Merge tag 'pm-5.11-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux-2.6-microblaze.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/of.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi-mem.h>
30 #include <linux/timer.h>
31
32 #define CQSPI_NAME                      "cadence-qspi"
33 #define CQSPI_MAX_CHIPSELECT            16
34
35 /* Quirks */
36 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
37 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
38
39 /* Capabilities */
40 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
41
42 struct cqspi_st;
43
44 struct cqspi_flash_pdata {
45         struct cqspi_st *cqspi;
46         u32             clk_rate;
47         u32             read_delay;
48         u32             tshsl_ns;
49         u32             tsd2d_ns;
50         u32             tchsh_ns;
51         u32             tslch_ns;
52         u8              inst_width;
53         u8              addr_width;
54         u8              data_width;
55         u8              cs;
56 };
57
58 struct cqspi_st {
59         struct platform_device  *pdev;
60
61         struct clk              *clk;
62         unsigned int            sclk;
63
64         void __iomem            *iobase;
65         void __iomem            *ahb_base;
66         resource_size_t         ahb_size;
67         struct completion       transfer_complete;
68
69         struct dma_chan         *rx_chan;
70         struct completion       rx_dma_complete;
71         dma_addr_t              mmap_phys_base;
72
73         int                     current_cs;
74         unsigned long           master_ref_clk_hz;
75         bool                    is_decoded_cs;
76         u32                     fifo_depth;
77         u32                     fifo_width;
78         bool                    rclk_en;
79         u32                     trigger_address;
80         u32                     wr_delay;
81         bool                    use_direct_mode;
82         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
83 };
84
85 struct cqspi_driver_platdata {
86         u32 hwcaps_mask;
87         u8 quirks;
88 };
89
90 /* Operation timeout value */
91 #define CQSPI_TIMEOUT_MS                        500
92 #define CQSPI_READ_TIMEOUT_MS                   10
93
94 /* Instruction type */
95 #define CQSPI_INST_TYPE_SINGLE                  0
96 #define CQSPI_INST_TYPE_DUAL                    1
97 #define CQSPI_INST_TYPE_QUAD                    2
98 #define CQSPI_INST_TYPE_OCTAL                   3
99
100 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
101 #define CQSPI_DUMMY_BYTES_MAX                   4
102 #define CQSPI_DUMMY_CLKS_MAX                    31
103
104 #define CQSPI_STIG_DATA_LEN_MAX                 8
105
106 /* Register map */
107 #define CQSPI_REG_CONFIG                        0x00
108 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
109 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
110 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
111 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
112 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
113 #define CQSPI_REG_CONFIG_BAUD_LSB               19
114 #define CQSPI_REG_CONFIG_IDLE_LSB               31
115 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
116 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
117
118 #define CQSPI_REG_RD_INSTR                      0x04
119 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
120 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
121 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
122 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
123 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
124 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
125 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
126 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
127 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
128 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
129
130 #define CQSPI_REG_WR_INSTR                      0x08
131 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
132 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
133 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
134
135 #define CQSPI_REG_DELAY                         0x0C
136 #define CQSPI_REG_DELAY_TSLCH_LSB               0
137 #define CQSPI_REG_DELAY_TCHSH_LSB               8
138 #define CQSPI_REG_DELAY_TSD2D_LSB               16
139 #define CQSPI_REG_DELAY_TSHSL_LSB               24
140 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
141 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
142 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
143 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
144
145 #define CQSPI_REG_READCAPTURE                   0x10
146 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
147 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
148 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
149
150 #define CQSPI_REG_SIZE                          0x14
151 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
152 #define CQSPI_REG_SIZE_PAGE_LSB                 4
153 #define CQSPI_REG_SIZE_BLOCK_LSB                16
154 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
155 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
156 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
157
158 #define CQSPI_REG_SRAMPARTITION                 0x18
159 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
160
161 #define CQSPI_REG_DMA                           0x20
162 #define CQSPI_REG_DMA_SINGLE_LSB                0
163 #define CQSPI_REG_DMA_BURST_LSB                 8
164 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
165 #define CQSPI_REG_DMA_BURST_MASK                0xFF
166
167 #define CQSPI_REG_REMAP                         0x24
168 #define CQSPI_REG_MODE_BIT                      0x28
169
170 #define CQSPI_REG_SDRAMLEVEL                    0x2C
171 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
172 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
173 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
174 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
175
176 #define CQSPI_REG_IRQSTATUS                     0x40
177 #define CQSPI_REG_IRQMASK                       0x44
178
179 #define CQSPI_REG_INDIRECTRD                    0x60
180 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
181 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
182 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
183
184 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
185 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
186 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
187
188 #define CQSPI_REG_CMDCTRL                       0x90
189 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
190 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
191 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
192 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
193 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
194 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
195 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
196 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
197 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
198 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
199 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
200 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
201
202 #define CQSPI_REG_INDIRECTWR                    0x70
203 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
204 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
205 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
206
207 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
208 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
209 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
210
211 #define CQSPI_REG_CMDADDRESS                    0x94
212 #define CQSPI_REG_CMDREADDATALOWER              0xA0
213 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
214 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
215 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
216
217 /* Interrupt status bits */
218 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
219 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
220 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
221 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
222 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
223 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
224 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
225 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
226
227 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
228                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
229                                          CQSPI_REG_IRQ_IND_COMP)
230
231 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
232                                          CQSPI_REG_IRQ_WATERMARK        | \
233                                          CQSPI_REG_IRQ_UNDERFLOW)
234
235 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
236
237 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
238 {
239         u32 val;
240
241         return readl_relaxed_poll_timeout(reg, val,
242                                           (((clr ? ~val : val) & mask) == mask),
243                                           10, CQSPI_TIMEOUT_MS * 1000);
244 }
245
246 static bool cqspi_is_idle(struct cqspi_st *cqspi)
247 {
248         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
249
250         return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
251 }
252
253 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
254 {
255         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
256
257         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
258         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
259 }
260
261 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
262 {
263         struct cqspi_st *cqspi = dev;
264         unsigned int irq_status;
265
266         /* Read interrupt status */
267         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
268
269         /* Clear interrupt */
270         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
271
272         irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
273
274         if (irq_status)
275                 complete(&cqspi->transfer_complete);
276
277         return IRQ_HANDLED;
278 }
279
280 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
281 {
282         u32 rdreg = 0;
283
284         rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
285         rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
286         rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
287
288         return rdreg;
289 }
290
291 static int cqspi_wait_idle(struct cqspi_st *cqspi)
292 {
293         const unsigned int poll_idle_retry = 3;
294         unsigned int count = 0;
295         unsigned long timeout;
296
297         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
298         while (1) {
299                 /*
300                  * Read few times in succession to ensure the controller
301                  * is indeed idle, that is, the bit does not transition
302                  * low again.
303                  */
304                 if (cqspi_is_idle(cqspi))
305                         count++;
306                 else
307                         count = 0;
308
309                 if (count >= poll_idle_retry)
310                         return 0;
311
312                 if (time_after(jiffies, timeout)) {
313                         /* Timeout, in busy mode. */
314                         dev_err(&cqspi->pdev->dev,
315                                 "QSPI is still busy after %dms timeout.\n",
316                                 CQSPI_TIMEOUT_MS);
317                         return -ETIMEDOUT;
318                 }
319
320                 cpu_relax();
321         }
322 }
323
324 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
325 {
326         void __iomem *reg_base = cqspi->iobase;
327         int ret;
328
329         /* Write the CMDCTRL without start execution. */
330         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
331         /* Start execute */
332         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
333         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
334
335         /* Polling for completion. */
336         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
337                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
338         if (ret) {
339                 dev_err(&cqspi->pdev->dev,
340                         "Flash command execution timed out.\n");
341                 return ret;
342         }
343
344         /* Polling QSPI idle status. */
345         return cqspi_wait_idle(cqspi);
346 }
347
348 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
349                               const struct spi_mem_op *op)
350 {
351         struct cqspi_st *cqspi = f_pdata->cqspi;
352         void __iomem *reg_base = cqspi->iobase;
353         u8 *rxbuf = op->data.buf.in;
354         u8 opcode = op->cmd.opcode;
355         size_t n_rx = op->data.nbytes;
356         unsigned int rdreg;
357         unsigned int reg;
358         size_t read_len;
359         int status;
360
361         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
362                 dev_err(&cqspi->pdev->dev,
363                         "Invalid input argument, len %zu rxbuf 0x%p\n",
364                         n_rx, rxbuf);
365                 return -EINVAL;
366         }
367
368         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
369
370         rdreg = cqspi_calc_rdreg(f_pdata);
371         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
372
373         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
374
375         /* 0 means 1 byte. */
376         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
377                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
378         status = cqspi_exec_flash_cmd(cqspi, reg);
379         if (status)
380                 return status;
381
382         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
383
384         /* Put the read value into rx_buf */
385         read_len = (n_rx > 4) ? 4 : n_rx;
386         memcpy(rxbuf, &reg, read_len);
387         rxbuf += read_len;
388
389         if (n_rx > 4) {
390                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
391
392                 read_len = n_rx - read_len;
393                 memcpy(rxbuf, &reg, read_len);
394         }
395
396         return 0;
397 }
398
399 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
400                                const struct spi_mem_op *op)
401 {
402         struct cqspi_st *cqspi = f_pdata->cqspi;
403         void __iomem *reg_base = cqspi->iobase;
404         const u8 opcode = op->cmd.opcode;
405         const u8 *txbuf = op->data.buf.out;
406         size_t n_tx = op->data.nbytes;
407         unsigned int reg;
408         unsigned int data;
409         size_t write_len;
410
411         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
412                 dev_err(&cqspi->pdev->dev,
413                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
414                         n_tx, txbuf);
415                 return -EINVAL;
416         }
417
418         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
419
420         if (op->addr.nbytes) {
421                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
422                 reg |= ((op->addr.nbytes - 1) &
423                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
424                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
425
426                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
427         }
428
429         if (n_tx) {
430                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
431                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
432                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
433                 data = 0;
434                 write_len = (n_tx > 4) ? 4 : n_tx;
435                 memcpy(&data, txbuf, write_len);
436                 txbuf += write_len;
437                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
438
439                 if (n_tx > 4) {
440                         data = 0;
441                         write_len = n_tx - 4;
442                         memcpy(&data, txbuf, write_len);
443                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
444                 }
445         }
446
447         return cqspi_exec_flash_cmd(cqspi, reg);
448 }
449
450 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
451                             const struct spi_mem_op *op)
452 {
453         struct cqspi_st *cqspi = f_pdata->cqspi;
454         void __iomem *reg_base = cqspi->iobase;
455         unsigned int dummy_clk = 0;
456         unsigned int reg;
457
458         reg = op->cmd.opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
459         reg |= cqspi_calc_rdreg(f_pdata);
460
461         /* Setup dummy clock cycles */
462         dummy_clk = op->dummy.nbytes * 8;
463         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
464                 dummy_clk = CQSPI_DUMMY_CLKS_MAX;
465
466         if (dummy_clk)
467                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
468                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
469
470         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
471
472         /* Set address width */
473         reg = readl(reg_base + CQSPI_REG_SIZE);
474         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
475         reg |= (op->addr.nbytes - 1);
476         writel(reg, reg_base + CQSPI_REG_SIZE);
477         return 0;
478 }
479
480 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
481                                        u8 *rxbuf, loff_t from_addr,
482                                        const size_t n_rx)
483 {
484         struct cqspi_st *cqspi = f_pdata->cqspi;
485         struct device *dev = &cqspi->pdev->dev;
486         void __iomem *reg_base = cqspi->iobase;
487         void __iomem *ahb_base = cqspi->ahb_base;
488         unsigned int remaining = n_rx;
489         unsigned int mod_bytes = n_rx % 4;
490         unsigned int bytes_to_read = 0;
491         u8 *rxbuf_end = rxbuf + n_rx;
492         int ret = 0;
493
494         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
495         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
496
497         /* Clear all interrupts. */
498         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
499
500         writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
501
502         reinit_completion(&cqspi->transfer_complete);
503         writel(CQSPI_REG_INDIRECTRD_START_MASK,
504                reg_base + CQSPI_REG_INDIRECTRD);
505
506         while (remaining > 0) {
507                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
508                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
509                         ret = -ETIMEDOUT;
510
511                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
512
513                 if (ret && bytes_to_read == 0) {
514                         dev_err(dev, "Indirect read timeout, no bytes\n");
515                         goto failrd;
516                 }
517
518                 while (bytes_to_read != 0) {
519                         unsigned int word_remain = round_down(remaining, 4);
520
521                         bytes_to_read *= cqspi->fifo_width;
522                         bytes_to_read = bytes_to_read > remaining ?
523                                         remaining : bytes_to_read;
524                         bytes_to_read = round_down(bytes_to_read, 4);
525                         /* Read 4 byte word chunks then single bytes */
526                         if (bytes_to_read) {
527                                 ioread32_rep(ahb_base, rxbuf,
528                                              (bytes_to_read / 4));
529                         } else if (!word_remain && mod_bytes) {
530                                 unsigned int temp = ioread32(ahb_base);
531
532                                 bytes_to_read = mod_bytes;
533                                 memcpy(rxbuf, &temp, min((unsigned int)
534                                                          (rxbuf_end - rxbuf),
535                                                          bytes_to_read));
536                         }
537                         rxbuf += bytes_to_read;
538                         remaining -= bytes_to_read;
539                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
540                 }
541
542                 if (remaining > 0)
543                         reinit_completion(&cqspi->transfer_complete);
544         }
545
546         /* Check indirect done status */
547         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
548                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
549         if (ret) {
550                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
551                 goto failrd;
552         }
553
554         /* Disable interrupt */
555         writel(0, reg_base + CQSPI_REG_IRQMASK);
556
557         /* Clear indirect completion status */
558         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
559
560         return 0;
561
562 failrd:
563         /* Disable interrupt */
564         writel(0, reg_base + CQSPI_REG_IRQMASK);
565
566         /* Cancel the indirect read */
567         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
568                reg_base + CQSPI_REG_INDIRECTRD);
569         return ret;
570 }
571
572 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
573                              const struct spi_mem_op *op)
574 {
575         unsigned int reg;
576         struct cqspi_st *cqspi = f_pdata->cqspi;
577         void __iomem *reg_base = cqspi->iobase;
578
579         /* Set opcode. */
580         reg = op->cmd.opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
581         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
582         reg = cqspi_calc_rdreg(f_pdata);
583         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
584
585         reg = readl(reg_base + CQSPI_REG_SIZE);
586         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
587         reg |= (op->addr.nbytes - 1);
588         writel(reg, reg_base + CQSPI_REG_SIZE);
589         return 0;
590 }
591
592 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
593                                         loff_t to_addr, const u8 *txbuf,
594                                         const size_t n_tx)
595 {
596         struct cqspi_st *cqspi = f_pdata->cqspi;
597         struct device *dev = &cqspi->pdev->dev;
598         void __iomem *reg_base = cqspi->iobase;
599         unsigned int remaining = n_tx;
600         unsigned int write_bytes;
601         int ret;
602
603         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
604         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
605
606         /* Clear all interrupts. */
607         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
608
609         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
610
611         reinit_completion(&cqspi->transfer_complete);
612         writel(CQSPI_REG_INDIRECTWR_START_MASK,
613                reg_base + CQSPI_REG_INDIRECTWR);
614         /*
615          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
616          * Controller programming sequence, couple of cycles of
617          * QSPI_REF_CLK delay is required for the above bit to
618          * be internally synchronized by the QSPI module. Provide 5
619          * cycles of delay.
620          */
621         if (cqspi->wr_delay)
622                 ndelay(cqspi->wr_delay);
623
624         while (remaining > 0) {
625                 size_t write_words, mod_bytes;
626
627                 write_bytes = remaining;
628                 write_words = write_bytes / 4;
629                 mod_bytes = write_bytes % 4;
630                 /* Write 4 bytes at a time then single bytes. */
631                 if (write_words) {
632                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
633                         txbuf += (write_words * 4);
634                 }
635                 if (mod_bytes) {
636                         unsigned int temp = 0xFFFFFFFF;
637
638                         memcpy(&temp, txbuf, mod_bytes);
639                         iowrite32(temp, cqspi->ahb_base);
640                         txbuf += mod_bytes;
641                 }
642
643                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
644                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
645                         dev_err(dev, "Indirect write timeout\n");
646                         ret = -ETIMEDOUT;
647                         goto failwr;
648                 }
649
650                 remaining -= write_bytes;
651
652                 if (remaining > 0)
653                         reinit_completion(&cqspi->transfer_complete);
654         }
655
656         /* Check indirect done status */
657         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
658                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
659         if (ret) {
660                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
661                 goto failwr;
662         }
663
664         /* Disable interrupt. */
665         writel(0, reg_base + CQSPI_REG_IRQMASK);
666
667         /* Clear indirect completion status */
668         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
669
670         cqspi_wait_idle(cqspi);
671
672         return 0;
673
674 failwr:
675         /* Disable interrupt. */
676         writel(0, reg_base + CQSPI_REG_IRQMASK);
677
678         /* Cancel the indirect write */
679         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
680                reg_base + CQSPI_REG_INDIRECTWR);
681         return ret;
682 }
683
684 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
685 {
686         struct cqspi_st *cqspi = f_pdata->cqspi;
687         void __iomem *reg_base = cqspi->iobase;
688         unsigned int chip_select = f_pdata->cs;
689         unsigned int reg;
690
691         reg = readl(reg_base + CQSPI_REG_CONFIG);
692         if (cqspi->is_decoded_cs) {
693                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
694         } else {
695                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
696
697                 /* Convert CS if without decoder.
698                  * CS0 to 4b'1110
699                  * CS1 to 4b'1101
700                  * CS2 to 4b'1011
701                  * CS3 to 4b'0111
702                  */
703                 chip_select = 0xF & ~(1 << chip_select);
704         }
705
706         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
707                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
708         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
709             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
710         writel(reg, reg_base + CQSPI_REG_CONFIG);
711 }
712
713 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
714                                            const unsigned int ns_val)
715 {
716         unsigned int ticks;
717
718         ticks = ref_clk_hz / 1000;      /* kHz */
719         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
720
721         return ticks;
722 }
723
724 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
725 {
726         struct cqspi_st *cqspi = f_pdata->cqspi;
727         void __iomem *iobase = cqspi->iobase;
728         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
729         unsigned int tshsl, tchsh, tslch, tsd2d;
730         unsigned int reg;
731         unsigned int tsclk;
732
733         /* calculate the number of ref ticks for one sclk tick */
734         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
735
736         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
737         /* this particular value must be at least one sclk */
738         if (tshsl < tsclk)
739                 tshsl = tsclk;
740
741         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
742         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
743         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
744
745         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
746                << CQSPI_REG_DELAY_TSHSL_LSB;
747         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
748                 << CQSPI_REG_DELAY_TCHSH_LSB;
749         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
750                 << CQSPI_REG_DELAY_TSLCH_LSB;
751         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
752                 << CQSPI_REG_DELAY_TSD2D_LSB;
753         writel(reg, iobase + CQSPI_REG_DELAY);
754 }
755
756 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
757 {
758         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
759         void __iomem *reg_base = cqspi->iobase;
760         u32 reg, div;
761
762         /* Recalculate the baudrate divisor based on QSPI specification. */
763         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
764
765         reg = readl(reg_base + CQSPI_REG_CONFIG);
766         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
767         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
768         writel(reg, reg_base + CQSPI_REG_CONFIG);
769 }
770
771 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
772                                    const bool bypass,
773                                    const unsigned int delay)
774 {
775         void __iomem *reg_base = cqspi->iobase;
776         unsigned int reg;
777
778         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
779
780         if (bypass)
781                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
782         else
783                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
784
785         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
786                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
787
788         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
789                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
790
791         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
792 }
793
794 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
795 {
796         void __iomem *reg_base = cqspi->iobase;
797         unsigned int reg;
798
799         reg = readl(reg_base + CQSPI_REG_CONFIG);
800
801         if (enable)
802                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
803         else
804                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
805
806         writel(reg, reg_base + CQSPI_REG_CONFIG);
807 }
808
809 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
810                             unsigned long sclk)
811 {
812         struct cqspi_st *cqspi = f_pdata->cqspi;
813         int switch_cs = (cqspi->current_cs != f_pdata->cs);
814         int switch_ck = (cqspi->sclk != sclk);
815
816         if (switch_cs || switch_ck)
817                 cqspi_controller_enable(cqspi, 0);
818
819         /* Switch chip select. */
820         if (switch_cs) {
821                 cqspi->current_cs = f_pdata->cs;
822                 cqspi_chipselect(f_pdata);
823         }
824
825         /* Setup baudrate divisor and delays */
826         if (switch_ck) {
827                 cqspi->sclk = sclk;
828                 cqspi_config_baudrate_div(cqspi);
829                 cqspi_delay(f_pdata);
830                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
831                                        f_pdata->read_delay);
832         }
833
834         if (switch_cs || switch_ck)
835                 cqspi_controller_enable(cqspi, 1);
836 }
837
838 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
839                               const struct spi_mem_op *op)
840 {
841         f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
842         f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
843         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
844
845         if (op->data.dir == SPI_MEM_DATA_IN) {
846                 switch (op->data.buswidth) {
847                 case 1:
848                         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
849                         break;
850                 case 2:
851                         f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
852                         break;
853                 case 4:
854                         f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
855                         break;
856                 case 8:
857                         f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
858                         break;
859                 default:
860                         return -EINVAL;
861                 }
862         }
863
864         return 0;
865 }
866
867 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
868                            const struct spi_mem_op *op)
869 {
870         struct cqspi_st *cqspi = f_pdata->cqspi;
871         loff_t to = op->addr.val;
872         size_t len = op->data.nbytes;
873         const u_char *buf = op->data.buf.out;
874         int ret;
875
876         ret = cqspi_set_protocol(f_pdata, op);
877         if (ret)
878                 return ret;
879
880         ret = cqspi_write_setup(f_pdata, op);
881         if (ret)
882                 return ret;
883
884         if (cqspi->use_direct_mode && ((to + len) <= cqspi->ahb_size)) {
885                 memcpy_toio(cqspi->ahb_base + to, buf, len);
886                 return cqspi_wait_idle(cqspi);
887         }
888
889         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
890 }
891
892 static void cqspi_rx_dma_callback(void *param)
893 {
894         struct cqspi_st *cqspi = param;
895
896         complete(&cqspi->rx_dma_complete);
897 }
898
899 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
900                                      u_char *buf, loff_t from, size_t len)
901 {
902         struct cqspi_st *cqspi = f_pdata->cqspi;
903         struct device *dev = &cqspi->pdev->dev;
904         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
905         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
906         int ret = 0;
907         struct dma_async_tx_descriptor *tx;
908         dma_cookie_t cookie;
909         dma_addr_t dma_dst;
910         struct device *ddev;
911
912         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
913                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
914                 return 0;
915         }
916
917         ddev = cqspi->rx_chan->device->dev;
918         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
919         if (dma_mapping_error(ddev, dma_dst)) {
920                 dev_err(dev, "dma mapping failed\n");
921                 return -ENOMEM;
922         }
923         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
924                                        len, flags);
925         if (!tx) {
926                 dev_err(dev, "device_prep_dma_memcpy error\n");
927                 ret = -EIO;
928                 goto err_unmap;
929         }
930
931         tx->callback = cqspi_rx_dma_callback;
932         tx->callback_param = cqspi;
933         cookie = tx->tx_submit(tx);
934         reinit_completion(&cqspi->rx_dma_complete);
935
936         ret = dma_submit_error(cookie);
937         if (ret) {
938                 dev_err(dev, "dma_submit_error %d\n", cookie);
939                 ret = -EIO;
940                 goto err_unmap;
941         }
942
943         dma_async_issue_pending(cqspi->rx_chan);
944         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
945                                          msecs_to_jiffies(len))) {
946                 dmaengine_terminate_sync(cqspi->rx_chan);
947                 dev_err(dev, "DMA wait_for_completion_timeout\n");
948                 ret = -ETIMEDOUT;
949                 goto err_unmap;
950         }
951
952 err_unmap:
953         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
954
955         return ret;
956 }
957
958 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
959                           const struct spi_mem_op *op)
960 {
961         struct cqspi_st *cqspi = f_pdata->cqspi;
962         loff_t from = op->addr.val;
963         size_t len = op->data.nbytes;
964         u_char *buf = op->data.buf.in;
965         int ret;
966
967         ret = cqspi_set_protocol(f_pdata, op);
968         if (ret)
969                 return ret;
970
971         ret = cqspi_read_setup(f_pdata, op);
972         if (ret)
973                 return ret;
974
975         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
976                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
977
978         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
979 }
980
981 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
982 {
983         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
984         struct cqspi_flash_pdata *f_pdata;
985
986         f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
987         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
988
989         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
990                 if (!op->addr.nbytes)
991                         return cqspi_command_read(f_pdata, op);
992
993                 return cqspi_read(f_pdata, op);
994         }
995
996         if (!op->addr.nbytes || !op->data.buf.out)
997                 return cqspi_command_write(f_pdata, op);
998
999         return cqspi_write(f_pdata, op);
1000 }
1001
1002 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1003 {
1004         int ret;
1005
1006         ret = cqspi_mem_process(mem, op);
1007         if (ret)
1008                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1009
1010         return ret;
1011 }
1012
1013 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1014                                     struct cqspi_flash_pdata *f_pdata,
1015                                     struct device_node *np)
1016 {
1017         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1018                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1019                 return -ENXIO;
1020         }
1021
1022         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1023                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1024                 return -ENXIO;
1025         }
1026
1027         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1028                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1029                 return -ENXIO;
1030         }
1031
1032         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1033                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1034                 return -ENXIO;
1035         }
1036
1037         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1038                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1039                 return -ENXIO;
1040         }
1041
1042         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1043                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1044                 return -ENXIO;
1045         }
1046
1047         return 0;
1048 }
1049
1050 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1051 {
1052         struct device *dev = &cqspi->pdev->dev;
1053         struct device_node *np = dev->of_node;
1054
1055         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1056
1057         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1058                 dev_err(dev, "couldn't determine fifo-depth\n");
1059                 return -ENXIO;
1060         }
1061
1062         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1063                 dev_err(dev, "couldn't determine fifo-width\n");
1064                 return -ENXIO;
1065         }
1066
1067         if (of_property_read_u32(np, "cdns,trigger-address",
1068                                  &cqspi->trigger_address)) {
1069                 dev_err(dev, "couldn't determine trigger-address\n");
1070                 return -ENXIO;
1071         }
1072
1073         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1074
1075         return 0;
1076 }
1077
1078 static void cqspi_controller_init(struct cqspi_st *cqspi)
1079 {
1080         u32 reg;
1081
1082         cqspi_controller_enable(cqspi, 0);
1083
1084         /* Configure the remap address register, no remap */
1085         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1086
1087         /* Disable all interrupts. */
1088         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1089
1090         /* Configure the SRAM split to 1:1 . */
1091         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1092
1093         /* Load indirect trigger address. */
1094         writel(cqspi->trigger_address,
1095                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1096
1097         /* Program read watermark -- 1/2 of the FIFO. */
1098         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1099                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1100         /* Program write watermark -- 1/8 of the FIFO. */
1101         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1102                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1103
1104         /* Enable Direct Access Controller */
1105         reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1106         reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1107         writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1108
1109         cqspi_controller_enable(cqspi, 1);
1110 }
1111
1112 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1113 {
1114         dma_cap_mask_t mask;
1115
1116         dma_cap_zero(mask);
1117         dma_cap_set(DMA_MEMCPY, mask);
1118
1119         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1120         if (IS_ERR(cqspi->rx_chan)) {
1121                 int ret = PTR_ERR(cqspi->rx_chan);
1122                 cqspi->rx_chan = NULL;
1123                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1124         }
1125         init_completion(&cqspi->rx_dma_complete);
1126
1127         return 0;
1128 }
1129
1130 static const char *cqspi_get_name(struct spi_mem *mem)
1131 {
1132         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1133         struct device *dev = &cqspi->pdev->dev;
1134
1135         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1136 }
1137
1138 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1139         .exec_op = cqspi_exec_mem_op,
1140         .get_name = cqspi_get_name,
1141 };
1142
1143 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1144 {
1145         struct platform_device *pdev = cqspi->pdev;
1146         struct device *dev = &pdev->dev;
1147         struct device_node *np = dev->of_node;
1148         struct cqspi_flash_pdata *f_pdata;
1149         unsigned int cs;
1150         int ret;
1151
1152         /* Get flash device data */
1153         for_each_available_child_of_node(dev->of_node, np) {
1154                 ret = of_property_read_u32(np, "reg", &cs);
1155                 if (ret) {
1156                         dev_err(dev, "Couldn't determine chip select.\n");
1157                         return ret;
1158                 }
1159
1160                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1161                         dev_err(dev, "Chip select %d out of range.\n", cs);
1162                         return -EINVAL;
1163                 }
1164
1165                 f_pdata = &cqspi->f_pdata[cs];
1166                 f_pdata->cqspi = cqspi;
1167                 f_pdata->cs = cs;
1168
1169                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1170                 if (ret)
1171                         return ret;
1172         }
1173
1174         return 0;
1175 }
1176
1177 static int cqspi_probe(struct platform_device *pdev)
1178 {
1179         const struct cqspi_driver_platdata *ddata;
1180         struct reset_control *rstc, *rstc_ocp;
1181         struct device *dev = &pdev->dev;
1182         struct spi_master *master;
1183         struct resource *res_ahb;
1184         struct cqspi_st *cqspi;
1185         struct resource *res;
1186         int ret;
1187         int irq;
1188
1189         master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1190         if (!master) {
1191                 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1192                 return -ENOMEM;
1193         }
1194         master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1195         master->mem_ops = &cqspi_mem_ops;
1196         master->dev.of_node = pdev->dev.of_node;
1197
1198         cqspi = spi_master_get_devdata(master);
1199
1200         cqspi->pdev = pdev;
1201
1202         /* Obtain configuration from OF. */
1203         ret = cqspi_of_get_pdata(cqspi);
1204         if (ret) {
1205                 dev_err(dev, "Cannot get mandatory OF data.\n");
1206                 ret = -ENODEV;
1207                 goto probe_master_put;
1208         }
1209
1210         /* Obtain QSPI clock. */
1211         cqspi->clk = devm_clk_get(dev, NULL);
1212         if (IS_ERR(cqspi->clk)) {
1213                 dev_err(dev, "Cannot claim QSPI clock.\n");
1214                 ret = PTR_ERR(cqspi->clk);
1215                 goto probe_master_put;
1216         }
1217
1218         /* Obtain and remap controller address. */
1219         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1220         cqspi->iobase = devm_ioremap_resource(dev, res);
1221         if (IS_ERR(cqspi->iobase)) {
1222                 dev_err(dev, "Cannot remap controller address.\n");
1223                 ret = PTR_ERR(cqspi->iobase);
1224                 goto probe_master_put;
1225         }
1226
1227         /* Obtain and remap AHB address. */
1228         res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1229         cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1230         if (IS_ERR(cqspi->ahb_base)) {
1231                 dev_err(dev, "Cannot remap AHB address.\n");
1232                 ret = PTR_ERR(cqspi->ahb_base);
1233                 goto probe_master_put;
1234         }
1235         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1236         cqspi->ahb_size = resource_size(res_ahb);
1237
1238         init_completion(&cqspi->transfer_complete);
1239
1240         /* Obtain IRQ line. */
1241         irq = platform_get_irq(pdev, 0);
1242         if (irq < 0) {
1243                 ret = -ENXIO;
1244                 goto probe_master_put;
1245         }
1246
1247         pm_runtime_enable(dev);
1248         ret = pm_runtime_get_sync(dev);
1249         if (ret < 0) {
1250                 pm_runtime_put_noidle(dev);
1251                 goto probe_master_put;
1252         }
1253
1254         ret = clk_prepare_enable(cqspi->clk);
1255         if (ret) {
1256                 dev_err(dev, "Cannot enable QSPI clock.\n");
1257                 goto probe_clk_failed;
1258         }
1259
1260         /* Obtain QSPI reset control */
1261         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1262         if (IS_ERR(rstc)) {
1263                 ret = PTR_ERR(rstc);
1264                 dev_err(dev, "Cannot get QSPI reset.\n");
1265                 goto probe_reset_failed;
1266         }
1267
1268         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1269         if (IS_ERR(rstc_ocp)) {
1270                 ret = PTR_ERR(rstc_ocp);
1271                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1272                 goto probe_reset_failed;
1273         }
1274
1275         reset_control_assert(rstc);
1276         reset_control_deassert(rstc);
1277
1278         reset_control_assert(rstc_ocp);
1279         reset_control_deassert(rstc_ocp);
1280
1281         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1282         ddata  = of_device_get_match_data(dev);
1283         if (ddata) {
1284                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1285                         cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
1286                                                 cqspi->master_ref_clk_hz);
1287                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1288                         master->mode_bits |= SPI_RX_OCTAL;
1289                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1290                         cqspi->use_direct_mode = true;
1291         }
1292
1293         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1294                                pdev->name, cqspi);
1295         if (ret) {
1296                 dev_err(dev, "Cannot request IRQ.\n");
1297                 goto probe_reset_failed;
1298         }
1299
1300         cqspi_wait_idle(cqspi);
1301         cqspi_controller_init(cqspi);
1302         cqspi->current_cs = -1;
1303         cqspi->sclk = 0;
1304
1305         ret = cqspi_setup_flash(cqspi);
1306         if (ret) {
1307                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1308                 goto probe_setup_failed;
1309         }
1310
1311         if (cqspi->use_direct_mode) {
1312                 ret = cqspi_request_mmap_dma(cqspi);
1313                 if (ret == -EPROBE_DEFER)
1314                         goto probe_setup_failed;
1315         }
1316
1317         ret = devm_spi_register_master(dev, master);
1318         if (ret) {
1319                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1320                 goto probe_setup_failed;
1321         }
1322
1323         return 0;
1324 probe_setup_failed:
1325         cqspi_controller_enable(cqspi, 0);
1326 probe_reset_failed:
1327         clk_disable_unprepare(cqspi->clk);
1328 probe_clk_failed:
1329         pm_runtime_put_sync(dev);
1330         pm_runtime_disable(dev);
1331 probe_master_put:
1332         spi_master_put(master);
1333         return ret;
1334 }
1335
1336 static int cqspi_remove(struct platform_device *pdev)
1337 {
1338         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1339
1340         cqspi_controller_enable(cqspi, 0);
1341
1342         if (cqspi->rx_chan)
1343                 dma_release_channel(cqspi->rx_chan);
1344
1345         clk_disable_unprepare(cqspi->clk);
1346
1347         pm_runtime_put_sync(&pdev->dev);
1348         pm_runtime_disable(&pdev->dev);
1349
1350         return 0;
1351 }
1352
1353 #ifdef CONFIG_PM_SLEEP
1354 static int cqspi_suspend(struct device *dev)
1355 {
1356         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1357
1358         cqspi_controller_enable(cqspi, 0);
1359         return 0;
1360 }
1361
1362 static int cqspi_resume(struct device *dev)
1363 {
1364         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1365
1366         cqspi_controller_enable(cqspi, 1);
1367         return 0;
1368 }
1369
1370 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1371         .suspend = cqspi_suspend,
1372         .resume = cqspi_resume,
1373 };
1374
1375 #define CQSPI_DEV_PM_OPS        (&cqspi__dev_pm_ops)
1376 #else
1377 #define CQSPI_DEV_PM_OPS        NULL
1378 #endif
1379
1380 static const struct cqspi_driver_platdata cdns_qspi = {
1381         .quirks = CQSPI_DISABLE_DAC_MODE,
1382 };
1383
1384 static const struct cqspi_driver_platdata k2g_qspi = {
1385         .quirks = CQSPI_NEEDS_WR_DELAY,
1386 };
1387
1388 static const struct cqspi_driver_platdata am654_ospi = {
1389         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1390         .quirks = CQSPI_NEEDS_WR_DELAY,
1391 };
1392
1393 static const struct of_device_id cqspi_dt_ids[] = {
1394         {
1395                 .compatible = "cdns,qspi-nor",
1396                 .data = &cdns_qspi,
1397         },
1398         {
1399                 .compatible = "ti,k2g-qspi",
1400                 .data = &k2g_qspi,
1401         },
1402         {
1403                 .compatible = "ti,am654-ospi",
1404                 .data = &am654_ospi,
1405         },
1406         { /* end of table */ }
1407 };
1408
1409 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1410
1411 static struct platform_driver cqspi_platform_driver = {
1412         .probe = cqspi_probe,
1413         .remove = cqspi_remove,
1414         .driver = {
1415                 .name = CQSPI_NAME,
1416                 .pm = CQSPI_DEV_PM_OPS,
1417                 .of_match_table = cqspi_dt_ids,
1418         },
1419 };
1420
1421 module_platform_driver(cqspi_platform_driver);
1422
1423 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1424 MODULE_LICENSE("GPL v2");
1425 MODULE_ALIAS("platform:" CQSPI_NAME);
1426 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1427 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1428 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1429 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");