drm/amd/display: Remove unnecessary NULL check
[linux-2.6-microblaze.git] / drivers / spi / spi-stm32.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // STMicroelectronics STM32 SPI Controller driver (master mode only)
4 //
5 // Copyright (C) 2017, STMicroelectronics - All Rights Reserved
6 // Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
7
8 #include <linux/debugfs.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/of_platform.h>
16 #include <linux/pinctrl/consumer.h>
17 #include <linux/pm_runtime.h>
18 #include <linux/reset.h>
19 #include <linux/spi/spi.h>
20
21 #define DRIVER_NAME "spi_stm32"
22
23 /* STM32F4 SPI registers */
24 #define STM32F4_SPI_CR1                 0x00
25 #define STM32F4_SPI_CR2                 0x04
26 #define STM32F4_SPI_SR                  0x08
27 #define STM32F4_SPI_DR                  0x0C
28 #define STM32F4_SPI_I2SCFGR             0x1C
29
30 /* STM32F4_SPI_CR1 bit fields */
31 #define STM32F4_SPI_CR1_CPHA            BIT(0)
32 #define STM32F4_SPI_CR1_CPOL            BIT(1)
33 #define STM32F4_SPI_CR1_MSTR            BIT(2)
34 #define STM32F4_SPI_CR1_BR_SHIFT        3
35 #define STM32F4_SPI_CR1_BR              GENMASK(5, 3)
36 #define STM32F4_SPI_CR1_SPE             BIT(6)
37 #define STM32F4_SPI_CR1_LSBFRST         BIT(7)
38 #define STM32F4_SPI_CR1_SSI             BIT(8)
39 #define STM32F4_SPI_CR1_SSM             BIT(9)
40 #define STM32F4_SPI_CR1_RXONLY          BIT(10)
41 #define STM32F4_SPI_CR1_DFF             BIT(11)
42 #define STM32F4_SPI_CR1_CRCNEXT         BIT(12)
43 #define STM32F4_SPI_CR1_CRCEN           BIT(13)
44 #define STM32F4_SPI_CR1_BIDIOE          BIT(14)
45 #define STM32F4_SPI_CR1_BIDIMODE        BIT(15)
46 #define STM32F4_SPI_CR1_BR_MIN          0
47 #define STM32F4_SPI_CR1_BR_MAX          (GENMASK(5, 3) >> 3)
48
49 /* STM32F4_SPI_CR2 bit fields */
50 #define STM32F4_SPI_CR2_RXDMAEN         BIT(0)
51 #define STM32F4_SPI_CR2_TXDMAEN         BIT(1)
52 #define STM32F4_SPI_CR2_SSOE            BIT(2)
53 #define STM32F4_SPI_CR2_FRF             BIT(4)
54 #define STM32F4_SPI_CR2_ERRIE           BIT(5)
55 #define STM32F4_SPI_CR2_RXNEIE          BIT(6)
56 #define STM32F4_SPI_CR2_TXEIE           BIT(7)
57
58 /* STM32F4_SPI_SR bit fields */
59 #define STM32F4_SPI_SR_RXNE             BIT(0)
60 #define STM32F4_SPI_SR_TXE              BIT(1)
61 #define STM32F4_SPI_SR_CHSIDE           BIT(2)
62 #define STM32F4_SPI_SR_UDR              BIT(3)
63 #define STM32F4_SPI_SR_CRCERR           BIT(4)
64 #define STM32F4_SPI_SR_MODF             BIT(5)
65 #define STM32F4_SPI_SR_OVR              BIT(6)
66 #define STM32F4_SPI_SR_BSY              BIT(7)
67 #define STM32F4_SPI_SR_FRE              BIT(8)
68
69 /* STM32F4_SPI_I2SCFGR bit fields */
70 #define STM32F4_SPI_I2SCFGR_I2SMOD      BIT(11)
71
72 /* STM32F4 SPI Baud Rate min/max divisor */
73 #define STM32F4_SPI_BR_DIV_MIN          (2 << STM32F4_SPI_CR1_BR_MIN)
74 #define STM32F4_SPI_BR_DIV_MAX          (2 << STM32F4_SPI_CR1_BR_MAX)
75
76 /* STM32H7 SPI registers */
77 #define STM32H7_SPI_CR1                 0x00
78 #define STM32H7_SPI_CR2                 0x04
79 #define STM32H7_SPI_CFG1                0x08
80 #define STM32H7_SPI_CFG2                0x0C
81 #define STM32H7_SPI_IER                 0x10
82 #define STM32H7_SPI_SR                  0x14
83 #define STM32H7_SPI_IFCR                0x18
84 #define STM32H7_SPI_TXDR                0x20
85 #define STM32H7_SPI_RXDR                0x30
86 #define STM32H7_SPI_I2SCFGR             0x50
87
88 /* STM32H7_SPI_CR1 bit fields */
89 #define STM32H7_SPI_CR1_SPE             BIT(0)
90 #define STM32H7_SPI_CR1_MASRX           BIT(8)
91 #define STM32H7_SPI_CR1_CSTART          BIT(9)
92 #define STM32H7_SPI_CR1_CSUSP           BIT(10)
93 #define STM32H7_SPI_CR1_HDDIR           BIT(11)
94 #define STM32H7_SPI_CR1_SSI             BIT(12)
95
96 /* STM32H7_SPI_CR2 bit fields */
97 #define STM32H7_SPI_CR2_TSIZE_SHIFT     0
98 #define STM32H7_SPI_CR2_TSIZE           GENMASK(15, 0)
99
100 /* STM32H7_SPI_CFG1 bit fields */
101 #define STM32H7_SPI_CFG1_DSIZE_SHIFT    0
102 #define STM32H7_SPI_CFG1_DSIZE          GENMASK(4, 0)
103 #define STM32H7_SPI_CFG1_FTHLV_SHIFT    5
104 #define STM32H7_SPI_CFG1_FTHLV          GENMASK(8, 5)
105 #define STM32H7_SPI_CFG1_RXDMAEN        BIT(14)
106 #define STM32H7_SPI_CFG1_TXDMAEN        BIT(15)
107 #define STM32H7_SPI_CFG1_MBR_SHIFT      28
108 #define STM32H7_SPI_CFG1_MBR            GENMASK(30, 28)
109 #define STM32H7_SPI_CFG1_MBR_MIN        0
110 #define STM32H7_SPI_CFG1_MBR_MAX        (GENMASK(30, 28) >> 28)
111
112 /* STM32H7_SPI_CFG2 bit fields */
113 #define STM32H7_SPI_CFG2_MIDI_SHIFT     4
114 #define STM32H7_SPI_CFG2_MIDI           GENMASK(7, 4)
115 #define STM32H7_SPI_CFG2_COMM_SHIFT     17
116 #define STM32H7_SPI_CFG2_COMM           GENMASK(18, 17)
117 #define STM32H7_SPI_CFG2_SP_SHIFT       19
118 #define STM32H7_SPI_CFG2_SP             GENMASK(21, 19)
119 #define STM32H7_SPI_CFG2_MASTER         BIT(22)
120 #define STM32H7_SPI_CFG2_LSBFRST        BIT(23)
121 #define STM32H7_SPI_CFG2_CPHA           BIT(24)
122 #define STM32H7_SPI_CFG2_CPOL           BIT(25)
123 #define STM32H7_SPI_CFG2_SSM            BIT(26)
124 #define STM32H7_SPI_CFG2_AFCNTR         BIT(31)
125
126 /* STM32H7_SPI_IER bit fields */
127 #define STM32H7_SPI_IER_RXPIE           BIT(0)
128 #define STM32H7_SPI_IER_TXPIE           BIT(1)
129 #define STM32H7_SPI_IER_DXPIE           BIT(2)
130 #define STM32H7_SPI_IER_EOTIE           BIT(3)
131 #define STM32H7_SPI_IER_TXTFIE          BIT(4)
132 #define STM32H7_SPI_IER_OVRIE           BIT(6)
133 #define STM32H7_SPI_IER_MODFIE          BIT(9)
134 #define STM32H7_SPI_IER_ALL             GENMASK(10, 0)
135
136 /* STM32H7_SPI_SR bit fields */
137 #define STM32H7_SPI_SR_RXP              BIT(0)
138 #define STM32H7_SPI_SR_TXP              BIT(1)
139 #define STM32H7_SPI_SR_EOT              BIT(3)
140 #define STM32H7_SPI_SR_OVR              BIT(6)
141 #define STM32H7_SPI_SR_MODF             BIT(9)
142 #define STM32H7_SPI_SR_SUSP             BIT(11)
143 #define STM32H7_SPI_SR_RXPLVL_SHIFT     13
144 #define STM32H7_SPI_SR_RXPLVL           GENMASK(14, 13)
145 #define STM32H7_SPI_SR_RXWNE            BIT(15)
146
147 /* STM32H7_SPI_IFCR bit fields */
148 #define STM32H7_SPI_IFCR_ALL            GENMASK(11, 3)
149
150 /* STM32H7_SPI_I2SCFGR bit fields */
151 #define STM32H7_SPI_I2SCFGR_I2SMOD      BIT(0)
152
153 /* STM32H7 SPI Master Baud Rate min/max divisor */
154 #define STM32H7_SPI_MBR_DIV_MIN         (2 << STM32H7_SPI_CFG1_MBR_MIN)
155 #define STM32H7_SPI_MBR_DIV_MAX         (2 << STM32H7_SPI_CFG1_MBR_MAX)
156
157 /* STM32H7 SPI Communication mode */
158 #define STM32H7_SPI_FULL_DUPLEX         0
159 #define STM32H7_SPI_SIMPLEX_TX          1
160 #define STM32H7_SPI_SIMPLEX_RX          2
161 #define STM32H7_SPI_HALF_DUPLEX         3
162
163 /* SPI Communication type */
164 #define SPI_FULL_DUPLEX         0
165 #define SPI_SIMPLEX_TX          1
166 #define SPI_SIMPLEX_RX          2
167 #define SPI_3WIRE_TX            3
168 #define SPI_3WIRE_RX            4
169
170 #define SPI_1HZ_NS              1000000000
171
172 /*
173  * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
174  * without fifo buffers.
175  */
176 #define SPI_DMA_MIN_BYTES       16
177
178 /**
179  * struct stm32_spi_reg - stm32 SPI register & bitfield desc
180  * @reg:                register offset
181  * @mask:               bitfield mask
182  * @shift:              left shift
183  */
184 struct stm32_spi_reg {
185         int reg;
186         int mask;
187         int shift;
188 };
189
190 /**
191  * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
192  * @en: enable register and SPI enable bit
193  * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
194  * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
195  * @cpol: clock polarity register and polarity bit
196  * @cpha: clock phase register and phase bit
197  * @lsb_first: LSB transmitted first register and bit
198  * @br: baud rate register and bitfields
199  * @rx: SPI RX data register
200  * @tx: SPI TX data register
201  */
202 struct stm32_spi_regspec {
203         const struct stm32_spi_reg en;
204         const struct stm32_spi_reg dma_rx_en;
205         const struct stm32_spi_reg dma_tx_en;
206         const struct stm32_spi_reg cpol;
207         const struct stm32_spi_reg cpha;
208         const struct stm32_spi_reg lsb_first;
209         const struct stm32_spi_reg br;
210         const struct stm32_spi_reg rx;
211         const struct stm32_spi_reg tx;
212 };
213
214 struct stm32_spi;
215
216 /**
217  * struct stm32_spi_cfg - stm32 compatible configuration data
218  * @regs: registers descriptions
219  * @get_fifo_size: routine to get fifo size
220  * @get_bpw_mask: routine to get bits per word mask
221  * @disable: routine to disable controller
222  * @config: routine to configure controller as SPI Master
223  * @set_bpw: routine to configure registers to for bits per word
224  * @set_mode: routine to configure registers to desired mode
225  * @set_data_idleness: optional routine to configure registers to desired idle
226  * time between frames (if driver has this functionality)
227  * @set_number_of_data: optional routine to configure registers to desired
228  * number of data (if driver has this functionality)
229  * @can_dma: routine to determine if the transfer is eligible for DMA use
230  * @transfer_one_dma_start: routine to start transfer a single spi_transfer
231  * using DMA
232  * @dma_rx_cb: routine to call after DMA RX channel operation is complete
233  * @dma_tx_cb: routine to call after DMA TX channel operation is complete
234  * @transfer_one_irq: routine to configure interrupts for driver
235  * @irq_handler_event: Interrupt handler for SPI controller events
236  * @irq_handler_thread: thread of interrupt handler for SPI controller
237  * @baud_rate_div_min: minimum baud rate divisor
238  * @baud_rate_div_max: maximum baud rate divisor
239  * @has_fifo: boolean to know if fifo is used for driver
240  * @has_startbit: boolean to know if start bit is used to start transfer
241  */
242 struct stm32_spi_cfg {
243         const struct stm32_spi_regspec *regs;
244         int (*get_fifo_size)(struct stm32_spi *spi);
245         int (*get_bpw_mask)(struct stm32_spi *spi);
246         void (*disable)(struct stm32_spi *spi);
247         int (*config)(struct stm32_spi *spi);
248         void (*set_bpw)(struct stm32_spi *spi);
249         int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
250         void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
251         int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
252         void (*transfer_one_dma_start)(struct stm32_spi *spi);
253         void (*dma_rx_cb)(void *data);
254         void (*dma_tx_cb)(void *data);
255         int (*transfer_one_irq)(struct stm32_spi *spi);
256         irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
257         irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
258         unsigned int baud_rate_div_min;
259         unsigned int baud_rate_div_max;
260         bool has_fifo;
261 };
262
263 /**
264  * struct stm32_spi - private data of the SPI controller
265  * @dev: driver model representation of the controller
266  * @master: controller master interface
267  * @cfg: compatible configuration data
268  * @base: virtual memory area
269  * @clk: hw kernel clock feeding the SPI clock generator
270  * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
271  * @rst: SPI controller reset line
272  * @lock: prevent I/O concurrent access
273  * @irq: SPI controller interrupt line
274  * @fifo_size: size of the embedded fifo in bytes
275  * @cur_midi: master inter-data idleness in ns
276  * @cur_speed: speed configured in Hz
277  * @cur_bpw: number of bits in a single SPI data frame
278  * @cur_fthlv: fifo threshold level (data frames in a single data packet)
279  * @cur_comm: SPI communication mode
280  * @cur_xferlen: current transfer length in bytes
281  * @cur_usedma: boolean to know if dma is used in current transfer
282  * @tx_buf: data to be written, or NULL
283  * @rx_buf: data to be read, or NULL
284  * @tx_len: number of data to be written in bytes
285  * @rx_len: number of data to be read in bytes
286  * @dma_tx: dma channel for TX transfer
287  * @dma_rx: dma channel for RX transfer
288  * @phys_addr: SPI registers physical base address
289  */
290 struct stm32_spi {
291         struct device *dev;
292         struct spi_master *master;
293         const struct stm32_spi_cfg *cfg;
294         void __iomem *base;
295         struct clk *clk;
296         u32 clk_rate;
297         struct reset_control *rst;
298         spinlock_t lock; /* prevent I/O concurrent access */
299         int irq;
300         unsigned int fifo_size;
301
302         unsigned int cur_midi;
303         unsigned int cur_speed;
304         unsigned int cur_bpw;
305         unsigned int cur_fthlv;
306         unsigned int cur_comm;
307         unsigned int cur_xferlen;
308         bool cur_usedma;
309
310         const void *tx_buf;
311         void *rx_buf;
312         int tx_len;
313         int rx_len;
314         struct dma_chan *dma_tx;
315         struct dma_chan *dma_rx;
316         dma_addr_t phys_addr;
317 };
318
319 static const struct stm32_spi_regspec stm32f4_spi_regspec = {
320         .en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },
321
322         .dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
323         .dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },
324
325         .cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
326         .cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
327         .lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
328         .br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },
329
330         .rx = { STM32F4_SPI_DR },
331         .tx = { STM32F4_SPI_DR },
332 };
333
334 static const struct stm32_spi_regspec stm32h7_spi_regspec = {
335         /* SPI data transfer is enabled but spi_ker_ck is idle.
336          * CFG1 and CFG2 registers are write protected when SPE is enabled.
337          */
338         .en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },
339
340         .dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
341         .dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },
342
343         .cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
344         .cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
345         .lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
346         .br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
347                 STM32H7_SPI_CFG1_MBR_SHIFT },
348
349         .rx = { STM32H7_SPI_RXDR },
350         .tx = { STM32H7_SPI_TXDR },
351 };
352
353 static inline void stm32_spi_set_bits(struct stm32_spi *spi,
354                                       u32 offset, u32 bits)
355 {
356         writel_relaxed(readl_relaxed(spi->base + offset) | bits,
357                        spi->base + offset);
358 }
359
360 static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
361                                       u32 offset, u32 bits)
362 {
363         writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
364                        spi->base + offset);
365 }
366
367 /**
368  * stm32h7_spi_get_fifo_size - Return fifo size
369  * @spi: pointer to the spi controller data structure
370  */
371 static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
372 {
373         unsigned long flags;
374         u32 count = 0;
375
376         spin_lock_irqsave(&spi->lock, flags);
377
378         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
379
380         while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
381                 writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);
382
383         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
384
385         spin_unlock_irqrestore(&spi->lock, flags);
386
387         dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);
388
389         return count;
390 }
391
392 /**
393  * stm32f4_spi_get_bpw_mask - Return bits per word mask
394  * @spi: pointer to the spi controller data structure
395  */
396 static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
397 {
398         dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
399         return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
400 }
401
402 /**
403  * stm32h7_spi_get_bpw_mask - Return bits per word mask
404  * @spi: pointer to the spi controller data structure
405  */
406 static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
407 {
408         unsigned long flags;
409         u32 cfg1, max_bpw;
410
411         spin_lock_irqsave(&spi->lock, flags);
412
413         /*
414          * The most significant bit at DSIZE bit field is reserved when the
415          * maximum data size of periperal instances is limited to 16-bit
416          */
417         stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);
418
419         cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
420         max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
421                   STM32H7_SPI_CFG1_DSIZE_SHIFT;
422         max_bpw += 1;
423
424         spin_unlock_irqrestore(&spi->lock, flags);
425
426         dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);
427
428         return SPI_BPW_RANGE_MASK(4, max_bpw);
429 }
430
431 /**
432  * stm32_spi_prepare_mbr - Determine baud rate divisor value
433  * @spi: pointer to the spi controller data structure
434  * @speed_hz: requested speed
435  * @min_div: minimum baud rate divisor
436  * @max_div: maximum baud rate divisor
437  *
438  * Return baud rate divisor value in case of success or -EINVAL
439  */
440 static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
441                                  u32 min_div, u32 max_div)
442 {
443         u32 div, mbrdiv;
444
445         /* Ensure spi->clk_rate is even */
446         div = DIV_ROUND_UP(spi->clk_rate & ~0x1, speed_hz);
447
448         /*
449          * SPI framework set xfer->speed_hz to master->max_speed_hz if
450          * xfer->speed_hz is greater than master->max_speed_hz, and it returns
451          * an error when xfer->speed_hz is lower than master->min_speed_hz, so
452          * no need to check it there.
453          * However, we need to ensure the following calculations.
454          */
455         if ((div < min_div) || (div > max_div))
456                 return -EINVAL;
457
458         /* Determine the first power of 2 greater than or equal to div */
459         if (div & (div - 1))
460                 mbrdiv = fls(div);
461         else
462                 mbrdiv = fls(div) - 1;
463
464         spi->cur_speed = spi->clk_rate / (1 << mbrdiv);
465
466         return mbrdiv - 1;
467 }
468
469 /**
470  * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
471  * @spi: pointer to the spi controller data structure
472  * @xfer_len: length of the message to be transferred
473  */
474 static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi, u32 xfer_len)
475 {
476         u32 fthlv, half_fifo, packet;
477
478         /* data packet should not exceed 1/2 of fifo space */
479         half_fifo = (spi->fifo_size / 2);
480
481         /* data_packet should not exceed transfer length */
482         if (half_fifo > xfer_len)
483                 packet = xfer_len;
484         else
485                 packet = half_fifo;
486
487         if (spi->cur_bpw <= 8)
488                 fthlv = packet;
489         else if (spi->cur_bpw <= 16)
490                 fthlv = packet / 2;
491         else
492                 fthlv = packet / 4;
493
494         /* align packet size with data registers access */
495         if (spi->cur_bpw > 8)
496                 fthlv -= (fthlv % 2); /* multiple of 2 */
497         else
498                 fthlv -= (fthlv % 4); /* multiple of 4 */
499
500         if (!fthlv)
501                 fthlv = 1;
502
503         return fthlv;
504 }
505
506 /**
507  * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
508  * @spi: pointer to the spi controller data structure
509  *
510  * Read from tx_buf depends on remaining bytes to avoid to read beyond
511  * tx_buf end.
512  */
513 static void stm32f4_spi_write_tx(struct stm32_spi *spi)
514 {
515         if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
516                                   STM32F4_SPI_SR_TXE)) {
517                 u32 offs = spi->cur_xferlen - spi->tx_len;
518
519                 if (spi->cur_bpw == 16) {
520                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
521
522                         writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
523                         spi->tx_len -= sizeof(u16);
524                 } else {
525                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
526
527                         writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
528                         spi->tx_len -= sizeof(u8);
529                 }
530         }
531
532         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
533 }
534
535 /**
536  * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
537  * @spi: pointer to the spi controller data structure
538  *
539  * Read from tx_buf depends on remaining bytes to avoid to read beyond
540  * tx_buf end.
541  */
542 static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
543 {
544         while ((spi->tx_len > 0) &&
545                        (readl_relaxed(spi->base + STM32H7_SPI_SR) &
546                         STM32H7_SPI_SR_TXP)) {
547                 u32 offs = spi->cur_xferlen - spi->tx_len;
548
549                 if (spi->tx_len >= sizeof(u32)) {
550                         const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);
551
552                         writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
553                         spi->tx_len -= sizeof(u32);
554                 } else if (spi->tx_len >= sizeof(u16)) {
555                         const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);
556
557                         writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
558                         spi->tx_len -= sizeof(u16);
559                 } else {
560                         const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);
561
562                         writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
563                         spi->tx_len -= sizeof(u8);
564                 }
565         }
566
567         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
568 }
569
570 /**
571  * stm32f4_spi_read_rx - Read bytes from Receive Data Register
572  * @spi: pointer to the spi controller data structure
573  *
574  * Write in rx_buf depends on remaining bytes to avoid to write beyond
575  * rx_buf end.
576  */
577 static void stm32f4_spi_read_rx(struct stm32_spi *spi)
578 {
579         if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
580                                   STM32F4_SPI_SR_RXNE)) {
581                 u32 offs = spi->cur_xferlen - spi->rx_len;
582
583                 if (spi->cur_bpw == 16) {
584                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
585
586                         *rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
587                         spi->rx_len -= sizeof(u16);
588                 } else {
589                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
590
591                         *rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
592                         spi->rx_len -= sizeof(u8);
593                 }
594         }
595
596         dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
597 }
598
599 /**
600  * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
601  * @spi: pointer to the spi controller data structure
602  * @flush: boolean indicating that FIFO should be flushed
603  *
604  * Write in rx_buf depends on remaining bytes to avoid to write beyond
605  * rx_buf end.
606  */
607 static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
608 {
609         u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
610         u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
611                      STM32H7_SPI_SR_RXPLVL_SHIFT;
612
613         while ((spi->rx_len > 0) &&
614                ((sr & STM32H7_SPI_SR_RXP) ||
615                 (flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
616                 u32 offs = spi->cur_xferlen - spi->rx_len;
617
618                 if ((spi->rx_len >= sizeof(u32)) ||
619                     (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
620                         u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);
621
622                         *rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
623                         spi->rx_len -= sizeof(u32);
624                 } else if ((spi->rx_len >= sizeof(u16)) ||
625                            (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
626                         u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);
627
628                         *rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
629                         spi->rx_len -= sizeof(u16);
630                 } else {
631                         u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);
632
633                         *rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
634                         spi->rx_len -= sizeof(u8);
635                 }
636
637                 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
638                 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
639                          STM32H7_SPI_SR_RXPLVL_SHIFT;
640         }
641
642         dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
643                 flush ? "(flush)" : "", spi->rx_len);
644 }
645
646 /**
647  * stm32_spi_enable - Enable SPI controller
648  * @spi: pointer to the spi controller data structure
649  */
650 static void stm32_spi_enable(struct stm32_spi *spi)
651 {
652         dev_dbg(spi->dev, "enable controller\n");
653
654         stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
655                            spi->cfg->regs->en.mask);
656 }
657
658 /**
659  * stm32f4_spi_disable - Disable SPI controller
660  * @spi: pointer to the spi controller data structure
661  */
662 static void stm32f4_spi_disable(struct stm32_spi *spi)
663 {
664         unsigned long flags;
665         u32 sr;
666
667         dev_dbg(spi->dev, "disable controller\n");
668
669         spin_lock_irqsave(&spi->lock, flags);
670
671         if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
672               STM32F4_SPI_CR1_SPE)) {
673                 spin_unlock_irqrestore(&spi->lock, flags);
674                 return;
675         }
676
677         /* Disable interrupts */
678         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
679                                                  STM32F4_SPI_CR2_RXNEIE |
680                                                  STM32F4_SPI_CR2_ERRIE);
681
682         /* Wait until BSY = 0 */
683         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
684                                               sr, !(sr & STM32F4_SPI_SR_BSY),
685                                               10, 100000) < 0) {
686                 dev_warn(spi->dev, "disabling condition timeout\n");
687         }
688
689         if (spi->cur_usedma && spi->dma_tx)
690                 dmaengine_terminate_all(spi->dma_tx);
691         if (spi->cur_usedma && spi->dma_rx)
692                 dmaengine_terminate_all(spi->dma_rx);
693
694         stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);
695
696         stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
697                                                  STM32F4_SPI_CR2_RXDMAEN);
698
699         /* Sequence to clear OVR flag */
700         readl_relaxed(spi->base + STM32F4_SPI_DR);
701         readl_relaxed(spi->base + STM32F4_SPI_SR);
702
703         spin_unlock_irqrestore(&spi->lock, flags);
704 }
705
706 /**
707  * stm32h7_spi_disable - Disable SPI controller
708  * @spi: pointer to the spi controller data structure
709  *
710  * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
711  * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
712  * RX-Fifo.
713  * Normally, if TSIZE has been configured, we should relax the hardware at the
714  * reception of the EOT interrupt. But in case of error, EOT will not be
715  * raised. So the subsystem unprepare_message call allows us to properly
716  * complete the transfer from an hardware point of view.
717  */
718 static void stm32h7_spi_disable(struct stm32_spi *spi)
719 {
720         unsigned long flags;
721         u32 cr1, sr;
722
723         dev_dbg(spi->dev, "disable controller\n");
724
725         spin_lock_irqsave(&spi->lock, flags);
726
727         cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);
728
729         if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
730                 spin_unlock_irqrestore(&spi->lock, flags);
731                 return;
732         }
733
734         /* Wait on EOT or suspend the flow */
735         if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
736                                               sr, !(sr & STM32H7_SPI_SR_EOT),
737                                               10, 100000) < 0) {
738                 if (cr1 & STM32H7_SPI_CR1_CSTART) {
739                         writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
740                                        spi->base + STM32H7_SPI_CR1);
741                         if (readl_relaxed_poll_timeout_atomic(
742                                                 spi->base + STM32H7_SPI_SR,
743                                                 sr, !(sr & STM32H7_SPI_SR_SUSP),
744                                                 10, 100000) < 0)
745                                 dev_warn(spi->dev,
746                                          "Suspend request timeout\n");
747                 }
748         }
749
750         if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
751                 stm32h7_spi_read_rxfifo(spi, true);
752
753         if (spi->cur_usedma && spi->dma_tx)
754                 dmaengine_terminate_all(spi->dma_tx);
755         if (spi->cur_usedma && spi->dma_rx)
756                 dmaengine_terminate_all(spi->dma_rx);
757
758         stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);
759
760         stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
761                                                 STM32H7_SPI_CFG1_RXDMAEN);
762
763         /* Disable interrupts and clear status flags */
764         writel_relaxed(0, spi->base + STM32H7_SPI_IER);
765         writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);
766
767         spin_unlock_irqrestore(&spi->lock, flags);
768 }
769
770 /**
771  * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
772  * @master: controller master interface
773  * @spi_dev: pointer to the spi device
774  * @transfer: pointer to spi transfer
775  *
776  * If driver has fifo and the current transfer size is greater than fifo size,
777  * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
778  */
779 static bool stm32_spi_can_dma(struct spi_master *master,
780                               struct spi_device *spi_dev,
781                               struct spi_transfer *transfer)
782 {
783         unsigned int dma_size;
784         struct stm32_spi *spi = spi_master_get_devdata(master);
785
786         if (spi->cfg->has_fifo)
787                 dma_size = spi->fifo_size;
788         else
789                 dma_size = SPI_DMA_MIN_BYTES;
790
791         dev_dbg(spi->dev, "%s: %s\n", __func__,
792                 (transfer->len > dma_size) ? "true" : "false");
793
794         return (transfer->len > dma_size);
795 }
796
797 /**
798  * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
799  * @irq: interrupt line
800  * @dev_id: SPI controller master interface
801  */
802 static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
803 {
804         struct spi_master *master = dev_id;
805         struct stm32_spi *spi = spi_master_get_devdata(master);
806         u32 sr, mask = 0;
807         bool end = false;
808
809         spin_lock(&spi->lock);
810
811         sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
812         /*
813          * BSY flag is not handled in interrupt but it is normal behavior when
814          * this flag is set.
815          */
816         sr &= ~STM32F4_SPI_SR_BSY;
817
818         if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
819                                  spi->cur_comm == SPI_3WIRE_TX)) {
820                 /* OVR flag shouldn't be handled for TX only mode */
821                 sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
822                 mask |= STM32F4_SPI_SR_TXE;
823         }
824
825         if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
826                                 spi->cur_comm == SPI_SIMPLEX_RX ||
827                                 spi->cur_comm == SPI_3WIRE_RX)) {
828                 /* TXE flag is set and is handled when RXNE flag occurs */
829                 sr &= ~STM32F4_SPI_SR_TXE;
830                 mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
831         }
832
833         if (!(sr & mask)) {
834                 dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
835                 spin_unlock(&spi->lock);
836                 return IRQ_NONE;
837         }
838
839         if (sr & STM32F4_SPI_SR_OVR) {
840                 dev_warn(spi->dev, "Overrun: received value discarded\n");
841
842                 /* Sequence to clear OVR flag */
843                 readl_relaxed(spi->base + STM32F4_SPI_DR);
844                 readl_relaxed(spi->base + STM32F4_SPI_SR);
845
846                 /*
847                  * If overrun is detected, it means that something went wrong,
848                  * so stop the current transfer. Transfer can wait for next
849                  * RXNE but DR is already read and end never happens.
850                  */
851                 end = true;
852                 goto end_irq;
853         }
854
855         if (sr & STM32F4_SPI_SR_TXE) {
856                 if (spi->tx_buf)
857                         stm32f4_spi_write_tx(spi);
858                 if (spi->tx_len == 0)
859                         end = true;
860         }
861
862         if (sr & STM32F4_SPI_SR_RXNE) {
863                 stm32f4_spi_read_rx(spi);
864                 if (spi->rx_len == 0)
865                         end = true;
866                 else if (spi->tx_buf)/* Load data for discontinuous mode */
867                         stm32f4_spi_write_tx(spi);
868         }
869
870 end_irq:
871         if (end) {
872                 /* Immediately disable interrupts to do not generate new one */
873                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
874                                         STM32F4_SPI_CR2_TXEIE |
875                                         STM32F4_SPI_CR2_RXNEIE |
876                                         STM32F4_SPI_CR2_ERRIE);
877                 spin_unlock(&spi->lock);
878                 return IRQ_WAKE_THREAD;
879         }
880
881         spin_unlock(&spi->lock);
882         return IRQ_HANDLED;
883 }
884
885 /**
886  * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
887  * @irq: interrupt line
888  * @dev_id: SPI controller master interface
889  */
890 static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
891 {
892         struct spi_master *master = dev_id;
893         struct stm32_spi *spi = spi_master_get_devdata(master);
894
895         spi_finalize_current_transfer(master);
896         stm32f4_spi_disable(spi);
897
898         return IRQ_HANDLED;
899 }
900
901 /**
902  * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
903  * @irq: interrupt line
904  * @dev_id: SPI controller master interface
905  */
906 static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
907 {
908         struct spi_master *master = dev_id;
909         struct stm32_spi *spi = spi_master_get_devdata(master);
910         u32 sr, ier, mask;
911         unsigned long flags;
912         bool end = false;
913
914         spin_lock_irqsave(&spi->lock, flags);
915
916         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
917         ier = readl_relaxed(spi->base + STM32H7_SPI_IER);
918
919         mask = ier;
920         /* EOTIE is triggered on EOT, SUSP and TXC events. */
921         mask |= STM32H7_SPI_SR_SUSP;
922         /*
923          * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
924          * Full-Duplex, need to poll RXP event to know if there are remaining
925          * data, before disabling SPI.
926          */
927         if (spi->rx_buf && !spi->cur_usedma)
928                 mask |= STM32H7_SPI_SR_RXP;
929
930         if (!(sr & mask)) {
931                 dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
932                         sr, ier);
933                 spin_unlock_irqrestore(&spi->lock, flags);
934                 return IRQ_NONE;
935         }
936
937         if (sr & STM32H7_SPI_SR_SUSP) {
938                 static DEFINE_RATELIMIT_STATE(rs,
939                                               DEFAULT_RATELIMIT_INTERVAL * 10,
940                                               1);
941                 if (__ratelimit(&rs))
942                         dev_dbg_ratelimited(spi->dev, "Communication suspended\n");
943                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
944                         stm32h7_spi_read_rxfifo(spi, false);
945                 /*
946                  * If communication is suspended while using DMA, it means
947                  * that something went wrong, so stop the current transfer
948                  */
949                 if (spi->cur_usedma)
950                         end = true;
951         }
952
953         if (sr & STM32H7_SPI_SR_MODF) {
954                 dev_warn(spi->dev, "Mode fault: transfer aborted\n");
955                 end = true;
956         }
957
958         if (sr & STM32H7_SPI_SR_OVR) {
959                 dev_warn(spi->dev, "Overrun: received value discarded\n");
960                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
961                         stm32h7_spi_read_rxfifo(spi, false);
962                 /*
963                  * If overrun is detected while using DMA, it means that
964                  * something went wrong, so stop the current transfer
965                  */
966                 if (spi->cur_usedma)
967                         end = true;
968         }
969
970         if (sr & STM32H7_SPI_SR_EOT) {
971                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
972                         stm32h7_spi_read_rxfifo(spi, true);
973                 end = true;
974         }
975
976         if (sr & STM32H7_SPI_SR_TXP)
977                 if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
978                         stm32h7_spi_write_txfifo(spi);
979
980         if (sr & STM32H7_SPI_SR_RXP)
981                 if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
982                         stm32h7_spi_read_rxfifo(spi, false);
983
984         writel_relaxed(sr & mask, spi->base + STM32H7_SPI_IFCR);
985
986         spin_unlock_irqrestore(&spi->lock, flags);
987
988         if (end) {
989                 stm32h7_spi_disable(spi);
990                 spi_finalize_current_transfer(master);
991         }
992
993         return IRQ_HANDLED;
994 }
995
996 /**
997  * stm32_spi_prepare_msg - set up the controller to transfer a single message
998  * @master: controller master interface
999  * @msg: pointer to spi message
1000  */
1001 static int stm32_spi_prepare_msg(struct spi_master *master,
1002                                  struct spi_message *msg)
1003 {
1004         struct stm32_spi *spi = spi_master_get_devdata(master);
1005         struct spi_device *spi_dev = msg->spi;
1006         struct device_node *np = spi_dev->dev.of_node;
1007         unsigned long flags;
1008         u32 clrb = 0, setb = 0;
1009
1010         /* SPI slave device may need time between data frames */
1011         spi->cur_midi = 0;
1012         if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
1013                 dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);
1014
1015         if (spi_dev->mode & SPI_CPOL)
1016                 setb |= spi->cfg->regs->cpol.mask;
1017         else
1018                 clrb |= spi->cfg->regs->cpol.mask;
1019
1020         if (spi_dev->mode & SPI_CPHA)
1021                 setb |= spi->cfg->regs->cpha.mask;
1022         else
1023                 clrb |= spi->cfg->regs->cpha.mask;
1024
1025         if (spi_dev->mode & SPI_LSB_FIRST)
1026                 setb |= spi->cfg->regs->lsb_first.mask;
1027         else
1028                 clrb |= spi->cfg->regs->lsb_first.mask;
1029
1030         dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
1031                 spi_dev->mode & SPI_CPOL,
1032                 spi_dev->mode & SPI_CPHA,
1033                 spi_dev->mode & SPI_LSB_FIRST,
1034                 spi_dev->mode & SPI_CS_HIGH);
1035
1036         spin_lock_irqsave(&spi->lock, flags);
1037
1038         /* CPOL, CPHA and LSB FIRST bits have common register */
1039         if (clrb || setb)
1040                 writel_relaxed(
1041                         (readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
1042                          ~clrb) | setb,
1043                         spi->base + spi->cfg->regs->cpol.reg);
1044
1045         spin_unlock_irqrestore(&spi->lock, flags);
1046
1047         return 0;
1048 }
1049
1050 /**
1051  * stm32f4_spi_dma_tx_cb - dma callback
1052  * @data: pointer to the spi controller data structure
1053  *
1054  * DMA callback is called when the transfer is complete for DMA TX channel.
1055  */
1056 static void stm32f4_spi_dma_tx_cb(void *data)
1057 {
1058         struct stm32_spi *spi = data;
1059
1060         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1061                 spi_finalize_current_transfer(spi->master);
1062                 stm32f4_spi_disable(spi);
1063         }
1064 }
1065
1066 /**
1067  * stm32f4_spi_dma_rx_cb - dma callback
1068  * @data: pointer to the spi controller data structure
1069  *
1070  * DMA callback is called when the transfer is complete for DMA RX channel.
1071  */
1072 static void stm32f4_spi_dma_rx_cb(void *data)
1073 {
1074         struct stm32_spi *spi = data;
1075
1076         spi_finalize_current_transfer(spi->master);
1077         stm32f4_spi_disable(spi);
1078 }
1079
1080 /**
1081  * stm32h7_spi_dma_cb - dma callback
1082  * @data: pointer to the spi controller data structure
1083  *
1084  * DMA callback is called when the transfer is complete or when an error
1085  * occurs. If the transfer is complete, EOT flag is raised.
1086  */
1087 static void stm32h7_spi_dma_cb(void *data)
1088 {
1089         struct stm32_spi *spi = data;
1090         unsigned long flags;
1091         u32 sr;
1092
1093         spin_lock_irqsave(&spi->lock, flags);
1094
1095         sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
1096
1097         spin_unlock_irqrestore(&spi->lock, flags);
1098
1099         if (!(sr & STM32H7_SPI_SR_EOT))
1100                 dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);
1101
1102         /* Now wait for EOT, or SUSP or OVR in case of error */
1103 }
1104
1105 /**
1106  * stm32_spi_dma_config - configure dma slave channel depending on current
1107  *                        transfer bits_per_word.
1108  * @spi: pointer to the spi controller data structure
1109  * @dma_conf: pointer to the dma_slave_config structure
1110  * @dir: direction of the dma transfer
1111  */
1112 static void stm32_spi_dma_config(struct stm32_spi *spi,
1113                                  struct dma_slave_config *dma_conf,
1114                                  enum dma_transfer_direction dir)
1115 {
1116         enum dma_slave_buswidth buswidth;
1117         u32 maxburst;
1118
1119         if (spi->cur_bpw <= 8)
1120                 buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
1121         else if (spi->cur_bpw <= 16)
1122                 buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
1123         else
1124                 buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
1125
1126         if (spi->cfg->has_fifo) {
1127                 /* Valid for DMA Half or Full Fifo threshold */
1128                 if (spi->cur_fthlv == 2)
1129                         maxburst = 1;
1130                 else
1131                         maxburst = spi->cur_fthlv;
1132         } else {
1133                 maxburst = 1;
1134         }
1135
1136         memset(dma_conf, 0, sizeof(struct dma_slave_config));
1137         dma_conf->direction = dir;
1138         if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
1139                 dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
1140                 dma_conf->src_addr_width = buswidth;
1141                 dma_conf->src_maxburst = maxburst;
1142
1143                 dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
1144                         buswidth, maxburst);
1145         } else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
1146                 dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
1147                 dma_conf->dst_addr_width = buswidth;
1148                 dma_conf->dst_maxburst = maxburst;
1149
1150                 dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
1151                         buswidth, maxburst);
1152         }
1153 }
1154
1155 /**
1156  * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
1157  *                                interrupts
1158  * @spi: pointer to the spi controller data structure
1159  *
1160  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1161  * in progress.
1162  */
1163 static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
1164 {
1165         unsigned long flags;
1166         u32 cr2 = 0;
1167
1168         /* Enable the interrupts relative to the current communication mode */
1169         if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
1170                 cr2 |= STM32F4_SPI_CR2_TXEIE;
1171         } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
1172                                 spi->cur_comm == SPI_SIMPLEX_RX ||
1173                                 spi->cur_comm == SPI_3WIRE_RX) {
1174                 /* In transmit-only mode, the OVR flag is set in the SR register
1175                  * since the received data are never read. Therefore set OVR
1176                  * interrupt only when rx buffer is available.
1177                  */
1178                 cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
1179         } else {
1180                 return -EINVAL;
1181         }
1182
1183         spin_lock_irqsave(&spi->lock, flags);
1184
1185         stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);
1186
1187         stm32_spi_enable(spi);
1188
1189         /* starting data transfer when buffer is loaded */
1190         if (spi->tx_buf)
1191                 stm32f4_spi_write_tx(spi);
1192
1193         spin_unlock_irqrestore(&spi->lock, flags);
1194
1195         return 1;
1196 }
1197
1198 /**
1199  * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
1200  *                                interrupts
1201  * @spi: pointer to the spi controller data structure
1202  *
1203  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1204  * in progress.
1205  */
1206 static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
1207 {
1208         unsigned long flags;
1209         u32 ier = 0;
1210
1211         /* Enable the interrupts relative to the current communication mode */
1212         if (spi->tx_buf && spi->rx_buf) /* Full Duplex */
1213                 ier |= STM32H7_SPI_IER_DXPIE;
1214         else if (spi->tx_buf)           /* Half-Duplex TX dir or Simplex TX */
1215                 ier |= STM32H7_SPI_IER_TXPIE;
1216         else if (spi->rx_buf)           /* Half-Duplex RX dir or Simplex RX */
1217                 ier |= STM32H7_SPI_IER_RXPIE;
1218
1219         /* Enable the interrupts relative to the end of transfer */
1220         ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
1221                STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;
1222
1223         spin_lock_irqsave(&spi->lock, flags);
1224
1225         stm32_spi_enable(spi);
1226
1227         /* Be sure to have data in fifo before starting data transfer */
1228         if (spi->tx_buf)
1229                 stm32h7_spi_write_txfifo(spi);
1230
1231         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1232
1233         writel_relaxed(ier, spi->base + STM32H7_SPI_IER);
1234
1235         spin_unlock_irqrestore(&spi->lock, flags);
1236
1237         return 1;
1238 }
1239
1240 /**
1241  * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
1242  *                                      transfer using DMA
1243  * @spi: pointer to the spi controller data structure
1244  */
1245 static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
1246 {
1247         /* In DMA mode end of transfer is handled by DMA TX or RX callback. */
1248         if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
1249             spi->cur_comm == SPI_FULL_DUPLEX) {
1250                 /*
1251                  * In transmit-only mode, the OVR flag is set in the SR register
1252                  * since the received data are never read. Therefore set OVR
1253                  * interrupt only when rx buffer is available.
1254                  */
1255                 stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
1256         }
1257
1258         stm32_spi_enable(spi);
1259 }
1260
1261 /**
1262  * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
1263  *                                      transfer using DMA
1264  * @spi: pointer to the spi controller data structure
1265  */
1266 static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
1267 {
1268         /* Enable the interrupts relative to the end of transfer */
1269         stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
1270                                                  STM32H7_SPI_IER_TXTFIE |
1271                                                  STM32H7_SPI_IER_OVRIE |
1272                                                  STM32H7_SPI_IER_MODFIE);
1273
1274         stm32_spi_enable(spi);
1275
1276         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
1277 }
1278
1279 /**
1280  * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
1281  * @spi: pointer to the spi controller data structure
1282  * @xfer: pointer to the spi_transfer structure
1283  *
1284  * It must returns 0 if the transfer is finished or 1 if the transfer is still
1285  * in progress.
1286  */
1287 static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
1288                                       struct spi_transfer *xfer)
1289 {
1290         struct dma_slave_config tx_dma_conf, rx_dma_conf;
1291         struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
1292         unsigned long flags;
1293
1294         spin_lock_irqsave(&spi->lock, flags);
1295
1296         rx_dma_desc = NULL;
1297         if (spi->rx_buf && spi->dma_rx) {
1298                 stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
1299                 dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);
1300
1301                 /* Enable Rx DMA request */
1302                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1303                                    spi->cfg->regs->dma_rx_en.mask);
1304
1305                 rx_dma_desc = dmaengine_prep_slave_sg(
1306                                         spi->dma_rx, xfer->rx_sg.sgl,
1307                                         xfer->rx_sg.nents,
1308                                         rx_dma_conf.direction,
1309                                         DMA_PREP_INTERRUPT);
1310         }
1311
1312         tx_dma_desc = NULL;
1313         if (spi->tx_buf && spi->dma_tx) {
1314                 stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
1315                 dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);
1316
1317                 tx_dma_desc = dmaengine_prep_slave_sg(
1318                                         spi->dma_tx, xfer->tx_sg.sgl,
1319                                         xfer->tx_sg.nents,
1320                                         tx_dma_conf.direction,
1321                                         DMA_PREP_INTERRUPT);
1322         }
1323
1324         if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
1325             (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
1326                 goto dma_desc_error;
1327
1328         if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
1329                 goto dma_desc_error;
1330
1331         if (rx_dma_desc) {
1332                 rx_dma_desc->callback = spi->cfg->dma_rx_cb;
1333                 rx_dma_desc->callback_param = spi;
1334
1335                 if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
1336                         dev_err(spi->dev, "Rx DMA submit failed\n");
1337                         goto dma_desc_error;
1338                 }
1339                 /* Enable Rx DMA channel */
1340                 dma_async_issue_pending(spi->dma_rx);
1341         }
1342
1343         if (tx_dma_desc) {
1344                 if (spi->cur_comm == SPI_SIMPLEX_TX ||
1345                     spi->cur_comm == SPI_3WIRE_TX) {
1346                         tx_dma_desc->callback = spi->cfg->dma_tx_cb;
1347                         tx_dma_desc->callback_param = spi;
1348                 }
1349
1350                 if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
1351                         dev_err(spi->dev, "Tx DMA submit failed\n");
1352                         goto dma_submit_error;
1353                 }
1354                 /* Enable Tx DMA channel */
1355                 dma_async_issue_pending(spi->dma_tx);
1356
1357                 /* Enable Tx DMA request */
1358                 stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
1359                                    spi->cfg->regs->dma_tx_en.mask);
1360         }
1361
1362         spi->cfg->transfer_one_dma_start(spi);
1363
1364         spin_unlock_irqrestore(&spi->lock, flags);
1365
1366         return 1;
1367
1368 dma_submit_error:
1369         if (spi->dma_rx)
1370                 dmaengine_terminate_all(spi->dma_rx);
1371
1372 dma_desc_error:
1373         stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
1374                            spi->cfg->regs->dma_rx_en.mask);
1375
1376         spin_unlock_irqrestore(&spi->lock, flags);
1377
1378         dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");
1379
1380         spi->cur_usedma = false;
1381         return spi->cfg->transfer_one_irq(spi);
1382 }
1383
1384 /**
1385  * stm32f4_spi_set_bpw - Configure bits per word
1386  * @spi: pointer to the spi controller data structure
1387  */
1388 static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
1389 {
1390         if (spi->cur_bpw == 16)
1391                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1392         else
1393                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
1394 }
1395
1396 /**
1397  * stm32h7_spi_set_bpw - configure bits per word
1398  * @spi: pointer to the spi controller data structure
1399  */
1400 static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
1401 {
1402         u32 bpw, fthlv;
1403         u32 cfg1_clrb = 0, cfg1_setb = 0;
1404
1405         bpw = spi->cur_bpw - 1;
1406
1407         cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
1408         cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
1409                      STM32H7_SPI_CFG1_DSIZE;
1410
1411         spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi, spi->cur_xferlen);
1412         fthlv = spi->cur_fthlv - 1;
1413
1414         cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
1415         cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
1416                      STM32H7_SPI_CFG1_FTHLV;
1417
1418         writel_relaxed(
1419                 (readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
1420                  ~cfg1_clrb) | cfg1_setb,
1421                 spi->base + STM32H7_SPI_CFG1);
1422 }
1423
1424 /**
1425  * stm32_spi_set_mbr - Configure baud rate divisor in master mode
1426  * @spi: pointer to the spi controller data structure
1427  * @mbrdiv: baud rate divisor value
1428  */
1429 static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
1430 {
1431         u32 clrb = 0, setb = 0;
1432
1433         clrb |= spi->cfg->regs->br.mask;
1434         setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
1435                 spi->cfg->regs->br.mask;
1436
1437         writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
1438                         ~clrb) | setb,
1439                        spi->base + spi->cfg->regs->br.reg);
1440 }
1441
1442 /**
1443  * stm32_spi_communication_type - return transfer communication type
1444  * @spi_dev: pointer to the spi device
1445  * @transfer: pointer to spi transfer
1446  */
1447 static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
1448                                                  struct spi_transfer *transfer)
1449 {
1450         unsigned int type = SPI_FULL_DUPLEX;
1451
1452         if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
1453                 /*
1454                  * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
1455                  * is forbidden and unvalidated by SPI subsystem so depending
1456                  * on the valid buffer, we can determine the direction of the
1457                  * transfer.
1458                  */
1459                 if (!transfer->tx_buf)
1460                         type = SPI_3WIRE_RX;
1461                 else
1462                         type = SPI_3WIRE_TX;
1463         } else {
1464                 if (!transfer->tx_buf)
1465                         type = SPI_SIMPLEX_RX;
1466                 else if (!transfer->rx_buf)
1467                         type = SPI_SIMPLEX_TX;
1468         }
1469
1470         return type;
1471 }
1472
1473 /**
1474  * stm32f4_spi_set_mode - configure communication mode
1475  * @spi: pointer to the spi controller data structure
1476  * @comm_type: type of communication to configure
1477  */
1478 static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1479 {
1480         if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
1481                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1482                                         STM32F4_SPI_CR1_BIDIMODE |
1483                                         STM32F4_SPI_CR1_BIDIOE);
1484         } else if (comm_type == SPI_FULL_DUPLEX ||
1485                                 comm_type == SPI_SIMPLEX_RX) {
1486                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1487                                         STM32F4_SPI_CR1_BIDIMODE |
1488                                         STM32F4_SPI_CR1_BIDIOE);
1489         } else if (comm_type == SPI_3WIRE_RX) {
1490                 stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
1491                                         STM32F4_SPI_CR1_BIDIMODE);
1492                 stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
1493                                         STM32F4_SPI_CR1_BIDIOE);
1494         } else {
1495                 return -EINVAL;
1496         }
1497
1498         return 0;
1499 }
1500
1501 /**
1502  * stm32h7_spi_set_mode - configure communication mode
1503  * @spi: pointer to the spi controller data structure
1504  * @comm_type: type of communication to configure
1505  */
1506 static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
1507 {
1508         u32 mode;
1509         u32 cfg2_clrb = 0, cfg2_setb = 0;
1510
1511         if (comm_type == SPI_3WIRE_RX) {
1512                 mode = STM32H7_SPI_HALF_DUPLEX;
1513                 stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1514         } else if (comm_type == SPI_3WIRE_TX) {
1515                 mode = STM32H7_SPI_HALF_DUPLEX;
1516                 stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
1517         } else if (comm_type == SPI_SIMPLEX_RX) {
1518                 mode = STM32H7_SPI_SIMPLEX_RX;
1519         } else if (comm_type == SPI_SIMPLEX_TX) {
1520                 mode = STM32H7_SPI_SIMPLEX_TX;
1521         } else {
1522                 mode = STM32H7_SPI_FULL_DUPLEX;
1523         }
1524
1525         cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
1526         cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
1527                      STM32H7_SPI_CFG2_COMM;
1528
1529         writel_relaxed(
1530                 (readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1531                  ~cfg2_clrb) | cfg2_setb,
1532                 spi->base + STM32H7_SPI_CFG2);
1533
1534         return 0;
1535 }
1536
1537 /**
1538  * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
1539  *                             consecutive data frames in master mode
1540  * @spi: pointer to the spi controller data structure
1541  * @len: transfer len
1542  */
1543 static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
1544 {
1545         u32 cfg2_clrb = 0, cfg2_setb = 0;
1546
1547         cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
1548         if ((len > 1) && (spi->cur_midi > 0)) {
1549                 u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
1550                 u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
1551                                (u32)STM32H7_SPI_CFG2_MIDI >>
1552                                STM32H7_SPI_CFG2_MIDI_SHIFT);
1553
1554                 dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
1555                         sck_period_ns, midi, midi * sck_period_ns);
1556                 cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
1557                              STM32H7_SPI_CFG2_MIDI;
1558         }
1559
1560         writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
1561                         ~cfg2_clrb) | cfg2_setb,
1562                        spi->base + STM32H7_SPI_CFG2);
1563 }
1564
1565 /**
1566  * stm32h7_spi_number_of_data - configure number of data at current transfer
1567  * @spi: pointer to the spi controller data structure
1568  * @nb_words: transfer length (in words)
1569  */
1570 static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
1571 {
1572         u32 cr2_clrb = 0, cr2_setb = 0;
1573
1574         if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
1575                          STM32H7_SPI_CR2_TSIZE_SHIFT)) {
1576                 cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
1577                 cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
1578                 writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
1579                                 ~cr2_clrb) | cr2_setb,
1580                                spi->base + STM32H7_SPI_CR2);
1581         } else {
1582                 return -EMSGSIZE;
1583         }
1584
1585         return 0;
1586 }
1587
1588 /**
1589  * stm32_spi_transfer_one_setup - common setup to transfer a single
1590  *                                spi_transfer either using DMA or
1591  *                                interrupts.
1592  * @spi: pointer to the spi controller data structure
1593  * @spi_dev: pointer to the spi device
1594  * @transfer: pointer to spi transfer
1595  */
1596 static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
1597                                         struct spi_device *spi_dev,
1598                                         struct spi_transfer *transfer)
1599 {
1600         unsigned long flags;
1601         unsigned int comm_type;
1602         int nb_words, ret = 0;
1603         int mbr;
1604
1605         spin_lock_irqsave(&spi->lock, flags);
1606
1607         spi->cur_xferlen = transfer->len;
1608
1609         spi->cur_bpw = transfer->bits_per_word;
1610         spi->cfg->set_bpw(spi);
1611
1612         /* Update spi->cur_speed with real clock speed */
1613         mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
1614                                     spi->cfg->baud_rate_div_min,
1615                                     spi->cfg->baud_rate_div_max);
1616         if (mbr < 0) {
1617                 ret = mbr;
1618                 goto out;
1619         }
1620
1621         transfer->speed_hz = spi->cur_speed;
1622         stm32_spi_set_mbr(spi, mbr);
1623
1624         comm_type = stm32_spi_communication_type(spi_dev, transfer);
1625         ret = spi->cfg->set_mode(spi, comm_type);
1626         if (ret < 0)
1627                 goto out;
1628
1629         spi->cur_comm = comm_type;
1630
1631         if (spi->cfg->set_data_idleness)
1632                 spi->cfg->set_data_idleness(spi, transfer->len);
1633
1634         if (spi->cur_bpw <= 8)
1635                 nb_words = transfer->len;
1636         else if (spi->cur_bpw <= 16)
1637                 nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
1638         else
1639                 nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
1640
1641         if (spi->cfg->set_number_of_data) {
1642                 ret = spi->cfg->set_number_of_data(spi, nb_words);
1643                 if (ret < 0)
1644                         goto out;
1645         }
1646
1647         dev_dbg(spi->dev, "transfer communication mode set to %d\n",
1648                 spi->cur_comm);
1649         dev_dbg(spi->dev,
1650                 "data frame of %d-bit, data packet of %d data frames\n",
1651                 spi->cur_bpw, spi->cur_fthlv);
1652         dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
1653         dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
1654                 spi->cur_xferlen, nb_words);
1655         dev_dbg(spi->dev, "dma %s\n",
1656                 (spi->cur_usedma) ? "enabled" : "disabled");
1657
1658 out:
1659         spin_unlock_irqrestore(&spi->lock, flags);
1660
1661         return ret;
1662 }
1663
1664 /**
1665  * stm32_spi_transfer_one - transfer a single spi_transfer
1666  * @master: controller master interface
1667  * @spi_dev: pointer to the spi device
1668  * @transfer: pointer to spi transfer
1669  *
1670  * It must return 0 if the transfer is finished or 1 if the transfer is still
1671  * in progress.
1672  */
1673 static int stm32_spi_transfer_one(struct spi_master *master,
1674                                   struct spi_device *spi_dev,
1675                                   struct spi_transfer *transfer)
1676 {
1677         struct stm32_spi *spi = spi_master_get_devdata(master);
1678         int ret;
1679
1680         spi->tx_buf = transfer->tx_buf;
1681         spi->rx_buf = transfer->rx_buf;
1682         spi->tx_len = spi->tx_buf ? transfer->len : 0;
1683         spi->rx_len = spi->rx_buf ? transfer->len : 0;
1684
1685         spi->cur_usedma = (master->can_dma &&
1686                            master->can_dma(master, spi_dev, transfer));
1687
1688         ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
1689         if (ret) {
1690                 dev_err(spi->dev, "SPI transfer setup failed\n");
1691                 return ret;
1692         }
1693
1694         if (spi->cur_usedma)
1695                 return stm32_spi_transfer_one_dma(spi, transfer);
1696         else
1697                 return spi->cfg->transfer_one_irq(spi);
1698 }
1699
1700 /**
1701  * stm32_spi_unprepare_msg - relax the hardware
1702  * @master: controller master interface
1703  * @msg: pointer to the spi message
1704  */
1705 static int stm32_spi_unprepare_msg(struct spi_master *master,
1706                                    struct spi_message *msg)
1707 {
1708         struct stm32_spi *spi = spi_master_get_devdata(master);
1709
1710         spi->cfg->disable(spi);
1711
1712         return 0;
1713 }
1714
1715 /**
1716  * stm32f4_spi_config - Configure SPI controller as SPI master
1717  * @spi: pointer to the spi controller data structure
1718  */
1719 static int stm32f4_spi_config(struct stm32_spi *spi)
1720 {
1721         unsigned long flags;
1722
1723         spin_lock_irqsave(&spi->lock, flags);
1724
1725         /* Ensure I2SMOD bit is kept cleared */
1726         stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
1727                            STM32F4_SPI_I2SCFGR_I2SMOD);
1728
1729         /*
1730          * - SS input value high
1731          * - transmitter half duplex direction
1732          * - Set the master mode (default Motorola mode)
1733          * - Consider 1 master/n slaves configuration and
1734          *   SS input value is determined by the SSI bit
1735          */
1736         stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
1737                                                  STM32F4_SPI_CR1_BIDIOE |
1738                                                  STM32F4_SPI_CR1_MSTR |
1739                                                  STM32F4_SPI_CR1_SSM);
1740
1741         spin_unlock_irqrestore(&spi->lock, flags);
1742
1743         return 0;
1744 }
1745
1746 /**
1747  * stm32h7_spi_config - Configure SPI controller as SPI master
1748  * @spi: pointer to the spi controller data structure
1749  */
1750 static int stm32h7_spi_config(struct stm32_spi *spi)
1751 {
1752         unsigned long flags;
1753
1754         spin_lock_irqsave(&spi->lock, flags);
1755
1756         /* Ensure I2SMOD bit is kept cleared */
1757         stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
1758                            STM32H7_SPI_I2SCFGR_I2SMOD);
1759
1760         /*
1761          * - SS input value high
1762          * - transmitter half duplex direction
1763          * - automatic communication suspend when RX-Fifo is full
1764          */
1765         stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
1766                                                  STM32H7_SPI_CR1_HDDIR |
1767                                                  STM32H7_SPI_CR1_MASRX);
1768
1769         /*
1770          * - Set the master mode (default Motorola mode)
1771          * - Consider 1 master/n slaves configuration and
1772          *   SS input value is determined by the SSI bit
1773          * - keep control of all associated GPIOs
1774          */
1775         stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
1776                                                   STM32H7_SPI_CFG2_SSM |
1777                                                   STM32H7_SPI_CFG2_AFCNTR);
1778
1779         spin_unlock_irqrestore(&spi->lock, flags);
1780
1781         return 0;
1782 }
1783
1784 static const struct stm32_spi_cfg stm32f4_spi_cfg = {
1785         .regs = &stm32f4_spi_regspec,
1786         .get_bpw_mask = stm32f4_spi_get_bpw_mask,
1787         .disable = stm32f4_spi_disable,
1788         .config = stm32f4_spi_config,
1789         .set_bpw = stm32f4_spi_set_bpw,
1790         .set_mode = stm32f4_spi_set_mode,
1791         .transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
1792         .dma_tx_cb = stm32f4_spi_dma_tx_cb,
1793         .dma_rx_cb = stm32f4_spi_dma_rx_cb,
1794         .transfer_one_irq = stm32f4_spi_transfer_one_irq,
1795         .irq_handler_event = stm32f4_spi_irq_event,
1796         .irq_handler_thread = stm32f4_spi_irq_thread,
1797         .baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
1798         .baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
1799         .has_fifo = false,
1800 };
1801
1802 static const struct stm32_spi_cfg stm32h7_spi_cfg = {
1803         .regs = &stm32h7_spi_regspec,
1804         .get_fifo_size = stm32h7_spi_get_fifo_size,
1805         .get_bpw_mask = stm32h7_spi_get_bpw_mask,
1806         .disable = stm32h7_spi_disable,
1807         .config = stm32h7_spi_config,
1808         .set_bpw = stm32h7_spi_set_bpw,
1809         .set_mode = stm32h7_spi_set_mode,
1810         .set_data_idleness = stm32h7_spi_data_idleness,
1811         .set_number_of_data = stm32h7_spi_number_of_data,
1812         .transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
1813         .dma_rx_cb = stm32h7_spi_dma_cb,
1814         .dma_tx_cb = stm32h7_spi_dma_cb,
1815         .transfer_one_irq = stm32h7_spi_transfer_one_irq,
1816         .irq_handler_thread = stm32h7_spi_irq_thread,
1817         .baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
1818         .baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
1819         .has_fifo = true,
1820 };
1821
1822 static const struct of_device_id stm32_spi_of_match[] = {
1823         { .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
1824         { .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
1825         {},
1826 };
1827 MODULE_DEVICE_TABLE(of, stm32_spi_of_match);
1828
1829 static int stm32_spi_probe(struct platform_device *pdev)
1830 {
1831         struct spi_master *master;
1832         struct stm32_spi *spi;
1833         struct resource *res;
1834         int ret;
1835
1836         master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
1837         if (!master) {
1838                 dev_err(&pdev->dev, "spi master allocation failed\n");
1839                 return -ENOMEM;
1840         }
1841         platform_set_drvdata(pdev, master);
1842
1843         spi = spi_master_get_devdata(master);
1844         spi->dev = &pdev->dev;
1845         spi->master = master;
1846         spin_lock_init(&spi->lock);
1847
1848         spi->cfg = (const struct stm32_spi_cfg *)
1849                 of_match_device(pdev->dev.driver->of_match_table,
1850                                 &pdev->dev)->data;
1851
1852         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1853         spi->base = devm_ioremap_resource(&pdev->dev, res);
1854         if (IS_ERR(spi->base)) {
1855                 ret = PTR_ERR(spi->base);
1856                 goto err_master_put;
1857         }
1858
1859         spi->phys_addr = (dma_addr_t)res->start;
1860
1861         spi->irq = platform_get_irq(pdev, 0);
1862         if (spi->irq <= 0) {
1863                 ret = dev_err_probe(&pdev->dev, spi->irq, "failed to get irq\n");
1864                 goto err_master_put;
1865         }
1866         ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
1867                                         spi->cfg->irq_handler_event,
1868                                         spi->cfg->irq_handler_thread,
1869                                         IRQF_ONESHOT, pdev->name, master);
1870         if (ret) {
1871                 dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
1872                         ret);
1873                 goto err_master_put;
1874         }
1875
1876         spi->clk = devm_clk_get(&pdev->dev, NULL);
1877         if (IS_ERR(spi->clk)) {
1878                 ret = PTR_ERR(spi->clk);
1879                 dev_err(&pdev->dev, "clk get failed: %d\n", ret);
1880                 goto err_master_put;
1881         }
1882
1883         ret = clk_prepare_enable(spi->clk);
1884         if (ret) {
1885                 dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
1886                 goto err_master_put;
1887         }
1888         spi->clk_rate = clk_get_rate(spi->clk);
1889         if (!spi->clk_rate) {
1890                 dev_err(&pdev->dev, "clk rate = 0\n");
1891                 ret = -EINVAL;
1892                 goto err_clk_disable;
1893         }
1894
1895         spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
1896         if (!IS_ERR(spi->rst)) {
1897                 reset_control_assert(spi->rst);
1898                 udelay(2);
1899                 reset_control_deassert(spi->rst);
1900         }
1901
1902         if (spi->cfg->has_fifo)
1903                 spi->fifo_size = spi->cfg->get_fifo_size(spi);
1904
1905         ret = spi->cfg->config(spi);
1906         if (ret) {
1907                 dev_err(&pdev->dev, "controller configuration failed: %d\n",
1908                         ret);
1909                 goto err_clk_disable;
1910         }
1911
1912         master->dev.of_node = pdev->dev.of_node;
1913         master->auto_runtime_pm = true;
1914         master->bus_num = pdev->id;
1915         master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1916                             SPI_3WIRE;
1917         master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
1918         master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
1919         master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
1920         master->use_gpio_descriptors = true;
1921         master->prepare_message = stm32_spi_prepare_msg;
1922         master->transfer_one = stm32_spi_transfer_one;
1923         master->unprepare_message = stm32_spi_unprepare_msg;
1924         master->flags = SPI_MASTER_MUST_TX;
1925
1926         spi->dma_tx = dma_request_chan(spi->dev, "tx");
1927         if (IS_ERR(spi->dma_tx)) {
1928                 ret = PTR_ERR(spi->dma_tx);
1929                 spi->dma_tx = NULL;
1930                 if (ret == -EPROBE_DEFER)
1931                         goto err_clk_disable;
1932
1933                 dev_warn(&pdev->dev, "failed to request tx dma channel\n");
1934         } else {
1935                 master->dma_tx = spi->dma_tx;
1936         }
1937
1938         spi->dma_rx = dma_request_chan(spi->dev, "rx");
1939         if (IS_ERR(spi->dma_rx)) {
1940                 ret = PTR_ERR(spi->dma_rx);
1941                 spi->dma_rx = NULL;
1942                 if (ret == -EPROBE_DEFER)
1943                         goto err_dma_release;
1944
1945                 dev_warn(&pdev->dev, "failed to request rx dma channel\n");
1946         } else {
1947                 master->dma_rx = spi->dma_rx;
1948         }
1949
1950         if (spi->dma_tx || spi->dma_rx)
1951                 master->can_dma = stm32_spi_can_dma;
1952
1953         pm_runtime_set_active(&pdev->dev);
1954         pm_runtime_enable(&pdev->dev);
1955
1956         ret = devm_spi_register_master(&pdev->dev, master);
1957         if (ret) {
1958                 dev_err(&pdev->dev, "spi master registration failed: %d\n",
1959                         ret);
1960                 goto err_pm_disable;
1961         }
1962
1963         if (!master->cs_gpiods) {
1964                 dev_err(&pdev->dev, "no CS gpios available\n");
1965                 ret = -EINVAL;
1966                 goto err_pm_disable;
1967         }
1968
1969         dev_info(&pdev->dev, "driver initialized\n");
1970
1971         return 0;
1972
1973 err_pm_disable:
1974         pm_runtime_disable(&pdev->dev);
1975 err_dma_release:
1976         if (spi->dma_tx)
1977                 dma_release_channel(spi->dma_tx);
1978         if (spi->dma_rx)
1979                 dma_release_channel(spi->dma_rx);
1980 err_clk_disable:
1981         clk_disable_unprepare(spi->clk);
1982 err_master_put:
1983         spi_master_put(master);
1984
1985         return ret;
1986 }
1987
1988 static int stm32_spi_remove(struct platform_device *pdev)
1989 {
1990         struct spi_master *master = platform_get_drvdata(pdev);
1991         struct stm32_spi *spi = spi_master_get_devdata(master);
1992
1993         spi->cfg->disable(spi);
1994
1995         if (master->dma_tx)
1996                 dma_release_channel(master->dma_tx);
1997         if (master->dma_rx)
1998                 dma_release_channel(master->dma_rx);
1999
2000         clk_disable_unprepare(spi->clk);
2001
2002         pm_runtime_disable(&pdev->dev);
2003
2004         pinctrl_pm_select_sleep_state(&pdev->dev);
2005
2006         return 0;
2007 }
2008
2009 #ifdef CONFIG_PM
2010 static int stm32_spi_runtime_suspend(struct device *dev)
2011 {
2012         struct spi_master *master = dev_get_drvdata(dev);
2013         struct stm32_spi *spi = spi_master_get_devdata(master);
2014
2015         clk_disable_unprepare(spi->clk);
2016
2017         return pinctrl_pm_select_sleep_state(dev);
2018 }
2019
2020 static int stm32_spi_runtime_resume(struct device *dev)
2021 {
2022         struct spi_master *master = dev_get_drvdata(dev);
2023         struct stm32_spi *spi = spi_master_get_devdata(master);
2024         int ret;
2025
2026         ret = pinctrl_pm_select_default_state(dev);
2027         if (ret)
2028                 return ret;
2029
2030         return clk_prepare_enable(spi->clk);
2031 }
2032 #endif
2033
2034 #ifdef CONFIG_PM_SLEEP
2035 static int stm32_spi_suspend(struct device *dev)
2036 {
2037         struct spi_master *master = dev_get_drvdata(dev);
2038         int ret;
2039
2040         ret = spi_master_suspend(master);
2041         if (ret)
2042                 return ret;
2043
2044         return pm_runtime_force_suspend(dev);
2045 }
2046
2047 static int stm32_spi_resume(struct device *dev)
2048 {
2049         struct spi_master *master = dev_get_drvdata(dev);
2050         struct stm32_spi *spi = spi_master_get_devdata(master);
2051         int ret;
2052
2053         ret = pm_runtime_force_resume(dev);
2054         if (ret)
2055                 return ret;
2056
2057         ret = spi_master_resume(master);
2058         if (ret) {
2059                 clk_disable_unprepare(spi->clk);
2060                 return ret;
2061         }
2062
2063         ret = pm_runtime_get_sync(dev);
2064         if (ret < 0) {
2065                 dev_err(dev, "Unable to power device:%d\n", ret);
2066                 return ret;
2067         }
2068
2069         spi->cfg->config(spi);
2070
2071         pm_runtime_mark_last_busy(dev);
2072         pm_runtime_put_autosuspend(dev);
2073
2074         return 0;
2075 }
2076 #endif
2077
2078 static const struct dev_pm_ops stm32_spi_pm_ops = {
2079         SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
2080         SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
2081                            stm32_spi_runtime_resume, NULL)
2082 };
2083
2084 static struct platform_driver stm32_spi_driver = {
2085         .probe = stm32_spi_probe,
2086         .remove = stm32_spi_remove,
2087         .driver = {
2088                 .name = DRIVER_NAME,
2089                 .pm = &stm32_spi_pm_ops,
2090                 .of_match_table = stm32_spi_of_match,
2091         },
2092 };
2093
2094 module_platform_driver(stm32_spi_driver);
2095
2096 MODULE_ALIAS("platform:" DRIVER_NAME);
2097 MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
2098 MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
2099 MODULE_LICENSE("GPL v2");