Merge remote-tracking branch 'torvalds/master' into perf/urgent
[linux-2.6-microblaze.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/of.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi-mem.h>
30 #include <linux/timer.h>
31
32 #define CQSPI_NAME                      "cadence-qspi"
33 #define CQSPI_MAX_CHIPSELECT            16
34
35 /* Quirks */
36 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
37 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
38
39 /* Capabilities */
40 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
41
42 struct cqspi_st;
43
44 struct cqspi_flash_pdata {
45         struct cqspi_st *cqspi;
46         u32             clk_rate;
47         u32             read_delay;
48         u32             tshsl_ns;
49         u32             tsd2d_ns;
50         u32             tchsh_ns;
51         u32             tslch_ns;
52         u8              inst_width;
53         u8              addr_width;
54         u8              data_width;
55         bool            dtr;
56         u8              cs;
57 };
58
59 struct cqspi_st {
60         struct platform_device  *pdev;
61
62         struct clk              *clk;
63         unsigned int            sclk;
64
65         void __iomem            *iobase;
66         void __iomem            *ahb_base;
67         resource_size_t         ahb_size;
68         struct completion       transfer_complete;
69
70         struct dma_chan         *rx_chan;
71         struct completion       rx_dma_complete;
72         dma_addr_t              mmap_phys_base;
73
74         int                     current_cs;
75         unsigned long           master_ref_clk_hz;
76         bool                    is_decoded_cs;
77         u32                     fifo_depth;
78         u32                     fifo_width;
79         u32                     num_chipselect;
80         bool                    rclk_en;
81         u32                     trigger_address;
82         u32                     wr_delay;
83         bool                    use_direct_mode;
84         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
85 };
86
87 struct cqspi_driver_platdata {
88         u32 hwcaps_mask;
89         u8 quirks;
90 };
91
92 /* Operation timeout value */
93 #define CQSPI_TIMEOUT_MS                        500
94 #define CQSPI_READ_TIMEOUT_MS                   10
95
96 /* Instruction type */
97 #define CQSPI_INST_TYPE_SINGLE                  0
98 #define CQSPI_INST_TYPE_DUAL                    1
99 #define CQSPI_INST_TYPE_QUAD                    2
100 #define CQSPI_INST_TYPE_OCTAL                   3
101
102 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
103 #define CQSPI_DUMMY_BYTES_MAX                   4
104 #define CQSPI_DUMMY_CLKS_MAX                    31
105
106 #define CQSPI_STIG_DATA_LEN_MAX                 8
107
108 /* Register map */
109 #define CQSPI_REG_CONFIG                        0x00
110 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
111 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
112 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
113 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
114 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
115 #define CQSPI_REG_CONFIG_BAUD_LSB               19
116 #define CQSPI_REG_CONFIG_DTR_PROTO              BIT(24)
117 #define CQSPI_REG_CONFIG_DUAL_OPCODE            BIT(30)
118 #define CQSPI_REG_CONFIG_IDLE_LSB               31
119 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
120 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
121
122 #define CQSPI_REG_RD_INSTR                      0x04
123 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
124 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
125 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
126 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
127 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
128 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
129 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
130 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
131 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
132 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
133
134 #define CQSPI_REG_WR_INSTR                      0x08
135 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
136 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
137 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
138
139 #define CQSPI_REG_DELAY                         0x0C
140 #define CQSPI_REG_DELAY_TSLCH_LSB               0
141 #define CQSPI_REG_DELAY_TCHSH_LSB               8
142 #define CQSPI_REG_DELAY_TSD2D_LSB               16
143 #define CQSPI_REG_DELAY_TSHSL_LSB               24
144 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
145 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
146 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
147 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
148
149 #define CQSPI_REG_READCAPTURE                   0x10
150 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
151 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
152 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
153
154 #define CQSPI_REG_SIZE                          0x14
155 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
156 #define CQSPI_REG_SIZE_PAGE_LSB                 4
157 #define CQSPI_REG_SIZE_BLOCK_LSB                16
158 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
159 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
160 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
161
162 #define CQSPI_REG_SRAMPARTITION                 0x18
163 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
164
165 #define CQSPI_REG_DMA                           0x20
166 #define CQSPI_REG_DMA_SINGLE_LSB                0
167 #define CQSPI_REG_DMA_BURST_LSB                 8
168 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
169 #define CQSPI_REG_DMA_BURST_MASK                0xFF
170
171 #define CQSPI_REG_REMAP                         0x24
172 #define CQSPI_REG_MODE_BIT                      0x28
173
174 #define CQSPI_REG_SDRAMLEVEL                    0x2C
175 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
176 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
177 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
178 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
179
180 #define CQSPI_REG_WR_COMPLETION_CTRL            0x38
181 #define CQSPI_REG_WR_DISABLE_AUTO_POLL          BIT(14)
182
183 #define CQSPI_REG_IRQSTATUS                     0x40
184 #define CQSPI_REG_IRQMASK                       0x44
185
186 #define CQSPI_REG_INDIRECTRD                    0x60
187 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
188 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
189 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
190
191 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
192 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
193 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
194
195 #define CQSPI_REG_CMDCTRL                       0x90
196 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
197 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
198 #define CQSPI_REG_CMDCTRL_DUMMY_LSB             7
199 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
200 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
201 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
202 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
203 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
204 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
205 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
207 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
208 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
209 #define CQSPI_REG_CMDCTRL_DUMMY_MASK            0x1F
210
211 #define CQSPI_REG_INDIRECTWR                    0x70
212 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
213 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
214 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
215
216 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
217 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
218 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
219
220 #define CQSPI_REG_CMDADDRESS                    0x94
221 #define CQSPI_REG_CMDREADDATALOWER              0xA0
222 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
223 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
224 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
225
226 #define CQSPI_REG_POLLING_STATUS                0xB0
227 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB      16
228
229 #define CQSPI_REG_OP_EXT_LOWER                  0xE0
230 #define CQSPI_REG_OP_EXT_READ_LSB               24
231 #define CQSPI_REG_OP_EXT_WRITE_LSB              16
232 #define CQSPI_REG_OP_EXT_STIG_LSB               0
233
234 /* Interrupt status bits */
235 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
236 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
237 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
238 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
239 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
240 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
241 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
242 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
243
244 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
245                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
246                                          CQSPI_REG_IRQ_IND_COMP)
247
248 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
249                                          CQSPI_REG_IRQ_WATERMARK        | \
250                                          CQSPI_REG_IRQ_UNDERFLOW)
251
252 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
253
254 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
255 {
256         u32 val;
257
258         return readl_relaxed_poll_timeout(reg, val,
259                                           (((clr ? ~val : val) & mask) == mask),
260                                           10, CQSPI_TIMEOUT_MS * 1000);
261 }
262
263 static bool cqspi_is_idle(struct cqspi_st *cqspi)
264 {
265         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
266
267         return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
268 }
269
270 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
271 {
272         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
273
274         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
275         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
276 }
277
278 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
279 {
280         struct cqspi_st *cqspi = dev;
281         unsigned int irq_status;
282
283         /* Read interrupt status */
284         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
285
286         /* Clear interrupt */
287         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
288
289         irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
290
291         if (irq_status)
292                 complete(&cqspi->transfer_complete);
293
294         return IRQ_HANDLED;
295 }
296
297 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
298 {
299         u32 rdreg = 0;
300
301         rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
302         rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
303         rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
304
305         return rdreg;
306 }
307
308 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
309 {
310         unsigned int dummy_clk;
311
312         dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
313         if (dtr)
314                 dummy_clk /= 2;
315
316         return dummy_clk;
317 }
318
319 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
320                               const struct spi_mem_op *op)
321 {
322         f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
323         f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
324         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
325         f_pdata->dtr = op->data.dtr && op->cmd.dtr && op->addr.dtr;
326
327         switch (op->data.buswidth) {
328         case 0:
329                 break;
330         case 1:
331                 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
332                 break;
333         case 2:
334                 f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
335                 break;
336         case 4:
337                 f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
338                 break;
339         case 8:
340                 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
341                 break;
342         default:
343                 return -EINVAL;
344         }
345
346         /* Right now we only support 8-8-8 DTR mode. */
347         if (f_pdata->dtr) {
348                 switch (op->cmd.buswidth) {
349                 case 0:
350                         break;
351                 case 8:
352                         f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
353                         break;
354                 default:
355                         return -EINVAL;
356                 }
357
358                 switch (op->addr.buswidth) {
359                 case 0:
360                         break;
361                 case 8:
362                         f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
363                         break;
364                 default:
365                         return -EINVAL;
366                 }
367
368                 switch (op->data.buswidth) {
369                 case 0:
370                         break;
371                 case 8:
372                         f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
373                         break;
374                 default:
375                         return -EINVAL;
376                 }
377         }
378
379         return 0;
380 }
381
382 static int cqspi_wait_idle(struct cqspi_st *cqspi)
383 {
384         const unsigned int poll_idle_retry = 3;
385         unsigned int count = 0;
386         unsigned long timeout;
387
388         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
389         while (1) {
390                 /*
391                  * Read few times in succession to ensure the controller
392                  * is indeed idle, that is, the bit does not transition
393                  * low again.
394                  */
395                 if (cqspi_is_idle(cqspi))
396                         count++;
397                 else
398                         count = 0;
399
400                 if (count >= poll_idle_retry)
401                         return 0;
402
403                 if (time_after(jiffies, timeout)) {
404                         /* Timeout, in busy mode. */
405                         dev_err(&cqspi->pdev->dev,
406                                 "QSPI is still busy after %dms timeout.\n",
407                                 CQSPI_TIMEOUT_MS);
408                         return -ETIMEDOUT;
409                 }
410
411                 cpu_relax();
412         }
413 }
414
415 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
416 {
417         void __iomem *reg_base = cqspi->iobase;
418         int ret;
419
420         /* Write the CMDCTRL without start execution. */
421         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
422         /* Start execute */
423         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
424         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
425
426         /* Polling for completion. */
427         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
428                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
429         if (ret) {
430                 dev_err(&cqspi->pdev->dev,
431                         "Flash command execution timed out.\n");
432                 return ret;
433         }
434
435         /* Polling QSPI idle status. */
436         return cqspi_wait_idle(cqspi);
437 }
438
439 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
440                                   const struct spi_mem_op *op,
441                                   unsigned int shift)
442 {
443         struct cqspi_st *cqspi = f_pdata->cqspi;
444         void __iomem *reg_base = cqspi->iobase;
445         unsigned int reg;
446         u8 ext;
447
448         if (op->cmd.nbytes != 2)
449                 return -EINVAL;
450
451         /* Opcode extension is the LSB. */
452         ext = op->cmd.opcode & 0xff;
453
454         reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
455         reg &= ~(0xff << shift);
456         reg |= ext << shift;
457         writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
458
459         return 0;
460 }
461
462 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
463                             const struct spi_mem_op *op, unsigned int shift,
464                             bool enable)
465 {
466         struct cqspi_st *cqspi = f_pdata->cqspi;
467         void __iomem *reg_base = cqspi->iobase;
468         unsigned int reg;
469         int ret;
470
471         reg = readl(reg_base + CQSPI_REG_CONFIG);
472
473         /*
474          * We enable dual byte opcode here. The callers have to set up the
475          * extension opcode based on which type of operation it is.
476          */
477         if (enable) {
478                 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
479                 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
480
481                 /* Set up command opcode extension. */
482                 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
483                 if (ret)
484                         return ret;
485         } else {
486                 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
487                 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
488         }
489
490         writel(reg, reg_base + CQSPI_REG_CONFIG);
491
492         return cqspi_wait_idle(cqspi);
493 }
494
495 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
496                               const struct spi_mem_op *op)
497 {
498         struct cqspi_st *cqspi = f_pdata->cqspi;
499         void __iomem *reg_base = cqspi->iobase;
500         u8 *rxbuf = op->data.buf.in;
501         u8 opcode;
502         size_t n_rx = op->data.nbytes;
503         unsigned int rdreg;
504         unsigned int reg;
505         unsigned int dummy_clk;
506         size_t read_len;
507         int status;
508
509         status = cqspi_set_protocol(f_pdata, op);
510         if (status)
511                 return status;
512
513         status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
514                                   f_pdata->dtr);
515         if (status)
516                 return status;
517
518         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
519                 dev_err(&cqspi->pdev->dev,
520                         "Invalid input argument, len %zu rxbuf 0x%p\n",
521                         n_rx, rxbuf);
522                 return -EINVAL;
523         }
524
525         if (f_pdata->dtr)
526                 opcode = op->cmd.opcode >> 8;
527         else
528                 opcode = op->cmd.opcode;
529
530         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
531
532         rdreg = cqspi_calc_rdreg(f_pdata);
533         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
534
535         dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
536         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
537                 return -EOPNOTSUPP;
538
539         if (dummy_clk)
540                 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
541                      << CQSPI_REG_CMDCTRL_DUMMY_LSB;
542
543         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
544
545         /* 0 means 1 byte. */
546         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
547                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
548         status = cqspi_exec_flash_cmd(cqspi, reg);
549         if (status)
550                 return status;
551
552         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
553
554         /* Put the read value into rx_buf */
555         read_len = (n_rx > 4) ? 4 : n_rx;
556         memcpy(rxbuf, &reg, read_len);
557         rxbuf += read_len;
558
559         if (n_rx > 4) {
560                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
561
562                 read_len = n_rx - read_len;
563                 memcpy(rxbuf, &reg, read_len);
564         }
565
566         return 0;
567 }
568
569 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
570                                const struct spi_mem_op *op)
571 {
572         struct cqspi_st *cqspi = f_pdata->cqspi;
573         void __iomem *reg_base = cqspi->iobase;
574         u8 opcode;
575         const u8 *txbuf = op->data.buf.out;
576         size_t n_tx = op->data.nbytes;
577         unsigned int reg;
578         unsigned int data;
579         size_t write_len;
580         int ret;
581
582         ret = cqspi_set_protocol(f_pdata, op);
583         if (ret)
584                 return ret;
585
586         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
587                                f_pdata->dtr);
588         if (ret)
589                 return ret;
590
591         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
592                 dev_err(&cqspi->pdev->dev,
593                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
594                         n_tx, txbuf);
595                 return -EINVAL;
596         }
597
598         reg = cqspi_calc_rdreg(f_pdata);
599         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
600
601         if (f_pdata->dtr)
602                 opcode = op->cmd.opcode >> 8;
603         else
604                 opcode = op->cmd.opcode;
605
606         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
607
608         if (op->addr.nbytes) {
609                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
610                 reg |= ((op->addr.nbytes - 1) &
611                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
612                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
613
614                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
615         }
616
617         if (n_tx) {
618                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
619                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
620                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
621                 data = 0;
622                 write_len = (n_tx > 4) ? 4 : n_tx;
623                 memcpy(&data, txbuf, write_len);
624                 txbuf += write_len;
625                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
626
627                 if (n_tx > 4) {
628                         data = 0;
629                         write_len = n_tx - 4;
630                         memcpy(&data, txbuf, write_len);
631                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
632                 }
633         }
634
635         return cqspi_exec_flash_cmd(cqspi, reg);
636 }
637
638 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
639                             const struct spi_mem_op *op)
640 {
641         struct cqspi_st *cqspi = f_pdata->cqspi;
642         void __iomem *reg_base = cqspi->iobase;
643         unsigned int dummy_clk = 0;
644         unsigned int reg;
645         int ret;
646         u8 opcode;
647
648         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
649                                f_pdata->dtr);
650         if (ret)
651                 return ret;
652
653         if (f_pdata->dtr)
654                 opcode = op->cmd.opcode >> 8;
655         else
656                 opcode = op->cmd.opcode;
657
658         reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
659         reg |= cqspi_calc_rdreg(f_pdata);
660
661         /* Setup dummy clock cycles */
662         dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
663
664         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
665                 return -EOPNOTSUPP;
666
667         if (dummy_clk)
668                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
669                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
670
671         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
672
673         /* Set address width */
674         reg = readl(reg_base + CQSPI_REG_SIZE);
675         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
676         reg |= (op->addr.nbytes - 1);
677         writel(reg, reg_base + CQSPI_REG_SIZE);
678         return 0;
679 }
680
681 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
682                                        u8 *rxbuf, loff_t from_addr,
683                                        const size_t n_rx)
684 {
685         struct cqspi_st *cqspi = f_pdata->cqspi;
686         struct device *dev = &cqspi->pdev->dev;
687         void __iomem *reg_base = cqspi->iobase;
688         void __iomem *ahb_base = cqspi->ahb_base;
689         unsigned int remaining = n_rx;
690         unsigned int mod_bytes = n_rx % 4;
691         unsigned int bytes_to_read = 0;
692         u8 *rxbuf_end = rxbuf + n_rx;
693         int ret = 0;
694
695         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
696         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
697
698         /* Clear all interrupts. */
699         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
700
701         writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
702
703         reinit_completion(&cqspi->transfer_complete);
704         writel(CQSPI_REG_INDIRECTRD_START_MASK,
705                reg_base + CQSPI_REG_INDIRECTRD);
706
707         while (remaining > 0) {
708                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
709                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
710                         ret = -ETIMEDOUT;
711
712                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
713
714                 if (ret && bytes_to_read == 0) {
715                         dev_err(dev, "Indirect read timeout, no bytes\n");
716                         goto failrd;
717                 }
718
719                 while (bytes_to_read != 0) {
720                         unsigned int word_remain = round_down(remaining, 4);
721
722                         bytes_to_read *= cqspi->fifo_width;
723                         bytes_to_read = bytes_to_read > remaining ?
724                                         remaining : bytes_to_read;
725                         bytes_to_read = round_down(bytes_to_read, 4);
726                         /* Read 4 byte word chunks then single bytes */
727                         if (bytes_to_read) {
728                                 ioread32_rep(ahb_base, rxbuf,
729                                              (bytes_to_read / 4));
730                         } else if (!word_remain && mod_bytes) {
731                                 unsigned int temp = ioread32(ahb_base);
732
733                                 bytes_to_read = mod_bytes;
734                                 memcpy(rxbuf, &temp, min((unsigned int)
735                                                          (rxbuf_end - rxbuf),
736                                                          bytes_to_read));
737                         }
738                         rxbuf += bytes_to_read;
739                         remaining -= bytes_to_read;
740                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
741                 }
742
743                 if (remaining > 0)
744                         reinit_completion(&cqspi->transfer_complete);
745         }
746
747         /* Check indirect done status */
748         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
749                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
750         if (ret) {
751                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
752                 goto failrd;
753         }
754
755         /* Disable interrupt */
756         writel(0, reg_base + CQSPI_REG_IRQMASK);
757
758         /* Clear indirect completion status */
759         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
760
761         return 0;
762
763 failrd:
764         /* Disable interrupt */
765         writel(0, reg_base + CQSPI_REG_IRQMASK);
766
767         /* Cancel the indirect read */
768         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
769                reg_base + CQSPI_REG_INDIRECTRD);
770         return ret;
771 }
772
773 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
774                              const struct spi_mem_op *op)
775 {
776         unsigned int reg;
777         int ret;
778         struct cqspi_st *cqspi = f_pdata->cqspi;
779         void __iomem *reg_base = cqspi->iobase;
780         u8 opcode;
781
782         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
783                                f_pdata->dtr);
784         if (ret)
785                 return ret;
786
787         if (f_pdata->dtr)
788                 opcode = op->cmd.opcode >> 8;
789         else
790                 opcode = op->cmd.opcode;
791
792         /* Set opcode. */
793         reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
794         reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
795         reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
796         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
797         reg = cqspi_calc_rdreg(f_pdata);
798         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
799
800         if (f_pdata->dtr) {
801                 /*
802                  * Some flashes like the cypress Semper flash expect a 4-byte
803                  * dummy address with the Read SR command in DTR mode, but this
804                  * controller does not support sending address with the Read SR
805                  * command. So, disable write completion polling on the
806                  * controller's side. spi-nor will take care of polling the
807                  * status register.
808                  */
809                 reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
810                 reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
811                 writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
812         }
813
814         reg = readl(reg_base + CQSPI_REG_SIZE);
815         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
816         reg |= (op->addr.nbytes - 1);
817         writel(reg, reg_base + CQSPI_REG_SIZE);
818         return 0;
819 }
820
821 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
822                                         loff_t to_addr, const u8 *txbuf,
823                                         const size_t n_tx)
824 {
825         struct cqspi_st *cqspi = f_pdata->cqspi;
826         struct device *dev = &cqspi->pdev->dev;
827         void __iomem *reg_base = cqspi->iobase;
828         unsigned int remaining = n_tx;
829         unsigned int write_bytes;
830         int ret;
831
832         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
833         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
834
835         /* Clear all interrupts. */
836         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
837
838         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
839
840         reinit_completion(&cqspi->transfer_complete);
841         writel(CQSPI_REG_INDIRECTWR_START_MASK,
842                reg_base + CQSPI_REG_INDIRECTWR);
843         /*
844          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
845          * Controller programming sequence, couple of cycles of
846          * QSPI_REF_CLK delay is required for the above bit to
847          * be internally synchronized by the QSPI module. Provide 5
848          * cycles of delay.
849          */
850         if (cqspi->wr_delay)
851                 ndelay(cqspi->wr_delay);
852
853         while (remaining > 0) {
854                 size_t write_words, mod_bytes;
855
856                 write_bytes = remaining;
857                 write_words = write_bytes / 4;
858                 mod_bytes = write_bytes % 4;
859                 /* Write 4 bytes at a time then single bytes. */
860                 if (write_words) {
861                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
862                         txbuf += (write_words * 4);
863                 }
864                 if (mod_bytes) {
865                         unsigned int temp = 0xFFFFFFFF;
866
867                         memcpy(&temp, txbuf, mod_bytes);
868                         iowrite32(temp, cqspi->ahb_base);
869                         txbuf += mod_bytes;
870                 }
871
872                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
873                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
874                         dev_err(dev, "Indirect write timeout\n");
875                         ret = -ETIMEDOUT;
876                         goto failwr;
877                 }
878
879                 remaining -= write_bytes;
880
881                 if (remaining > 0)
882                         reinit_completion(&cqspi->transfer_complete);
883         }
884
885         /* Check indirect done status */
886         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
887                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
888         if (ret) {
889                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
890                 goto failwr;
891         }
892
893         /* Disable interrupt. */
894         writel(0, reg_base + CQSPI_REG_IRQMASK);
895
896         /* Clear indirect completion status */
897         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
898
899         cqspi_wait_idle(cqspi);
900
901         return 0;
902
903 failwr:
904         /* Disable interrupt. */
905         writel(0, reg_base + CQSPI_REG_IRQMASK);
906
907         /* Cancel the indirect write */
908         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
909                reg_base + CQSPI_REG_INDIRECTWR);
910         return ret;
911 }
912
913 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
914 {
915         struct cqspi_st *cqspi = f_pdata->cqspi;
916         void __iomem *reg_base = cqspi->iobase;
917         unsigned int chip_select = f_pdata->cs;
918         unsigned int reg;
919
920         reg = readl(reg_base + CQSPI_REG_CONFIG);
921         if (cqspi->is_decoded_cs) {
922                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
923         } else {
924                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
925
926                 /* Convert CS if without decoder.
927                  * CS0 to 4b'1110
928                  * CS1 to 4b'1101
929                  * CS2 to 4b'1011
930                  * CS3 to 4b'0111
931                  */
932                 chip_select = 0xF & ~(1 << chip_select);
933         }
934
935         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
936                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
937         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
938             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
939         writel(reg, reg_base + CQSPI_REG_CONFIG);
940 }
941
942 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
943                                            const unsigned int ns_val)
944 {
945         unsigned int ticks;
946
947         ticks = ref_clk_hz / 1000;      /* kHz */
948         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
949
950         return ticks;
951 }
952
953 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
954 {
955         struct cqspi_st *cqspi = f_pdata->cqspi;
956         void __iomem *iobase = cqspi->iobase;
957         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
958         unsigned int tshsl, tchsh, tslch, tsd2d;
959         unsigned int reg;
960         unsigned int tsclk;
961
962         /* calculate the number of ref ticks for one sclk tick */
963         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
964
965         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
966         /* this particular value must be at least one sclk */
967         if (tshsl < tsclk)
968                 tshsl = tsclk;
969
970         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
971         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
972         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
973
974         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
975                << CQSPI_REG_DELAY_TSHSL_LSB;
976         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
977                 << CQSPI_REG_DELAY_TCHSH_LSB;
978         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
979                 << CQSPI_REG_DELAY_TSLCH_LSB;
980         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
981                 << CQSPI_REG_DELAY_TSD2D_LSB;
982         writel(reg, iobase + CQSPI_REG_DELAY);
983 }
984
985 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
986 {
987         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
988         void __iomem *reg_base = cqspi->iobase;
989         u32 reg, div;
990
991         /* Recalculate the baudrate divisor based on QSPI specification. */
992         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
993
994         reg = readl(reg_base + CQSPI_REG_CONFIG);
995         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
996         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
997         writel(reg, reg_base + CQSPI_REG_CONFIG);
998 }
999
1000 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1001                                    const bool bypass,
1002                                    const unsigned int delay)
1003 {
1004         void __iomem *reg_base = cqspi->iobase;
1005         unsigned int reg;
1006
1007         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1008
1009         if (bypass)
1010                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1011         else
1012                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1013
1014         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1015                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
1016
1017         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1018                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1019
1020         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1021 }
1022
1023 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1024 {
1025         void __iomem *reg_base = cqspi->iobase;
1026         unsigned int reg;
1027
1028         reg = readl(reg_base + CQSPI_REG_CONFIG);
1029
1030         if (enable)
1031                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1032         else
1033                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1034
1035         writel(reg, reg_base + CQSPI_REG_CONFIG);
1036 }
1037
1038 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1039                             unsigned long sclk)
1040 {
1041         struct cqspi_st *cqspi = f_pdata->cqspi;
1042         int switch_cs = (cqspi->current_cs != f_pdata->cs);
1043         int switch_ck = (cqspi->sclk != sclk);
1044
1045         if (switch_cs || switch_ck)
1046                 cqspi_controller_enable(cqspi, 0);
1047
1048         /* Switch chip select. */
1049         if (switch_cs) {
1050                 cqspi->current_cs = f_pdata->cs;
1051                 cqspi_chipselect(f_pdata);
1052         }
1053
1054         /* Setup baudrate divisor and delays */
1055         if (switch_ck) {
1056                 cqspi->sclk = sclk;
1057                 cqspi_config_baudrate_div(cqspi);
1058                 cqspi_delay(f_pdata);
1059                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1060                                        f_pdata->read_delay);
1061         }
1062
1063         if (switch_cs || switch_ck)
1064                 cqspi_controller_enable(cqspi, 1);
1065 }
1066
1067 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1068                            const struct spi_mem_op *op)
1069 {
1070         struct cqspi_st *cqspi = f_pdata->cqspi;
1071         loff_t to = op->addr.val;
1072         size_t len = op->data.nbytes;
1073         const u_char *buf = op->data.buf.out;
1074         int ret;
1075
1076         ret = cqspi_set_protocol(f_pdata, op);
1077         if (ret)
1078                 return ret;
1079
1080         ret = cqspi_write_setup(f_pdata, op);
1081         if (ret)
1082                 return ret;
1083
1084         /*
1085          * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1086          * address (all 0s) with the read status register command in DTR mode.
1087          * But this controller does not support sending dummy address bytes to
1088          * the flash when it is polling the write completion register in DTR
1089          * mode. So, we can not use direct mode when in DTR mode for writing
1090          * data.
1091          */
1092         if (!f_pdata->dtr && cqspi->use_direct_mode &&
1093             ((to + len) <= cqspi->ahb_size)) {
1094                 memcpy_toio(cqspi->ahb_base + to, buf, len);
1095                 return cqspi_wait_idle(cqspi);
1096         }
1097
1098         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1099 }
1100
1101 static void cqspi_rx_dma_callback(void *param)
1102 {
1103         struct cqspi_st *cqspi = param;
1104
1105         complete(&cqspi->rx_dma_complete);
1106 }
1107
1108 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1109                                      u_char *buf, loff_t from, size_t len)
1110 {
1111         struct cqspi_st *cqspi = f_pdata->cqspi;
1112         struct device *dev = &cqspi->pdev->dev;
1113         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1114         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1115         int ret = 0;
1116         struct dma_async_tx_descriptor *tx;
1117         dma_cookie_t cookie;
1118         dma_addr_t dma_dst;
1119         struct device *ddev;
1120
1121         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1122                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1123                 return 0;
1124         }
1125
1126         ddev = cqspi->rx_chan->device->dev;
1127         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1128         if (dma_mapping_error(ddev, dma_dst)) {
1129                 dev_err(dev, "dma mapping failed\n");
1130                 return -ENOMEM;
1131         }
1132         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1133                                        len, flags);
1134         if (!tx) {
1135                 dev_err(dev, "device_prep_dma_memcpy error\n");
1136                 ret = -EIO;
1137                 goto err_unmap;
1138         }
1139
1140         tx->callback = cqspi_rx_dma_callback;
1141         tx->callback_param = cqspi;
1142         cookie = tx->tx_submit(tx);
1143         reinit_completion(&cqspi->rx_dma_complete);
1144
1145         ret = dma_submit_error(cookie);
1146         if (ret) {
1147                 dev_err(dev, "dma_submit_error %d\n", cookie);
1148                 ret = -EIO;
1149                 goto err_unmap;
1150         }
1151
1152         dma_async_issue_pending(cqspi->rx_chan);
1153         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1154                                          msecs_to_jiffies(max_t(size_t, len, 500)))) {
1155                 dmaengine_terminate_sync(cqspi->rx_chan);
1156                 dev_err(dev, "DMA wait_for_completion_timeout\n");
1157                 ret = -ETIMEDOUT;
1158                 goto err_unmap;
1159         }
1160
1161 err_unmap:
1162         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1163
1164         return ret;
1165 }
1166
1167 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1168                           const struct spi_mem_op *op)
1169 {
1170         struct cqspi_st *cqspi = f_pdata->cqspi;
1171         loff_t from = op->addr.val;
1172         size_t len = op->data.nbytes;
1173         u_char *buf = op->data.buf.in;
1174         int ret;
1175
1176         ret = cqspi_set_protocol(f_pdata, op);
1177         if (ret)
1178                 return ret;
1179
1180         ret = cqspi_read_setup(f_pdata, op);
1181         if (ret)
1182                 return ret;
1183
1184         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1185                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1186
1187         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1188 }
1189
1190 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1191 {
1192         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1193         struct cqspi_flash_pdata *f_pdata;
1194
1195         f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1196         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1197
1198         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1199                 if (!op->addr.nbytes)
1200                         return cqspi_command_read(f_pdata, op);
1201
1202                 return cqspi_read(f_pdata, op);
1203         }
1204
1205         if (!op->addr.nbytes || !op->data.buf.out)
1206                 return cqspi_command_write(f_pdata, op);
1207
1208         return cqspi_write(f_pdata, op);
1209 }
1210
1211 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1212 {
1213         int ret;
1214
1215         ret = cqspi_mem_process(mem, op);
1216         if (ret)
1217                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1218
1219         return ret;
1220 }
1221
1222 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1223                                   const struct spi_mem_op *op)
1224 {
1225         bool all_true, all_false;
1226
1227         all_true = op->cmd.dtr && op->addr.dtr && op->dummy.dtr &&
1228                    op->data.dtr;
1229         all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1230                     !op->data.dtr;
1231
1232         /* Mixed DTR modes not supported. */
1233         if (!(all_true || all_false))
1234                 return false;
1235
1236         if (all_true)
1237                 return spi_mem_dtr_supports_op(mem, op);
1238         else
1239                 return spi_mem_default_supports_op(mem, op);
1240 }
1241
1242 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1243                                     struct cqspi_flash_pdata *f_pdata,
1244                                     struct device_node *np)
1245 {
1246         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1247                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1248                 return -ENXIO;
1249         }
1250
1251         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1252                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1253                 return -ENXIO;
1254         }
1255
1256         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1257                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1258                 return -ENXIO;
1259         }
1260
1261         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1262                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1263                 return -ENXIO;
1264         }
1265
1266         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1267                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1268                 return -ENXIO;
1269         }
1270
1271         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1272                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1273                 return -ENXIO;
1274         }
1275
1276         return 0;
1277 }
1278
1279 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1280 {
1281         struct device *dev = &cqspi->pdev->dev;
1282         struct device_node *np = dev->of_node;
1283
1284         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1285
1286         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1287                 dev_err(dev, "couldn't determine fifo-depth\n");
1288                 return -ENXIO;
1289         }
1290
1291         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1292                 dev_err(dev, "couldn't determine fifo-width\n");
1293                 return -ENXIO;
1294         }
1295
1296         if (of_property_read_u32(np, "cdns,trigger-address",
1297                                  &cqspi->trigger_address)) {
1298                 dev_err(dev, "couldn't determine trigger-address\n");
1299                 return -ENXIO;
1300         }
1301
1302         if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1303                 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1304
1305         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1306
1307         return 0;
1308 }
1309
1310 static void cqspi_controller_init(struct cqspi_st *cqspi)
1311 {
1312         u32 reg;
1313
1314         cqspi_controller_enable(cqspi, 0);
1315
1316         /* Configure the remap address register, no remap */
1317         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1318
1319         /* Disable all interrupts. */
1320         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1321
1322         /* Configure the SRAM split to 1:1 . */
1323         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1324
1325         /* Load indirect trigger address. */
1326         writel(cqspi->trigger_address,
1327                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1328
1329         /* Program read watermark -- 1/2 of the FIFO. */
1330         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1331                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1332         /* Program write watermark -- 1/8 of the FIFO. */
1333         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1334                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1335
1336         /* Disable direct access controller */
1337         if (!cqspi->use_direct_mode) {
1338                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1339                 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1340                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1341         }
1342
1343         cqspi_controller_enable(cqspi, 1);
1344 }
1345
1346 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1347 {
1348         dma_cap_mask_t mask;
1349
1350         dma_cap_zero(mask);
1351         dma_cap_set(DMA_MEMCPY, mask);
1352
1353         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1354         if (IS_ERR(cqspi->rx_chan)) {
1355                 int ret = PTR_ERR(cqspi->rx_chan);
1356                 cqspi->rx_chan = NULL;
1357                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1358         }
1359         init_completion(&cqspi->rx_dma_complete);
1360
1361         return 0;
1362 }
1363
1364 static const char *cqspi_get_name(struct spi_mem *mem)
1365 {
1366         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1367         struct device *dev = &cqspi->pdev->dev;
1368
1369         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1370 }
1371
1372 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1373         .exec_op = cqspi_exec_mem_op,
1374         .get_name = cqspi_get_name,
1375         .supports_op = cqspi_supports_mem_op,
1376 };
1377
1378 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1379 {
1380         struct platform_device *pdev = cqspi->pdev;
1381         struct device *dev = &pdev->dev;
1382         struct device_node *np = dev->of_node;
1383         struct cqspi_flash_pdata *f_pdata;
1384         unsigned int cs;
1385         int ret;
1386
1387         /* Get flash device data */
1388         for_each_available_child_of_node(dev->of_node, np) {
1389                 ret = of_property_read_u32(np, "reg", &cs);
1390                 if (ret) {
1391                         dev_err(dev, "Couldn't determine chip select.\n");
1392                         of_node_put(np);
1393                         return ret;
1394                 }
1395
1396                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1397                         dev_err(dev, "Chip select %d out of range.\n", cs);
1398                         of_node_put(np);
1399                         return -EINVAL;
1400                 }
1401
1402                 f_pdata = &cqspi->f_pdata[cs];
1403                 f_pdata->cqspi = cqspi;
1404                 f_pdata->cs = cs;
1405
1406                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1407                 if (ret) {
1408                         of_node_put(np);
1409                         return ret;
1410                 }
1411         }
1412
1413         return 0;
1414 }
1415
1416 static int cqspi_probe(struct platform_device *pdev)
1417 {
1418         const struct cqspi_driver_platdata *ddata;
1419         struct reset_control *rstc, *rstc_ocp;
1420         struct device *dev = &pdev->dev;
1421         struct spi_master *master;
1422         struct resource *res_ahb;
1423         struct cqspi_st *cqspi;
1424         struct resource *res;
1425         int ret;
1426         int irq;
1427
1428         master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1429         if (!master) {
1430                 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1431                 return -ENOMEM;
1432         }
1433         master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1434         master->mem_ops = &cqspi_mem_ops;
1435         master->dev.of_node = pdev->dev.of_node;
1436
1437         cqspi = spi_master_get_devdata(master);
1438
1439         cqspi->pdev = pdev;
1440         platform_set_drvdata(pdev, cqspi);
1441
1442         /* Obtain configuration from OF. */
1443         ret = cqspi_of_get_pdata(cqspi);
1444         if (ret) {
1445                 dev_err(dev, "Cannot get mandatory OF data.\n");
1446                 ret = -ENODEV;
1447                 goto probe_master_put;
1448         }
1449
1450         /* Obtain QSPI clock. */
1451         cqspi->clk = devm_clk_get(dev, NULL);
1452         if (IS_ERR(cqspi->clk)) {
1453                 dev_err(dev, "Cannot claim QSPI clock.\n");
1454                 ret = PTR_ERR(cqspi->clk);
1455                 goto probe_master_put;
1456         }
1457
1458         /* Obtain and remap controller address. */
1459         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1460         cqspi->iobase = devm_ioremap_resource(dev, res);
1461         if (IS_ERR(cqspi->iobase)) {
1462                 dev_err(dev, "Cannot remap controller address.\n");
1463                 ret = PTR_ERR(cqspi->iobase);
1464                 goto probe_master_put;
1465         }
1466
1467         /* Obtain and remap AHB address. */
1468         res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1469         cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1470         if (IS_ERR(cqspi->ahb_base)) {
1471                 dev_err(dev, "Cannot remap AHB address.\n");
1472                 ret = PTR_ERR(cqspi->ahb_base);
1473                 goto probe_master_put;
1474         }
1475         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1476         cqspi->ahb_size = resource_size(res_ahb);
1477
1478         init_completion(&cqspi->transfer_complete);
1479
1480         /* Obtain IRQ line. */
1481         irq = platform_get_irq(pdev, 0);
1482         if (irq < 0) {
1483                 ret = -ENXIO;
1484                 goto probe_master_put;
1485         }
1486
1487         pm_runtime_enable(dev);
1488         ret = pm_runtime_get_sync(dev);
1489         if (ret < 0) {
1490                 pm_runtime_put_noidle(dev);
1491                 goto probe_master_put;
1492         }
1493
1494         ret = clk_prepare_enable(cqspi->clk);
1495         if (ret) {
1496                 dev_err(dev, "Cannot enable QSPI clock.\n");
1497                 goto probe_clk_failed;
1498         }
1499
1500         /* Obtain QSPI reset control */
1501         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1502         if (IS_ERR(rstc)) {
1503                 ret = PTR_ERR(rstc);
1504                 dev_err(dev, "Cannot get QSPI reset.\n");
1505                 goto probe_reset_failed;
1506         }
1507
1508         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1509         if (IS_ERR(rstc_ocp)) {
1510                 ret = PTR_ERR(rstc_ocp);
1511                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1512                 goto probe_reset_failed;
1513         }
1514
1515         reset_control_assert(rstc);
1516         reset_control_deassert(rstc);
1517
1518         reset_control_assert(rstc_ocp);
1519         reset_control_deassert(rstc_ocp);
1520
1521         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1522         master->max_speed_hz = cqspi->master_ref_clk_hz;
1523         ddata  = of_device_get_match_data(dev);
1524         if (ddata) {
1525                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1526                         cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1527                                                 cqspi->master_ref_clk_hz);
1528                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1529                         master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1530                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1531                         cqspi->use_direct_mode = true;
1532         }
1533
1534         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1535                                pdev->name, cqspi);
1536         if (ret) {
1537                 dev_err(dev, "Cannot request IRQ.\n");
1538                 goto probe_reset_failed;
1539         }
1540
1541         cqspi_wait_idle(cqspi);
1542         cqspi_controller_init(cqspi);
1543         cqspi->current_cs = -1;
1544         cqspi->sclk = 0;
1545
1546         master->num_chipselect = cqspi->num_chipselect;
1547
1548         ret = cqspi_setup_flash(cqspi);
1549         if (ret) {
1550                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1551                 goto probe_setup_failed;
1552         }
1553
1554         if (cqspi->use_direct_mode) {
1555                 ret = cqspi_request_mmap_dma(cqspi);
1556                 if (ret == -EPROBE_DEFER)
1557                         goto probe_setup_failed;
1558         }
1559
1560         ret = devm_spi_register_master(dev, master);
1561         if (ret) {
1562                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1563                 goto probe_setup_failed;
1564         }
1565
1566         return 0;
1567 probe_setup_failed:
1568         cqspi_controller_enable(cqspi, 0);
1569 probe_reset_failed:
1570         clk_disable_unprepare(cqspi->clk);
1571 probe_clk_failed:
1572         pm_runtime_put_sync(dev);
1573         pm_runtime_disable(dev);
1574 probe_master_put:
1575         spi_master_put(master);
1576         return ret;
1577 }
1578
1579 static int cqspi_remove(struct platform_device *pdev)
1580 {
1581         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1582
1583         cqspi_controller_enable(cqspi, 0);
1584
1585         if (cqspi->rx_chan)
1586                 dma_release_channel(cqspi->rx_chan);
1587
1588         clk_disable_unprepare(cqspi->clk);
1589
1590         pm_runtime_put_sync(&pdev->dev);
1591         pm_runtime_disable(&pdev->dev);
1592
1593         return 0;
1594 }
1595
1596 #ifdef CONFIG_PM_SLEEP
1597 static int cqspi_suspend(struct device *dev)
1598 {
1599         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1600
1601         cqspi_controller_enable(cqspi, 0);
1602         return 0;
1603 }
1604
1605 static int cqspi_resume(struct device *dev)
1606 {
1607         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1608
1609         cqspi_controller_enable(cqspi, 1);
1610         return 0;
1611 }
1612
1613 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1614         .suspend = cqspi_suspend,
1615         .resume = cqspi_resume,
1616 };
1617
1618 #define CQSPI_DEV_PM_OPS        (&cqspi__dev_pm_ops)
1619 #else
1620 #define CQSPI_DEV_PM_OPS        NULL
1621 #endif
1622
1623 static const struct cqspi_driver_platdata cdns_qspi = {
1624         .quirks = CQSPI_DISABLE_DAC_MODE,
1625 };
1626
1627 static const struct cqspi_driver_platdata k2g_qspi = {
1628         .quirks = CQSPI_NEEDS_WR_DELAY,
1629 };
1630
1631 static const struct cqspi_driver_platdata am654_ospi = {
1632         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1633         .quirks = CQSPI_NEEDS_WR_DELAY,
1634 };
1635
1636 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1637         .quirks = CQSPI_DISABLE_DAC_MODE,
1638 };
1639
1640 static const struct of_device_id cqspi_dt_ids[] = {
1641         {
1642                 .compatible = "cdns,qspi-nor",
1643                 .data = &cdns_qspi,
1644         },
1645         {
1646                 .compatible = "ti,k2g-qspi",
1647                 .data = &k2g_qspi,
1648         },
1649         {
1650                 .compatible = "ti,am654-ospi",
1651                 .data = &am654_ospi,
1652         },
1653         {
1654                 .compatible = "intel,lgm-qspi",
1655                 .data = &intel_lgm_qspi,
1656         },
1657         { /* end of table */ }
1658 };
1659
1660 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1661
1662 static struct platform_driver cqspi_platform_driver = {
1663         .probe = cqspi_probe,
1664         .remove = cqspi_remove,
1665         .driver = {
1666                 .name = CQSPI_NAME,
1667                 .pm = CQSPI_DEV_PM_OPS,
1668                 .of_match_table = cqspi_dt_ids,
1669         },
1670 };
1671
1672 module_platform_driver(cqspi_platform_driver);
1673
1674 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1675 MODULE_LICENSE("GPL v2");
1676 MODULE_ALIAS("platform:" CQSPI_NAME);
1677 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1678 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1679 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1680 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1681 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");