Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / spi / spi-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/bitfield.h>
9 #include <linux/debugfs.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/dmaengine.h>
13 #include <linux/interrupt.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/platform_device.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/spi/spi.h>
22
23 #define DRIVER_NAME "spi_stm32"
24
25 /* STM32F4/7 SPI registers */
26 #define STM32FX_SPI_CR1                 0x00
27 #define STM32FX_SPI_CR2                 0x04
28 #define STM32FX_SPI_SR                  0x08
29 #define STM32FX_SPI_DR                  0x0C
30 #define STM32FX_SPI_I2SCFGR             0x1C
31
32 /* STM32FX_SPI_CR1 bit fields */
33 #define STM32FX_SPI_CR1_CPHA            BIT(0)
34 #define STM32FX_SPI_CR1_CPOL            BIT(1)
35 #define STM32FX_SPI_CR1_MSTR            BIT(2)
36 #define STM32FX_SPI_CR1_BR_SHIFT        3
37 #define STM32FX_SPI_CR1_BR              GENMASK(5, 3)
38 #define STM32FX_SPI_CR1_SPE             BIT(6)
39 #define STM32FX_SPI_CR1_LSBFRST         BIT(7)
40 #define STM32FX_SPI_CR1_SSI             BIT(8)
41 #define STM32FX_SPI_CR1_SSM             BIT(9)
42 #define STM32FX_SPI_CR1_RXONLY          BIT(10)
43 #define STM32F4_SPI_CR1_DFF             BIT(11)
44 #define STM32F7_SPI_CR1_CRCL            BIT(11)
45 #define STM32FX_SPI_CR1_CRCNEXT         BIT(12)
46 #define STM32FX_SPI_CR1_CRCEN           BIT(13)
47 #define STM32FX_SPI_CR1_BIDIOE          BIT(14)
48 #define STM32FX_SPI_CR1_BIDIMODE        BIT(15)
49 #define STM32FX_SPI_CR1_BR_MIN          0
50 #define STM32FX_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
51
52 /* STM32FX_SPI_CR2 bit fields */
53 #define STM32FX_SPI_CR2_RXDMAEN         BIT(0)
54 #define STM32FX_SPI_CR2_TXDMAEN         BIT(1)
55 #define STM32FX_SPI_CR2_SSOE            BIT(2)
56 #define STM32FX_SPI_CR2_FRF             BIT(4)
57 #define STM32FX_SPI_CR2_ERRIE           BIT(5)
58 #define STM32FX_SPI_CR2_RXNEIE          BIT(6)
59 #define STM32FX_SPI_CR2_TXEIE           BIT(7)
60 #define STM32F7_SPI_CR2_DS              GENMASK(11, 8)
61 #define STM32F7_SPI_CR2_FRXTH           BIT(12)
62 #define STM32F7_SPI_CR2_LDMA_RX         BIT(13)
63 #define STM32F7_SPI_CR2_LDMA_TX         BIT(14)
64
65 /* STM32FX_SPI_SR bit fields */
66 #define STM32FX_SPI_SR_RXNE             BIT(0)
67 #define STM32FX_SPI_SR_TXE              BIT(1)
68 #define STM32FX_SPI_SR_CHSIDE           BIT(2)
69 #define STM32FX_SPI_SR_UDR              BIT(3)
70 #define STM32FX_SPI_SR_CRCERR           BIT(4)
71 #define STM32FX_SPI_SR_MODF             BIT(5)
72 #define STM32FX_SPI_SR_OVR              BIT(6)
73 #define STM32FX_SPI_SR_BSY              BIT(7)
74 #define STM32FX_SPI_SR_FRE              BIT(8)
75 #define STM32F7_SPI_SR_FRLVL            GENMASK(10, 9)
76 #define STM32F7_SPI_SR_FTLVL            GENMASK(12, 11)
77
78 /* STM32FX_SPI_I2SCFGR bit fields */
79 #define STM32FX_SPI_I2SCFGR_I2SMOD      BIT(11)
80
81 /* STM32F4 SPI Baud Rate min/max divisor */
82 #define STM32FX_SPI_BR_DIV_MIN          (2 << STM32FX_SPI_CR1_BR_MIN)
83 #define STM32FX_SPI_BR_DIV_MAX          (2 << STM32FX_SPI_CR1_BR_MAX)
84
85 /* STM32H7 SPI registers */
86 #define STM32H7_SPI_CR1                 0x00
87 #define STM32H7_SPI_CR2                 0x04
88 #define STM32H7_SPI_CFG1                0x08
89 #define STM32H7_SPI_CFG2                0x0C
90 #define STM32H7_SPI_IER                 0x10
91 #define STM32H7_SPI_SR                  0x14
92 #define STM32H7_SPI_IFCR                0x18
93 #define STM32H7_SPI_TXDR                0x20
94 #define STM32H7_SPI_RXDR                0x30
95 #define STM32H7_SPI_I2SCFGR             0x50
96
97 /* STM32H7_SPI_CR1 bit fields */
98 #define STM32H7_SPI_CR1_SPE             BIT(0)
99 #define STM32H7_SPI_CR1_MASRX           BIT(8)
100 #define STM32H7_SPI_CR1_CSTART          BIT(9)
101 #define STM32H7_SPI_CR1_CSUSP           BIT(10)
102 #define STM32H7_SPI_CR1_HDDIR           BIT(11)
103 #define STM32H7_SPI_CR1_SSI             BIT(12)
104
105 /* STM32H7_SPI_CR2 bit fields */
106 #define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
107 #define STM32H7_SPI_TSIZE_MAX           GENMASK(15, 0)
108
109 /* STM32H7_SPI_CFG1 bit fields */
110 #define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
111 #define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
112 #define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
113 #define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
114 #define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
115 #define STM32H7_SPI_CFG1_MBR_SHIFT      28
116 #define STM32H7_SPI_CFG1_MBR_MIN        0
117 #define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
118
119 /* STM32H7_SPI_CFG2 bit fields */
120 #define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
121 #define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
122 #define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
123 #define STM32H7_SPI_CFG2_MASTER         BIT(22)
124 #define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
125 #define STM32H7_SPI_CFG2_CPHA           BIT(24)
126 #define STM32H7_SPI_CFG2_CPOL           BIT(25)
127 #define STM32H7_SPI_CFG2_SSM            BIT(26)
128 #define STM32H7_SPI_CFG2_SSIOP          BIT(28)
129 #define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
130
131 /* STM32H7_SPI_IER bit fields */
132 #define STM32H7_SPI_IER_RXPIE           BIT(0)
133 #define STM32H7_SPI_IER_TXPIE           BIT(1)
134 #define STM32H7_SPI_IER_DXPIE           BIT(2)
135 #define STM32H7_SPI_IER_EOTIE           BIT(3)
136 #define STM32H7_SPI_IER_TXTFIE          BIT(4)
137 #define STM32H7_SPI_IER_OVRIE           BIT(6)
138 #define STM32H7_SPI_IER_MODFIE          BIT(9)
139 #define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
140
141 /* STM32H7_SPI_SR bit fields */
142 #define STM32H7_SPI_SR_RXP              BIT(0)
143 #define STM32H7_SPI_SR_TXP              BIT(1)
144 #define STM32H7_SPI_SR_EOT              BIT(3)
145 #define STM32H7_SPI_SR_OVR              BIT(6)
146 #define STM32H7_SPI_SR_MODF             BIT(9)
147 #define STM32H7_SPI_SR_SUSP             BIT(11)
148 #define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
149 #define STM32H7_SPI_SR_RXWNE            BIT(15)
150
151 /* STM32H7_SPI_IFCR bit fields */
152 #define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
153
154 /* STM32H7_SPI_I2SCFGR bit fields */
155 #define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
156
157 /* STM32MP25 SPI registers bit fields */
158 #define STM32MP25_SPI_HWCFGR1                   0x3F0
159
160 /* STM32MP25_SPI_CR2 bit fields */
161 #define STM32MP25_SPI_TSIZE_MAX_LIMITED         GENMASK(9, 0)
162
163 /* STM32MP25_SPI_HWCFGR1 */
164 #define STM32MP25_SPI_HWCFGR1_FULLCFG           GENMASK(27, 24)
165 #define STM32MP25_SPI_HWCFGR1_FULLCFG_LIMITED   0x0
166 #define STM32MP25_SPI_HWCFGR1_FULLCFG_FULL      0x1
167 #define STM32MP25_SPI_HWCFGR1_DSCFG             GENMASK(19, 16)
168 #define STM32MP25_SPI_HWCFGR1_DSCFG_16_B        0x0
169 #define STM32MP25_SPI_HWCFGR1_DSCFG_32_B        0x1
170
171 /* STM32H7 SPI Master Baud Rate min/max divisor */
172 #define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
173 #define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
174
175 /* STM32H7 SPI Communication mode */
176 #define STM32H7_SPI_FULL_DUPLEX         0
177 #define STM32H7_SPI_SIMPLEX_TX          1
178 #define STM32H7_SPI_SIMPLEX_RX          2
179 #define STM32H7_SPI_HALF_DUPLEX         3
180
181 /* SPI Communication type */
182 #define SPI_FULL_DUPLEX         0
183 #define SPI_SIMPLEX_TX          1
184 #define SPI_SIMPLEX_RX          2
185 #define SPI_3WIRE_TX            3
186 #define SPI_3WIRE_RX            4
187
188 #define STM32_SPI_AUTOSUSPEND_DELAY             1       /* 1 ms */
189
190 /*
191  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
192  * without fifo buffers.
193  */
194 #define SPI_DMA_MIN_BYTES       16
195
196 /* STM32 SPI driver helpers */
197 #define STM32_SPI_HOST_MODE(stm32_spi) (!(stm32_spi)->device_mode)
198 #define STM32_SPI_DEVICE_MODE(stm32_spi) ((stm32_spi)->device_mode)
199
200 /**
201  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
202  * @reg:                register offset
203  * @mask:               bitfield mask
204  * @shift:              left shift
205  */
206 struct stm32_spi_reg {
207         int reg;
208         int mask;
209         int shift;
210 };
211
212 /**
213  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
214  * @en: enable register and SPI enable bit
215  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
216  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
217  * @cpol: clock polarity register and polarity bit
218  * @cpha: clock phase register and phase bit
219  * @lsb_first: LSB transmitted first register and bit
220  * @cs_high: chips select active value
221  * @br: baud rate register and bitfields
222  * @rx: SPI RX data register
223  * @tx: SPI TX data register
224  * @fullcfg: SPI full or limited feature set register
225  */
226 struct stm32_spi_regspec {
227         const struct stm32_spi_reg en;
228         const struct stm32_spi_reg dma_rx_en;
229         const struct stm32_spi_reg dma_tx_en;
230         const struct stm32_spi_reg cpol;
231         const struct stm32_spi_reg cpha;
232         const struct stm32_spi_reg lsb_first;
233         const struct stm32_spi_reg cs_high;
234         const struct stm32_spi_reg br;
235         const struct stm32_spi_reg rx;
236         const struct stm32_spi_reg tx;
237         const struct stm32_spi_reg fullcfg;
238 };
239
240 struct stm32_spi;
241
242 /**
243  * struct stm32_spi_cfg - stm32 compatible configuration data
244  * @regs: registers descriptions
245  * @get_fifo_size: routine to get fifo size
246  * @get_bpw_mask: routine to get bits per word mask
247  * @disable: routine to disable controller
248  * @config: routine to configure controller as SPI Host
249  * @set_bpw: routine to configure registers to for bits per word
250  * @set_mode: routine to configure registers to desired mode
251  * @set_data_idleness: optional routine to configure registers to desired idle
252  * time between frames (if driver has this functionality)
253  * @set_number_of_data: optional routine to configure registers to desired
254  * number of data (if driver has this functionality)
255  * @write_tx: routine to write to transmit register/FIFO
256  * @read_rx: routine to read from receive register/FIFO
257  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
258  * using DMA
259  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
260  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
261  * @transfer_one_irq: routine to configure interrupts for driver
262  * @irq_handler_event: Interrupt handler for SPI controller events
263  * @irq_handler_thread: thread of interrupt handler for SPI controller
264  * @baud_rate_div_min: minimum baud rate divisor
265  * @baud_rate_div_max: maximum baud rate divisor
266  * @has_fifo: boolean to know if fifo is used for driver
267  * @has_device_mode: is this compatible capable to switch on device mode
268  * @flags: compatible specific SPI controller flags used at registration time
269  * @prevent_dma_burst: boolean to indicate to prevent DMA burst
270  */
271 struct stm32_spi_cfg {
272         const struct stm32_spi_regspec *regs;
273         int (*get_fifo_size)(struct stm32_spi *spi);
274         int (*get_bpw_mask)(struct stm32_spi *spi);
275         void (*disable)(struct stm32_spi *spi);
276         int (*config)(struct stm32_spi *spi);
277         void (*set_bpw)(struct stm32_spi *spi);
278         int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
279         void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
280         int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
281         void (*write_tx)(struct stm32_spi *spi);
282         void (*read_rx)(struct stm32_spi *spi);
283         void (*transfer_one_dma_start)(struct stm32_spi *spi);
284         void (*dma_rx_cb)(void *data);
285         void (*dma_tx_cb)(void *data);
286         int (*transfer_one_irq)(struct stm32_spi *spi);
287         irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
288         irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
289         unsigned int baud_rate_div_min;
290         unsigned int baud_rate_div_max;
291         bool has_fifo;
292         bool has_device_mode;
293         u16 flags;
294         bool prevent_dma_burst;
295 };
296
297 /**
298  * struct stm32_spi - private data of the SPI controller
299  * @dev: driver model representation of the controller
300  * @ctrl: controller interface
301  * @cfg: compatible configuration data
302  * @base: virtual memory area
303  * @clk: hw kernel clock feeding the SPI clock generator
304  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
305  * @lock: prevent I/O concurrent access
306  * @irq: SPI controller interrupt line
307  * @fifo_size: size of the embedded fifo in bytes
308  * @t_size_max: maximum number of data of one transfer
309  * @feature_set: SPI full or limited feature set
310  * @cur_midi: host inter-data idleness in ns
311  * @cur_speed: speed configured in Hz
312  * @cur_half_period: time of a half bit in us
313  * @cur_bpw: number of bits in a single SPI data frame
314  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
315  * @cur_comm: SPI communication mode
316  * @cur_xferlen: current transfer length in bytes
317  * @cur_usedma: boolean to know if dma is used in current transfer
318  * @tx_buf: data to be written, or NULL
319  * @rx_buf: data to be read, or NULL
320  * @tx_len: number of data to be written in bytes
321  * @rx_len: number of data to be read in bytes
322  * @dma_tx: dma channel for TX transfer
323  * @dma_rx: dma channel for RX transfer
324  * @phys_addr: SPI registers physical base address
325  * @device_mode: the controller is configured as SPI device
326  */
327 struct stm32_spi {
328         struct device *dev;
329         struct spi_controller *ctrl;
330         const struct stm32_spi_cfg *cfg;
331         void __iomem *base;
332         struct clk *clk;
333         u32 clk_rate;
334         spinlock_t lock; /* prevent I/O concurrent access */
335         int irq;
336         unsigned int fifo_size;
337         unsigned int t_size_max;
338         unsigned int feature_set;
339 #define STM32_SPI_FEATURE_LIMITED       STM32MP25_SPI_HWCFGR1_FULLCFG_LIMITED   /* 0x0 */
340 #define STM32_SPI_FEATURE_FULL          STM32MP25_SPI_HWCFGR1_FULLCFG_FULL      /* 0x1 */
341
342         unsigned int cur_midi;
343         unsigned int cur_speed;
344         unsigned int cur_half_period;
345         unsigned int cur_bpw;
346         unsigned int cur_fthlv;
347         unsigned int cur_comm;
348         unsigned int cur_xferlen;
349         bool cur_usedma;
350
351         const void *tx_buf;
352         void *rx_buf;
353         int tx_len;
354         int rx_len;
355         struct dma_chan *dma_tx;
356         struct dma_chan *dma_rx;
357         dma_addr_t phys_addr;
358
359         bool device_mode;
360 };
361
362 static const struct stm32_spi_regspec stm32fx_spi_regspec = {
363         .en = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_SPE },
364
365         .dma_rx_en = { STM32FX_SPI_CR2, STM32FX_SPI_CR2_RXDMAEN },
366         .dma_tx_en = { STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXDMAEN },
367
368         .cpol = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_CPOL },
369         .cpha = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_CPHA },
370         .lsb_first = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_LSBFRST },
371         .cs_high = {},
372         .br = { STM32FX_SPI_CR1, STM32FX_SPI_CR1_BR, STM32FX_SPI_CR1_BR_SHIFT },
373
374         .rx = { STM32FX_SPI_DR },
375         .tx = { STM32FX_SPI_DR },
376 };
377
378 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
379         /* SPI data transfer is enabled but spi_ker_ck is idle.
380          * CFG1 and CFG2 registers are write protected when SPE is enabled.
381          */
382         .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
383
384         .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
385         .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
386
387         .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
388         .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
389         .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
390         .cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
391         .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
392                 STM32H7_SPI_CFG1_MBR_SHIFT },
393
394         .rx = { STM32H7_SPI_RXDR },
395         .tx = { STM32H7_SPI_TXDR },
396 };
397
398 static const struct stm32_spi_regspec stm32mp25_spi_regspec = {
399         /* SPI data transfer is enabled but spi_ker_ck is idle.
400          * CFG1 and CFG2 registers are write protected when SPE is enabled.
401          */
402         .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
403
404         .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
405         .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
406
407         .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
408         .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
409         .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
410         .cs_high = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_SSIOP },
411         .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
412                 STM32H7_SPI_CFG1_MBR_SHIFT },
413
414         .rx = { STM32H7_SPI_RXDR },
415         .tx = { STM32H7_SPI_TXDR },
416
417         .fullcfg = { STM32MP25_SPI_HWCFGR1, STM32MP25_SPI_HWCFGR1_FULLCFG },
418 };
419
420 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
421                                       u32 offset, u32 bits)
422 {
423         writel_relaxed(readl_relaxed(spi->base + offset) | bits,
424                        spi->base + offset);
425 }
426
427 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
428                                       u32 offset, u32 bits)
429 {
430         writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
431                        spi->base + offset);
432 }
433
434 /**
435  * stm32h7_spi_get_fifo_size - Return fifo size
436  * @spi: pointer to the spi controller data structure
437  */
438 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
439 {
440         unsigned long flags;
441         u32 count = 0;
442
443         spin_lock_irqsave(&spi->lock, flags);
444
445         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
446
447         while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
448                 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
449
450         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
451
452         spin_unlock_irqrestore(&spi->lock, flags);
453
454         dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
455
456         return count;
457 }
458
459 /**
460  * stm32f4_spi_get_bpw_mask - Return bits per word mask
461  * @spi: pointer to the spi controller data structure
462  */
463 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
464 {
465         dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
466         return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
467 }
468
469 /**
470  * stm32f7_spi_get_bpw_mask - Return bits per word mask
471  * @spi: pointer to the spi controller data structure
472  */
473 static int stm32f7_spi_get_bpw_mask(struct stm32_spi *spi)
474 {
475         dev_dbg(spi->dev, "16-bit maximum data frame\n");
476         return SPI_BPW_RANGE_MASK(4, 16);
477 }
478
479 /**
480  * stm32h7_spi_get_bpw_mask - Return bits per word mask
481  * @spi: pointer to the spi controller data structure
482  */
483 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
484 {
485         unsigned long flags;
486         u32 cfg1, max_bpw;
487
488         spin_lock_irqsave(&spi->lock, flags);
489
490         /*
491          * The most significant bit at DSIZE bit field is reserved when the
492          * maximum data size of periperal instances is limited to 16-bit
493          */
494         stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
495
496         cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
497         max_bpw = FIELD_GET(STM32H7_SPI_CFG1_DSIZE, cfg1) + 1;
498
499         spin_unlock_irqrestore(&spi->lock, flags);
500
501         dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
502
503         return SPI_BPW_RANGE_MASK(4, max_bpw);
504 }
505
506 /**
507  * stm32mp25_spi_get_bpw_mask - Return bits per word mask
508  * @spi: pointer to the spi controller data structure
509  */
510 static int stm32mp25_spi_get_bpw_mask(struct stm32_spi *spi)
511 {
512         u32 dscfg, max_bpw;
513
514         if (spi->feature_set == STM32_SPI_FEATURE_LIMITED) {
515                 dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
516                 return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
517         }
518
519         dscfg = FIELD_GET(STM32MP25_SPI_HWCFGR1_DSCFG,
520                           readl_relaxed(spi->base + STM32MP25_SPI_HWCFGR1));
521         max_bpw = 16;
522         if (dscfg == STM32MP25_SPI_HWCFGR1_DSCFG_32_B)
523                 max_bpw = 32;
524         dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
525         return SPI_BPW_RANGE_MASK(4, max_bpw);
526 }
527
528 /**
529  * stm32_spi_prepare_mbr - Determine baud rate divisor value
530  * @spi: pointer to the spi controller data structure
531  * @speed_hz: requested speed
532  * @min_div: minimum baud rate divisor
533  * @max_div: maximum baud rate divisor
534  *
535  * Return baud rate divisor value in case of success or -EINVAL
536  */
537 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
538                                  u32 min_div, u32 max_div)
539 {
540         u32 div, mbrdiv;
541
542         /* Ensure spi->clk_rate is even */
543         div = DIV_ROUND_CLOSEST(spi->clk_rate & ~0x1, speed_hz);
544
545         /*
546          * SPI framework set xfer->speed_hz to ctrl->max_speed_hz if
547          * xfer->speed_hz is greater than ctrl->max_speed_hz, and it returns
548          * an error when xfer->speed_hz is lower than ctrl->min_speed_hz, so
549          * no need to check it there.
550          * However, we need to ensure the following calculations.
551          */
552         if ((div < min_div) || (div > max_div))
553                 return -EINVAL;
554
555         /* Determine the first power of 2 greater than or equal to div */
556         if (div & (div - 1))
557                 mbrdiv = fls(div);
558         else
559                 mbrdiv = fls(div) - 1;
560
561         spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
562
563         spi->cur_half_period = DIV_ROUND_CLOSEST(USEC_PER_SEC, 2 * spi->cur_speed);
564
565         return mbrdiv - 1;
566 }
567
568 /**
569  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
570  * @spi: pointer to the spi controller data structure
571  * @xfer_len: length of the message to be transferred
572  */
573 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
574 {
575         u32 packet, bpw;
576
577         /* data packet should not exceed 1/2 of fifo space */
578         packet = clamp(xfer_len, 1U, spi->fifo_size / 2);
579
580         /* align packet size with data registers access */
581         bpw = DIV_ROUND_UP(spi->cur_bpw, 8);
582         return DIV_ROUND_UP(packet, bpw);
583 }
584
585 /**
586  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
587  * @spi: pointer to the spi controller data structure
588  *
589  * Read from tx_buf depends on remaining bytes to avoid to read beyond
590  * tx_buf end.
591  */
592 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
593 {
594         if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
595                                   STM32FX_SPI_SR_TXE)) {
596                 u32 offs = spi->cur_xferlen - spi->tx_len;
597
598                 if (spi->cur_bpw == 16) {
599                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
600
601                         writew_relaxed(*tx_buf16, spi->base + STM32FX_SPI_DR);
602                         spi->tx_len -= sizeof(u16);
603                 } else {
604                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
605
606                         writeb_relaxed(*tx_buf8, spi->base + STM32FX_SPI_DR);
607                         spi->tx_len -= sizeof(u8);
608                 }
609         }
610
611         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
612 }
613
614 /**
615  * stm32f7_spi_write_tx - Write bytes to Transmit Data Register
616  * @spi: pointer to the spi controller data structure
617  *
618  * Read from tx_buf depends on remaining bytes to avoid to read beyond
619  * tx_buf end.
620  */
621 static void stm32f7_spi_write_tx(struct stm32_spi *spi)
622 {
623         if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
624                                   STM32FX_SPI_SR_TXE)) {
625                 u32 offs = spi->cur_xferlen - spi->tx_len;
626
627                 if (spi->tx_len >= sizeof(u16)) {
628                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
629
630                         writew_relaxed(*tx_buf16, spi->base + STM32FX_SPI_DR);
631                         spi->tx_len -= sizeof(u16);
632                 } else {
633                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
634
635                         writeb_relaxed(*tx_buf8, spi->base + STM32FX_SPI_DR);
636                         spi->tx_len -= sizeof(u8);
637                 }
638         }
639
640         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
641 }
642
643 /**
644  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
645  * @spi: pointer to the spi controller data structure
646  *
647  * Read from tx_buf depends on remaining bytes to avoid to read beyond
648  * tx_buf end.
649  */
650 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
651 {
652         while ((spi->tx_len > 0) &&
653                        (readl_relaxed(spi->base + STM32H7_SPI_SR) &
654                         STM32H7_SPI_SR_TXP)) {
655                 u32 offs = spi->cur_xferlen - spi->tx_len;
656
657                 if (spi->tx_len >= sizeof(u32)) {
658                         const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
659
660                         writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
661                         spi->tx_len -= sizeof(u32);
662                 } else if (spi->tx_len >= sizeof(u16)) {
663                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
664
665                         writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
666                         spi->tx_len -= sizeof(u16);
667                 } else {
668                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
669
670                         writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
671                         spi->tx_len -= sizeof(u8);
672                 }
673         }
674
675         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
676 }
677
678 /**
679  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
680  * @spi: pointer to the spi controller data structure
681  *
682  * Write in rx_buf depends on remaining bytes to avoid to write beyond
683  * rx_buf end.
684  */
685 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
686 {
687         if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32FX_SPI_SR) &
688                                   STM32FX_SPI_SR_RXNE)) {
689                 u32 offs = spi->cur_xferlen - spi->rx_len;
690
691                 if (spi->cur_bpw == 16) {
692                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
693
694                         *rx_buf16 = readw_relaxed(spi->base + STM32FX_SPI_DR);
695                         spi->rx_len -= sizeof(u16);
696                 } else {
697                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
698
699                         *rx_buf8 = readb_relaxed(spi->base + STM32FX_SPI_DR);
700                         spi->rx_len -= sizeof(u8);
701                 }
702         }
703
704         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
705 }
706
707 /**
708  * stm32f7_spi_read_rx - Read bytes from Receive Data Register
709  * @spi: pointer to the spi controller data structure
710  *
711  * Write in rx_buf depends on remaining bytes to avoid to write beyond
712  * rx_buf end.
713  */
714 static void stm32f7_spi_read_rx(struct stm32_spi *spi)
715 {
716         u32 sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
717         u32 frlvl = FIELD_GET(STM32F7_SPI_SR_FRLVL, sr);
718
719         while ((spi->rx_len > 0) && (frlvl > 0)) {
720                 u32 offs = spi->cur_xferlen - spi->rx_len;
721
722                 if ((spi->rx_len >= sizeof(u16)) && (frlvl >= 2)) {
723                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
724
725                         *rx_buf16 = readw_relaxed(spi->base + STM32FX_SPI_DR);
726                         spi->rx_len -= sizeof(u16);
727                 } else {
728                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
729
730                         *rx_buf8 = readb_relaxed(spi->base + STM32FX_SPI_DR);
731                         spi->rx_len -= sizeof(u8);
732                 }
733
734                 sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
735                 frlvl = FIELD_GET(STM32F7_SPI_SR_FRLVL, sr);
736         }
737
738         if (spi->rx_len >= sizeof(u16))
739                 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
740         else
741                 stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
742
743         dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
744                 __func__, spi->rx_len, sr);
745 }
746
747 /**
748  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
749  * @spi: pointer to the spi controller data structure
750  *
751  * Write in rx_buf depends on remaining bytes to avoid to write beyond
752  * rx_buf end.
753  */
754 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi)
755 {
756         u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
757         u32 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
758
759         while ((spi->rx_len > 0) &&
760                ((sr & STM32H7_SPI_SR_RXP) ||
761                 ((sr & STM32H7_SPI_SR_EOT) &&
762                  ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
763                 u32 offs = spi->cur_xferlen - spi->rx_len;
764
765                 if ((spi->rx_len >= sizeof(u32)) ||
766                     (sr & STM32H7_SPI_SR_RXWNE)) {
767                         u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
768
769                         *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
770                         spi->rx_len -= sizeof(u32);
771                 } else if ((spi->rx_len >= sizeof(u16)) ||
772                            (!(sr & STM32H7_SPI_SR_RXWNE) &&
773                             (rxplvl >= 2 || spi->cur_bpw > 8))) {
774                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
775
776                         *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
777                         spi->rx_len -= sizeof(u16);
778                 } else {
779                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
780
781                         *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
782                         spi->rx_len -= sizeof(u8);
783                 }
784
785                 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
786                 rxplvl = FIELD_GET(STM32H7_SPI_SR_RXPLVL, sr);
787         }
788
789         dev_dbg(spi->dev, "%s: %d bytes left (sr=%08x)\n",
790                 __func__, spi->rx_len, sr);
791 }
792
793 /**
794  * stm32_spi_enable - Enable SPI controller
795  * @spi: pointer to the spi controller data structure
796  */
797 static void stm32_spi_enable(struct stm32_spi *spi)
798 {
799         dev_dbg(spi->dev, "enable controller\n");
800
801         stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
802                            spi->cfg->regs->en.mask);
803 }
804
805 /**
806  * stm32fx_spi_disable - Disable SPI controller
807  * @spi: pointer to the spi controller data structure
808  */
809 static void stm32fx_spi_disable(struct stm32_spi *spi)
810 {
811         unsigned long flags;
812         u32 sr;
813
814         dev_dbg(spi->dev, "disable controller\n");
815
816         spin_lock_irqsave(&spi->lock, flags);
817
818         if (!(readl_relaxed(spi->base + STM32FX_SPI_CR1) &
819               STM32FX_SPI_CR1_SPE)) {
820                 spin_unlock_irqrestore(&spi->lock, flags);
821                 return;
822         }
823
824         /* Disable interrupts */
825         stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXEIE |
826                                                  STM32FX_SPI_CR2_RXNEIE |
827                                                  STM32FX_SPI_CR2_ERRIE);
828
829         /* Wait until BSY = 0 */
830         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32FX_SPI_SR,
831                                               sr, !(sr & STM32FX_SPI_SR_BSY),
832                                               10, 100000) < 0) {
833                 dev_warn(spi->dev, "disabling condition timeout\n");
834         }
835
836         if (spi->cur_usedma && spi->dma_tx)
837                 dmaengine_terminate_async(spi->dma_tx);
838         if (spi->cur_usedma && spi->dma_rx)
839                 dmaengine_terminate_async(spi->dma_rx);
840
841         stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, STM32FX_SPI_CR1_SPE);
842
843         stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_TXDMAEN |
844                                                  STM32FX_SPI_CR2_RXDMAEN);
845
846         /* Sequence to clear OVR flag */
847         readl_relaxed(spi->base + STM32FX_SPI_DR);
848         readl_relaxed(spi->base + STM32FX_SPI_SR);
849
850         spin_unlock_irqrestore(&spi->lock, flags);
851 }
852
853 /**
854  * stm32h7_spi_disable - Disable SPI controller
855  * @spi: pointer to the spi controller data structure
856  *
857  * RX-Fifo is flushed when SPI controller is disabled.
858  */
859 static void stm32h7_spi_disable(struct stm32_spi *spi)
860 {
861         unsigned long flags;
862         u32 cr1;
863
864         dev_dbg(spi->dev, "disable controller\n");
865
866         spin_lock_irqsave(&spi->lock, flags);
867
868         cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
869
870         if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
871                 spin_unlock_irqrestore(&spi->lock, flags);
872                 return;
873         }
874
875         /* Add a delay to make sure that transmission is ended. */
876         if (spi->cur_half_period)
877                 udelay(spi->cur_half_period);
878
879         if (spi->cur_usedma && spi->dma_tx)
880                 dmaengine_terminate_async(spi->dma_tx);
881         if (spi->cur_usedma && spi->dma_rx)
882                 dmaengine_terminate_async(spi->dma_rx);
883
884         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
885
886         stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
887                                                 STM32H7_SPI_CFG1_RXDMAEN);
888
889         /* Disable interrupts and clear status flags */
890         writel_relaxed(0, spi->base + STM32H7_SPI_IER);
891         writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
892
893         spin_unlock_irqrestore(&spi->lock, flags);
894 }
895
896 /**
897  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
898  * @ctrl: controller interface
899  * @spi_dev: pointer to the spi device
900  * @transfer: pointer to spi transfer
901  *
902  * If driver has fifo and the current transfer size is greater than fifo size,
903  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
904  */
905 static bool stm32_spi_can_dma(struct spi_controller *ctrl,
906                               struct spi_device *spi_dev,
907                               struct spi_transfer *transfer)
908 {
909         unsigned int dma_size;
910         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
911
912         if (spi->cfg->has_fifo)
913                 dma_size = spi->fifo_size;
914         else
915                 dma_size = SPI_DMA_MIN_BYTES;
916
917         dev_dbg(spi->dev, "%s: %s\n", __func__,
918                 (transfer->len > dma_size) ? "true" : "false");
919
920         return (transfer->len > dma_size);
921 }
922
923 /**
924  * stm32fx_spi_irq_event - Interrupt handler for SPI controller events
925  * @irq: interrupt line
926  * @dev_id: SPI controller ctrl interface
927  */
928 static irqreturn_t stm32fx_spi_irq_event(int irq, void *dev_id)
929 {
930         struct spi_controller *ctrl = dev_id;
931         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
932         u32 sr, mask = 0;
933         bool end = false;
934
935         spin_lock(&spi->lock);
936
937         sr = readl_relaxed(spi->base + STM32FX_SPI_SR);
938         /*
939          * BSY flag is not handled in interrupt but it is normal behavior when
940          * this flag is set.
941          */
942         sr &= ~STM32FX_SPI_SR_BSY;
943
944         if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
945                                  spi->cur_comm == SPI_3WIRE_TX)) {
946                 /* OVR flag shouldn't be handled for TX only mode */
947                 sr &= ~(STM32FX_SPI_SR_OVR | STM32FX_SPI_SR_RXNE);
948                 mask |= STM32FX_SPI_SR_TXE;
949         }
950
951         if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
952                                 spi->cur_comm == SPI_SIMPLEX_RX ||
953                                 spi->cur_comm == SPI_3WIRE_RX)) {
954                 /* TXE flag is set and is handled when RXNE flag occurs */
955                 sr &= ~STM32FX_SPI_SR_TXE;
956                 mask |= STM32FX_SPI_SR_RXNE | STM32FX_SPI_SR_OVR;
957         }
958
959         if (!(sr & mask)) {
960                 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
961                 spin_unlock(&spi->lock);
962                 return IRQ_NONE;
963         }
964
965         if (sr & STM32FX_SPI_SR_OVR) {
966                 dev_warn(spi->dev, "Overrun: received value discarded\n");
967
968                 /* Sequence to clear OVR flag */
969                 readl_relaxed(spi->base + STM32FX_SPI_DR);
970                 readl_relaxed(spi->base + STM32FX_SPI_SR);
971
972                 /*
973                  * If overrun is detected, it means that something went wrong,
974                  * so stop the current transfer. Transfer can wait for next
975                  * RXNE but DR is already read and end never happens.
976                  */
977                 end = true;
978                 goto end_irq;
979         }
980
981         if (sr & STM32FX_SPI_SR_TXE) {
982                 if (spi->tx_buf)
983                         spi->cfg->write_tx(spi);
984                 if (spi->tx_len == 0)
985                         end = true;
986         }
987
988         if (sr & STM32FX_SPI_SR_RXNE) {
989                 spi->cfg->read_rx(spi);
990                 if (spi->rx_len == 0)
991                         end = true;
992                 else if (spi->tx_buf)/* Load data for discontinuous mode */
993                         spi->cfg->write_tx(spi);
994         }
995
996 end_irq:
997         if (end) {
998                 /* Immediately disable interrupts to do not generate new one */
999                 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2,
1000                                         STM32FX_SPI_CR2_TXEIE |
1001                                         STM32FX_SPI_CR2_RXNEIE |
1002                                         STM32FX_SPI_CR2_ERRIE);
1003                 spin_unlock(&spi->lock);
1004                 return IRQ_WAKE_THREAD;
1005         }
1006
1007         spin_unlock(&spi->lock);
1008         return IRQ_HANDLED;
1009 }
1010
1011 /**
1012  * stm32fx_spi_irq_thread - Thread of interrupt handler for SPI controller
1013  * @irq: interrupt line
1014  * @dev_id: SPI controller interface
1015  */
1016 static irqreturn_t stm32fx_spi_irq_thread(int irq, void *dev_id)
1017 {
1018         struct spi_controller *ctrl = dev_id;
1019         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1020
1021         spi_finalize_current_transfer(ctrl);
1022         stm32fx_spi_disable(spi);
1023
1024         return IRQ_HANDLED;
1025 }
1026
1027 /**
1028  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
1029  * @irq: interrupt line
1030  * @dev_id: SPI controller interface
1031  */
1032 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
1033 {
1034         struct spi_controller *ctrl = dev_id;
1035         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1036         u32 sr, ier, mask;
1037         unsigned long flags;
1038         bool end = false;
1039
1040         spin_lock_irqsave(&spi->lock, flags);
1041
1042         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1043         ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
1044
1045         mask = ier;
1046         /*
1047          * EOTIE enables irq from EOT, SUSP and TXC events. We need to set
1048          * SUSP to acknowledge it later. TXC is automatically cleared
1049          */
1050
1051         mask |= STM32H7_SPI_SR_SUSP;
1052         /*
1053          * DXPIE is set in Full-Duplex, one IT will be raised if TXP and RXP
1054          * are set. So in case of Full-Duplex, need to poll TXP and RXP event.
1055          */
1056         if ((spi->cur_comm == SPI_FULL_DUPLEX) && !spi->cur_usedma)
1057                 mask |= STM32H7_SPI_SR_TXP | STM32H7_SPI_SR_RXP;
1058
1059         if (!(sr & mask)) {
1060                 dev_warn(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
1061                          sr, ier);
1062                 spin_unlock_irqrestore(&spi->lock, flags);
1063                 return IRQ_NONE;
1064         }
1065
1066         if (sr & STM32H7_SPI_SR_SUSP) {
1067                 static DEFINE_RATELIMIT_STATE(rs,
1068                                               DEFAULT_RATELIMIT_INTERVAL * 10,
1069                                               1);
1070                 ratelimit_set_flags(&rs, RATELIMIT_MSG_ON_RELEASE);
1071                 if (__ratelimit(&rs))
1072                         dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
1073                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1074                         stm32h7_spi_read_rxfifo(spi);
1075                 /*
1076                  * If communication is suspended while using DMA, it means
1077                  * that something went wrong, so stop the current transfer
1078                  */
1079                 if (spi->cur_usedma)
1080                         end = true;
1081         }
1082
1083         if (sr & STM32H7_SPI_SR_MODF) {
1084                 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
1085                 end = true;
1086         }
1087
1088         if (sr & STM32H7_SPI_SR_OVR) {
1089                 dev_err(spi->dev, "Overrun: RX data lost\n");
1090                 end = true;
1091         }
1092
1093         if (sr & STM32H7_SPI_SR_EOT) {
1094                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1095                         stm32h7_spi_read_rxfifo(spi);
1096                 if (!spi->cur_usedma ||
1097                     (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX))
1098                         end = true;
1099         }
1100
1101         if (sr & STM32H7_SPI_SR_TXP)
1102                 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
1103                         stm32h7_spi_write_txfifo(spi);
1104
1105         if (sr & STM32H7_SPI_SR_RXP)
1106                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
1107                         stm32h7_spi_read_rxfifo(spi);
1108
1109         writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
1110
1111         spin_unlock_irqrestore(&spi->lock, flags);
1112
1113         if (end) {
1114                 stm32h7_spi_disable(spi);
1115                 spi_finalize_current_transfer(ctrl);
1116         }
1117
1118         return IRQ_HANDLED;
1119 }
1120
1121 static int stm32_spi_optimize_message(struct spi_message *msg)
1122 {
1123         struct spi_controller *ctrl = msg->spi->controller;
1124         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1125
1126         /* On STM32H7, messages should not exceed a maximum size set
1127          * later via the set_number_of_data function. In order to
1128          * ensure that, split large messages into several messages
1129          */
1130         if (spi->cfg->set_number_of_data)
1131                 return spi_split_transfers_maxwords(ctrl, msg, spi->t_size_max);
1132
1133         return 0;
1134 }
1135
1136 /**
1137  * stm32_spi_prepare_msg - set up the controller to transfer a single message
1138  * @ctrl: controller interface
1139  * @msg: pointer to spi message
1140  */
1141 static int stm32_spi_prepare_msg(struct spi_controller *ctrl,
1142                                  struct spi_message *msg)
1143 {
1144         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1145         struct spi_device *spi_dev = msg->spi;
1146         struct device_node *np = spi_dev->dev.of_node;
1147         unsigned long flags;
1148         u32 clrb = 0, setb = 0;
1149
1150         /* SPI target device may need time between data frames */
1151         spi->cur_midi = 0;
1152         if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1153                 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1154
1155         if (spi_dev->mode & SPI_CPOL)
1156                 setb |= spi->cfg->regs->cpol.mask;
1157         else
1158                 clrb |= spi->cfg->regs->cpol.mask;
1159
1160         if (spi_dev->mode & SPI_CPHA)
1161                 setb |= spi->cfg->regs->cpha.mask;
1162         else
1163                 clrb |= spi->cfg->regs->cpha.mask;
1164
1165         if (spi_dev->mode & SPI_LSB_FIRST)
1166                 setb |= spi->cfg->regs->lsb_first.mask;
1167         else
1168                 clrb |= spi->cfg->regs->lsb_first.mask;
1169
1170         if (STM32_SPI_DEVICE_MODE(spi) && spi_dev->mode & SPI_CS_HIGH)
1171                 setb |= spi->cfg->regs->cs_high.mask;
1172         else
1173                 clrb |= spi->cfg->regs->cs_high.mask;
1174
1175         dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1176                 !!(spi_dev->mode & SPI_CPOL),
1177                 !!(spi_dev->mode & SPI_CPHA),
1178                 !!(spi_dev->mode & SPI_LSB_FIRST),
1179                 !!(spi_dev->mode & SPI_CS_HIGH));
1180
1181         spin_lock_irqsave(&spi->lock, flags);
1182
1183         /* CPOL, CPHA and LSB FIRST bits have common register */
1184         if (clrb || setb)
1185                 writel_relaxed(
1186                         (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1187                          ~clrb) | setb,
1188                         spi->base + spi->cfg->regs->cpol.reg);
1189
1190         spin_unlock_irqrestore(&spi->lock, flags);
1191
1192         return 0;
1193 }
1194
1195 /**
1196  * stm32fx_spi_dma_tx_cb - dma callback
1197  * @data: pointer to the spi controller data structure
1198  *
1199  * DMA callback is called when the transfer is complete for DMA TX channel.
1200  */
1201 static void stm32fx_spi_dma_tx_cb(void *data)
1202 {
1203         struct stm32_spi *spi = data;
1204
1205         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1206                 spi_finalize_current_transfer(spi->ctrl);
1207                 stm32fx_spi_disable(spi);
1208         }
1209 }
1210
1211 /**
1212  * stm32_spi_dma_rx_cb - dma callback
1213  * @data: pointer to the spi controller data structure
1214  *
1215  * DMA callback is called when the transfer is complete for DMA RX channel.
1216  */
1217 static void stm32_spi_dma_rx_cb(void *data)
1218 {
1219         struct stm32_spi *spi = data;
1220
1221         spi_finalize_current_transfer(spi->ctrl);
1222         spi->cfg->disable(spi);
1223 }
1224
1225 /**
1226  * stm32_spi_dma_config - configure dma slave channel depending on current
1227  *                        transfer bits_per_word.
1228  * @spi: pointer to the spi controller data structure
1229  * @dma_chan: pointer to the DMA channel
1230  * @dma_conf: pointer to the dma_slave_config structure
1231  * @dir: direction of the dma transfer
1232  */
1233 static void stm32_spi_dma_config(struct stm32_spi *spi,
1234                                  struct dma_chan *dma_chan,
1235                                  struct dma_slave_config *dma_conf,
1236                                  enum dma_transfer_direction dir)
1237 {
1238         enum dma_slave_buswidth buswidth;
1239         struct dma_slave_caps caps;
1240         u32 maxburst = 1;
1241         int ret;
1242
1243         if (spi->cur_bpw <= 8)
1244                 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1245         else if (spi->cur_bpw <= 16)
1246                 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1247         else
1248                 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1249
1250         /* Valid for DMA Half or Full Fifo threshold */
1251         if (!spi->cfg->prevent_dma_burst && spi->cfg->has_fifo && spi->cur_fthlv != 2)
1252                 maxburst = spi->cur_fthlv;
1253
1254         /* Get the DMA channel caps, and adjust maxburst if possible */
1255         ret = dma_get_slave_caps(dma_chan, &caps);
1256         if (!ret)
1257                 maxburst = min(maxburst, caps.max_burst);
1258
1259         memset(dma_conf, 0, sizeof(struct dma_slave_config));
1260         dma_conf->direction = dir;
1261         if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1262                 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1263                 dma_conf->src_addr_width = buswidth;
1264                 dma_conf->src_maxburst = maxburst;
1265
1266                 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1267                         buswidth, maxburst);
1268         } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1269                 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1270                 dma_conf->dst_addr_width = buswidth;
1271                 dma_conf->dst_maxburst = maxburst;
1272
1273                 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1274                         buswidth, maxburst);
1275         }
1276 }
1277
1278 /**
1279  * stm32fx_spi_transfer_one_irq - transfer a single spi_transfer using
1280  *                                interrupts
1281  * @spi: pointer to the spi controller data structure
1282  *
1283  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1284  * in progress.
1285  */
1286 static int stm32fx_spi_transfer_one_irq(struct stm32_spi *spi)
1287 {
1288         unsigned long flags;
1289         u32 cr2 = 0;
1290
1291         /* Enable the interrupts relative to the current communication mode */
1292         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1293                 cr2 |= STM32FX_SPI_CR2_TXEIE;
1294         } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1295                                 spi->cur_comm == SPI_SIMPLEX_RX ||
1296                                 spi->cur_comm == SPI_3WIRE_RX) {
1297                 /* In transmit-only mode, the OVR flag is set in the SR register
1298                  * since the received data are never read. Therefore set OVR
1299                  * interrupt only when rx buffer is available.
1300                  */
1301                 cr2 |= STM32FX_SPI_CR2_RXNEIE | STM32FX_SPI_CR2_ERRIE;
1302         } else {
1303                 return -EINVAL;
1304         }
1305
1306         spin_lock_irqsave(&spi->lock, flags);
1307
1308         stm32_spi_set_bits(spi, STM32FX_SPI_CR2, cr2);
1309
1310         stm32_spi_enable(spi);
1311
1312         /* starting data transfer when buffer is loaded */
1313         if (spi->tx_buf)
1314                 spi->cfg->write_tx(spi);
1315
1316         spin_unlock_irqrestore(&spi->lock, flags);
1317
1318         return 1;
1319 }
1320
1321 /**
1322  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1323  *                                interrupts
1324  * @spi: pointer to the spi controller data structure
1325  *
1326  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1327  * in progress.
1328  */
1329 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1330 {
1331         unsigned long flags;
1332         u32 ier = 0;
1333
1334         /* Enable the interrupts relative to the current communication mode */
1335         if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1336                 ier |= STM32H7_SPI_IER_DXPIE;
1337         else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1338                 ier |= STM32H7_SPI_IER_TXPIE;
1339         else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1340                 ier |= STM32H7_SPI_IER_RXPIE;
1341
1342         /* Enable the interrupts relative to the end of transfer */
1343         ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1344                STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1345
1346         spin_lock_irqsave(&spi->lock, flags);
1347
1348         stm32_spi_enable(spi);
1349
1350         /* Be sure to have data in fifo before starting data transfer */
1351         if (spi->tx_buf)
1352                 stm32h7_spi_write_txfifo(spi);
1353
1354         if (STM32_SPI_HOST_MODE(spi))
1355                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1356
1357         writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1358
1359         spin_unlock_irqrestore(&spi->lock, flags);
1360
1361         return 1;
1362 }
1363
1364 /**
1365  * stm32fx_spi_transfer_one_dma_start - Set SPI driver registers to start
1366  *                                      transfer using DMA
1367  * @spi: pointer to the spi controller data structure
1368  */
1369 static void stm32fx_spi_transfer_one_dma_start(struct stm32_spi *spi)
1370 {
1371         /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1372         if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1373             spi->cur_comm == SPI_FULL_DUPLEX) {
1374                 /*
1375                  * In transmit-only mode, the OVR flag is set in the SR register
1376                  * since the received data are never read. Therefore set OVR
1377                  * interrupt only when rx buffer is available.
1378                  */
1379                 stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32FX_SPI_CR2_ERRIE);
1380         }
1381
1382         stm32_spi_enable(spi);
1383 }
1384
1385 /**
1386  * stm32f7_spi_transfer_one_dma_start - Set SPI driver registers to start
1387  *                                      transfer using DMA
1388  * @spi: pointer to the spi controller data structure
1389  */
1390 static void stm32f7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1391 {
1392         /* Configure DMA request trigger threshold according to DMA width */
1393         if (spi->cur_bpw <= 8)
1394                 stm32_spi_set_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
1395         else
1396                 stm32_spi_clr_bits(spi, STM32FX_SPI_CR2, STM32F7_SPI_CR2_FRXTH);
1397
1398         stm32fx_spi_transfer_one_dma_start(spi);
1399 }
1400
1401 /**
1402  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1403  *                                      transfer using DMA
1404  * @spi: pointer to the spi controller data structure
1405  */
1406 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1407 {
1408         uint32_t ier = STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1409
1410         /* Enable the interrupts */
1411         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX)
1412                 ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE;
1413
1414         stm32_spi_set_bits(spi, STM32H7_SPI_IER, ier);
1415
1416         stm32_spi_enable(spi);
1417
1418         if (STM32_SPI_HOST_MODE(spi))
1419                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1420 }
1421
1422 /**
1423  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1424  * @spi: pointer to the spi controller data structure
1425  * @xfer: pointer to the spi_transfer structure
1426  *
1427  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1428  * in progress.
1429  */
1430 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1431                                       struct spi_transfer *xfer)
1432 {
1433         struct dma_slave_config tx_dma_conf, rx_dma_conf;
1434         struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1435         unsigned long flags;
1436
1437         spin_lock_irqsave(&spi->lock, flags);
1438
1439         rx_dma_desc = NULL;
1440         if (spi->rx_buf && spi->dma_rx) {
1441                 stm32_spi_dma_config(spi, spi->dma_rx, &rx_dma_conf, DMA_DEV_TO_MEM);
1442                 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1443
1444                 /* Enable Rx DMA request */
1445                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1446                                    spi->cfg->regs->dma_rx_en.mask);
1447
1448                 rx_dma_desc = dmaengine_prep_slave_sg(
1449                                         spi->dma_rx, xfer->rx_sg.sgl,
1450                                         xfer->rx_sg.nents,
1451                                         rx_dma_conf.direction,
1452                                         DMA_PREP_INTERRUPT);
1453         }
1454
1455         tx_dma_desc = NULL;
1456         if (spi->tx_buf && spi->dma_tx) {
1457                 stm32_spi_dma_config(spi, spi->dma_tx, &tx_dma_conf, DMA_MEM_TO_DEV);
1458                 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1459
1460                 tx_dma_desc = dmaengine_prep_slave_sg(
1461                                         spi->dma_tx, xfer->tx_sg.sgl,
1462                                         xfer->tx_sg.nents,
1463                                         tx_dma_conf.direction,
1464                                         DMA_PREP_INTERRUPT);
1465         }
1466
1467         if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1468             (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1469                 goto dma_desc_error;
1470
1471         if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1472                 goto dma_desc_error;
1473
1474         if (rx_dma_desc) {
1475                 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1476                 rx_dma_desc->callback_param = spi;
1477
1478                 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1479                         dev_err(spi->dev, "Rx DMA submit failed\n");
1480                         goto dma_desc_error;
1481                 }
1482                 /* Enable Rx DMA channel */
1483                 dma_async_issue_pending(spi->dma_rx);
1484         }
1485
1486         if (tx_dma_desc) {
1487                 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1488                     spi->cur_comm == SPI_3WIRE_TX) {
1489                         tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1490                         tx_dma_desc->callback_param = spi;
1491                 }
1492
1493                 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1494                         dev_err(spi->dev, "Tx DMA submit failed\n");
1495                         goto dma_submit_error;
1496                 }
1497                 /* Enable Tx DMA channel */
1498                 dma_async_issue_pending(spi->dma_tx);
1499
1500                 /* Enable Tx DMA request */
1501                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1502                                    spi->cfg->regs->dma_tx_en.mask);
1503         }
1504
1505         spi->cfg->transfer_one_dma_start(spi);
1506
1507         spin_unlock_irqrestore(&spi->lock, flags);
1508
1509         return 1;
1510
1511 dma_submit_error:
1512         if (spi->dma_rx)
1513                 dmaengine_terminate_sync(spi->dma_rx);
1514
1515 dma_desc_error:
1516         stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1517                            spi->cfg->regs->dma_rx_en.mask);
1518
1519         spin_unlock_irqrestore(&spi->lock, flags);
1520
1521         dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1522
1523         spi->cur_usedma = false;
1524         return spi->cfg->transfer_one_irq(spi);
1525 }
1526
1527 /**
1528  * stm32f4_spi_set_bpw - Configure bits per word
1529  * @spi: pointer to the spi controller data structure
1530  */
1531 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1532 {
1533         if (spi->cur_bpw == 16)
1534                 stm32_spi_set_bits(spi, STM32FX_SPI_CR1, STM32F4_SPI_CR1_DFF);
1535         else
1536                 stm32_spi_clr_bits(spi, STM32FX_SPI_CR1, STM32F4_SPI_CR1_DFF);
1537 }
1538
1539 /**
1540  * stm32f7_spi_set_bpw - Configure bits per word
1541  * @spi: pointer to the spi controller data structure
1542  */
1543 static void stm32f7_spi_set_bpw(struct stm32_spi *spi)
1544 {
1545         u32 bpw;
1546         u32 cr2_clrb = 0, cr2_setb = 0;
1547
1548         bpw = spi->cur_bpw - 1;
1549
1550         cr2_clrb |= STM32F7_SPI_CR2_DS;
1551         cr2_setb |= FIELD_PREP(STM32F7_SPI_CR2_DS, bpw);
1552
1553         if (spi->rx_len >= sizeof(u16))
1554                 cr2_clrb |= STM32F7_SPI_CR2_FRXTH;
1555         else
1556                 cr2_setb |= STM32F7_SPI_CR2_FRXTH;
1557
1558         writel_relaxed(
1559                 (readl_relaxed(spi->base + STM32FX_SPI_CR2) &
1560                  ~cr2_clrb) | cr2_setb,
1561                 spi->base + STM32FX_SPI_CR2);
1562 }
1563
1564 /**
1565  * stm32h7_spi_set_bpw - configure bits per word
1566  * @spi: pointer to the spi controller data structure
1567  */
1568 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1569 {
1570         u32 bpw, fthlv;
1571         u32 cfg1_clrb = 0, cfg1_setb = 0;
1572
1573         bpw = spi->cur_bpw - 1;
1574
1575         cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1576         cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_DSIZE, bpw);
1577
1578         spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1579         fthlv = spi->cur_fthlv - 1;
1580
1581         cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1582         cfg1_setb |= FIELD_PREP(STM32H7_SPI_CFG1_FTHLV, fthlv);
1583
1584         writel_relaxed(
1585                 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1586                  ~cfg1_clrb) | cfg1_setb,
1587                 spi->base + STM32H7_SPI_CFG1);
1588 }
1589
1590 /**
1591  * stm32_spi_set_mbr - Configure baud rate divisor in host mode
1592  * @spi: pointer to the spi controller data structure
1593  * @mbrdiv: baud rate divisor value
1594  */
1595 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1596 {
1597         u32 clrb = 0, setb = 0;
1598
1599         clrb |= spi->cfg->regs->br.mask;
1600         setb |= (mbrdiv << spi->cfg->regs->br.shift) & spi->cfg->regs->br.mask;
1601
1602         writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1603                         ~clrb) | setb,
1604                        spi->base + spi->cfg->regs->br.reg);
1605 }
1606
1607 /**
1608  * stm32_spi_communication_type - return transfer communication type
1609  * @spi_dev: pointer to the spi device
1610  * @transfer: pointer to spi transfer
1611  */
1612 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1613                                                  struct spi_transfer *transfer)
1614 {
1615         unsigned int type = SPI_FULL_DUPLEX;
1616
1617         if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1618                 /*
1619                  * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1620                  * is forbidden and unvalidated by SPI subsystem so depending
1621                  * on the valid buffer, we can determine the direction of the
1622                  * transfer.
1623                  */
1624                 if (!transfer->tx_buf)
1625                         type = SPI_3WIRE_RX;
1626                 else
1627                         type = SPI_3WIRE_TX;
1628         } else {
1629                 if (!transfer->tx_buf)
1630                         type = SPI_SIMPLEX_RX;
1631                 else if (!transfer->rx_buf)
1632                         type = SPI_SIMPLEX_TX;
1633         }
1634
1635         return type;
1636 }
1637
1638 /**
1639  * stm32fx_spi_set_mode - configure communication mode
1640  * @spi: pointer to the spi controller data structure
1641  * @comm_type: type of communication to configure
1642  */
1643 static int stm32fx_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1644 {
1645         if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1646                 stm32_spi_set_bits(spi, STM32FX_SPI_CR1,
1647                                         STM32FX_SPI_CR1_BIDIMODE |
1648                                         STM32FX_SPI_CR1_BIDIOE);
1649         } else if (comm_type == SPI_FULL_DUPLEX ||
1650                                 comm_type == SPI_SIMPLEX_RX) {
1651                 stm32_spi_clr_bits(spi, STM32FX_SPI_CR1,
1652                                         STM32FX_SPI_CR1_BIDIMODE |
1653                                         STM32FX_SPI_CR1_BIDIOE);
1654         } else if (comm_type == SPI_3WIRE_RX) {
1655                 stm32_spi_set_bits(spi, STM32FX_SPI_CR1,
1656                                         STM32FX_SPI_CR1_BIDIMODE);
1657                 stm32_spi_clr_bits(spi, STM32FX_SPI_CR1,
1658                                         STM32FX_SPI_CR1_BIDIOE);
1659         } else {
1660                 return -EINVAL;
1661         }
1662
1663         return 0;
1664 }
1665
1666 /**
1667  * stm32h7_spi_set_mode - configure communication mode
1668  * @spi: pointer to the spi controller data structure
1669  * @comm_type: type of communication to configure
1670  */
1671 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1672 {
1673         u32 mode;
1674         u32 cfg2_clrb = 0, cfg2_setb = 0;
1675
1676         if (comm_type == SPI_3WIRE_RX) {
1677                 mode = STM32H7_SPI_HALF_DUPLEX;
1678                 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1679         } else if (comm_type == SPI_3WIRE_TX) {
1680                 mode = STM32H7_SPI_HALF_DUPLEX;
1681                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1682         } else if (comm_type == SPI_SIMPLEX_RX) {
1683                 mode = STM32H7_SPI_SIMPLEX_RX;
1684         } else if (comm_type == SPI_SIMPLEX_TX) {
1685                 mode = STM32H7_SPI_SIMPLEX_TX;
1686         } else {
1687                 mode = STM32H7_SPI_FULL_DUPLEX;
1688         }
1689
1690         cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1691         cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_COMM, mode);
1692
1693         writel_relaxed(
1694                 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1695                  ~cfg2_clrb) | cfg2_setb,
1696                 spi->base + STM32H7_SPI_CFG2);
1697
1698         return 0;
1699 }
1700
1701 /**
1702  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1703  *                             consecutive data frames in host mode
1704  * @spi: pointer to the spi controller data structure
1705  * @len: transfer len
1706  */
1707 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1708 {
1709         u32 cfg2_clrb = 0, cfg2_setb = 0;
1710
1711         cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1712         if ((len > 1) && (spi->cur_midi > 0)) {
1713                 u32 sck_period_ns = DIV_ROUND_UP(NSEC_PER_SEC, spi->cur_speed);
1714                 u32 midi = min_t(u32,
1715                                  DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1716                                  FIELD_GET(STM32H7_SPI_CFG2_MIDI,
1717                                  STM32H7_SPI_CFG2_MIDI));
1718
1719
1720                 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1721                         sck_period_ns, midi, midi * sck_period_ns);
1722                 cfg2_setb |= FIELD_PREP(STM32H7_SPI_CFG2_MIDI, midi);
1723         }
1724
1725         writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1726                         ~cfg2_clrb) | cfg2_setb,
1727                        spi->base + STM32H7_SPI_CFG2);
1728 }
1729
1730 /**
1731  * stm32h7_spi_number_of_data - configure number of data at current transfer
1732  * @spi: pointer to the spi controller data structure
1733  * @nb_words: transfer length (in words)
1734  */
1735 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1736 {
1737         if (nb_words <= spi->t_size_max) {
1738                 writel_relaxed(FIELD_PREP(STM32H7_SPI_CR2_TSIZE, nb_words),
1739                                spi->base + STM32H7_SPI_CR2);
1740         } else {
1741                 return -EMSGSIZE;
1742         }
1743
1744         return 0;
1745 }
1746
1747 /**
1748  * stm32_spi_transfer_one_setup - common setup to transfer a single
1749  *                                spi_transfer either using DMA or
1750  *                                interrupts.
1751  * @spi: pointer to the spi controller data structure
1752  * @spi_dev: pointer to the spi device
1753  * @transfer: pointer to spi transfer
1754  */
1755 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1756                                         struct spi_device *spi_dev,
1757                                         struct spi_transfer *transfer)
1758 {
1759         unsigned long flags;
1760         unsigned int comm_type;
1761         int nb_words, ret = 0;
1762         int mbr;
1763
1764         spin_lock_irqsave(&spi->lock, flags);
1765
1766         spi->cur_xferlen = transfer->len;
1767
1768         spi->cur_bpw = transfer->bits_per_word;
1769         spi->cfg->set_bpw(spi);
1770
1771         /* Update spi->cur_speed with real clock speed */
1772         if (STM32_SPI_HOST_MODE(spi)) {
1773                 mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1774                                             spi->cfg->baud_rate_div_min,
1775                                             spi->cfg->baud_rate_div_max);
1776                 if (mbr < 0) {
1777                         ret = mbr;
1778                         goto out;
1779                 }
1780
1781                 transfer->speed_hz = spi->cur_speed;
1782                 stm32_spi_set_mbr(spi, mbr);
1783         }
1784
1785         comm_type = stm32_spi_communication_type(spi_dev, transfer);
1786         ret = spi->cfg->set_mode(spi, comm_type);
1787         if (ret < 0)
1788                 goto out;
1789
1790         spi->cur_comm = comm_type;
1791
1792         if (STM32_SPI_HOST_MODE(spi) && spi->cfg->set_data_idleness)
1793                 spi->cfg->set_data_idleness(spi, transfer->len);
1794
1795         if (spi->cur_bpw <= 8)
1796                 nb_words = transfer->len;
1797         else if (spi->cur_bpw <= 16)
1798                 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1799         else
1800                 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1801
1802         if (spi->cfg->set_number_of_data) {
1803                 ret = spi->cfg->set_number_of_data(spi, nb_words);
1804                 if (ret < 0)
1805                         goto out;
1806         }
1807
1808         dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1809                 spi->cur_comm);
1810         dev_dbg(spi->dev,
1811                 "data frame of %d-bit, data packet of %d data frames\n",
1812                 spi->cur_bpw, spi->cur_fthlv);
1813         if (STM32_SPI_HOST_MODE(spi))
1814                 dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1815         dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1816                 spi->cur_xferlen, nb_words);
1817         dev_dbg(spi->dev, "dma %s\n",
1818                 (spi->cur_usedma) ? "enabled" : "disabled");
1819
1820 out:
1821         spin_unlock_irqrestore(&spi->lock, flags);
1822
1823         return ret;
1824 }
1825
1826 /**
1827  * stm32_spi_transfer_one - transfer a single spi_transfer
1828  * @ctrl: controller interface
1829  * @spi_dev: pointer to the spi device
1830  * @transfer: pointer to spi transfer
1831  *
1832  * It must return 0 if the transfer is finished or 1 if the transfer is still
1833  * in progress.
1834  */
1835 static int stm32_spi_transfer_one(struct spi_controller *ctrl,
1836                                   struct spi_device *spi_dev,
1837                                   struct spi_transfer *transfer)
1838 {
1839         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1840         int ret;
1841
1842         spi->tx_buf = transfer->tx_buf;
1843         spi->rx_buf = transfer->rx_buf;
1844         spi->tx_len = spi->tx_buf ? transfer->len : 0;
1845         spi->rx_len = spi->rx_buf ? transfer->len : 0;
1846
1847         spi->cur_usedma = (ctrl->can_dma &&
1848                            ctrl->can_dma(ctrl, spi_dev, transfer));
1849
1850         ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1851         if (ret) {
1852                 dev_err(spi->dev, "SPI transfer setup failed\n");
1853                 return ret;
1854         }
1855
1856         if (spi->cur_usedma)
1857                 return stm32_spi_transfer_one_dma(spi, transfer);
1858         else
1859                 return spi->cfg->transfer_one_irq(spi);
1860 }
1861
1862 /**
1863  * stm32_spi_unprepare_msg - relax the hardware
1864  * @ctrl: controller interface
1865  * @msg: pointer to the spi message
1866  */
1867 static int stm32_spi_unprepare_msg(struct spi_controller *ctrl,
1868                                    struct spi_message *msg)
1869 {
1870         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
1871
1872         spi->cfg->disable(spi);
1873
1874         return 0;
1875 }
1876
1877 /**
1878  * stm32fx_spi_config - Configure SPI controller as SPI host
1879  * @spi: pointer to the spi controller data structure
1880  */
1881 static int stm32fx_spi_config(struct stm32_spi *spi)
1882 {
1883         unsigned long flags;
1884
1885         spin_lock_irqsave(&spi->lock, flags);
1886
1887         /* Ensure I2SMOD bit is kept cleared */
1888         stm32_spi_clr_bits(spi, STM32FX_SPI_I2SCFGR,
1889                            STM32FX_SPI_I2SCFGR_I2SMOD);
1890
1891         /*
1892          * - SS input value high
1893          * - transmitter half duplex direction
1894          * - Set the host mode (default Motorola mode)
1895          * - Consider 1 host/n targets configuration and
1896          *   SS input value is determined by the SSI bit
1897          */
1898         stm32_spi_set_bits(spi, STM32FX_SPI_CR1, STM32FX_SPI_CR1_SSI |
1899                                                  STM32FX_SPI_CR1_BIDIOE |
1900                                                  STM32FX_SPI_CR1_MSTR |
1901                                                  STM32FX_SPI_CR1_SSM);
1902
1903         spin_unlock_irqrestore(&spi->lock, flags);
1904
1905         return 0;
1906 }
1907
1908 /**
1909  * stm32h7_spi_config - Configure SPI controller
1910  * @spi: pointer to the spi controller data structure
1911  */
1912 static int stm32h7_spi_config(struct stm32_spi *spi)
1913 {
1914         unsigned long flags;
1915         u32 cr1 = 0, cfg2 = 0;
1916
1917         spin_lock_irqsave(&spi->lock, flags);
1918
1919         /* Ensure I2SMOD bit is kept cleared */
1920         stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1921                            STM32H7_SPI_I2SCFGR_I2SMOD);
1922
1923         if (STM32_SPI_DEVICE_MODE(spi)) {
1924                 /* Use native device select */
1925                 cfg2 &= ~STM32H7_SPI_CFG2_SSM;
1926         } else {
1927                 /*
1928                  * - Transmitter half duplex direction
1929                  * - Automatic communication suspend when RX-Fifo is full
1930                  * - SS input value high
1931                  */
1932                 cr1 |= STM32H7_SPI_CR1_HDDIR | STM32H7_SPI_CR1_MASRX | STM32H7_SPI_CR1_SSI;
1933
1934                 /*
1935                  * - Set the host mode (default Motorola mode)
1936                  * - Consider 1 host/n devices configuration and
1937                  *   SS input value is determined by the SSI bit
1938                  * - keep control of all associated GPIOs
1939                  */
1940                 cfg2 |= STM32H7_SPI_CFG2_MASTER | STM32H7_SPI_CFG2_SSM | STM32H7_SPI_CFG2_AFCNTR;
1941         }
1942
1943         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, cr1);
1944         stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, cfg2);
1945
1946         spin_unlock_irqrestore(&spi->lock, flags);
1947
1948         return 0;
1949 }
1950
1951 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1952         .regs = &stm32fx_spi_regspec,
1953         .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1954         .disable = stm32fx_spi_disable,
1955         .config = stm32fx_spi_config,
1956         .set_bpw = stm32f4_spi_set_bpw,
1957         .set_mode = stm32fx_spi_set_mode,
1958         .write_tx = stm32f4_spi_write_tx,
1959         .read_rx = stm32f4_spi_read_rx,
1960         .transfer_one_dma_start = stm32fx_spi_transfer_one_dma_start,
1961         .dma_tx_cb = stm32fx_spi_dma_tx_cb,
1962         .dma_rx_cb = stm32_spi_dma_rx_cb,
1963         .transfer_one_irq = stm32fx_spi_transfer_one_irq,
1964         .irq_handler_event = stm32fx_spi_irq_event,
1965         .irq_handler_thread = stm32fx_spi_irq_thread,
1966         .baud_rate_div_min = STM32FX_SPI_BR_DIV_MIN,
1967         .baud_rate_div_max = STM32FX_SPI_BR_DIV_MAX,
1968         .has_fifo = false,
1969         .has_device_mode = false,
1970         .flags = SPI_CONTROLLER_MUST_TX,
1971 };
1972
1973 static const struct stm32_spi_cfg stm32f7_spi_cfg = {
1974         .regs = &stm32fx_spi_regspec,
1975         .get_bpw_mask = stm32f7_spi_get_bpw_mask,
1976         .disable = stm32fx_spi_disable,
1977         .config = stm32fx_spi_config,
1978         .set_bpw = stm32f7_spi_set_bpw,
1979         .set_mode = stm32fx_spi_set_mode,
1980         .write_tx = stm32f7_spi_write_tx,
1981         .read_rx = stm32f7_spi_read_rx,
1982         .transfer_one_dma_start = stm32f7_spi_transfer_one_dma_start,
1983         .dma_tx_cb = stm32fx_spi_dma_tx_cb,
1984         .dma_rx_cb = stm32_spi_dma_rx_cb,
1985         .transfer_one_irq = stm32fx_spi_transfer_one_irq,
1986         .irq_handler_event = stm32fx_spi_irq_event,
1987         .irq_handler_thread = stm32fx_spi_irq_thread,
1988         .baud_rate_div_min = STM32FX_SPI_BR_DIV_MIN,
1989         .baud_rate_div_max = STM32FX_SPI_BR_DIV_MAX,
1990         .has_fifo = false,
1991         .flags = SPI_CONTROLLER_MUST_TX,
1992 };
1993
1994 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1995         .regs = &stm32h7_spi_regspec,
1996         .get_fifo_size = stm32h7_spi_get_fifo_size,
1997         .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1998         .disable = stm32h7_spi_disable,
1999         .config = stm32h7_spi_config,
2000         .set_bpw = stm32h7_spi_set_bpw,
2001         .set_mode = stm32h7_spi_set_mode,
2002         .set_data_idleness = stm32h7_spi_data_idleness,
2003         .set_number_of_data = stm32h7_spi_number_of_data,
2004         .write_tx = stm32h7_spi_write_txfifo,
2005         .read_rx = stm32h7_spi_read_rxfifo,
2006         .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
2007         .dma_rx_cb = stm32_spi_dma_rx_cb,
2008         /*
2009          * dma_tx_cb is not necessary since in case of TX, dma is followed by
2010          * SPI access hence handling is performed within the SPI interrupt
2011          */
2012         .transfer_one_irq = stm32h7_spi_transfer_one_irq,
2013         .irq_handler_thread = stm32h7_spi_irq_thread,
2014         .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
2015         .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
2016         .has_fifo = true,
2017         .has_device_mode = true,
2018 };
2019
2020 /*
2021  * STM32MP2 is compatible with the STM32H7 except:
2022  * - enforce the DMA maxburst value to 1
2023  * - spi8 have limited feature set (TSIZE_MAX = 1024, BPW of 8 OR 16)
2024  */
2025 static const struct stm32_spi_cfg stm32mp25_spi_cfg = {
2026         .regs = &stm32mp25_spi_regspec,
2027         .get_fifo_size = stm32h7_spi_get_fifo_size,
2028         .get_bpw_mask = stm32mp25_spi_get_bpw_mask,
2029         .disable = stm32h7_spi_disable,
2030         .config = stm32h7_spi_config,
2031         .set_bpw = stm32h7_spi_set_bpw,
2032         .set_mode = stm32h7_spi_set_mode,
2033         .set_data_idleness = stm32h7_spi_data_idleness,
2034         .set_number_of_data = stm32h7_spi_number_of_data,
2035         .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
2036         .dma_rx_cb = stm32_spi_dma_rx_cb,
2037         /*
2038          * dma_tx_cb is not necessary since in case of TX, dma is followed by
2039          * SPI access hence handling is performed within the SPI interrupt
2040          */
2041         .transfer_one_irq = stm32h7_spi_transfer_one_irq,
2042         .irq_handler_thread = stm32h7_spi_irq_thread,
2043         .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
2044         .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
2045         .has_fifo = true,
2046         .prevent_dma_burst = true,
2047 };
2048
2049 static const struct of_device_id stm32_spi_of_match[] = {
2050         { .compatible = "st,stm32mp25-spi", .data = (void *)&stm32mp25_spi_cfg },
2051         { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
2052         { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
2053         { .compatible = "st,stm32f7-spi", .data = (void *)&stm32f7_spi_cfg },
2054         {},
2055 };
2056 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
2057
2058 static int stm32h7_spi_device_abort(struct spi_controller *ctrl)
2059 {
2060         spi_finalize_current_transfer(ctrl);
2061         return 0;
2062 }
2063
2064 static int stm32_spi_probe(struct platform_device *pdev)
2065 {
2066         struct spi_controller *ctrl;
2067         struct stm32_spi *spi;
2068         struct resource *res;
2069         struct reset_control *rst;
2070         struct device_node *np = pdev->dev.of_node;
2071         bool device_mode;
2072         int ret;
2073         const struct stm32_spi_cfg *cfg = of_device_get_match_data(&pdev->dev);
2074
2075         device_mode = of_property_read_bool(np, "spi-slave");
2076         if (!cfg->has_device_mode && device_mode) {
2077                 dev_err(&pdev->dev, "spi-slave not supported\n");
2078                 return -EPERM;
2079         }
2080
2081         if (device_mode)
2082                 ctrl = devm_spi_alloc_target(&pdev->dev, sizeof(struct stm32_spi));
2083         else
2084                 ctrl = devm_spi_alloc_host(&pdev->dev, sizeof(struct stm32_spi));
2085         if (!ctrl) {
2086                 dev_err(&pdev->dev, "spi controller allocation failed\n");
2087                 return -ENOMEM;
2088         }
2089         platform_set_drvdata(pdev, ctrl);
2090
2091         spi = spi_controller_get_devdata(ctrl);
2092         spi->dev = &pdev->dev;
2093         spi->ctrl = ctrl;
2094         spi->device_mode = device_mode;
2095         spin_lock_init(&spi->lock);
2096
2097         spi->cfg = cfg;
2098
2099         spi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
2100         if (IS_ERR(spi->base))
2101                 return PTR_ERR(spi->base);
2102
2103         spi->phys_addr = (dma_addr_t)res->start;
2104
2105         spi->irq = platform_get_irq(pdev, 0);
2106         if (spi->irq <= 0)
2107                 return spi->irq;
2108
2109         ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
2110                                         spi->cfg->irq_handler_event,
2111                                         spi->cfg->irq_handler_thread,
2112                                         IRQF_ONESHOT, pdev->name, ctrl);
2113         if (ret) {
2114                 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
2115                         ret);
2116                 return ret;
2117         }
2118
2119         spi->clk = devm_clk_get(&pdev->dev, NULL);
2120         if (IS_ERR(spi->clk)) {
2121                 ret = PTR_ERR(spi->clk);
2122                 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
2123                 return ret;
2124         }
2125
2126         ret = clk_prepare_enable(spi->clk);
2127         if (ret) {
2128                 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
2129                 return ret;
2130         }
2131         spi->clk_rate = clk_get_rate(spi->clk);
2132         if (!spi->clk_rate) {
2133                 dev_err(&pdev->dev, "clk rate = 0\n");
2134                 ret = -EINVAL;
2135                 goto err_clk_disable;
2136         }
2137
2138         rst = devm_reset_control_get_optional_exclusive(&pdev->dev, NULL);
2139         if (rst) {
2140                 if (IS_ERR(rst)) {
2141                         ret = dev_err_probe(&pdev->dev, PTR_ERR(rst),
2142                                             "failed to get reset\n");
2143                         goto err_clk_disable;
2144                 }
2145
2146                 reset_control_assert(rst);
2147                 udelay(2);
2148                 reset_control_deassert(rst);
2149         }
2150
2151         if (spi->cfg->has_fifo)
2152                 spi->fifo_size = spi->cfg->get_fifo_size(spi);
2153
2154         spi->feature_set = STM32_SPI_FEATURE_FULL;
2155         if (spi->cfg->regs->fullcfg.reg) {
2156                 spi->feature_set =
2157                         FIELD_GET(STM32MP25_SPI_HWCFGR1_FULLCFG,
2158                                   readl_relaxed(spi->base + spi->cfg->regs->fullcfg.reg));
2159
2160                 dev_dbg(spi->dev, "%s feature set\n",
2161                         spi->feature_set == STM32_SPI_FEATURE_FULL ? "full" : "limited");
2162         }
2163
2164         /* Only for STM32H7 and after */
2165         spi->t_size_max = spi->feature_set == STM32_SPI_FEATURE_FULL ?
2166                                 STM32H7_SPI_TSIZE_MAX :
2167                                 STM32MP25_SPI_TSIZE_MAX_LIMITED;
2168         dev_dbg(spi->dev, "one message max size %d\n", spi->t_size_max);
2169
2170         ret = spi->cfg->config(spi);
2171         if (ret) {
2172                 dev_err(&pdev->dev, "controller configuration failed: %d\n",
2173                         ret);
2174                 goto err_clk_disable;
2175         }
2176
2177         ctrl->dev.of_node = pdev->dev.of_node;
2178         ctrl->auto_runtime_pm = true;
2179         ctrl->bus_num = pdev->id;
2180         ctrl->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
2181                           SPI_3WIRE;
2182         ctrl->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
2183         ctrl->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
2184         ctrl->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
2185         ctrl->use_gpio_descriptors = true;
2186         ctrl->optimize_message = stm32_spi_optimize_message;
2187         ctrl->prepare_message = stm32_spi_prepare_msg;
2188         ctrl->transfer_one = stm32_spi_transfer_one;
2189         ctrl->unprepare_message = stm32_spi_unprepare_msg;
2190         ctrl->flags = spi->cfg->flags;
2191         if (STM32_SPI_DEVICE_MODE(spi))
2192                 ctrl->target_abort = stm32h7_spi_device_abort;
2193
2194         spi->dma_tx = dma_request_chan(spi->dev, "tx");
2195         if (IS_ERR(spi->dma_tx)) {
2196                 ret = PTR_ERR(spi->dma_tx);
2197                 spi->dma_tx = NULL;
2198                 if (ret == -EPROBE_DEFER)
2199                         goto err_clk_disable;
2200
2201                 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
2202         } else {
2203                 ctrl->dma_tx = spi->dma_tx;
2204         }
2205
2206         spi->dma_rx = dma_request_chan(spi->dev, "rx");
2207         if (IS_ERR(spi->dma_rx)) {
2208                 ret = PTR_ERR(spi->dma_rx);
2209                 spi->dma_rx = NULL;
2210                 if (ret == -EPROBE_DEFER)
2211                         goto err_dma_release;
2212
2213                 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
2214         } else {
2215                 ctrl->dma_rx = spi->dma_rx;
2216         }
2217
2218         if (spi->dma_tx || spi->dma_rx)
2219                 ctrl->can_dma = stm32_spi_can_dma;
2220
2221         pm_runtime_set_autosuspend_delay(&pdev->dev,
2222                                          STM32_SPI_AUTOSUSPEND_DELAY);
2223         pm_runtime_use_autosuspend(&pdev->dev);
2224         pm_runtime_set_active(&pdev->dev);
2225         pm_runtime_get_noresume(&pdev->dev);
2226         pm_runtime_enable(&pdev->dev);
2227
2228         ret = spi_register_controller(ctrl);
2229         if (ret) {
2230                 dev_err(&pdev->dev, "spi controller registration failed: %d\n",
2231                         ret);
2232                 goto err_pm_disable;
2233         }
2234
2235         pm_runtime_mark_last_busy(&pdev->dev);
2236         pm_runtime_put_autosuspend(&pdev->dev);
2237
2238         dev_info(&pdev->dev, "driver initialized (%s mode)\n",
2239                  STM32_SPI_HOST_MODE(spi) ? "host" : "device");
2240
2241         return 0;
2242
2243 err_pm_disable:
2244         pm_runtime_disable(&pdev->dev);
2245         pm_runtime_put_noidle(&pdev->dev);
2246         pm_runtime_set_suspended(&pdev->dev);
2247         pm_runtime_dont_use_autosuspend(&pdev->dev);
2248 err_dma_release:
2249         if (spi->dma_tx)
2250                 dma_release_channel(spi->dma_tx);
2251         if (spi->dma_rx)
2252                 dma_release_channel(spi->dma_rx);
2253 err_clk_disable:
2254         clk_disable_unprepare(spi->clk);
2255
2256         return ret;
2257 }
2258
2259 static void stm32_spi_remove(struct platform_device *pdev)
2260 {
2261         struct spi_controller *ctrl = platform_get_drvdata(pdev);
2262         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2263
2264         pm_runtime_get_sync(&pdev->dev);
2265
2266         spi_unregister_controller(ctrl);
2267         spi->cfg->disable(spi);
2268
2269         pm_runtime_disable(&pdev->dev);
2270         pm_runtime_put_noidle(&pdev->dev);
2271         pm_runtime_set_suspended(&pdev->dev);
2272         pm_runtime_dont_use_autosuspend(&pdev->dev);
2273
2274         if (ctrl->dma_tx)
2275                 dma_release_channel(ctrl->dma_tx);
2276         if (ctrl->dma_rx)
2277                 dma_release_channel(ctrl->dma_rx);
2278
2279         clk_disable_unprepare(spi->clk);
2280
2281
2282         pinctrl_pm_select_sleep_state(&pdev->dev);
2283 }
2284
2285 static int __maybe_unused stm32_spi_runtime_suspend(struct device *dev)
2286 {
2287         struct spi_controller *ctrl = dev_get_drvdata(dev);
2288         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2289
2290         clk_disable_unprepare(spi->clk);
2291
2292         return pinctrl_pm_select_sleep_state(dev);
2293 }
2294
2295 static int __maybe_unused stm32_spi_runtime_resume(struct device *dev)
2296 {
2297         struct spi_controller *ctrl = dev_get_drvdata(dev);
2298         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2299         int ret;
2300
2301         ret = pinctrl_pm_select_default_state(dev);
2302         if (ret)
2303                 return ret;
2304
2305         return clk_prepare_enable(spi->clk);
2306 }
2307
2308 static int __maybe_unused stm32_spi_suspend(struct device *dev)
2309 {
2310         struct spi_controller *ctrl = dev_get_drvdata(dev);
2311         int ret;
2312
2313         ret = spi_controller_suspend(ctrl);
2314         if (ret)
2315                 return ret;
2316
2317         return pm_runtime_force_suspend(dev);
2318 }
2319
2320 static int __maybe_unused stm32_spi_resume(struct device *dev)
2321 {
2322         struct spi_controller *ctrl = dev_get_drvdata(dev);
2323         struct stm32_spi *spi = spi_controller_get_devdata(ctrl);
2324         int ret;
2325
2326         ret = pm_runtime_force_resume(dev);
2327         if (ret)
2328                 return ret;
2329
2330         ret = spi_controller_resume(ctrl);
2331         if (ret) {
2332                 clk_disable_unprepare(spi->clk);
2333                 return ret;
2334         }
2335
2336         ret = pm_runtime_resume_and_get(dev);
2337         if (ret < 0) {
2338                 dev_err(dev, "Unable to power device:%d\n", ret);
2339                 return ret;
2340         }
2341
2342         spi->cfg->config(spi);
2343
2344         pm_runtime_mark_last_busy(dev);
2345         pm_runtime_put_autosuspend(dev);
2346
2347         return 0;
2348 }
2349
2350 static const struct dev_pm_ops stm32_spi_pm_ops = {
2351         SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2352         SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2353                            stm32_spi_runtime_resume, NULL)
2354 };
2355
2356 static struct platform_driver stm32_spi_driver = {
2357         .probe = stm32_spi_probe,
2358         .remove_new = stm32_spi_remove,
2359         .driver = {
2360                 .name = DRIVER_NAME,
2361                 .pm = &stm32_spi_pm_ops,
2362                 .of_match_table = stm32_spi_of_match,
2363         },
2364 };
2365
2366 module_platform_driver(stm32_spi_driver);
2367
2368 MODULE_ALIAS("platform:" DRIVER_NAME);
2369 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2370 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2371 MODULE_LICENSE("GPL v2");