HID: usbhid: Fix flood of "control queue full" messages
[linux-2.6-microblaze.git] / drivers / spi / spi-fsi.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // Copyright (C) IBM Corporation 2020
3
4 #include <linux/bitfield.h>
5 #include <linux/bits.h>
6 #include <linux/fsi.h>
7 #include <linux/jiffies.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/spi/spi.h>
12
13 #define FSI_ENGID_SPI                   0x23
14 #define FSI_MBOX_ROOT_CTRL_8            0x2860
15 #define  FSI_MBOX_ROOT_CTRL_8_SPI_MUX    0xf0000000
16
17 #define FSI2SPI_DATA0                   0x00
18 #define FSI2SPI_DATA1                   0x04
19 #define FSI2SPI_CMD                     0x08
20 #define  FSI2SPI_CMD_WRITE               BIT(31)
21 #define FSI2SPI_RESET                   0x18
22 #define FSI2SPI_STATUS                  0x1c
23 #define  FSI2SPI_STATUS_ANY_ERROR        BIT(31)
24 #define FSI2SPI_IRQ                     0x20
25
26 #define SPI_FSI_BASE                    0x70000
27 #define SPI_FSI_INIT_TIMEOUT_MS         1000
28 #define SPI_FSI_MAX_XFR_SIZE            2048
29 #define SPI_FSI_MAX_XFR_SIZE_RESTRICTED 8
30
31 #define SPI_FSI_ERROR                   0x0
32 #define SPI_FSI_COUNTER_CFG             0x1
33 #define  SPI_FSI_COUNTER_CFG_LOOPS(x)    (((u64)(x) & 0xffULL) << 32)
34 #define  SPI_FSI_COUNTER_CFG_N2_RX       BIT_ULL(8)
35 #define  SPI_FSI_COUNTER_CFG_N2_TX       BIT_ULL(9)
36 #define  SPI_FSI_COUNTER_CFG_N2_IMPLICIT BIT_ULL(10)
37 #define  SPI_FSI_COUNTER_CFG_N2_RELOAD   BIT_ULL(11)
38 #define SPI_FSI_CFG1                    0x2
39 #define SPI_FSI_CLOCK_CFG               0x3
40 #define  SPI_FSI_CLOCK_CFG_MM_ENABLE     BIT_ULL(32)
41 #define  SPI_FSI_CLOCK_CFG_ECC_DISABLE   (BIT_ULL(35) | BIT_ULL(33))
42 #define  SPI_FSI_CLOCK_CFG_RESET1        (BIT_ULL(36) | BIT_ULL(38))
43 #define  SPI_FSI_CLOCK_CFG_RESET2        (BIT_ULL(37) | BIT_ULL(39))
44 #define  SPI_FSI_CLOCK_CFG_MODE          (BIT_ULL(41) | BIT_ULL(42))
45 #define  SPI_FSI_CLOCK_CFG_SCK_RECV_DEL  GENMASK_ULL(51, 44)
46 #define   SPI_FSI_CLOCK_CFG_SCK_NO_DEL    BIT_ULL(51)
47 #define  SPI_FSI_CLOCK_CFG_SCK_DIV       GENMASK_ULL(63, 52)
48 #define SPI_FSI_MMAP                    0x4
49 #define SPI_FSI_DATA_TX                 0x5
50 #define SPI_FSI_DATA_RX                 0x6
51 #define SPI_FSI_SEQUENCE                0x7
52 #define  SPI_FSI_SEQUENCE_STOP           0x00
53 #define  SPI_FSI_SEQUENCE_SEL_SLAVE(x)   (0x10 | ((x) & 0xf))
54 #define  SPI_FSI_SEQUENCE_SHIFT_OUT(x)   (0x30 | ((x) & 0xf))
55 #define  SPI_FSI_SEQUENCE_SHIFT_IN(x)    (0x40 | ((x) & 0xf))
56 #define  SPI_FSI_SEQUENCE_COPY_DATA_TX   0xc0
57 #define  SPI_FSI_SEQUENCE_BRANCH(x)      (0xe0 | ((x) & 0xf))
58 #define SPI_FSI_STATUS                  0x8
59 #define  SPI_FSI_STATUS_ERROR            \
60         (GENMASK_ULL(31, 21) | GENMASK_ULL(15, 12))
61 #define  SPI_FSI_STATUS_SEQ_STATE        GENMASK_ULL(55, 48)
62 #define   SPI_FSI_STATUS_SEQ_STATE_IDLE   BIT_ULL(48)
63 #define  SPI_FSI_STATUS_TDR_UNDERRUN     BIT_ULL(57)
64 #define  SPI_FSI_STATUS_TDR_OVERRUN      BIT_ULL(58)
65 #define  SPI_FSI_STATUS_TDR_FULL         BIT_ULL(59)
66 #define  SPI_FSI_STATUS_RDR_UNDERRUN     BIT_ULL(61)
67 #define  SPI_FSI_STATUS_RDR_OVERRUN      BIT_ULL(62)
68 #define  SPI_FSI_STATUS_RDR_FULL         BIT_ULL(63)
69 #define  SPI_FSI_STATUS_ANY_ERROR        \
70         (SPI_FSI_STATUS_ERROR | \
71          SPI_FSI_STATUS_TDR_OVERRUN | SPI_FSI_STATUS_RDR_UNDERRUN | \
72          SPI_FSI_STATUS_RDR_OVERRUN)
73 #define SPI_FSI_PORT_CTRL               0x9
74
75 struct fsi_spi {
76         struct device *dev;     /* SPI controller device */
77         struct fsi_device *fsi; /* FSI2SPI CFAM engine device */
78         u32 base;
79         size_t max_xfr_size;
80         bool restricted;
81 };
82
83 struct fsi_spi_sequence {
84         int bit;
85         u64 data;
86 };
87
88 static int fsi_spi_check_mux(struct fsi_device *fsi, struct device *dev)
89 {
90         int rc;
91         u32 root_ctrl_8;
92         __be32 root_ctrl_8_be;
93
94         rc = fsi_slave_read(fsi->slave, FSI_MBOX_ROOT_CTRL_8, &root_ctrl_8_be,
95                             sizeof(root_ctrl_8_be));
96         if (rc)
97                 return rc;
98
99         root_ctrl_8 = be32_to_cpu(root_ctrl_8_be);
100         dev_dbg(dev, "Root control register 8: %08x\n", root_ctrl_8);
101         if ((root_ctrl_8 & FSI_MBOX_ROOT_CTRL_8_SPI_MUX) ==
102              FSI_MBOX_ROOT_CTRL_8_SPI_MUX)
103                 return 0;
104
105         return -ENOLINK;
106 }
107
108 static int fsi_spi_check_status(struct fsi_spi *ctx)
109 {
110         int rc;
111         u32 sts;
112         __be32 sts_be;
113
114         rc = fsi_device_read(ctx->fsi, FSI2SPI_STATUS, &sts_be,
115                              sizeof(sts_be));
116         if (rc)
117                 return rc;
118
119         sts = be32_to_cpu(sts_be);
120         if (sts & FSI2SPI_STATUS_ANY_ERROR) {
121                 dev_err(ctx->dev, "Error with FSI2SPI interface: %08x.\n", sts);
122                 return -EIO;
123         }
124
125         return 0;
126 }
127
128 static int fsi_spi_read_reg(struct fsi_spi *ctx, u32 offset, u64 *value)
129 {
130         int rc;
131         __be32 cmd_be;
132         __be32 data_be;
133         u32 cmd = offset + ctx->base;
134
135         *value = 0ULL;
136
137         if (cmd & FSI2SPI_CMD_WRITE)
138                 return -EINVAL;
139
140         cmd_be = cpu_to_be32(cmd);
141         rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
142         if (rc)
143                 return rc;
144
145         rc = fsi_spi_check_status(ctx);
146         if (rc)
147                 return rc;
148
149         rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA0, &data_be,
150                              sizeof(data_be));
151         if (rc)
152                 return rc;
153
154         *value |= (u64)be32_to_cpu(data_be) << 32;
155
156         rc = fsi_device_read(ctx->fsi, FSI2SPI_DATA1, &data_be,
157                              sizeof(data_be));
158         if (rc)
159                 return rc;
160
161         *value |= (u64)be32_to_cpu(data_be);
162         dev_dbg(ctx->dev, "Read %02x[%016llx].\n", offset, *value);
163
164         return 0;
165 }
166
167 static int fsi_spi_write_reg(struct fsi_spi *ctx, u32 offset, u64 value)
168 {
169         int rc;
170         __be32 cmd_be;
171         __be32 data_be;
172         u32 cmd = offset + ctx->base;
173
174         if (cmd & FSI2SPI_CMD_WRITE)
175                 return -EINVAL;
176
177         dev_dbg(ctx->dev, "Write %02x[%016llx].\n", offset, value);
178
179         data_be = cpu_to_be32(upper_32_bits(value));
180         rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA0, &data_be,
181                               sizeof(data_be));
182         if (rc)
183                 return rc;
184
185         data_be = cpu_to_be32(lower_32_bits(value));
186         rc = fsi_device_write(ctx->fsi, FSI2SPI_DATA1, &data_be,
187                               sizeof(data_be));
188         if (rc)
189                 return rc;
190
191         cmd_be = cpu_to_be32(cmd | FSI2SPI_CMD_WRITE);
192         rc = fsi_device_write(ctx->fsi, FSI2SPI_CMD, &cmd_be, sizeof(cmd_be));
193         if (rc)
194                 return rc;
195
196         return fsi_spi_check_status(ctx);
197 }
198
199 static int fsi_spi_data_in(u64 in, u8 *rx, int len)
200 {
201         int i;
202         int num_bytes = min(len, 8);
203
204         for (i = 0; i < num_bytes; ++i)
205                 rx[i] = (u8)(in >> (8 * ((num_bytes - 1) - i)));
206
207         return num_bytes;
208 }
209
210 static int fsi_spi_data_out(u64 *out, const u8 *tx, int len)
211 {
212         int i;
213         int num_bytes = min(len, 8);
214         u8 *out_bytes = (u8 *)out;
215
216         /* Unused bytes of the tx data should be 0. */
217         *out = 0ULL;
218
219         for (i = 0; i < num_bytes; ++i)
220                 out_bytes[8 - (i + 1)] = tx[i];
221
222         return num_bytes;
223 }
224
225 static int fsi_spi_reset(struct fsi_spi *ctx)
226 {
227         int rc;
228
229         dev_dbg(ctx->dev, "Resetting SPI controller.\n");
230
231         rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
232                                SPI_FSI_CLOCK_CFG_RESET1);
233         if (rc)
234                 return rc;
235
236         rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
237                                SPI_FSI_CLOCK_CFG_RESET2);
238         if (rc)
239                 return rc;
240
241         return fsi_spi_write_reg(ctx, SPI_FSI_STATUS, 0ULL);
242 }
243
244 static int fsi_spi_sequence_add(struct fsi_spi_sequence *seq, u8 val)
245 {
246         /*
247          * Add the next byte of instruction to the 8-byte sequence register.
248          * Then decrement the counter so that the next instruction will go in
249          * the right place. Return the index of the slot we just filled in the
250          * sequence register.
251          */
252         seq->data |= (u64)val << seq->bit;
253         seq->bit -= 8;
254
255         return ((64 - seq->bit) / 8) - 2;
256 }
257
258 static void fsi_spi_sequence_init(struct fsi_spi_sequence *seq)
259 {
260         seq->bit = 56;
261         seq->data = 0ULL;
262 }
263
264 static int fsi_spi_sequence_transfer(struct fsi_spi *ctx,
265                                      struct fsi_spi_sequence *seq,
266                                      struct spi_transfer *transfer)
267 {
268         int loops;
269         int idx;
270         int rc;
271         u8 val = 0;
272         u8 len = min(transfer->len, 8U);
273         u8 rem = transfer->len % len;
274
275         loops = transfer->len / len;
276
277         if (transfer->tx_buf) {
278                 val = SPI_FSI_SEQUENCE_SHIFT_OUT(len);
279                 idx = fsi_spi_sequence_add(seq, val);
280
281                 if (rem)
282                         rem = SPI_FSI_SEQUENCE_SHIFT_OUT(rem);
283         } else if (transfer->rx_buf) {
284                 val = SPI_FSI_SEQUENCE_SHIFT_IN(len);
285                 idx = fsi_spi_sequence_add(seq, val);
286
287                 if (rem)
288                         rem = SPI_FSI_SEQUENCE_SHIFT_IN(rem);
289         } else {
290                 return -EINVAL;
291         }
292
293         if (ctx->restricted && loops > 1) {
294                 dev_warn(ctx->dev,
295                          "Transfer too large; no branches permitted.\n");
296                 return -EINVAL;
297         }
298
299         if (loops > 1) {
300                 u64 cfg = SPI_FSI_COUNTER_CFG_LOOPS(loops - 1);
301
302                 fsi_spi_sequence_add(seq, SPI_FSI_SEQUENCE_BRANCH(idx));
303
304                 if (transfer->rx_buf)
305                         cfg |= SPI_FSI_COUNTER_CFG_N2_RX |
306                                 SPI_FSI_COUNTER_CFG_N2_TX |
307                                 SPI_FSI_COUNTER_CFG_N2_IMPLICIT |
308                                 SPI_FSI_COUNTER_CFG_N2_RELOAD;
309
310                 rc = fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, cfg);
311                 if (rc)
312                         return rc;
313         } else {
314                 fsi_spi_write_reg(ctx, SPI_FSI_COUNTER_CFG, 0ULL);
315         }
316
317         if (rem)
318                 fsi_spi_sequence_add(seq, rem);
319
320         return 0;
321 }
322
323 static int fsi_spi_transfer_data(struct fsi_spi *ctx,
324                                  struct spi_transfer *transfer)
325 {
326         int rc = 0;
327         u64 status = 0ULL;
328         u64 cfg = 0ULL;
329
330         if (transfer->tx_buf) {
331                 int nb;
332                 int sent = 0;
333                 u64 out = 0ULL;
334                 const u8 *tx = transfer->tx_buf;
335
336                 while (transfer->len > sent) {
337                         nb = fsi_spi_data_out(&out, &tx[sent],
338                                               (int)transfer->len - sent);
339
340                         rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, out);
341                         if (rc)
342                                 return rc;
343
344                         do {
345                                 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
346                                                       &status);
347                                 if (rc)
348                                         return rc;
349
350                                 if (status & SPI_FSI_STATUS_ANY_ERROR) {
351                                         rc = fsi_spi_reset(ctx);
352                                         if (rc)
353                                                 return rc;
354
355                                         return -EREMOTEIO;
356                                 }
357                         } while (status & SPI_FSI_STATUS_TDR_FULL);
358
359                         sent += nb;
360                 }
361         } else if (transfer->rx_buf) {
362                 int recv = 0;
363                 u64 in = 0ULL;
364                 u8 *rx = transfer->rx_buf;
365
366                 rc = fsi_spi_read_reg(ctx, SPI_FSI_COUNTER_CFG, &cfg);
367                 if (rc)
368                         return rc;
369
370                 if (cfg & SPI_FSI_COUNTER_CFG_N2_IMPLICIT) {
371                         rc = fsi_spi_write_reg(ctx, SPI_FSI_DATA_TX, 0);
372                         if (rc)
373                                 return rc;
374                 }
375
376                 while (transfer->len > recv) {
377                         do {
378                                 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS,
379                                                       &status);
380                                 if (rc)
381                                         return rc;
382
383                                 if (status & SPI_FSI_STATUS_ANY_ERROR) {
384                                         rc = fsi_spi_reset(ctx);
385                                         if (rc)
386                                                 return rc;
387
388                                         return -EREMOTEIO;
389                                 }
390                         } while (!(status & SPI_FSI_STATUS_RDR_FULL));
391
392                         rc = fsi_spi_read_reg(ctx, SPI_FSI_DATA_RX, &in);
393                         if (rc)
394                                 return rc;
395
396                         recv += fsi_spi_data_in(in, &rx[recv],
397                                                 (int)transfer->len - recv);
398                 }
399         }
400
401         return 0;
402 }
403
404 static int fsi_spi_transfer_init(struct fsi_spi *ctx)
405 {
406         int rc;
407         bool reset = false;
408         unsigned long end;
409         u64 seq_state;
410         u64 clock_cfg = 0ULL;
411         u64 status = 0ULL;
412         u64 wanted_clock_cfg = SPI_FSI_CLOCK_CFG_ECC_DISABLE |
413                 SPI_FSI_CLOCK_CFG_SCK_NO_DEL |
414                 FIELD_PREP(SPI_FSI_CLOCK_CFG_SCK_DIV, 19);
415
416         end = jiffies + msecs_to_jiffies(SPI_FSI_INIT_TIMEOUT_MS);
417         do {
418                 if (time_after(jiffies, end))
419                         return -ETIMEDOUT;
420
421                 rc = fsi_spi_read_reg(ctx, SPI_FSI_STATUS, &status);
422                 if (rc)
423                         return rc;
424
425                 seq_state = status & SPI_FSI_STATUS_SEQ_STATE;
426
427                 if (status & (SPI_FSI_STATUS_ANY_ERROR |
428                               SPI_FSI_STATUS_TDR_FULL |
429                               SPI_FSI_STATUS_RDR_FULL)) {
430                         if (reset)
431                                 return -EIO;
432
433                         rc = fsi_spi_reset(ctx);
434                         if (rc)
435                                 return rc;
436
437                         reset = true;
438                         continue;
439                 }
440         } while (seq_state && (seq_state != SPI_FSI_STATUS_SEQ_STATE_IDLE));
441
442         rc = fsi_spi_read_reg(ctx, SPI_FSI_CLOCK_CFG, &clock_cfg);
443         if (rc)
444                 return rc;
445
446         if ((clock_cfg & (SPI_FSI_CLOCK_CFG_MM_ENABLE |
447                           SPI_FSI_CLOCK_CFG_ECC_DISABLE |
448                           SPI_FSI_CLOCK_CFG_MODE |
449                           SPI_FSI_CLOCK_CFG_SCK_RECV_DEL |
450                           SPI_FSI_CLOCK_CFG_SCK_DIV)) != wanted_clock_cfg)
451                 rc = fsi_spi_write_reg(ctx, SPI_FSI_CLOCK_CFG,
452                                        wanted_clock_cfg);
453
454         return rc;
455 }
456
457 static int fsi_spi_transfer_one_message(struct spi_controller *ctlr,
458                                         struct spi_message *mesg)
459 {
460         int rc;
461         u8 seq_slave = SPI_FSI_SEQUENCE_SEL_SLAVE(mesg->spi->chip_select + 1);
462         struct spi_transfer *transfer;
463         struct fsi_spi *ctx = spi_controller_get_devdata(ctlr);
464
465         rc = fsi_spi_check_mux(ctx->fsi, ctx->dev);
466         if (rc)
467                 goto error;
468
469         list_for_each_entry(transfer, &mesg->transfers, transfer_list) {
470                 struct fsi_spi_sequence seq;
471                 struct spi_transfer *next = NULL;
472
473                 /* Sequencer must do shift out (tx) first. */
474                 if (!transfer->tx_buf ||
475                     transfer->len > (ctx->max_xfr_size + 8)) {
476                         rc = -EINVAL;
477                         goto error;
478                 }
479
480                 dev_dbg(ctx->dev, "Start tx of %d bytes.\n", transfer->len);
481
482                 rc = fsi_spi_transfer_init(ctx);
483                 if (rc < 0)
484                         goto error;
485
486                 fsi_spi_sequence_init(&seq);
487                 fsi_spi_sequence_add(&seq, seq_slave);
488
489                 rc = fsi_spi_sequence_transfer(ctx, &seq, transfer);
490                 if (rc)
491                         goto error;
492
493                 if (!list_is_last(&transfer->transfer_list,
494                                   &mesg->transfers)) {
495                         next = list_next_entry(transfer, transfer_list);
496
497                         /* Sequencer can only do shift in (rx) after tx. */
498                         if (next->rx_buf) {
499                                 if (next->len > ctx->max_xfr_size) {
500                                         rc = -EINVAL;
501                                         goto error;
502                                 }
503
504                                 dev_dbg(ctx->dev, "Sequence rx of %d bytes.\n",
505                                         next->len);
506
507                                 rc = fsi_spi_sequence_transfer(ctx, &seq,
508                                                                next);
509                                 if (rc)
510                                         goto error;
511                         } else {
512                                 next = NULL;
513                         }
514                 }
515
516                 fsi_spi_sequence_add(&seq, SPI_FSI_SEQUENCE_SEL_SLAVE(0));
517
518                 rc = fsi_spi_write_reg(ctx, SPI_FSI_SEQUENCE, seq.data);
519                 if (rc)
520                         goto error;
521
522                 rc = fsi_spi_transfer_data(ctx, transfer);
523                 if (rc)
524                         goto error;
525
526                 if (next) {
527                         rc = fsi_spi_transfer_data(ctx, next);
528                         if (rc)
529                                 goto error;
530
531                         transfer = next;
532                 }
533         }
534
535 error:
536         mesg->status = rc;
537         spi_finalize_current_message(ctlr);
538
539         return rc;
540 }
541
542 static size_t fsi_spi_max_transfer_size(struct spi_device *spi)
543 {
544         struct fsi_spi *ctx = spi_controller_get_devdata(spi->controller);
545
546         return ctx->max_xfr_size;
547 }
548
549 static int fsi_spi_probe(struct device *dev)
550 {
551         int rc;
552         struct device_node *np;
553         int num_controllers_registered = 0;
554         struct fsi_device *fsi = to_fsi_dev(dev);
555
556         rc = fsi_spi_check_mux(fsi, dev);
557         if (rc)
558                 return -ENODEV;
559
560         for_each_available_child_of_node(dev->of_node, np) {
561                 u32 base;
562                 struct fsi_spi *ctx;
563                 struct spi_controller *ctlr;
564
565                 if (of_property_read_u32(np, "reg", &base))
566                         continue;
567
568                 ctlr = spi_alloc_master(dev, sizeof(*ctx));
569                 if (!ctlr) {
570                         of_node_put(np);
571                         break;
572                 }
573
574                 ctlr->dev.of_node = np;
575                 ctlr->num_chipselect = of_get_available_child_count(np) ?: 1;
576                 ctlr->flags = SPI_CONTROLLER_HALF_DUPLEX;
577                 ctlr->max_transfer_size = fsi_spi_max_transfer_size;
578                 ctlr->transfer_one_message = fsi_spi_transfer_one_message;
579
580                 ctx = spi_controller_get_devdata(ctlr);
581                 ctx->dev = &ctlr->dev;
582                 ctx->fsi = fsi;
583                 ctx->base = base + SPI_FSI_BASE;
584
585                 if (of_device_is_compatible(np, "ibm,fsi2spi-restricted")) {
586                         ctx->restricted = true;
587                         ctx->max_xfr_size = SPI_FSI_MAX_XFR_SIZE_RESTRICTED;
588                 } else {
589                         ctx->restricted = false;
590                         ctx->max_xfr_size = SPI_FSI_MAX_XFR_SIZE;
591                 }
592
593                 rc = devm_spi_register_controller(dev, ctlr);
594                 if (rc)
595                         spi_controller_put(ctlr);
596                 else
597                         num_controllers_registered++;
598         }
599
600         if (!num_controllers_registered)
601                 return -ENODEV;
602
603         return 0;
604 }
605
606 static const struct fsi_device_id fsi_spi_ids[] = {
607         { FSI_ENGID_SPI, FSI_VERSION_ANY },
608         { }
609 };
610 MODULE_DEVICE_TABLE(fsi, fsi_spi_ids);
611
612 static struct fsi_driver fsi_spi_driver = {
613         .id_table = fsi_spi_ids,
614         .drv = {
615                 .name = "spi-fsi",
616                 .bus = &fsi_bus_type,
617                 .probe = fsi_spi_probe,
618         },
619 };
620 module_fsi_driver(fsi_spi_driver);
621
622 MODULE_AUTHOR("Eddie James <eajames@linux.ibm.com>");
623 MODULE_DESCRIPTION("FSI attached SPI controller");
624 MODULE_LICENSE("GPL");