spi_prepare_dma(sspi, tfr);
397                 if (ret) {
398                         dev_warn(&master->dev,
399                                  "%s: prepare DMA failed, ret=%d",
400                                  dev_name(&spi->dev), ret);
401                         return ret;
402                 }
403         }
404
405         /* Enable the interrupts */
406         reg = SUN6I_INT_CTL_TC;
407
408         if (!use_dma) {
409                 if (rx_len > sspi->fifo_depth)
410                         reg |= SUN6I_INT_CTL_RF_RDY;
411                 if (tx_len > sspi->fifo_depth)
412                         reg |= SUN6I_INT_CTL_TF_ERQ;
413         }
414
415         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
416
417         /* Start the transfer */
418         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
419         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
420
421         tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
422         start = jiffies;
423         timeout = wait_for_completion_timeout(&sspi->done,
424                                               msecs_to_jiffies(tx_time));
425         end = jiffies;
426         if (!timeout) {
427                 dev_warn(&master->dev,
428                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
429                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
430                          jiffies_to_msecs(end - start), tx_time);
431                 ret = -ETIMEDOUT;
432         }
433
434         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
435
436         if (ret && use_dma) {
437                 dmaengine_terminate_sync(master->dma_rx);
438                 dmaengine_terminate_sync(master->dma_tx);
439         }
440
441         return ret;
442 }
443
444 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
445 {
446         struct sun6i_spi *sspi = dev_id;
447         u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
448
449         /* Transfer complete */
450         if (status & SUN6I_INT_CTL_TC) {
451                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
452                 sun6i_spi_drain_fifo(sspi);
453                 complete(&sspi->done);
454                 return IRQ_HANDLED;
455         }
456
457         /* Receive FIFO 3/4 full */
458         if (status & SUN6I_INT_CTL_RF_RDY) {
459                 sun6i_spi_drain_fifo(sspi);
460                 /* Only clear the interrupt _after_ draining the FIFO */
461                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
462                 return IRQ_HANDLED;
463         }
464
465         /* Transmit FIFO 3/4 empty */
466         if (status & SUN6I_INT_CTL_TF_ERQ) {
467                 sun6i_spi_fill_fifo(sspi);
468
469                 if (!sspi->len)
470                         /* nothing left to transmit */
471                         sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
472
473                 /* Only clear the interrupt _after_ re-seeding the FIFO */
474                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
475
476                 return IRQ_HANDLED;
477         }
478
479         return IRQ_NONE;
480 }
481
482 static int sun6i_spi_runtime_resume(struct device *dev)
483 {
484         struct spi_master *master = dev_get_drvdata(dev);
485         struct sun6i_spi *sspi = spi_master_get_devdata(master);
486         int ret;
487
488         ret = clk_prepare_enable(sspi->hclk);
489         if (ret) {
490                 dev_err(dev, "Couldn't enable AHB clock\n");
491                 goto out;
492         }
493
494         ret = clk_prepare_enable(sspi->mclk);
495         if (ret) {
496                 dev_err(dev, "Couldn't enable module clock\n");
497                 goto err;
498         }
499
500         ret = reset_control_deassert(sspi->rstc);
501         if (ret) {
502                 dev_err(dev, "Couldn't deassert the device from reset\n");
503                 goto err2;
504         }
505
506         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
507                         SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
508
509         return 0;
510
511 err2:
512         clk_disable_unprepare(sspi->mclk);
513 err:
514         clk_disable_unprepare(sspi->hclk);
515 out:
516         return ret;
517 }
518
519 static int sun6i_spi_runtime_suspend(struct device *dev)
520 {
521         struct spi_master *master = dev_get_drvdata(dev);
522         struct sun6i_spi *sspi = spi_master_get_devdata(master);
523
524         reset_control_assert(sspi->rstc);
525         clk_disable_unprepare(sspi->mclk);
526         clk_disable_unprepare(sspi->hclk);
527
528         return 0;
529 }
530
531 static bool sun6i_spi_can_dma(struct spi_master *master,
532                               struct spi_device *spi,
533                               struct spi_transfer *xfer)
534 {
535         struct sun6i_spi *sspi = spi_master_get_devdata(master);
536
537         /*
538          * If the number of spi words to transfer is less or equal than
539          * the fifo length we can just fill the fifo and wait for a single
540          * irq, so don't bother setting up dma
541          */
542         return xfer->len > sspi->fifo_depth;
543 }
544
545 static int sun6i_spi_probe(struct platform_device *pdev)
546 {
547         struct spi_master *master;
548         struct sun6i_spi *sspi;
549         struct resource *mem;
550         int ret = 0, irq;
551
552         master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
553         if (!master) {
554                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
555                 return -ENOMEM;
556         }
557
558         platform_set_drvdata(pdev, master);
559         sspi = spi_master_get_devdata(master);
560
561         sspi->base_addr = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
562         if (IS_ERR(sspi->base_addr)) {
563                 ret = PTR_ERR(sspi->base_addr);
564                 goto err_free_master;
565         }
566
567         irq = platform_get_irq(pdev, 0);
568         if (irq < 0) {
569                 ret = -ENXIO;
570                 goto err_free_master;
571         }
572
573         ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
574                                0, "sun6i-spi", sspi);
575         if (ret) {
576                 dev_err(&pdev->dev, "Cannot request IRQ\n");
577                 goto err_free_master;
578         }
579
580         sspi->master = master;
581         sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
582
583         master->max_speed_hz = 100 * 1000 * 1000;
584         master->min_speed_hz = 3 * 1000;
585         master->use_gpio_descriptors = true;
586         master->set_cs = sun6i_spi_set_cs;
587         master->transfer_one = sun6i_spi_transfer_one;
588         master->num_chipselect = 4;
589         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
590         master->bits_per_word_mask = SPI_BPW_MASK(8);
591         master->dev.of_node = pdev->dev.of_node;
592         master->auto_runtime_pm = true;
593         master->max_transfer_size = sun6i_spi_max_transfer_size;
594
595         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
596         if (IS_ERR(sspi->hclk)) {
597                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
598                 ret = PTR_ERR(sspi->hclk);
599                 goto err_free_master;
600         }
601
602         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
603         if (IS_ERR(sspi->mclk)) {
604                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
605                 ret = PTR_ERR(sspi->mclk);
606                 goto err_free_master;
607         }
608
609         init_completion(&sspi->done);
610
611         sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
612         if (IS_ERR(sspi->rstc)) {
613                 dev_err(&pdev->dev, "Couldn't get reset controller\n");
614                 ret = PTR_ERR(sspi->rstc);
615                 goto err_free_master;
616         }
617
618         master->dma_tx = dma_request_chan(&pdev->dev, "tx");
619         if (IS_ERR(master->dma_tx)) {
620                 /* Check tx to see if we need defer probing driver */
621                 if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
622                         ret = -EPROBE_DEFER;
623                         goto err_free_master;
624                 }
625                 dev_warn(&pdev->dev, "Failed to request TX DMA channel\n");
626                 master->dma_tx = NULL;
627         }
628
629         master->dma_rx = dma_request_chan(&pdev->dev, "rx");
630         if (IS_ERR(master->dma_rx)) {
631                 if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
632                         ret = -EPROBE_DEFER;
633                         goto err_free_dma_tx;
634                 }
635                 dev_warn(&pdev->dev, "Failed to request RX DMA channel\n");
636                 master->dma_rx = NULL;
637         }
638
639         if (master->dma_tx && master->dma_rx) {
640                 sspi->dma_addr_tx = mem->start + SUN6I_TXDATA_REG;
641                 sspi->dma_addr_rx = mem->start + SUN6I_RXDATA_REG;
642                 master->can_dma = sun6i_spi_can_dma;
643         }
644
645         /*
646          * This wake-up/shutdown pattern is to be able to have the
647          * device woken up, even if runtime_pm is disabled
648          */
649         ret = sun6i_spi_runtime_resume(&pdev->dev);
650         if (ret) {
651                 dev_err(&pdev->dev, "Couldn't resume the device\n");
652                 goto err_free_dma_rx;
653         }
654
655         pm_runtime_set_autosuspend_delay(&pdev->dev, SUN6I_AUTOSUSPEND_TIMEOUT);
656         pm_runtime_use_autosuspend(&pdev->dev);
657         pm_runtime_set_active(&pdev->dev);
658         pm_runtime_enable(&pdev->dev);
659
660         ret = devm_spi_register_master(&pdev->dev, master);
661         if (ret) {
662                 dev_err(&pdev->dev, "cannot register SPI master\n");
663                 goto err_pm_disable;
664         }
665
666         return 0;
667
668 err_pm_disable:
669         pm_runtime_disable(&pdev->dev);
670         sun6i_spi_runtime_suspend(&pdev->dev);
671 err_free_dma_rx:
672         if (master->dma_rx)
673                 dma_release_channel(master->dma_rx);
674 err_free_dma_tx:
675         if (master->dma_tx)
676                 dma_release_channel(master->dma_tx);
677 err_free_master:
678         spi_master_put(master);
679         return ret;
680 }
681
682 static int sun6i_spi_remove(struct platform_device *pdev)
683 {
684         struct spi_master *master = platform_get_drvdata(pdev);
685
686         pm_runtime_force_suspend(&pdev->dev);
687
688         if (master->dma_tx)
689                 dma_release_channel(master->dma_tx);
690         if (master->dma_rx)
691                 dma_release_channel(master->dma_rx);
692         return 0;
693 }
694
695 static const struct of_device_id sun6i_spi_match[] = {
696         { .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
697         { .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
698         {}
699 };
700 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
701
702 static const struct dev_pm_ops sun6i_spi_pm_ops = {
703         .runtime_resume         = sun6i_spi_runtime_resume,
704         .runtime_suspend        = sun6i_spi_runtime_suspend,
705 };
706
707 static struct platform_driver sun6i_spi_driver = {
708         .probe  = sun6i_spi_probe,
709         .remove = sun6i_spi_remove,
710         .driver = {
711                 .name           = "sun6i-spi",
712                 .of_match_table = sun6i_spi_match,
713                 .pm             = &sun6i_spi_pm_ops,
714         },
715 };
716 module_platform_driver(sun6i_spi_driver);
717
718 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
719 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
720 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
721 MODULE_LICENSE("GPL");