Merge branch 'work.gfs2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / drivers / spi / spi-cadence-quadspi.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/of.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi-mem.h>
30 #include <linux/timer.h>
31
32 #define CQSPI_NAME                      "cadence-qspi"
33 #define CQSPI_MAX_CHIPSELECT            16
34
35 /* Quirks */
36 #define CQSPI_NEEDS_WR_DELAY            BIT(0)
37 #define CQSPI_DISABLE_DAC_MODE          BIT(1)
38
39 /* Capabilities */
40 #define CQSPI_SUPPORTS_OCTAL            BIT(0)
41
42 struct cqspi_st;
43
44 struct cqspi_flash_pdata {
45         struct cqspi_st *cqspi;
46         u32             clk_rate;
47         u32             read_delay;
48         u32             tshsl_ns;
49         u32             tsd2d_ns;
50         u32             tchsh_ns;
51         u32             tslch_ns;
52         u8              inst_width;
53         u8              addr_width;
54         u8              data_width;
55         bool            dtr;
56         u8              cs;
57 };
58
59 struct cqspi_st {
60         struct platform_device  *pdev;
61
62         struct clk              *clk;
63         unsigned int            sclk;
64
65         void __iomem            *iobase;
66         void __iomem            *ahb_base;
67         resource_size_t         ahb_size;
68         struct completion       transfer_complete;
69
70         struct dma_chan         *rx_chan;
71         struct completion       rx_dma_complete;
72         dma_addr_t              mmap_phys_base;
73
74         int                     current_cs;
75         unsigned long           master_ref_clk_hz;
76         bool                    is_decoded_cs;
77         u32                     fifo_depth;
78         u32                     fifo_width;
79         u32                     num_chipselect;
80         bool                    rclk_en;
81         u32                     trigger_address;
82         u32                     wr_delay;
83         bool                    use_direct_mode;
84         struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
85 };
86
87 struct cqspi_driver_platdata {
88         u32 hwcaps_mask;
89         u8 quirks;
90 };
91
92 /* Operation timeout value */
93 #define CQSPI_TIMEOUT_MS                        500
94 #define CQSPI_READ_TIMEOUT_MS                   10
95
96 /* Instruction type */
97 #define CQSPI_INST_TYPE_SINGLE                  0
98 #define CQSPI_INST_TYPE_DUAL                    1
99 #define CQSPI_INST_TYPE_QUAD                    2
100 #define CQSPI_INST_TYPE_OCTAL                   3
101
102 #define CQSPI_DUMMY_CLKS_PER_BYTE               8
103 #define CQSPI_DUMMY_BYTES_MAX                   4
104 #define CQSPI_DUMMY_CLKS_MAX                    31
105
106 #define CQSPI_STIG_DATA_LEN_MAX                 8
107
108 /* Register map */
109 #define CQSPI_REG_CONFIG                        0x00
110 #define CQSPI_REG_CONFIG_ENABLE_MASK            BIT(0)
111 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL       BIT(7)
112 #define CQSPI_REG_CONFIG_DECODE_MASK            BIT(9)
113 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB         10
114 #define CQSPI_REG_CONFIG_DMA_MASK               BIT(15)
115 #define CQSPI_REG_CONFIG_BAUD_LSB               19
116 #define CQSPI_REG_CONFIG_DTR_PROTO              BIT(24)
117 #define CQSPI_REG_CONFIG_DUAL_OPCODE            BIT(30)
118 #define CQSPI_REG_CONFIG_IDLE_LSB               31
119 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK        0xF
120 #define CQSPI_REG_CONFIG_BAUD_MASK              0xF
121
122 #define CQSPI_REG_RD_INSTR                      0x04
123 #define CQSPI_REG_RD_INSTR_OPCODE_LSB           0
124 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB       8
125 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB        12
126 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB        16
127 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB          20
128 #define CQSPI_REG_RD_INSTR_DUMMY_LSB            24
129 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK      0x3
130 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK       0x3
131 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK       0x3
132 #define CQSPI_REG_RD_INSTR_DUMMY_MASK           0x1F
133
134 #define CQSPI_REG_WR_INSTR                      0x08
135 #define CQSPI_REG_WR_INSTR_OPCODE_LSB           0
136 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB        12
137 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB        16
138
139 #define CQSPI_REG_DELAY                         0x0C
140 #define CQSPI_REG_DELAY_TSLCH_LSB               0
141 #define CQSPI_REG_DELAY_TCHSH_LSB               8
142 #define CQSPI_REG_DELAY_TSD2D_LSB               16
143 #define CQSPI_REG_DELAY_TSHSL_LSB               24
144 #define CQSPI_REG_DELAY_TSLCH_MASK              0xFF
145 #define CQSPI_REG_DELAY_TCHSH_MASK              0xFF
146 #define CQSPI_REG_DELAY_TSD2D_MASK              0xFF
147 #define CQSPI_REG_DELAY_TSHSL_MASK              0xFF
148
149 #define CQSPI_REG_READCAPTURE                   0x10
150 #define CQSPI_REG_READCAPTURE_BYPASS_LSB        0
151 #define CQSPI_REG_READCAPTURE_DELAY_LSB         1
152 #define CQSPI_REG_READCAPTURE_DELAY_MASK        0xF
153
154 #define CQSPI_REG_SIZE                          0x14
155 #define CQSPI_REG_SIZE_ADDRESS_LSB              0
156 #define CQSPI_REG_SIZE_PAGE_LSB                 4
157 #define CQSPI_REG_SIZE_BLOCK_LSB                16
158 #define CQSPI_REG_SIZE_ADDRESS_MASK             0xF
159 #define CQSPI_REG_SIZE_PAGE_MASK                0xFFF
160 #define CQSPI_REG_SIZE_BLOCK_MASK               0x3F
161
162 #define CQSPI_REG_SRAMPARTITION                 0x18
163 #define CQSPI_REG_INDIRECTTRIGGER               0x1C
164
165 #define CQSPI_REG_DMA                           0x20
166 #define CQSPI_REG_DMA_SINGLE_LSB                0
167 #define CQSPI_REG_DMA_BURST_LSB                 8
168 #define CQSPI_REG_DMA_SINGLE_MASK               0xFF
169 #define CQSPI_REG_DMA_BURST_MASK                0xFF
170
171 #define CQSPI_REG_REMAP                         0x24
172 #define CQSPI_REG_MODE_BIT                      0x28
173
174 #define CQSPI_REG_SDRAMLEVEL                    0x2C
175 #define CQSPI_REG_SDRAMLEVEL_RD_LSB             0
176 #define CQSPI_REG_SDRAMLEVEL_WR_LSB             16
177 #define CQSPI_REG_SDRAMLEVEL_RD_MASK            0xFFFF
178 #define CQSPI_REG_SDRAMLEVEL_WR_MASK            0xFFFF
179
180 #define CQSPI_REG_WR_COMPLETION_CTRL            0x38
181 #define CQSPI_REG_WR_DISABLE_AUTO_POLL          BIT(14)
182
183 #define CQSPI_REG_IRQSTATUS                     0x40
184 #define CQSPI_REG_IRQMASK                       0x44
185
186 #define CQSPI_REG_INDIRECTRD                    0x60
187 #define CQSPI_REG_INDIRECTRD_START_MASK         BIT(0)
188 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK        BIT(1)
189 #define CQSPI_REG_INDIRECTRD_DONE_MASK          BIT(5)
190
191 #define CQSPI_REG_INDIRECTRDWATERMARK           0x64
192 #define CQSPI_REG_INDIRECTRDSTARTADDR           0x68
193 #define CQSPI_REG_INDIRECTRDBYTES               0x6C
194
195 #define CQSPI_REG_CMDCTRL                       0x90
196 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK          BIT(0)
197 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK       BIT(1)
198 #define CQSPI_REG_CMDCTRL_DUMMY_LSB             7
199 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB          12
200 #define CQSPI_REG_CMDCTRL_WR_EN_LSB             15
201 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB         16
202 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB           19
203 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB          20
204 #define CQSPI_REG_CMDCTRL_RD_EN_LSB             23
205 #define CQSPI_REG_CMDCTRL_OPCODE_LSB            24
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK         0x7
207 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK        0x3
208 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK         0x7
209 #define CQSPI_REG_CMDCTRL_DUMMY_MASK            0x1F
210
211 #define CQSPI_REG_INDIRECTWR                    0x70
212 #define CQSPI_REG_INDIRECTWR_START_MASK         BIT(0)
213 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK        BIT(1)
214 #define CQSPI_REG_INDIRECTWR_DONE_MASK          BIT(5)
215
216 #define CQSPI_REG_INDIRECTWRWATERMARK           0x74
217 #define CQSPI_REG_INDIRECTWRSTARTADDR           0x78
218 #define CQSPI_REG_INDIRECTWRBYTES               0x7C
219
220 #define CQSPI_REG_CMDADDRESS                    0x94
221 #define CQSPI_REG_CMDREADDATALOWER              0xA0
222 #define CQSPI_REG_CMDREADDATAUPPER              0xA4
223 #define CQSPI_REG_CMDWRITEDATALOWER             0xA8
224 #define CQSPI_REG_CMDWRITEDATAUPPER             0xAC
225
226 #define CQSPI_REG_POLLING_STATUS                0xB0
227 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB      16
228
229 #define CQSPI_REG_OP_EXT_LOWER                  0xE0
230 #define CQSPI_REG_OP_EXT_READ_LSB               24
231 #define CQSPI_REG_OP_EXT_WRITE_LSB              16
232 #define CQSPI_REG_OP_EXT_STIG_LSB               0
233
234 /* Interrupt status bits */
235 #define CQSPI_REG_IRQ_MODE_ERR                  BIT(0)
236 #define CQSPI_REG_IRQ_UNDERFLOW                 BIT(1)
237 #define CQSPI_REG_IRQ_IND_COMP                  BIT(2)
238 #define CQSPI_REG_IRQ_IND_RD_REJECT             BIT(3)
239 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR          BIT(4)
240 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR           BIT(5)
241 #define CQSPI_REG_IRQ_WATERMARK                 BIT(6)
242 #define CQSPI_REG_IRQ_IND_SRAM_FULL             BIT(12)
243
244 #define CQSPI_IRQ_MASK_RD               (CQSPI_REG_IRQ_WATERMARK        | \
245                                          CQSPI_REG_IRQ_IND_SRAM_FULL    | \
246                                          CQSPI_REG_IRQ_IND_COMP)
247
248 #define CQSPI_IRQ_MASK_WR               (CQSPI_REG_IRQ_IND_COMP         | \
249                                          CQSPI_REG_IRQ_WATERMARK        | \
250                                          CQSPI_REG_IRQ_UNDERFLOW)
251
252 #define CQSPI_IRQ_STATUS_MASK           0x1FFFF
253
254 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
255 {
256         u32 val;
257
258         return readl_relaxed_poll_timeout(reg, val,
259                                           (((clr ? ~val : val) & mask) == mask),
260                                           10, CQSPI_TIMEOUT_MS * 1000);
261 }
262
263 static bool cqspi_is_idle(struct cqspi_st *cqspi)
264 {
265         u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
266
267         return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
268 }
269
270 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
271 {
272         u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
273
274         reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
275         return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
276 }
277
278 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
279 {
280         struct cqspi_st *cqspi = dev;
281         unsigned int irq_status;
282
283         /* Read interrupt status */
284         irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
285
286         /* Clear interrupt */
287         writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
288
289         irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
290
291         if (irq_status)
292                 complete(&cqspi->transfer_complete);
293
294         return IRQ_HANDLED;
295 }
296
297 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
298 {
299         u32 rdreg = 0;
300
301         rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
302         rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
303         rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
304
305         return rdreg;
306 }
307
308 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
309 {
310         unsigned int dummy_clk;
311
312         if (!op->dummy.nbytes)
313                 return 0;
314
315         dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
316         if (dtr)
317                 dummy_clk /= 2;
318
319         return dummy_clk;
320 }
321
322 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
323                               const struct spi_mem_op *op)
324 {
325         f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
326         f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
327         f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
328
329         /*
330          * For an op to be DTR, cmd phase along with every other non-empty
331          * phase should have dtr field set to 1. If an op phase has zero
332          * nbytes, ignore its dtr field; otherwise, check its dtr field.
333          */
334         f_pdata->dtr = op->cmd.dtr &&
335                        (!op->addr.nbytes || op->addr.dtr) &&
336                        (!op->data.nbytes || op->data.dtr);
337
338         switch (op->data.buswidth) {
339         case 0:
340                 break;
341         case 1:
342                 f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
343                 break;
344         case 2:
345                 f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
346                 break;
347         case 4:
348                 f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
349                 break;
350         case 8:
351                 f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
352                 break;
353         default:
354                 return -EINVAL;
355         }
356
357         /* Right now we only support 8-8-8 DTR mode. */
358         if (f_pdata->dtr) {
359                 switch (op->cmd.buswidth) {
360                 case 0:
361                         break;
362                 case 8:
363                         f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
364                         break;
365                 default:
366                         return -EINVAL;
367                 }
368
369                 switch (op->addr.buswidth) {
370                 case 0:
371                         break;
372                 case 8:
373                         f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
374                         break;
375                 default:
376                         return -EINVAL;
377                 }
378
379                 switch (op->data.buswidth) {
380                 case 0:
381                         break;
382                 case 8:
383                         f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
384                         break;
385                 default:
386                         return -EINVAL;
387                 }
388         }
389
390         return 0;
391 }
392
393 static int cqspi_wait_idle(struct cqspi_st *cqspi)
394 {
395         const unsigned int poll_idle_retry = 3;
396         unsigned int count = 0;
397         unsigned long timeout;
398
399         timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
400         while (1) {
401                 /*
402                  * Read few times in succession to ensure the controller
403                  * is indeed idle, that is, the bit does not transition
404                  * low again.
405                  */
406                 if (cqspi_is_idle(cqspi))
407                         count++;
408                 else
409                         count = 0;
410
411                 if (count >= poll_idle_retry)
412                         return 0;
413
414                 if (time_after(jiffies, timeout)) {
415                         /* Timeout, in busy mode. */
416                         dev_err(&cqspi->pdev->dev,
417                                 "QSPI is still busy after %dms timeout.\n",
418                                 CQSPI_TIMEOUT_MS);
419                         return -ETIMEDOUT;
420                 }
421
422                 cpu_relax();
423         }
424 }
425
426 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
427 {
428         void __iomem *reg_base = cqspi->iobase;
429         int ret;
430
431         /* Write the CMDCTRL without start execution. */
432         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
433         /* Start execute */
434         reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
435         writel(reg, reg_base + CQSPI_REG_CMDCTRL);
436
437         /* Polling for completion. */
438         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
439                                  CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
440         if (ret) {
441                 dev_err(&cqspi->pdev->dev,
442                         "Flash command execution timed out.\n");
443                 return ret;
444         }
445
446         /* Polling QSPI idle status. */
447         return cqspi_wait_idle(cqspi);
448 }
449
450 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
451                                   const struct spi_mem_op *op,
452                                   unsigned int shift)
453 {
454         struct cqspi_st *cqspi = f_pdata->cqspi;
455         void __iomem *reg_base = cqspi->iobase;
456         unsigned int reg;
457         u8 ext;
458
459         if (op->cmd.nbytes != 2)
460                 return -EINVAL;
461
462         /* Opcode extension is the LSB. */
463         ext = op->cmd.opcode & 0xff;
464
465         reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
466         reg &= ~(0xff << shift);
467         reg |= ext << shift;
468         writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
469
470         return 0;
471 }
472
473 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
474                             const struct spi_mem_op *op, unsigned int shift,
475                             bool enable)
476 {
477         struct cqspi_st *cqspi = f_pdata->cqspi;
478         void __iomem *reg_base = cqspi->iobase;
479         unsigned int reg;
480         int ret;
481
482         reg = readl(reg_base + CQSPI_REG_CONFIG);
483
484         /*
485          * We enable dual byte opcode here. The callers have to set up the
486          * extension opcode based on which type of operation it is.
487          */
488         if (enable) {
489                 reg |= CQSPI_REG_CONFIG_DTR_PROTO;
490                 reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
491
492                 /* Set up command opcode extension. */
493                 ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
494                 if (ret)
495                         return ret;
496         } else {
497                 reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
498                 reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
499         }
500
501         writel(reg, reg_base + CQSPI_REG_CONFIG);
502
503         return cqspi_wait_idle(cqspi);
504 }
505
506 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
507                               const struct spi_mem_op *op)
508 {
509         struct cqspi_st *cqspi = f_pdata->cqspi;
510         void __iomem *reg_base = cqspi->iobase;
511         u8 *rxbuf = op->data.buf.in;
512         u8 opcode;
513         size_t n_rx = op->data.nbytes;
514         unsigned int rdreg;
515         unsigned int reg;
516         unsigned int dummy_clk;
517         size_t read_len;
518         int status;
519
520         status = cqspi_set_protocol(f_pdata, op);
521         if (status)
522                 return status;
523
524         status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
525                                   f_pdata->dtr);
526         if (status)
527                 return status;
528
529         if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
530                 dev_err(&cqspi->pdev->dev,
531                         "Invalid input argument, len %zu rxbuf 0x%p\n",
532                         n_rx, rxbuf);
533                 return -EINVAL;
534         }
535
536         if (f_pdata->dtr)
537                 opcode = op->cmd.opcode >> 8;
538         else
539                 opcode = op->cmd.opcode;
540
541         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
542
543         rdreg = cqspi_calc_rdreg(f_pdata);
544         writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
545
546         dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
547         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
548                 return -EOPNOTSUPP;
549
550         if (dummy_clk)
551                 reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
552                      << CQSPI_REG_CMDCTRL_DUMMY_LSB;
553
554         reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
555
556         /* 0 means 1 byte. */
557         reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
558                 << CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
559         status = cqspi_exec_flash_cmd(cqspi, reg);
560         if (status)
561                 return status;
562
563         reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
564
565         /* Put the read value into rx_buf */
566         read_len = (n_rx > 4) ? 4 : n_rx;
567         memcpy(rxbuf, &reg, read_len);
568         rxbuf += read_len;
569
570         if (n_rx > 4) {
571                 reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
572
573                 read_len = n_rx - read_len;
574                 memcpy(rxbuf, &reg, read_len);
575         }
576
577         return 0;
578 }
579
580 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
581                                const struct spi_mem_op *op)
582 {
583         struct cqspi_st *cqspi = f_pdata->cqspi;
584         void __iomem *reg_base = cqspi->iobase;
585         u8 opcode;
586         const u8 *txbuf = op->data.buf.out;
587         size_t n_tx = op->data.nbytes;
588         unsigned int reg;
589         unsigned int data;
590         size_t write_len;
591         int ret;
592
593         ret = cqspi_set_protocol(f_pdata, op);
594         if (ret)
595                 return ret;
596
597         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
598                                f_pdata->dtr);
599         if (ret)
600                 return ret;
601
602         if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
603                 dev_err(&cqspi->pdev->dev,
604                         "Invalid input argument, cmdlen %zu txbuf 0x%p\n",
605                         n_tx, txbuf);
606                 return -EINVAL;
607         }
608
609         reg = cqspi_calc_rdreg(f_pdata);
610         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
611
612         if (f_pdata->dtr)
613                 opcode = op->cmd.opcode >> 8;
614         else
615                 opcode = op->cmd.opcode;
616
617         reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
618
619         if (op->addr.nbytes) {
620                 reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
621                 reg |= ((op->addr.nbytes - 1) &
622                         CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
623                         << CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
624
625                 writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
626         }
627
628         if (n_tx) {
629                 reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
630                 reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
631                         << CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
632                 data = 0;
633                 write_len = (n_tx > 4) ? 4 : n_tx;
634                 memcpy(&data, txbuf, write_len);
635                 txbuf += write_len;
636                 writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
637
638                 if (n_tx > 4) {
639                         data = 0;
640                         write_len = n_tx - 4;
641                         memcpy(&data, txbuf, write_len);
642                         writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
643                 }
644         }
645
646         return cqspi_exec_flash_cmd(cqspi, reg);
647 }
648
649 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
650                             const struct spi_mem_op *op)
651 {
652         struct cqspi_st *cqspi = f_pdata->cqspi;
653         void __iomem *reg_base = cqspi->iobase;
654         unsigned int dummy_clk = 0;
655         unsigned int reg;
656         int ret;
657         u8 opcode;
658
659         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
660                                f_pdata->dtr);
661         if (ret)
662                 return ret;
663
664         if (f_pdata->dtr)
665                 opcode = op->cmd.opcode >> 8;
666         else
667                 opcode = op->cmd.opcode;
668
669         reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
670         reg |= cqspi_calc_rdreg(f_pdata);
671
672         /* Setup dummy clock cycles */
673         dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
674
675         if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
676                 return -EOPNOTSUPP;
677
678         if (dummy_clk)
679                 reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
680                        << CQSPI_REG_RD_INSTR_DUMMY_LSB;
681
682         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
683
684         /* Set address width */
685         reg = readl(reg_base + CQSPI_REG_SIZE);
686         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
687         reg |= (op->addr.nbytes - 1);
688         writel(reg, reg_base + CQSPI_REG_SIZE);
689         return 0;
690 }
691
692 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
693                                        u8 *rxbuf, loff_t from_addr,
694                                        const size_t n_rx)
695 {
696         struct cqspi_st *cqspi = f_pdata->cqspi;
697         struct device *dev = &cqspi->pdev->dev;
698         void __iomem *reg_base = cqspi->iobase;
699         void __iomem *ahb_base = cqspi->ahb_base;
700         unsigned int remaining = n_rx;
701         unsigned int mod_bytes = n_rx % 4;
702         unsigned int bytes_to_read = 0;
703         u8 *rxbuf_end = rxbuf + n_rx;
704         int ret = 0;
705
706         writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
707         writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
708
709         /* Clear all interrupts. */
710         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
711
712         writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
713
714         reinit_completion(&cqspi->transfer_complete);
715         writel(CQSPI_REG_INDIRECTRD_START_MASK,
716                reg_base + CQSPI_REG_INDIRECTRD);
717
718         while (remaining > 0) {
719                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
720                                                  msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
721                         ret = -ETIMEDOUT;
722
723                 bytes_to_read = cqspi_get_rd_sram_level(cqspi);
724
725                 if (ret && bytes_to_read == 0) {
726                         dev_err(dev, "Indirect read timeout, no bytes\n");
727                         goto failrd;
728                 }
729
730                 while (bytes_to_read != 0) {
731                         unsigned int word_remain = round_down(remaining, 4);
732
733                         bytes_to_read *= cqspi->fifo_width;
734                         bytes_to_read = bytes_to_read > remaining ?
735                                         remaining : bytes_to_read;
736                         bytes_to_read = round_down(bytes_to_read, 4);
737                         /* Read 4 byte word chunks then single bytes */
738                         if (bytes_to_read) {
739                                 ioread32_rep(ahb_base, rxbuf,
740                                              (bytes_to_read / 4));
741                         } else if (!word_remain && mod_bytes) {
742                                 unsigned int temp = ioread32(ahb_base);
743
744                                 bytes_to_read = mod_bytes;
745                                 memcpy(rxbuf, &temp, min((unsigned int)
746                                                          (rxbuf_end - rxbuf),
747                                                          bytes_to_read));
748                         }
749                         rxbuf += bytes_to_read;
750                         remaining -= bytes_to_read;
751                         bytes_to_read = cqspi_get_rd_sram_level(cqspi);
752                 }
753
754                 if (remaining > 0)
755                         reinit_completion(&cqspi->transfer_complete);
756         }
757
758         /* Check indirect done status */
759         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
760                                  CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
761         if (ret) {
762                 dev_err(dev, "Indirect read completion error (%i)\n", ret);
763                 goto failrd;
764         }
765
766         /* Disable interrupt */
767         writel(0, reg_base + CQSPI_REG_IRQMASK);
768
769         /* Clear indirect completion status */
770         writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
771
772         return 0;
773
774 failrd:
775         /* Disable interrupt */
776         writel(0, reg_base + CQSPI_REG_IRQMASK);
777
778         /* Cancel the indirect read */
779         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
780                reg_base + CQSPI_REG_INDIRECTRD);
781         return ret;
782 }
783
784 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
785                              const struct spi_mem_op *op)
786 {
787         unsigned int reg;
788         int ret;
789         struct cqspi_st *cqspi = f_pdata->cqspi;
790         void __iomem *reg_base = cqspi->iobase;
791         u8 opcode;
792
793         ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
794                                f_pdata->dtr);
795         if (ret)
796                 return ret;
797
798         if (f_pdata->dtr)
799                 opcode = op->cmd.opcode >> 8;
800         else
801                 opcode = op->cmd.opcode;
802
803         /* Set opcode. */
804         reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
805         reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
806         reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
807         writel(reg, reg_base + CQSPI_REG_WR_INSTR);
808         reg = cqspi_calc_rdreg(f_pdata);
809         writel(reg, reg_base + CQSPI_REG_RD_INSTR);
810
811         /*
812          * SPI NAND flashes require the address of the status register to be
813          * passed in the Read SR command. Also, some SPI NOR flashes like the
814          * cypress Semper flash expect a 4-byte dummy address in the Read SR
815          * command in DTR mode.
816          *
817          * But this controller does not support address phase in the Read SR
818          * command when doing auto-HW polling. So, disable write completion
819          * polling on the controller's side. spinand and spi-nor will take
820          * care of polling the status register.
821          */
822         reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
823         reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
824         writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
825
826         reg = readl(reg_base + CQSPI_REG_SIZE);
827         reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
828         reg |= (op->addr.nbytes - 1);
829         writel(reg, reg_base + CQSPI_REG_SIZE);
830         return 0;
831 }
832
833 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
834                                         loff_t to_addr, const u8 *txbuf,
835                                         const size_t n_tx)
836 {
837         struct cqspi_st *cqspi = f_pdata->cqspi;
838         struct device *dev = &cqspi->pdev->dev;
839         void __iomem *reg_base = cqspi->iobase;
840         unsigned int remaining = n_tx;
841         unsigned int write_bytes;
842         int ret;
843
844         writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
845         writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
846
847         /* Clear all interrupts. */
848         writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
849
850         writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
851
852         reinit_completion(&cqspi->transfer_complete);
853         writel(CQSPI_REG_INDIRECTWR_START_MASK,
854                reg_base + CQSPI_REG_INDIRECTWR);
855         /*
856          * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
857          * Controller programming sequence, couple of cycles of
858          * QSPI_REF_CLK delay is required for the above bit to
859          * be internally synchronized by the QSPI module. Provide 5
860          * cycles of delay.
861          */
862         if (cqspi->wr_delay)
863                 ndelay(cqspi->wr_delay);
864
865         while (remaining > 0) {
866                 size_t write_words, mod_bytes;
867
868                 write_bytes = remaining;
869                 write_words = write_bytes / 4;
870                 mod_bytes = write_bytes % 4;
871                 /* Write 4 bytes at a time then single bytes. */
872                 if (write_words) {
873                         iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
874                         txbuf += (write_words * 4);
875                 }
876                 if (mod_bytes) {
877                         unsigned int temp = 0xFFFFFFFF;
878
879                         memcpy(&temp, txbuf, mod_bytes);
880                         iowrite32(temp, cqspi->ahb_base);
881                         txbuf += mod_bytes;
882                 }
883
884                 if (!wait_for_completion_timeout(&cqspi->transfer_complete,
885                                                  msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
886                         dev_err(dev, "Indirect write timeout\n");
887                         ret = -ETIMEDOUT;
888                         goto failwr;
889                 }
890
891                 remaining -= write_bytes;
892
893                 if (remaining > 0)
894                         reinit_completion(&cqspi->transfer_complete);
895         }
896
897         /* Check indirect done status */
898         ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
899                                  CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
900         if (ret) {
901                 dev_err(dev, "Indirect write completion error (%i)\n", ret);
902                 goto failwr;
903         }
904
905         /* Disable interrupt. */
906         writel(0, reg_base + CQSPI_REG_IRQMASK);
907
908         /* Clear indirect completion status */
909         writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
910
911         cqspi_wait_idle(cqspi);
912
913         return 0;
914
915 failwr:
916         /* Disable interrupt. */
917         writel(0, reg_base + CQSPI_REG_IRQMASK);
918
919         /* Cancel the indirect write */
920         writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
921                reg_base + CQSPI_REG_INDIRECTWR);
922         return ret;
923 }
924
925 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
926 {
927         struct cqspi_st *cqspi = f_pdata->cqspi;
928         void __iomem *reg_base = cqspi->iobase;
929         unsigned int chip_select = f_pdata->cs;
930         unsigned int reg;
931
932         reg = readl(reg_base + CQSPI_REG_CONFIG);
933         if (cqspi->is_decoded_cs) {
934                 reg |= CQSPI_REG_CONFIG_DECODE_MASK;
935         } else {
936                 reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
937
938                 /* Convert CS if without decoder.
939                  * CS0 to 4b'1110
940                  * CS1 to 4b'1101
941                  * CS2 to 4b'1011
942                  * CS3 to 4b'0111
943                  */
944                 chip_select = 0xF & ~(1 << chip_select);
945         }
946
947         reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
948                  << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
949         reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
950             << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
951         writel(reg, reg_base + CQSPI_REG_CONFIG);
952 }
953
954 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
955                                            const unsigned int ns_val)
956 {
957         unsigned int ticks;
958
959         ticks = ref_clk_hz / 1000;      /* kHz */
960         ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
961
962         return ticks;
963 }
964
965 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
966 {
967         struct cqspi_st *cqspi = f_pdata->cqspi;
968         void __iomem *iobase = cqspi->iobase;
969         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
970         unsigned int tshsl, tchsh, tslch, tsd2d;
971         unsigned int reg;
972         unsigned int tsclk;
973
974         /* calculate the number of ref ticks for one sclk tick */
975         tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
976
977         tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
978         /* this particular value must be at least one sclk */
979         if (tshsl < tsclk)
980                 tshsl = tsclk;
981
982         tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
983         tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
984         tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
985
986         reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
987                << CQSPI_REG_DELAY_TSHSL_LSB;
988         reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
989                 << CQSPI_REG_DELAY_TCHSH_LSB;
990         reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
991                 << CQSPI_REG_DELAY_TSLCH_LSB;
992         reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
993                 << CQSPI_REG_DELAY_TSD2D_LSB;
994         writel(reg, iobase + CQSPI_REG_DELAY);
995 }
996
997 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
998 {
999         const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1000         void __iomem *reg_base = cqspi->iobase;
1001         u32 reg, div;
1002
1003         /* Recalculate the baudrate divisor based on QSPI specification. */
1004         div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1005
1006         reg = readl(reg_base + CQSPI_REG_CONFIG);
1007         reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1008         reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1009         writel(reg, reg_base + CQSPI_REG_CONFIG);
1010 }
1011
1012 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1013                                    const bool bypass,
1014                                    const unsigned int delay)
1015 {
1016         void __iomem *reg_base = cqspi->iobase;
1017         unsigned int reg;
1018
1019         reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1020
1021         if (bypass)
1022                 reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1023         else
1024                 reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1025
1026         reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1027                  << CQSPI_REG_READCAPTURE_DELAY_LSB);
1028
1029         reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1030                 << CQSPI_REG_READCAPTURE_DELAY_LSB;
1031
1032         writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1033 }
1034
1035 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1036 {
1037         void __iomem *reg_base = cqspi->iobase;
1038         unsigned int reg;
1039
1040         reg = readl(reg_base + CQSPI_REG_CONFIG);
1041
1042         if (enable)
1043                 reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1044         else
1045                 reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1046
1047         writel(reg, reg_base + CQSPI_REG_CONFIG);
1048 }
1049
1050 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1051                             unsigned long sclk)
1052 {
1053         struct cqspi_st *cqspi = f_pdata->cqspi;
1054         int switch_cs = (cqspi->current_cs != f_pdata->cs);
1055         int switch_ck = (cqspi->sclk != sclk);
1056
1057         if (switch_cs || switch_ck)
1058                 cqspi_controller_enable(cqspi, 0);
1059
1060         /* Switch chip select. */
1061         if (switch_cs) {
1062                 cqspi->current_cs = f_pdata->cs;
1063                 cqspi_chipselect(f_pdata);
1064         }
1065
1066         /* Setup baudrate divisor and delays */
1067         if (switch_ck) {
1068                 cqspi->sclk = sclk;
1069                 cqspi_config_baudrate_div(cqspi);
1070                 cqspi_delay(f_pdata);
1071                 cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1072                                        f_pdata->read_delay);
1073         }
1074
1075         if (switch_cs || switch_ck)
1076                 cqspi_controller_enable(cqspi, 1);
1077 }
1078
1079 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1080                            const struct spi_mem_op *op)
1081 {
1082         struct cqspi_st *cqspi = f_pdata->cqspi;
1083         loff_t to = op->addr.val;
1084         size_t len = op->data.nbytes;
1085         const u_char *buf = op->data.buf.out;
1086         int ret;
1087
1088         ret = cqspi_set_protocol(f_pdata, op);
1089         if (ret)
1090                 return ret;
1091
1092         ret = cqspi_write_setup(f_pdata, op);
1093         if (ret)
1094                 return ret;
1095
1096         /*
1097          * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1098          * address (all 0s) with the read status register command in DTR mode.
1099          * But this controller does not support sending dummy address bytes to
1100          * the flash when it is polling the write completion register in DTR
1101          * mode. So, we can not use direct mode when in DTR mode for writing
1102          * data.
1103          */
1104         if (!f_pdata->dtr && cqspi->use_direct_mode &&
1105             ((to + len) <= cqspi->ahb_size)) {
1106                 memcpy_toio(cqspi->ahb_base + to, buf, len);
1107                 return cqspi_wait_idle(cqspi);
1108         }
1109
1110         return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1111 }
1112
1113 static void cqspi_rx_dma_callback(void *param)
1114 {
1115         struct cqspi_st *cqspi = param;
1116
1117         complete(&cqspi->rx_dma_complete);
1118 }
1119
1120 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1121                                      u_char *buf, loff_t from, size_t len)
1122 {
1123         struct cqspi_st *cqspi = f_pdata->cqspi;
1124         struct device *dev = &cqspi->pdev->dev;
1125         enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1126         dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1127         int ret = 0;
1128         struct dma_async_tx_descriptor *tx;
1129         dma_cookie_t cookie;
1130         dma_addr_t dma_dst;
1131         struct device *ddev;
1132
1133         if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1134                 memcpy_fromio(buf, cqspi->ahb_base + from, len);
1135                 return 0;
1136         }
1137
1138         ddev = cqspi->rx_chan->device->dev;
1139         dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1140         if (dma_mapping_error(ddev, dma_dst)) {
1141                 dev_err(dev, "dma mapping failed\n");
1142                 return -ENOMEM;
1143         }
1144         tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1145                                        len, flags);
1146         if (!tx) {
1147                 dev_err(dev, "device_prep_dma_memcpy error\n");
1148                 ret = -EIO;
1149                 goto err_unmap;
1150         }
1151
1152         tx->callback = cqspi_rx_dma_callback;
1153         tx->callback_param = cqspi;
1154         cookie = tx->tx_submit(tx);
1155         reinit_completion(&cqspi->rx_dma_complete);
1156
1157         ret = dma_submit_error(cookie);
1158         if (ret) {
1159                 dev_err(dev, "dma_submit_error %d\n", cookie);
1160                 ret = -EIO;
1161                 goto err_unmap;
1162         }
1163
1164         dma_async_issue_pending(cqspi->rx_chan);
1165         if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1166                                          msecs_to_jiffies(max_t(size_t, len, 500)))) {
1167                 dmaengine_terminate_sync(cqspi->rx_chan);
1168                 dev_err(dev, "DMA wait_for_completion_timeout\n");
1169                 ret = -ETIMEDOUT;
1170                 goto err_unmap;
1171         }
1172
1173 err_unmap:
1174         dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1175
1176         return ret;
1177 }
1178
1179 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1180                           const struct spi_mem_op *op)
1181 {
1182         struct cqspi_st *cqspi = f_pdata->cqspi;
1183         loff_t from = op->addr.val;
1184         size_t len = op->data.nbytes;
1185         u_char *buf = op->data.buf.in;
1186         int ret;
1187
1188         ret = cqspi_set_protocol(f_pdata, op);
1189         if (ret)
1190                 return ret;
1191
1192         ret = cqspi_read_setup(f_pdata, op);
1193         if (ret)
1194                 return ret;
1195
1196         if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1197                 return cqspi_direct_read_execute(f_pdata, buf, from, len);
1198
1199         return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1200 }
1201
1202 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1203 {
1204         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1205         struct cqspi_flash_pdata *f_pdata;
1206
1207         f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1208         cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1209
1210         if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1211                 if (!op->addr.nbytes)
1212                         return cqspi_command_read(f_pdata, op);
1213
1214                 return cqspi_read(f_pdata, op);
1215         }
1216
1217         if (!op->addr.nbytes || !op->data.buf.out)
1218                 return cqspi_command_write(f_pdata, op);
1219
1220         return cqspi_write(f_pdata, op);
1221 }
1222
1223 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1224 {
1225         int ret;
1226
1227         ret = cqspi_mem_process(mem, op);
1228         if (ret)
1229                 dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1230
1231         return ret;
1232 }
1233
1234 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1235                                   const struct spi_mem_op *op)
1236 {
1237         bool all_true, all_false;
1238
1239         /*
1240          * op->dummy.dtr is required for converting nbytes into ncycles.
1241          * Also, don't check the dtr field of the op phase having zero nbytes.
1242          */
1243         all_true = op->cmd.dtr &&
1244                    (!op->addr.nbytes || op->addr.dtr) &&
1245                    (!op->dummy.nbytes || op->dummy.dtr) &&
1246                    (!op->data.nbytes || op->data.dtr);
1247
1248         all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1249                     !op->data.dtr;
1250
1251         /* Mixed DTR modes not supported. */
1252         if (!(all_true || all_false))
1253                 return false;
1254
1255         if (all_true)
1256                 return spi_mem_dtr_supports_op(mem, op);
1257         else
1258                 return spi_mem_default_supports_op(mem, op);
1259 }
1260
1261 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1262                                     struct cqspi_flash_pdata *f_pdata,
1263                                     struct device_node *np)
1264 {
1265         if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1266                 dev_err(&pdev->dev, "couldn't determine read-delay\n");
1267                 return -ENXIO;
1268         }
1269
1270         if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1271                 dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1272                 return -ENXIO;
1273         }
1274
1275         if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1276                 dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1277                 return -ENXIO;
1278         }
1279
1280         if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1281                 dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1282                 return -ENXIO;
1283         }
1284
1285         if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1286                 dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1287                 return -ENXIO;
1288         }
1289
1290         if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1291                 dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1292                 return -ENXIO;
1293         }
1294
1295         return 0;
1296 }
1297
1298 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1299 {
1300         struct device *dev = &cqspi->pdev->dev;
1301         struct device_node *np = dev->of_node;
1302
1303         cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1304
1305         if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1306                 dev_err(dev, "couldn't determine fifo-depth\n");
1307                 return -ENXIO;
1308         }
1309
1310         if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1311                 dev_err(dev, "couldn't determine fifo-width\n");
1312                 return -ENXIO;
1313         }
1314
1315         if (of_property_read_u32(np, "cdns,trigger-address",
1316                                  &cqspi->trigger_address)) {
1317                 dev_err(dev, "couldn't determine trigger-address\n");
1318                 return -ENXIO;
1319         }
1320
1321         if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1322                 cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1323
1324         cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1325
1326         return 0;
1327 }
1328
1329 static void cqspi_controller_init(struct cqspi_st *cqspi)
1330 {
1331         u32 reg;
1332
1333         cqspi_controller_enable(cqspi, 0);
1334
1335         /* Configure the remap address register, no remap */
1336         writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1337
1338         /* Disable all interrupts. */
1339         writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1340
1341         /* Configure the SRAM split to 1:1 . */
1342         writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1343
1344         /* Load indirect trigger address. */
1345         writel(cqspi->trigger_address,
1346                cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1347
1348         /* Program read watermark -- 1/2 of the FIFO. */
1349         writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1350                cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1351         /* Program write watermark -- 1/8 of the FIFO. */
1352         writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1353                cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1354
1355         /* Disable direct access controller */
1356         if (!cqspi->use_direct_mode) {
1357                 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1358                 reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1359                 writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1360         }
1361
1362         cqspi_controller_enable(cqspi, 1);
1363 }
1364
1365 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1366 {
1367         dma_cap_mask_t mask;
1368
1369         dma_cap_zero(mask);
1370         dma_cap_set(DMA_MEMCPY, mask);
1371
1372         cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1373         if (IS_ERR(cqspi->rx_chan)) {
1374                 int ret = PTR_ERR(cqspi->rx_chan);
1375                 cqspi->rx_chan = NULL;
1376                 return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1377         }
1378         init_completion(&cqspi->rx_dma_complete);
1379
1380         return 0;
1381 }
1382
1383 static const char *cqspi_get_name(struct spi_mem *mem)
1384 {
1385         struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1386         struct device *dev = &cqspi->pdev->dev;
1387
1388         return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1389 }
1390
1391 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1392         .exec_op = cqspi_exec_mem_op,
1393         .get_name = cqspi_get_name,
1394         .supports_op = cqspi_supports_mem_op,
1395 };
1396
1397 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1398 {
1399         struct platform_device *pdev = cqspi->pdev;
1400         struct device *dev = &pdev->dev;
1401         struct device_node *np = dev->of_node;
1402         struct cqspi_flash_pdata *f_pdata;
1403         unsigned int cs;
1404         int ret;
1405
1406         /* Get flash device data */
1407         for_each_available_child_of_node(dev->of_node, np) {
1408                 ret = of_property_read_u32(np, "reg", &cs);
1409                 if (ret) {
1410                         dev_err(dev, "Couldn't determine chip select.\n");
1411                         of_node_put(np);
1412                         return ret;
1413                 }
1414
1415                 if (cs >= CQSPI_MAX_CHIPSELECT) {
1416                         dev_err(dev, "Chip select %d out of range.\n", cs);
1417                         of_node_put(np);
1418                         return -EINVAL;
1419                 }
1420
1421                 f_pdata = &cqspi->f_pdata[cs];
1422                 f_pdata->cqspi = cqspi;
1423                 f_pdata->cs = cs;
1424
1425                 ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1426                 if (ret) {
1427                         of_node_put(np);
1428                         return ret;
1429                 }
1430         }
1431
1432         return 0;
1433 }
1434
1435 static int cqspi_probe(struct platform_device *pdev)
1436 {
1437         const struct cqspi_driver_platdata *ddata;
1438         struct reset_control *rstc, *rstc_ocp;
1439         struct device *dev = &pdev->dev;
1440         struct spi_master *master;
1441         struct resource *res_ahb;
1442         struct cqspi_st *cqspi;
1443         struct resource *res;
1444         int ret;
1445         int irq;
1446
1447         master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1448         if (!master) {
1449                 dev_err(&pdev->dev, "spi_alloc_master failed\n");
1450                 return -ENOMEM;
1451         }
1452         master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1453         master->mem_ops = &cqspi_mem_ops;
1454         master->dev.of_node = pdev->dev.of_node;
1455
1456         cqspi = spi_master_get_devdata(master);
1457
1458         cqspi->pdev = pdev;
1459         platform_set_drvdata(pdev, cqspi);
1460
1461         /* Obtain configuration from OF. */
1462         ret = cqspi_of_get_pdata(cqspi);
1463         if (ret) {
1464                 dev_err(dev, "Cannot get mandatory OF data.\n");
1465                 ret = -ENODEV;
1466                 goto probe_master_put;
1467         }
1468
1469         /* Obtain QSPI clock. */
1470         cqspi->clk = devm_clk_get(dev, NULL);
1471         if (IS_ERR(cqspi->clk)) {
1472                 dev_err(dev, "Cannot claim QSPI clock.\n");
1473                 ret = PTR_ERR(cqspi->clk);
1474                 goto probe_master_put;
1475         }
1476
1477         /* Obtain and remap controller address. */
1478         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1479         cqspi->iobase = devm_ioremap_resource(dev, res);
1480         if (IS_ERR(cqspi->iobase)) {
1481                 dev_err(dev, "Cannot remap controller address.\n");
1482                 ret = PTR_ERR(cqspi->iobase);
1483                 goto probe_master_put;
1484         }
1485
1486         /* Obtain and remap AHB address. */
1487         res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1488         cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1489         if (IS_ERR(cqspi->ahb_base)) {
1490                 dev_err(dev, "Cannot remap AHB address.\n");
1491                 ret = PTR_ERR(cqspi->ahb_base);
1492                 goto probe_master_put;
1493         }
1494         cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1495         cqspi->ahb_size = resource_size(res_ahb);
1496
1497         init_completion(&cqspi->transfer_complete);
1498
1499         /* Obtain IRQ line. */
1500         irq = platform_get_irq(pdev, 0);
1501         if (irq < 0) {
1502                 ret = -ENXIO;
1503                 goto probe_master_put;
1504         }
1505
1506         pm_runtime_enable(dev);
1507         ret = pm_runtime_get_sync(dev);
1508         if (ret < 0) {
1509                 pm_runtime_put_noidle(dev);
1510                 goto probe_master_put;
1511         }
1512
1513         ret = clk_prepare_enable(cqspi->clk);
1514         if (ret) {
1515                 dev_err(dev, "Cannot enable QSPI clock.\n");
1516                 goto probe_clk_failed;
1517         }
1518
1519         /* Obtain QSPI reset control */
1520         rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1521         if (IS_ERR(rstc)) {
1522                 ret = PTR_ERR(rstc);
1523                 dev_err(dev, "Cannot get QSPI reset.\n");
1524                 goto probe_reset_failed;
1525         }
1526
1527         rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1528         if (IS_ERR(rstc_ocp)) {
1529                 ret = PTR_ERR(rstc_ocp);
1530                 dev_err(dev, "Cannot get QSPI OCP reset.\n");
1531                 goto probe_reset_failed;
1532         }
1533
1534         reset_control_assert(rstc);
1535         reset_control_deassert(rstc);
1536
1537         reset_control_assert(rstc_ocp);
1538         reset_control_deassert(rstc_ocp);
1539
1540         cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1541         master->max_speed_hz = cqspi->master_ref_clk_hz;
1542         ddata  = of_device_get_match_data(dev);
1543         if (ddata) {
1544                 if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1545                         cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1546                                                 cqspi->master_ref_clk_hz);
1547                 if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1548                         master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1549                 if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1550                         cqspi->use_direct_mode = true;
1551         }
1552
1553         ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1554                                pdev->name, cqspi);
1555         if (ret) {
1556                 dev_err(dev, "Cannot request IRQ.\n");
1557                 goto probe_reset_failed;
1558         }
1559
1560         cqspi_wait_idle(cqspi);
1561         cqspi_controller_init(cqspi);
1562         cqspi->current_cs = -1;
1563         cqspi->sclk = 0;
1564
1565         master->num_chipselect = cqspi->num_chipselect;
1566
1567         ret = cqspi_setup_flash(cqspi);
1568         if (ret) {
1569                 dev_err(dev, "failed to setup flash parameters %d\n", ret);
1570                 goto probe_setup_failed;
1571         }
1572
1573         if (cqspi->use_direct_mode) {
1574                 ret = cqspi_request_mmap_dma(cqspi);
1575                 if (ret == -EPROBE_DEFER)
1576                         goto probe_setup_failed;
1577         }
1578
1579         ret = devm_spi_register_master(dev, master);
1580         if (ret) {
1581                 dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1582                 goto probe_setup_failed;
1583         }
1584
1585         return 0;
1586 probe_setup_failed:
1587         cqspi_controller_enable(cqspi, 0);
1588 probe_reset_failed:
1589         clk_disable_unprepare(cqspi->clk);
1590 probe_clk_failed:
1591         pm_runtime_put_sync(dev);
1592         pm_runtime_disable(dev);
1593 probe_master_put:
1594         spi_master_put(master);
1595         return ret;
1596 }
1597
1598 static int cqspi_remove(struct platform_device *pdev)
1599 {
1600         struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1601
1602         cqspi_controller_enable(cqspi, 0);
1603
1604         if (cqspi->rx_chan)
1605                 dma_release_channel(cqspi->rx_chan);
1606
1607         clk_disable_unprepare(cqspi->clk);
1608
1609         pm_runtime_put_sync(&pdev->dev);
1610         pm_runtime_disable(&pdev->dev);
1611
1612         return 0;
1613 }
1614
1615 #ifdef CONFIG_PM_SLEEP
1616 static int cqspi_suspend(struct device *dev)
1617 {
1618         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1619
1620         cqspi_controller_enable(cqspi, 0);
1621         return 0;
1622 }
1623
1624 static int cqspi_resume(struct device *dev)
1625 {
1626         struct cqspi_st *cqspi = dev_get_drvdata(dev);
1627
1628         cqspi_controller_enable(cqspi, 1);
1629         return 0;
1630 }
1631
1632 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1633         .suspend = cqspi_suspend,
1634         .resume = cqspi_resume,
1635 };
1636
1637 #define CQSPI_DEV_PM_OPS        (&cqspi__dev_pm_ops)
1638 #else
1639 #define CQSPI_DEV_PM_OPS        NULL
1640 #endif
1641
1642 static const struct cqspi_driver_platdata cdns_qspi = {
1643         .quirks = CQSPI_DISABLE_DAC_MODE,
1644 };
1645
1646 static const struct cqspi_driver_platdata k2g_qspi = {
1647         .quirks = CQSPI_NEEDS_WR_DELAY,
1648 };
1649
1650 static const struct cqspi_driver_platdata am654_ospi = {
1651         .hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1652         .quirks = CQSPI_NEEDS_WR_DELAY,
1653 };
1654
1655 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1656         .quirks = CQSPI_DISABLE_DAC_MODE,
1657 };
1658
1659 static const struct of_device_id cqspi_dt_ids[] = {
1660         {
1661                 .compatible = "cdns,qspi-nor",
1662                 .data = &cdns_qspi,
1663         },
1664         {
1665                 .compatible = "ti,k2g-qspi",
1666                 .data = &k2g_qspi,
1667         },
1668         {
1669                 .compatible = "ti,am654-ospi",
1670                 .data = &am654_ospi,
1671         },
1672         {
1673                 .compatible = "intel,lgm-qspi",
1674                 .data = &intel_lgm_qspi,
1675         },
1676         { /* end of table */ }
1677 };
1678
1679 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1680
1681 static struct platform_driver cqspi_platform_driver = {
1682         .probe = cqspi_probe,
1683         .remove = cqspi_remove,
1684         .driver = {
1685                 .name = CQSPI_NAME,
1686                 .pm = CQSPI_DEV_PM_OPS,
1687                 .of_match_table = cqspi_dt_ids,
1688         },
1689 };
1690
1691 module_platform_driver(cqspi_platform_driver);
1692
1693 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1694 MODULE_LICENSE("GPL v2");
1695 MODULE_ALIAS("platform:" CQSPI_NAME);
1696 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1697 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1698 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1699 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1700 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");