44cd07331627f2d950fb2d45bcab7a3413c6c0ea
[linux-2.6-microblaze.git] / drivers / spi / spi-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012 - 2014 Allwinner Tech
4  * Pan Nan <pannan@allwinnertech.com>
5  *
6  * Copyright (C) 2014 Maxime Ripard
7  * Maxime Ripard <maxime.ripard@free-electrons.com>
8  */
9
10 #include <linux/bitfield.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21
22 #include <linux/spi/spi.h>
23
24 #define SUN6I_FIFO_DEPTH                128
25 #define SUN8I_FIFO_DEPTH                64
26
27 #define SUN6I_GBL_CTL_REG               0x04
28 #define SUN6I_GBL_CTL_BUS_ENABLE                BIT(0)
29 #define SUN6I_GBL_CTL_MASTER                    BIT(1)
30 #define SUN6I_GBL_CTL_TP                        BIT(7)
31 #define SUN6I_GBL_CTL_RST                       BIT(31)
32
33 #define SUN6I_TFR_CTL_REG               0x08
34 #define SUN6I_TFR_CTL_CPHA                      BIT(0)
35 #define SUN6I_TFR_CTL_CPOL                      BIT(1)
36 #define SUN6I_TFR_CTL_SPOL                      BIT(2)
37 #define SUN6I_TFR_CTL_CS_MASK                   0x30
38 #define SUN6I_TFR_CTL_CS(cs)                    (((cs) << 4) & SUN6I_TFR_CTL_CS_MASK)
39 #define SUN6I_TFR_CTL_CS_MANUAL                 BIT(6)
40 #define SUN6I_TFR_CTL_CS_LEVEL                  BIT(7)
41 #define SUN6I_TFR_CTL_DHB                       BIT(8)
42 #define SUN6I_TFR_CTL_FBS                       BIT(12)
43 #define SUN6I_TFR_CTL_XCH                       BIT(31)
44
45 #define SUN6I_INT_CTL_REG               0x10
46 #define SUN6I_INT_CTL_RF_RDY                    BIT(0)
47 #define SUN6I_INT_CTL_TF_ERQ                    BIT(4)
48 #define SUN6I_INT_CTL_RF_OVF                    BIT(8)
49 #define SUN6I_INT_CTL_TC                        BIT(12)
50
51 #define SUN6I_INT_STA_REG               0x14
52
53 #define SUN6I_FIFO_CTL_REG              0x18
54 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_MASK   0xff
55 #define SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS   0
56 #define SUN6I_FIFO_CTL_RF_RST                   BIT(15)
57 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_MASK   0xff
58 #define SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS   16
59 #define SUN6I_FIFO_CTL_TF_RST                   BIT(31)
60
61 #define SUN6I_FIFO_STA_REG              0x1c
62 #define SUN6I_FIFO_STA_RF_CNT_MASK              GENMASK(7, 0)
63 #define SUN6I_FIFO_STA_TF_CNT_MASK              GENMASK(23, 16)
64
65 #define SUN6I_CLK_CTL_REG               0x24
66 #define SUN6I_CLK_CTL_CDR2_MASK                 0xff
67 #define SUN6I_CLK_CTL_CDR2(div)                 (((div) & SUN6I_CLK_CTL_CDR2_MASK) << 0)
68 #define SUN6I_CLK_CTL_CDR1_MASK                 0xf
69 #define SUN6I_CLK_CTL_CDR1(div)                 (((div) & SUN6I_CLK_CTL_CDR1_MASK) << 8)
70 #define SUN6I_CLK_CTL_DRS                       BIT(12)
71
72 #define SUN6I_MAX_XFER_SIZE             0xffffff
73
74 #define SUN6I_BURST_CNT_REG             0x30
75
76 #define SUN6I_XMIT_CNT_REG              0x34
77
78 #define SUN6I_BURST_CTL_CNT_REG         0x38
79
80 #define SUN6I_TXDATA_REG                0x200
81 #define SUN6I_RXDATA_REG                0x300
82
83 struct sun6i_spi {
84         struct spi_master       *master;
85         void __iomem            *base_addr;
86         struct clk              *hclk;
87         struct clk              *mclk;
88         struct reset_control    *rstc;
89
90         struct completion       done;
91
92         const u8                *tx_buf;
93         u8                      *rx_buf;
94         int                     len;
95         unsigned long           fifo_depth;
96 };
97
98 static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
99 {
100         return readl(sspi->base_addr + reg);
101 }
102
103 static inline void sun6i_spi_write(struct sun6i_spi *sspi, u32 reg, u32 value)
104 {
105         writel(value, sspi->base_addr + reg);
106 }
107
108 static inline u32 sun6i_spi_get_rx_fifo_count(struct sun6i_spi *sspi)
109 {
110         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
111
112         return FIELD_GET(SUN6I_FIFO_STA_RF_CNT_MASK, reg);
113 }
114
115 static inline u32 sun6i_spi_get_tx_fifo_count(struct sun6i_spi *sspi)
116 {
117         u32 reg = sun6i_spi_read(sspi, SUN6I_FIFO_STA_REG);
118
119         return FIELD_GET(SUN6I_FIFO_STA_TF_CNT_MASK, reg);
120 }
121
122 static inline void sun6i_spi_enable_interrupt(struct sun6i_spi *sspi, u32 mask)
123 {
124         u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
125
126         reg |= mask;
127         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
128 }
129
130 static inline void sun6i_spi_disable_interrupt(struct sun6i_spi *sspi, u32 mask)
131 {
132         u32 reg = sun6i_spi_read(sspi, SUN6I_INT_CTL_REG);
133
134         reg &= ~mask;
135         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, reg);
136 }
137
138 static inline void sun6i_spi_drain_fifo(struct sun6i_spi *sspi, int len)
139 {
140         u32 cnt;
141         u8 byte;
142
143         /* See how much data is available */
144         cnt = sun6i_spi_get_rx_fifo_count(sspi);
145
146         if (len > cnt)
147                 len = cnt;
148
149         while (len--) {
150                 byte = readb(sspi->base_addr + SUN6I_RXDATA_REG);
151                 if (sspi->rx_buf)
152                         *sspi->rx_buf++ = byte;
153         }
154 }
155
156 static inline void sun6i_spi_fill_fifo(struct sun6i_spi *sspi, int len)
157 {
158         u32 cnt;
159         u8 byte;
160
161         /* See how much data we can fit */
162         cnt = sspi->fifo_depth - sun6i_spi_get_tx_fifo_count(sspi);
163
164         len = min3(len, (int)cnt, sspi->len);
165
166         while (len--) {
167                 byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
168                 writeb(byte, sspi->base_addr + SUN6I_TXDATA_REG);
169                 sspi->len--;
170         }
171 }
172
173 static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
174 {
175         struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
176         u32 reg;
177
178         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
179         reg &= ~SUN6I_TFR_CTL_CS_MASK;
180         reg |= SUN6I_TFR_CTL_CS(spi->chip_select);
181
182         if (enable)
183                 reg |= SUN6I_TFR_CTL_CS_LEVEL;
184         else
185                 reg &= ~SUN6I_TFR_CTL_CS_LEVEL;
186
187         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
188 }
189
190 static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
191 {
192         return SUN6I_MAX_XFER_SIZE - 1;
193 }
194
195 static int sun6i_spi_transfer_one(struct spi_master *master,
196                                   struct spi_device *spi,
197                                   struct spi_transfer *tfr)
198 {
199         struct sun6i_spi *sspi = spi_master_get_devdata(master);
200         unsigned int mclk_rate, div, div_cdr1, div_cdr2, timeout;
201         unsigned int start, end, tx_time;
202         unsigned int trig_level;
203         unsigned int tx_len = 0;
204         int ret = 0;
205         u32 reg;
206
207         if (tfr->len > SUN6I_MAX_XFER_SIZE)
208                 return -EINVAL;
209
210         reinit_completion(&sspi->done);
211         sspi->tx_buf = tfr->tx_buf;
212         sspi->rx_buf = tfr->rx_buf;
213         sspi->len = tfr->len;
214
215         /* Clear pending interrupts */
216         sun6i_spi_write(sspi, SUN6I_INT_STA_REG, ~0);
217
218         /* Reset FIFO */
219         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
220                         SUN6I_FIFO_CTL_RF_RST | SUN6I_FIFO_CTL_TF_RST);
221
222         /*
223          * Setup FIFO interrupt trigger level
224          * Here we choose 3/4 of the full fifo depth, as it's the hardcoded
225          * value used in old generation of Allwinner SPI controller.
226          * (See spi-sun4i.c)
227          */
228         trig_level = sspi->fifo_depth / 4 * 3;
229         sun6i_spi_write(sspi, SUN6I_FIFO_CTL_REG,
230                         (trig_level << SUN6I_FIFO_CTL_RF_RDY_TRIG_LEVEL_BITS) |
231                         (trig_level << SUN6I_FIFO_CTL_TF_ERQ_TRIG_LEVEL_BITS));
232
233         /*
234          * Setup the transfer control register: Chip Select,
235          * polarities, etc.
236          */
237         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
238
239         if (spi->mode & SPI_CPOL)
240                 reg |= SUN6I_TFR_CTL_CPOL;
241         else
242                 reg &= ~SUN6I_TFR_CTL_CPOL;
243
244         if (spi->mode & SPI_CPHA)
245                 reg |= SUN6I_TFR_CTL_CPHA;
246         else
247                 reg &= ~SUN6I_TFR_CTL_CPHA;
248
249         if (spi->mode & SPI_LSB_FIRST)
250                 reg |= SUN6I_TFR_CTL_FBS;
251         else
252                 reg &= ~SUN6I_TFR_CTL_FBS;
253
254         /*
255          * If it's a TX only transfer, we don't want to fill the RX
256          * FIFO with bogus data
257          */
258         if (sspi->rx_buf)
259                 reg &= ~SUN6I_TFR_CTL_DHB;
260         else
261                 reg |= SUN6I_TFR_CTL_DHB;
262
263         /* We want to control the chip select manually */
264         reg |= SUN6I_TFR_CTL_CS_MANUAL;
265
266         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg);
267
268         /* Ensure that we have a parent clock fast enough */
269         mclk_rate = clk_get_rate(sspi->mclk);
270         if (mclk_rate < (2 * tfr->speed_hz)) {
271                 clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
272                 mclk_rate = clk_get_rate(sspi->mclk);
273         }
274
275         /*
276          * Setup clock divider.
277          *
278          * We have two choices there. Either we can use the clock
279          * divide rate 1, which is calculated thanks to this formula:
280          * SPI_CLK = MOD_CLK / (2 ^ cdr)
281          * Or we can use CDR2, which is calculated with the formula:
282          * SPI_CLK = MOD_CLK / (2 * (cdr + 1))
283          * Wether we use the former or the latter is set through the
284          * DRS bit.
285          *
286          * First try CDR2, and if we can't reach the expected
287          * frequency, fall back to CDR1.
288          */
289         div_cdr1 = DIV_ROUND_UP(mclk_rate, tfr->speed_hz);
290         div_cdr2 = DIV_ROUND_UP(div_cdr1, 2);
291         if (div_cdr2 <= (SUN6I_CLK_CTL_CDR2_MASK + 1)) {
292                 reg = SUN6I_CLK_CTL_CDR2(div_cdr2 - 1) | SUN6I_CLK_CTL_DRS;
293                 tfr->effective_speed_hz = mclk_rate / (2 * div_cdr2);
294         } else {
295                 div = min(SUN6I_CLK_CTL_CDR1_MASK, order_base_2(div_cdr1));
296                 reg = SUN6I_CLK_CTL_CDR1(div);
297                 tfr->effective_speed_hz = mclk_rate / (1 << div);
298         }
299
300         sun6i_spi_write(sspi, SUN6I_CLK_CTL_REG, reg);
301
302         /* Setup the transfer now... */
303         if (sspi->tx_buf)
304                 tx_len = tfr->len;
305
306         /* Setup the counters */
307         sun6i_spi_write(sspi, SUN6I_BURST_CNT_REG, tfr->len);
308         sun6i_spi_write(sspi, SUN6I_XMIT_CNT_REG, tx_len);
309         sun6i_spi_write(sspi, SUN6I_BURST_CTL_CNT_REG, tx_len);
310
311         /* Fill the TX FIFO */
312         sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
313
314         /* Enable the interrupts */
315         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
316         sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TC |
317                                          SUN6I_INT_CTL_RF_RDY);
318         if (tx_len > sspi->fifo_depth)
319                 sun6i_spi_enable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
320
321         /* Start the transfer */
322         reg = sun6i_spi_read(sspi, SUN6I_TFR_CTL_REG);
323         sun6i_spi_write(sspi, SUN6I_TFR_CTL_REG, reg | SUN6I_TFR_CTL_XCH);
324
325         tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
326         start = jiffies;
327         timeout = wait_for_completion_timeout(&sspi->done,
328                                               msecs_to_jiffies(tx_time));
329         end = jiffies;
330         if (!timeout) {
331                 dev_warn(&master->dev,
332                          "%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
333                          dev_name(&spi->dev), tfr->len, tfr->speed_hz,
334                          jiffies_to_msecs(end - start), tx_time);
335                 ret = -ETIMEDOUT;
336         }
337
338         sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
339
340         return ret;
341 }
342
343 static irqreturn_t sun6i_spi_handler(int irq, void *dev_id)
344 {
345         struct sun6i_spi *sspi = dev_id;
346         u32 status = sun6i_spi_read(sspi, SUN6I_INT_STA_REG);
347
348         /* Transfer complete */
349         if (status & SUN6I_INT_CTL_TC) {
350                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TC);
351                 sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
352                 complete(&sspi->done);
353                 return IRQ_HANDLED;
354         }
355
356         /* Receive FIFO 3/4 full */
357         if (status & SUN6I_INT_CTL_RF_RDY) {
358                 sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
359                 /* Only clear the interrupt _after_ draining the FIFO */
360                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_RF_RDY);
361                 return IRQ_HANDLED;
362         }
363
364         /* Transmit FIFO 3/4 empty */
365         if (status & SUN6I_INT_CTL_TF_ERQ) {
366                 sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
367
368                 if (!sspi->len)
369                         /* nothing left to transmit */
370                         sun6i_spi_disable_interrupt(sspi, SUN6I_INT_CTL_TF_ERQ);
371
372                 /* Only clear the interrupt _after_ re-seeding the FIFO */
373                 sun6i_spi_write(sspi, SUN6I_INT_STA_REG, SUN6I_INT_CTL_TF_ERQ);
374
375                 return IRQ_HANDLED;
376         }
377
378         return IRQ_NONE;
379 }
380
381 static int sun6i_spi_runtime_resume(struct device *dev)
382 {
383         struct spi_master *master = dev_get_drvdata(dev);
384         struct sun6i_spi *sspi = spi_master_get_devdata(master);
385         int ret;
386
387         ret = clk_prepare_enable(sspi->hclk);
388         if (ret) {
389                 dev_err(dev, "Couldn't enable AHB clock\n");
390                 goto out;
391         }
392
393         ret = clk_prepare_enable(sspi->mclk);
394         if (ret) {
395                 dev_err(dev, "Couldn't enable module clock\n");
396                 goto err;
397         }
398
399         ret = reset_control_deassert(sspi->rstc);
400         if (ret) {
401                 dev_err(dev, "Couldn't deassert the device from reset\n");
402                 goto err2;
403         }
404
405         sun6i_spi_write(sspi, SUN6I_GBL_CTL_REG,
406                         SUN6I_GBL_CTL_BUS_ENABLE | SUN6I_GBL_CTL_MASTER | SUN6I_GBL_CTL_TP);
407
408         return 0;
409
410 err2:
411         clk_disable_unprepare(sspi->mclk);
412 err:
413         clk_disable_unprepare(sspi->hclk);
414 out:
415         return ret;
416 }
417
418 static int sun6i_spi_runtime_suspend(struct device *dev)
419 {
420         struct spi_master *master = dev_get_drvdata(dev);
421         struct sun6i_spi *sspi = spi_master_get_devdata(master);
422
423         reset_control_assert(sspi->rstc);
424         clk_disable_unprepare(sspi->mclk);
425         clk_disable_unprepare(sspi->hclk);
426
427         return 0;
428 }
429
430 static int sun6i_spi_probe(struct platform_device *pdev)
431 {
432         struct spi_master *master;
433         struct sun6i_spi *sspi;
434         int ret = 0, irq;
435
436         master = spi_alloc_master(&pdev->dev, sizeof(struct sun6i_spi));
437         if (!master) {
438                 dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
439                 return -ENOMEM;
440         }
441
442         platform_set_drvdata(pdev, master);
443         sspi = spi_master_get_devdata(master);
444
445         sspi->base_addr = devm_platform_ioremap_resource(pdev, 0);
446         if (IS_ERR(sspi->base_addr)) {
447                 ret = PTR_ERR(sspi->base_addr);
448                 goto err_free_master;
449         }
450
451         irq = platform_get_irq(pdev, 0);
452         if (irq < 0) {
453                 ret = -ENXIO;
454                 goto err_free_master;
455         }
456
457         ret = devm_request_irq(&pdev->dev, irq, sun6i_spi_handler,
458                                0, "sun6i-spi", sspi);
459         if (ret) {
460                 dev_err(&pdev->dev, "Cannot request IRQ\n");
461                 goto err_free_master;
462         }
463
464         sspi->master = master;
465         sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
466
467         master->max_speed_hz = 100 * 1000 * 1000;
468         master->min_speed_hz = 3 * 1000;
469         master->use_gpio_descriptors = true;
470         master->set_cs = sun6i_spi_set_cs;
471         master->transfer_one = sun6i_spi_transfer_one;
472         master->num_chipselect = 4;
473         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
474         master->bits_per_word_mask = SPI_BPW_MASK(8);
475         master->dev.of_node = pdev->dev.of_node;
476         master->auto_runtime_pm = true;
477         master->max_transfer_size = sun6i_spi_max_transfer_size;
478
479         sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
480         if (IS_ERR(sspi->hclk)) {
481                 dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
482                 ret = PTR_ERR(sspi->hclk);
483                 goto err_free_master;
484         }
485
486         sspi->mclk = devm_clk_get(&pdev->dev, "mod");
487         if (IS_ERR(sspi->mclk)) {
488                 dev_err(&pdev->dev, "Unable to acquire module clock\n");
489                 ret = PTR_ERR(sspi->mclk);
490                 goto err_free_master;
491         }
492
493         init_completion(&sspi->done);
494
495         sspi->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
496         if (IS_ERR(sspi->rstc)) {
497                 dev_err(&pdev->dev, "Couldn't get reset controller\n");
498                 ret = PTR_ERR(sspi->rstc);
499                 goto err_free_master;
500         }
501
502         /*
503          * This wake-up/shutdown pattern is to be able to have the
504          * device woken up, even if runtime_pm is disabled
505          */
506         ret = sun6i_spi_runtime_resume(&pdev->dev);
507         if (ret) {
508                 dev_err(&pdev->dev, "Couldn't resume the device\n");
509                 goto err_free_master;
510         }
511
512         pm_runtime_set_active(&pdev->dev);
513         pm_runtime_enable(&pdev->dev);
514         pm_runtime_idle(&pdev->dev);
515
516         ret = devm_spi_register_master(&pdev->dev, master);
517         if (ret) {
518                 dev_err(&pdev->dev, "cannot register SPI master\n");
519                 goto err_pm_disable;
520         }
521
522         return 0;
523
524 err_pm_disable:
525         pm_runtime_disable(&pdev->dev);
526         sun6i_spi_runtime_suspend(&pdev->dev);
527 err_free_master:
528         spi_master_put(master);
529         return ret;
530 }
531
532 static int sun6i_spi_remove(struct platform_device *pdev)
533 {
534         pm_runtime_force_suspend(&pdev->dev);
535
536         return 0;
537 }
538
539 static const struct of_device_id sun6i_spi_match[] = {
540         { .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
541         { .compatible = "allwinner,sun8i-h3-spi",  .data = (void *)SUN8I_FIFO_DEPTH },
542         {}
543 };
544 MODULE_DEVICE_TABLE(of, sun6i_spi_match);
545
546 static const struct dev_pm_ops sun6i_spi_pm_ops = {
547         .runtime_resume         = sun6i_spi_runtime_resume,
548         .runtime_suspend        = sun6i_spi_runtime_suspend,
549 };
550
551 static struct platform_driver sun6i_spi_driver = {
552         .probe  = sun6i_spi_probe,
553         .remove = sun6i_spi_remove,
554         .driver = {
555                 .name           = "sun6i-spi",
556                 .of_match_table = sun6i_spi_match,
557                 .pm             = &sun6i_spi_pm_ops,
558         },
559 };
560 module_platform_driver(sun6i_spi_driver);
561
562 MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
563 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
564 MODULE_DESCRIPTION("Allwinner A31 SPI controller driver");
565 MODULE_LICENSE("GPL");