tools headers UAPI: Sync perf_event.h with the kernel sources
[linux-2.6-microblaze.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26
27 /* SPI register offsets */
28 #define SPI_CR                                  0x0000
29 #define SPI_MR                                  0x0004
30 #define SPI_RDR                                 0x0008
31 #define SPI_TDR                                 0x000c
32 #define SPI_SR                                  0x0010
33 #define SPI_IER                                 0x0014
34 #define SPI_IDR                                 0x0018
35 #define SPI_IMR                                 0x001c
36 #define SPI_CSR0                                0x0030
37 #define SPI_CSR1                                0x0034
38 #define SPI_CSR2                                0x0038
39 #define SPI_CSR3                                0x003c
40 #define SPI_FMR                                 0x0040
41 #define SPI_FLR                                 0x0044
42 #define SPI_VERSION                             0x00fc
43 #define SPI_RPR                                 0x0100
44 #define SPI_RCR                                 0x0104
45 #define SPI_TPR                                 0x0108
46 #define SPI_TCR                                 0x010c
47 #define SPI_RNPR                                0x0110
48 #define SPI_RNCR                                0x0114
49 #define SPI_TNPR                                0x0118
50 #define SPI_TNCR                                0x011c
51 #define SPI_PTCR                                0x0120
52 #define SPI_PTSR                                0x0124
53
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET                        0
56 #define SPI_SPIEN_SIZE                          1
57 #define SPI_SPIDIS_OFFSET                       1
58 #define SPI_SPIDIS_SIZE                         1
59 #define SPI_SWRST_OFFSET                        7
60 #define SPI_SWRST_SIZE                          1
61 #define SPI_LASTXFER_OFFSET                     24
62 #define SPI_LASTXFER_SIZE                       1
63 #define SPI_TXFCLR_OFFSET                       16
64 #define SPI_TXFCLR_SIZE                         1
65 #define SPI_RXFCLR_OFFSET                       17
66 #define SPI_RXFCLR_SIZE                         1
67 #define SPI_FIFOEN_OFFSET                       30
68 #define SPI_FIFOEN_SIZE                         1
69 #define SPI_FIFODIS_OFFSET                      31
70 #define SPI_FIFODIS_SIZE                        1
71
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET                         0
74 #define SPI_MSTR_SIZE                           1
75 #define SPI_PS_OFFSET                           1
76 #define SPI_PS_SIZE                             1
77 #define SPI_PCSDEC_OFFSET                       2
78 #define SPI_PCSDEC_SIZE                         1
79 #define SPI_FDIV_OFFSET                         3
80 #define SPI_FDIV_SIZE                           1
81 #define SPI_MODFDIS_OFFSET                      4
82 #define SPI_MODFDIS_SIZE                        1
83 #define SPI_WDRBT_OFFSET                        5
84 #define SPI_WDRBT_SIZE                          1
85 #define SPI_LLB_OFFSET                          7
86 #define SPI_LLB_SIZE                            1
87 #define SPI_PCS_OFFSET                          16
88 #define SPI_PCS_SIZE                            4
89 #define SPI_DLYBCS_OFFSET                       24
90 #define SPI_DLYBCS_SIZE                         8
91
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET                           0
94 #define SPI_RD_SIZE                             16
95
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET                           0
98 #define SPI_TD_SIZE                             16
99
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET                         0
102 #define SPI_RDRF_SIZE                           1
103 #define SPI_TDRE_OFFSET                         1
104 #define SPI_TDRE_SIZE                           1
105 #define SPI_MODF_OFFSET                         2
106 #define SPI_MODF_SIZE                           1
107 #define SPI_OVRES_OFFSET                        3
108 #define SPI_OVRES_SIZE                          1
109 #define SPI_ENDRX_OFFSET                        4
110 #define SPI_ENDRX_SIZE                          1
111 #define SPI_ENDTX_OFFSET                        5
112 #define SPI_ENDTX_SIZE                          1
113 #define SPI_RXBUFF_OFFSET                       6
114 #define SPI_RXBUFF_SIZE                         1
115 #define SPI_TXBUFE_OFFSET                       7
116 #define SPI_TXBUFE_SIZE                         1
117 #define SPI_NSSR_OFFSET                         8
118 #define SPI_NSSR_SIZE                           1
119 #define SPI_TXEMPTY_OFFSET                      9
120 #define SPI_TXEMPTY_SIZE                        1
121 #define SPI_SPIENS_OFFSET                       16
122 #define SPI_SPIENS_SIZE                         1
123 #define SPI_TXFEF_OFFSET                        24
124 #define SPI_TXFEF_SIZE                          1
125 #define SPI_TXFFF_OFFSET                        25
126 #define SPI_TXFFF_SIZE                          1
127 #define SPI_TXFTHF_OFFSET                       26
128 #define SPI_TXFTHF_SIZE                         1
129 #define SPI_RXFEF_OFFSET                        27
130 #define SPI_RXFEF_SIZE                          1
131 #define SPI_RXFFF_OFFSET                        28
132 #define SPI_RXFFF_SIZE                          1
133 #define SPI_RXFTHF_OFFSET                       29
134 #define SPI_RXFTHF_SIZE                         1
135 #define SPI_TXFPTEF_OFFSET                      30
136 #define SPI_TXFPTEF_SIZE                        1
137 #define SPI_RXFPTEF_OFFSET                      31
138 #define SPI_RXFPTEF_SIZE                        1
139
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET                         0
142 #define SPI_CPOL_SIZE                           1
143 #define SPI_NCPHA_OFFSET                        1
144 #define SPI_NCPHA_SIZE                          1
145 #define SPI_CSAAT_OFFSET                        3
146 #define SPI_CSAAT_SIZE                          1
147 #define SPI_BITS_OFFSET                         4
148 #define SPI_BITS_SIZE                           4
149 #define SPI_SCBR_OFFSET                         8
150 #define SPI_SCBR_SIZE                           8
151 #define SPI_DLYBS_OFFSET                        16
152 #define SPI_DLYBS_SIZE                          8
153 #define SPI_DLYBCT_OFFSET                       24
154 #define SPI_DLYBCT_SIZE                         8
155
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET                        0
158 #define SPI_RXCTR_SIZE                          16
159
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET                        0
162 #define SPI_TXCTR_SIZE                          16
163
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET                        0
166 #define SPI_RXNCR_SIZE                          16
167
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET                        0
170 #define SPI_TXNCR_SIZE                          16
171
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET                        0
174 #define SPI_RXTEN_SIZE                          1
175 #define SPI_RXTDIS_OFFSET                       1
176 #define SPI_RXTDIS_SIZE                         1
177 #define SPI_TXTEN_OFFSET                        8
178 #define SPI_TXTEN_SIZE                          1
179 #define SPI_TXTDIS_OFFSET                       9
180 #define SPI_TXTDIS_SIZE                         1
181
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET                       0
184 #define SPI_TXRDYM_SIZE                         2
185 #define SPI_RXRDYM_OFFSET                       4
186 #define SPI_RXRDYM_SIZE                         2
187 #define SPI_TXFTHRES_OFFSET                     16
188 #define SPI_TXFTHRES_SIZE                       6
189 #define SPI_RXFTHRES_OFFSET                     24
190 #define SPI_RXFTHRES_SIZE                       6
191
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET                         0
194 #define SPI_TXFL_SIZE                           6
195 #define SPI_RXFL_OFFSET                         16
196 #define SPI_RXFL_SIZE                           6
197
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT                          0
200 #define SPI_BITS_9_BPT                          1
201 #define SPI_BITS_10_BPT                         2
202 #define SPI_BITS_11_BPT                         3
203 #define SPI_BITS_12_BPT                         4
204 #define SPI_BITS_13_BPT                         5
205 #define SPI_BITS_14_BPT                         6
206 #define SPI_BITS_15_BPT                         7
207 #define SPI_BITS_16_BPT                         8
208 #define SPI_ONE_DATA                            0
209 #define SPI_TWO_DATA                            1
210 #define SPI_FOUR_DATA                           2
211
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214         (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221           | SPI_BF(name, value))
222
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225         readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227         writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229         writew_relaxed((value), (port)->regs + SPI_##reg)
230
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232  * cache operations; better heuristics consider wordsize and bitrate.
233  */
234 #define DMA_MIN_BYTES   16
235
236 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
237
238 #define AUTOSUSPEND_TIMEOUT     2000
239
240 struct atmel_spi_caps {
241         bool    is_spi2;
242         bool    has_wdrbt;
243         bool    has_dma_support;
244         bool    has_pdc_support;
245 };
246
247 /*
248  * The core SPI transfer engine just talks to a register bank to set up
249  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
250  * framework provides the base clock, subdivided for each spi_device.
251  */
252 struct atmel_spi {
253         spinlock_t              lock;
254         unsigned long           flags;
255
256         phys_addr_t             phybase;
257         void __iomem            *regs;
258         int                     irq;
259         struct clk              *clk;
260         struct platform_device  *pdev;
261         unsigned long           spi_clk;
262
263         struct spi_transfer     *current_transfer;
264         int                     current_remaining_bytes;
265         int                     done_status;
266         dma_addr_t              dma_addr_rx_bbuf;
267         dma_addr_t              dma_addr_tx_bbuf;
268         void                    *addr_rx_bbuf;
269         void                    *addr_tx_bbuf;
270
271         struct completion       xfer_completion;
272
273         struct atmel_spi_caps   caps;
274
275         bool                    use_dma;
276         bool                    use_pdc;
277
278         bool                    keep_cs;
279
280         u32                     fifo_size;
281         u8                      native_cs_free;
282         u8                      native_cs_for_gpio;
283 };
284
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287         u32                     csr;
288 };
289
290 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS     0xffffffff
292
293 /*
294  * Version 2 of the SPI controller has
295  *  - CR.LASTXFER
296  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298  *  - SPI_CSRx.CSAAT
299  *  - SPI_CSRx.SBCR allows faster clocking
300  */
301 static bool atmel_spi_is_v2(struct atmel_spi *as)
302 {
303         return as->caps.is_spi2;
304 }
305
306 /*
307  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308  * they assume that spi slave device state will not change on deselect, so
309  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
310  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
311  * controllers have CSAAT and friends.
312  *
313  * Even controller newer than ar91rm9200, using GPIOs can make sens as
314  * it lets us support active-high chipselects despite the controller's
315  * belief that only active-low devices/systems exists.
316  *
317  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318  * right when driven with GPIO.  ("Mode Fault does not allow more than one
319  * Master on Chip Select 0.")  No workaround exists for that ... so for
320  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321  * and (c) will trigger that first erratum in some cases.
322  */
323
324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325 {
326         struct atmel_spi_device *asd = spi->controller_state;
327         int chip_select;
328         u32 mr;
329
330         if (spi->cs_gpiod)
331                 chip_select = as->native_cs_for_gpio;
332         else
333                 chip_select = spi->chip_select;
334
335         if (atmel_spi_is_v2(as)) {
336                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337                 /* For the low SPI version, there is a issue that PDC transfer
338                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339                  */
340                 spi_writel(as, CSR0, asd->csr);
341                 if (as->caps.has_wdrbt) {
342                         spi_writel(as, MR,
343                                         SPI_BF(PCS, ~(0x01 << chip_select))
344                                         | SPI_BIT(WDRBT)
345                                         | SPI_BIT(MODFDIS)
346                                         | SPI_BIT(MSTR));
347                 } else {
348                         spi_writel(as, MR,
349                                         SPI_BF(PCS, ~(0x01 << chip_select))
350                                         | SPI_BIT(MODFDIS)
351                                         | SPI_BIT(MSTR));
352                 }
353
354                 mr = spi_readl(as, MR);
355                 if (spi->cs_gpiod)
356                         gpiod_set_value(spi->cs_gpiod, 1);
357         } else {
358                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
359                 int i;
360                 u32 csr;
361
362                 /* Make sure clock polarity is correct */
363                 for (i = 0; i < spi->master->num_chipselect; i++) {
364                         csr = spi_readl(as, CSR0 + 4 * i);
365                         if ((csr ^ cpol) & SPI_BIT(CPOL))
366                                 spi_writel(as, CSR0 + 4 * i,
367                                                 csr ^ SPI_BIT(CPOL));
368                 }
369
370                 mr = spi_readl(as, MR);
371                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
372                 if (spi->cs_gpiod)
373                         gpiod_set_value(spi->cs_gpiod, 1);
374                 spi_writel(as, MR, mr);
375         }
376
377         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
378 }
379
380 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
381 {
382         int chip_select;
383         u32 mr;
384
385         if (spi->cs_gpiod)
386                 chip_select = as->native_cs_for_gpio;
387         else
388                 chip_select = spi->chip_select;
389
390         /* only deactivate *this* device; sometimes transfers to
391          * another device may be active when this routine is called.
392          */
393         mr = spi_readl(as, MR);
394         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
395                 mr = SPI_BFINS(PCS, 0xf, mr);
396                 spi_writel(as, MR, mr);
397         }
398
399         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
400
401         if (!spi->cs_gpiod)
402                 spi_writel(as, CR, SPI_BIT(LASTXFER));
403         else
404                 gpiod_set_value(spi->cs_gpiod, 0);
405 }
406
407 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
408 {
409         spin_lock_irqsave(&as->lock, as->flags);
410 }
411
412 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
413 {
414         spin_unlock_irqrestore(&as->lock, as->flags);
415 }
416
417 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
418 {
419         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
420 }
421
422 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
423                                 struct spi_transfer *xfer)
424 {
425         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
426 }
427
428 static bool atmel_spi_can_dma(struct spi_master *master,
429                               struct spi_device *spi,
430                               struct spi_transfer *xfer)
431 {
432         struct atmel_spi *as = spi_master_get_devdata(master);
433
434         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
435                 return atmel_spi_use_dma(as, xfer) &&
436                         !atmel_spi_is_vmalloc_xfer(xfer);
437         else
438                 return atmel_spi_use_dma(as, xfer);
439
440 }
441
442 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
443                                 struct dma_slave_config *slave_config,
444                                 u8 bits_per_word)
445 {
446         struct spi_master *master = platform_get_drvdata(as->pdev);
447         int err = 0;
448
449         if (bits_per_word > 8) {
450                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
451                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
452         } else {
453                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
454                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
455         }
456
457         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
458         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
459         slave_config->src_maxburst = 1;
460         slave_config->dst_maxburst = 1;
461         slave_config->device_fc = false;
462
463         /*
464          * This driver uses fixed peripheral select mode (PS bit set to '0' in
465          * the Mode Register).
466          * So according to the datasheet, when FIFOs are available (and
467          * enabled), the Transmit FIFO operates in Multiple Data Mode.
468          * In this mode, up to 2 data, not 4, can be written into the Transmit
469          * Data Register in a single access.
470          * However, the first data has to be written into the lowest 16 bits and
471          * the second data into the highest 16 bits of the Transmit
472          * Data Register. For 8bit data (the most frequent case), it would
473          * require to rework tx_buf so each data would actualy fit 16 bits.
474          * So we'd rather write only one data at the time. Hence the transmit
475          * path works the same whether FIFOs are available (and enabled) or not.
476          */
477         slave_config->direction = DMA_MEM_TO_DEV;
478         if (dmaengine_slave_config(master->dma_tx, slave_config)) {
479                 dev_err(&as->pdev->dev,
480                         "failed to configure tx dma channel\n");
481                 err = -EINVAL;
482         }
483
484         /*
485          * This driver configures the spi controller for master mode (MSTR bit
486          * set to '1' in the Mode Register).
487          * So according to the datasheet, when FIFOs are available (and
488          * enabled), the Receive FIFO operates in Single Data Mode.
489          * So the receive path works the same whether FIFOs are available (and
490          * enabled) or not.
491          */
492         slave_config->direction = DMA_DEV_TO_MEM;
493         if (dmaengine_slave_config(master->dma_rx, slave_config)) {
494                 dev_err(&as->pdev->dev,
495                         "failed to configure rx dma channel\n");
496                 err = -EINVAL;
497         }
498
499         return err;
500 }
501
502 static int atmel_spi_configure_dma(struct spi_master *master,
503                                    struct atmel_spi *as)
504 {
505         struct dma_slave_config slave_config;
506         struct device *dev = &as->pdev->dev;
507         int err;
508
509         master->dma_tx = dma_request_chan(dev, "tx");
510         if (IS_ERR(master->dma_tx)) {
511                 err = PTR_ERR(master->dma_tx);
512                 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
513                 goto error_clear;
514         }
515
516         master->dma_rx = dma_request_chan(dev, "rx");
517         if (IS_ERR(master->dma_rx)) {
518                 err = PTR_ERR(master->dma_rx);
519                 /*
520                  * No reason to check EPROBE_DEFER here since we have already
521                  * requested tx channel.
522                  */
523                 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
524                 goto error;
525         }
526
527         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
528         if (err)
529                 goto error;
530
531         dev_info(&as->pdev->dev,
532                         "Using %s (tx) and %s (rx) for DMA transfers\n",
533                         dma_chan_name(master->dma_tx),
534                         dma_chan_name(master->dma_rx));
535
536         return 0;
537 error:
538         if (!IS_ERR(master->dma_rx))
539                 dma_release_channel(master->dma_rx);
540         if (!IS_ERR(master->dma_tx))
541                 dma_release_channel(master->dma_tx);
542 error_clear:
543         master->dma_tx = master->dma_rx = NULL;
544         return err;
545 }
546
547 static void atmel_spi_stop_dma(struct spi_master *master)
548 {
549         if (master->dma_rx)
550                 dmaengine_terminate_all(master->dma_rx);
551         if (master->dma_tx)
552                 dmaengine_terminate_all(master->dma_tx);
553 }
554
555 static void atmel_spi_release_dma(struct spi_master *master)
556 {
557         if (master->dma_rx) {
558                 dma_release_channel(master->dma_rx);
559                 master->dma_rx = NULL;
560         }
561         if (master->dma_tx) {
562                 dma_release_channel(master->dma_tx);
563                 master->dma_tx = NULL;
564         }
565 }
566
567 /* This function is called by the DMA driver from tasklet context */
568 static void dma_callback(void *data)
569 {
570         struct spi_master       *master = data;
571         struct atmel_spi        *as = spi_master_get_devdata(master);
572
573         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
574             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
575                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
576                        as->current_transfer->len);
577         }
578         complete(&as->xfer_completion);
579 }
580
581 /*
582  * Next transfer using PIO without FIFO.
583  */
584 static void atmel_spi_next_xfer_single(struct spi_master *master,
585                                        struct spi_transfer *xfer)
586 {
587         struct atmel_spi        *as = spi_master_get_devdata(master);
588         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
589
590         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
591
592         /* Make sure data is not remaining in RDR */
593         spi_readl(as, RDR);
594         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
595                 spi_readl(as, RDR);
596                 cpu_relax();
597         }
598
599         if (xfer->bits_per_word > 8)
600                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
601         else
602                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
603
604         dev_dbg(master->dev.parent,
605                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
606                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
607                 xfer->bits_per_word);
608
609         /* Enable relevant interrupts */
610         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
611 }
612
613 /*
614  * Next transfer using PIO with FIFO.
615  */
616 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
617                                      struct spi_transfer *xfer)
618 {
619         struct atmel_spi *as = spi_master_get_devdata(master);
620         u32 current_remaining_data, num_data;
621         u32 offset = xfer->len - as->current_remaining_bytes;
622         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
623         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
624         u16 td0, td1;
625         u32 fifomr;
626
627         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
628
629         /* Compute the number of data to transfer in the current iteration */
630         current_remaining_data = ((xfer->bits_per_word > 8) ?
631                                   ((u32)as->current_remaining_bytes >> 1) :
632                                   (u32)as->current_remaining_bytes);
633         num_data = min(current_remaining_data, as->fifo_size);
634
635         /* Flush RX and TX FIFOs */
636         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
637         while (spi_readl(as, FLR))
638                 cpu_relax();
639
640         /* Set RX FIFO Threshold to the number of data to transfer */
641         fifomr = spi_readl(as, FMR);
642         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
643
644         /* Clear FIFO flags in the Status Register, especially RXFTHF */
645         (void)spi_readl(as, SR);
646
647         /* Fill TX FIFO */
648         while (num_data >= 2) {
649                 if (xfer->bits_per_word > 8) {
650                         td0 = *words++;
651                         td1 = *words++;
652                 } else {
653                         td0 = *bytes++;
654                         td1 = *bytes++;
655                 }
656
657                 spi_writel(as, TDR, (td1 << 16) | td0);
658                 num_data -= 2;
659         }
660
661         if (num_data) {
662                 if (xfer->bits_per_word > 8)
663                         td0 = *words++;
664                 else
665                         td0 = *bytes++;
666
667                 spi_writew(as, TDR, td0);
668                 num_data--;
669         }
670
671         dev_dbg(master->dev.parent,
672                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
673                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
674                 xfer->bits_per_word);
675
676         /*
677          * Enable RX FIFO Threshold Flag interrupt to be notified about
678          * transfer completion.
679          */
680         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
681 }
682
683 /*
684  * Next transfer using PIO.
685  */
686 static void atmel_spi_next_xfer_pio(struct spi_master *master,
687                                     struct spi_transfer *xfer)
688 {
689         struct atmel_spi *as = spi_master_get_devdata(master);
690
691         if (as->fifo_size)
692                 atmel_spi_next_xfer_fifo(master, xfer);
693         else
694                 atmel_spi_next_xfer_single(master, xfer);
695 }
696
697 /*
698  * Submit next transfer for DMA.
699  */
700 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
701                                 struct spi_transfer *xfer,
702                                 u32 *plen)
703         __must_hold(&as->lock)
704 {
705         struct atmel_spi        *as = spi_master_get_devdata(master);
706         struct dma_chan         *rxchan = master->dma_rx;
707         struct dma_chan         *txchan = master->dma_tx;
708         struct dma_async_tx_descriptor *rxdesc;
709         struct dma_async_tx_descriptor *txdesc;
710         struct dma_slave_config slave_config;
711         dma_cookie_t            cookie;
712
713         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
714
715         /* Check that the channels are available */
716         if (!rxchan || !txchan)
717                 return -ENODEV;
718
719         /* release lock for DMA operations */
720         atmel_spi_unlock(as);
721
722         *plen = xfer->len;
723
724         if (atmel_spi_dma_slave_config(as, &slave_config,
725                                        xfer->bits_per_word))
726                 goto err_exit;
727
728         /* Send both scatterlists */
729         if (atmel_spi_is_vmalloc_xfer(xfer) &&
730             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
731                 rxdesc = dmaengine_prep_slave_single(rxchan,
732                                                      as->dma_addr_rx_bbuf,
733                                                      xfer->len,
734                                                      DMA_DEV_TO_MEM,
735                                                      DMA_PREP_INTERRUPT |
736                                                      DMA_CTRL_ACK);
737         } else {
738                 rxdesc = dmaengine_prep_slave_sg(rxchan,
739                                                  xfer->rx_sg.sgl,
740                                                  xfer->rx_sg.nents,
741                                                  DMA_DEV_TO_MEM,
742                                                  DMA_PREP_INTERRUPT |
743                                                  DMA_CTRL_ACK);
744         }
745         if (!rxdesc)
746                 goto err_dma;
747
748         if (atmel_spi_is_vmalloc_xfer(xfer) &&
749             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
750                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
751                 txdesc = dmaengine_prep_slave_single(txchan,
752                                                      as->dma_addr_tx_bbuf,
753                                                      xfer->len, DMA_MEM_TO_DEV,
754                                                      DMA_PREP_INTERRUPT |
755                                                      DMA_CTRL_ACK);
756         } else {
757                 txdesc = dmaengine_prep_slave_sg(txchan,
758                                                  xfer->tx_sg.sgl,
759                                                  xfer->tx_sg.nents,
760                                                  DMA_MEM_TO_DEV,
761                                                  DMA_PREP_INTERRUPT |
762                                                  DMA_CTRL_ACK);
763         }
764         if (!txdesc)
765                 goto err_dma;
766
767         dev_dbg(master->dev.parent,
768                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
769                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
770                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
771
772         /* Enable relevant interrupts */
773         spi_writel(as, IER, SPI_BIT(OVRES));
774
775         /* Put the callback on the RX transfer only, that should finish last */
776         rxdesc->callback = dma_callback;
777         rxdesc->callback_param = master;
778
779         /* Submit and fire RX and TX with TX last so we're ready to read! */
780         cookie = rxdesc->tx_submit(rxdesc);
781         if (dma_submit_error(cookie))
782                 goto err_dma;
783         cookie = txdesc->tx_submit(txdesc);
784         if (dma_submit_error(cookie))
785                 goto err_dma;
786         rxchan->device->device_issue_pending(rxchan);
787         txchan->device->device_issue_pending(txchan);
788
789         /* take back lock */
790         atmel_spi_lock(as);
791         return 0;
792
793 err_dma:
794         spi_writel(as, IDR, SPI_BIT(OVRES));
795         atmel_spi_stop_dma(master);
796 err_exit:
797         atmel_spi_lock(as);
798         return -ENOMEM;
799 }
800
801 static void atmel_spi_next_xfer_data(struct spi_master *master,
802                                 struct spi_transfer *xfer,
803                                 dma_addr_t *tx_dma,
804                                 dma_addr_t *rx_dma,
805                                 u32 *plen)
806 {
807         *rx_dma = xfer->rx_dma + xfer->len - *plen;
808         *tx_dma = xfer->tx_dma + xfer->len - *plen;
809         if (*plen > master->max_dma_len)
810                 *plen = master->max_dma_len;
811 }
812
813 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
814                                     struct spi_device *spi,
815                                     struct spi_transfer *xfer)
816 {
817         u32                     scbr, csr;
818         unsigned long           bus_hz;
819         int chip_select;
820
821         if (spi->cs_gpiod)
822                 chip_select = as->native_cs_for_gpio;
823         else
824                 chip_select = spi->chip_select;
825
826         /* v1 chips start out at half the peripheral bus speed. */
827         bus_hz = as->spi_clk;
828         if (!atmel_spi_is_v2(as))
829                 bus_hz /= 2;
830
831         /*
832          * Calculate the lowest divider that satisfies the
833          * constraint, assuming div32/fdiv/mbz == 0.
834          */
835         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
836
837         /*
838          * If the resulting divider doesn't fit into the
839          * register bitfield, we can't satisfy the constraint.
840          */
841         if (scbr >= (1 << SPI_SCBR_SIZE)) {
842                 dev_err(&spi->dev,
843                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
844                         xfer->speed_hz, scbr, bus_hz/255);
845                 return -EINVAL;
846         }
847         if (scbr == 0) {
848                 dev_err(&spi->dev,
849                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
850                         xfer->speed_hz, scbr, bus_hz);
851                 return -EINVAL;
852         }
853         csr = spi_readl(as, CSR0 + 4 * chip_select);
854         csr = SPI_BFINS(SCBR, scbr, csr);
855         spi_writel(as, CSR0 + 4 * chip_select, csr);
856         xfer->effective_speed_hz = bus_hz / scbr;
857
858         return 0;
859 }
860
861 /*
862  * Submit next transfer for PDC.
863  * lock is held, spi irq is blocked
864  */
865 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
866                                         struct spi_message *msg,
867                                         struct spi_transfer *xfer)
868 {
869         struct atmel_spi        *as = spi_master_get_devdata(master);
870         u32                     len;
871         dma_addr_t              tx_dma, rx_dma;
872
873         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
874
875         len = as->current_remaining_bytes;
876         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
877         as->current_remaining_bytes -= len;
878
879         spi_writel(as, RPR, rx_dma);
880         spi_writel(as, TPR, tx_dma);
881
882         if (msg->spi->bits_per_word > 8)
883                 len >>= 1;
884         spi_writel(as, RCR, len);
885         spi_writel(as, TCR, len);
886
887         dev_dbg(&msg->spi->dev,
888                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
889                 xfer, xfer->len, xfer->tx_buf,
890                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
891                 (unsigned long long)xfer->rx_dma);
892
893         if (as->current_remaining_bytes) {
894                 len = as->current_remaining_bytes;
895                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
896                 as->current_remaining_bytes -= len;
897
898                 spi_writel(as, RNPR, rx_dma);
899                 spi_writel(as, TNPR, tx_dma);
900
901                 if (msg->spi->bits_per_word > 8)
902                         len >>= 1;
903                 spi_writel(as, RNCR, len);
904                 spi_writel(as, TNCR, len);
905
906                 dev_dbg(&msg->spi->dev,
907                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
908                         xfer, xfer->len, xfer->tx_buf,
909                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
910                         (unsigned long long)xfer->rx_dma);
911         }
912
913         /* REVISIT: We're waiting for RXBUFF before we start the next
914          * transfer because we need to handle some difficult timing
915          * issues otherwise. If we wait for TXBUFE in one transfer and
916          * then starts waiting for RXBUFF in the next, it's difficult
917          * to tell the difference between the RXBUFF interrupt we're
918          * actually waiting for and the RXBUFF interrupt of the
919          * previous transfer.
920          *
921          * It should be doable, though. Just not now...
922          */
923         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
924         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
925 }
926
927 /*
928  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
929  *  - The buffer is either valid for CPU access, else NULL
930  *  - If the buffer is valid, so is its DMA address
931  *
932  * This driver manages the dma address unless message->is_dma_mapped.
933  */
934 static int
935 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
936 {
937         struct device   *dev = &as->pdev->dev;
938
939         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
940         if (xfer->tx_buf) {
941                 /* tx_buf is a const void* where we need a void * for the dma
942                  * mapping */
943                 void *nonconst_tx = (void *)xfer->tx_buf;
944
945                 xfer->tx_dma = dma_map_single(dev,
946                                 nonconst_tx, xfer->len,
947                                 DMA_TO_DEVICE);
948                 if (dma_mapping_error(dev, xfer->tx_dma))
949                         return -ENOMEM;
950         }
951         if (xfer->rx_buf) {
952                 xfer->rx_dma = dma_map_single(dev,
953                                 xfer->rx_buf, xfer->len,
954                                 DMA_FROM_DEVICE);
955                 if (dma_mapping_error(dev, xfer->rx_dma)) {
956                         if (xfer->tx_buf)
957                                 dma_unmap_single(dev,
958                                                 xfer->tx_dma, xfer->len,
959                                                 DMA_TO_DEVICE);
960                         return -ENOMEM;
961                 }
962         }
963         return 0;
964 }
965
966 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
967                                      struct spi_transfer *xfer)
968 {
969         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
970                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
971                                  xfer->len, DMA_TO_DEVICE);
972         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
973                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
974                                  xfer->len, DMA_FROM_DEVICE);
975 }
976
977 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
978 {
979         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
980 }
981
982 static void
983 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
984 {
985         u8              *rxp;
986         u16             *rxp16;
987         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
988
989         if (xfer->bits_per_word > 8) {
990                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
991                 *rxp16 = spi_readl(as, RDR);
992         } else {
993                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
994                 *rxp = spi_readl(as, RDR);
995         }
996         if (xfer->bits_per_word > 8) {
997                 if (as->current_remaining_bytes > 2)
998                         as->current_remaining_bytes -= 2;
999                 else
1000                         as->current_remaining_bytes = 0;
1001         } else {
1002                 as->current_remaining_bytes--;
1003         }
1004 }
1005
1006 static void
1007 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1008 {
1009         u32 fifolr = spi_readl(as, FLR);
1010         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1011         u32 offset = xfer->len - as->current_remaining_bytes;
1012         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1013         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1014         u16 rd; /* RD field is the lowest 16 bits of RDR */
1015
1016         /* Update the number of remaining bytes to transfer */
1017         num_bytes = ((xfer->bits_per_word > 8) ?
1018                      (num_data << 1) :
1019                      num_data);
1020
1021         if (as->current_remaining_bytes > num_bytes)
1022                 as->current_remaining_bytes -= num_bytes;
1023         else
1024                 as->current_remaining_bytes = 0;
1025
1026         /* Handle odd number of bytes when data are more than 8bit width */
1027         if (xfer->bits_per_word > 8)
1028                 as->current_remaining_bytes &= ~0x1;
1029
1030         /* Read data */
1031         while (num_data) {
1032                 rd = spi_readl(as, RDR);
1033                 if (xfer->bits_per_word > 8)
1034                         *words++ = rd;
1035                 else
1036                         *bytes++ = rd;
1037                 num_data--;
1038         }
1039 }
1040
1041 /* Called from IRQ
1042  *
1043  * Must update "current_remaining_bytes" to keep track of data
1044  * to transfer.
1045  */
1046 static void
1047 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1048 {
1049         if (as->fifo_size)
1050                 atmel_spi_pump_fifo_data(as, xfer);
1051         else
1052                 atmel_spi_pump_single_data(as, xfer);
1053 }
1054
1055 /* Interrupt
1056  *
1057  * No need for locking in this Interrupt handler: done_status is the
1058  * only information modified.
1059  */
1060 static irqreturn_t
1061 atmel_spi_pio_interrupt(int irq, void *dev_id)
1062 {
1063         struct spi_master       *master = dev_id;
1064         struct atmel_spi        *as = spi_master_get_devdata(master);
1065         u32                     status, pending, imr;
1066         struct spi_transfer     *xfer;
1067         int                     ret = IRQ_NONE;
1068
1069         imr = spi_readl(as, IMR);
1070         status = spi_readl(as, SR);
1071         pending = status & imr;
1072
1073         if (pending & SPI_BIT(OVRES)) {
1074                 ret = IRQ_HANDLED;
1075                 spi_writel(as, IDR, SPI_BIT(OVRES));
1076                 dev_warn(master->dev.parent, "overrun\n");
1077
1078                 /*
1079                  * When we get an overrun, we disregard the current
1080                  * transfer. Data will not be copied back from any
1081                  * bounce buffer and msg->actual_len will not be
1082                  * updated with the last xfer.
1083                  *
1084                  * We will also not process any remaning transfers in
1085                  * the message.
1086                  */
1087                 as->done_status = -EIO;
1088                 smp_wmb();
1089
1090                 /* Clear any overrun happening while cleaning up */
1091                 spi_readl(as, SR);
1092
1093                 complete(&as->xfer_completion);
1094
1095         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1096                 atmel_spi_lock(as);
1097
1098                 if (as->current_remaining_bytes) {
1099                         ret = IRQ_HANDLED;
1100                         xfer = as->current_transfer;
1101                         atmel_spi_pump_pio_data(as, xfer);
1102                         if (!as->current_remaining_bytes)
1103                                 spi_writel(as, IDR, pending);
1104
1105                         complete(&as->xfer_completion);
1106                 }
1107
1108                 atmel_spi_unlock(as);
1109         } else {
1110                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1111                 ret = IRQ_HANDLED;
1112                 spi_writel(as, IDR, pending);
1113         }
1114
1115         return ret;
1116 }
1117
1118 static irqreturn_t
1119 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1120 {
1121         struct spi_master       *master = dev_id;
1122         struct atmel_spi        *as = spi_master_get_devdata(master);
1123         u32                     status, pending, imr;
1124         int                     ret = IRQ_NONE;
1125
1126         imr = spi_readl(as, IMR);
1127         status = spi_readl(as, SR);
1128         pending = status & imr;
1129
1130         if (pending & SPI_BIT(OVRES)) {
1131
1132                 ret = IRQ_HANDLED;
1133
1134                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1135                                      | SPI_BIT(OVRES)));
1136
1137                 /* Clear any overrun happening while cleaning up */
1138                 spi_readl(as, SR);
1139
1140                 as->done_status = -EIO;
1141
1142                 complete(&as->xfer_completion);
1143
1144         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1145                 ret = IRQ_HANDLED;
1146
1147                 spi_writel(as, IDR, pending);
1148
1149                 complete(&as->xfer_completion);
1150         }
1151
1152         return ret;
1153 }
1154
1155 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1156 {
1157         struct spi_delay *delay = &spi->word_delay;
1158         u32 value = delay->value;
1159
1160         switch (delay->unit) {
1161         case SPI_DELAY_UNIT_NSECS:
1162                 value /= 1000;
1163                 break;
1164         case SPI_DELAY_UNIT_USECS:
1165                 break;
1166         default:
1167                 return -EINVAL;
1168         }
1169
1170         return (as->spi_clk / 1000000 * value) >> 5;
1171 }
1172
1173 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1174 {
1175         int i;
1176         struct spi_master *master = platform_get_drvdata(as->pdev);
1177
1178         if (!as->native_cs_free)
1179                 return; /* already initialized */
1180
1181         if (!master->cs_gpiods)
1182                 return; /* No CS GPIO */
1183
1184         /*
1185          * On the first version of the controller (AT91RM9200), CS0
1186          * can't be used associated with GPIO
1187          */
1188         if (atmel_spi_is_v2(as))
1189                 i = 0;
1190         else
1191                 i = 1;
1192
1193         for (; i < 4; i++)
1194                 if (master->cs_gpiods[i])
1195                         as->native_cs_free |= BIT(i);
1196
1197         if (as->native_cs_free)
1198                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1199 }
1200
1201 static int atmel_spi_setup(struct spi_device *spi)
1202 {
1203         struct atmel_spi        *as;
1204         struct atmel_spi_device *asd;
1205         u32                     csr;
1206         unsigned int            bits = spi->bits_per_word;
1207         int chip_select;
1208         int                     word_delay_csr;
1209
1210         as = spi_master_get_devdata(spi->master);
1211
1212         /* see notes above re chipselect */
1213         if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1214                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1215                 return -EINVAL;
1216         }
1217
1218         /* Setup() is called during spi_register_controller(aka
1219          * spi_register_master) but after all membmers of the cs_gpiod
1220          * array have been filled, so we can looked for which native
1221          * CS will be free for using with GPIO
1222          */
1223         initialize_native_cs_for_gpio(as);
1224
1225         if (spi->cs_gpiod && as->native_cs_free) {
1226                 dev_err(&spi->dev,
1227                         "No native CS available to support this GPIO CS\n");
1228                 return -EBUSY;
1229         }
1230
1231         if (spi->cs_gpiod)
1232                 chip_select = as->native_cs_for_gpio;
1233         else
1234                 chip_select = spi->chip_select;
1235
1236         csr = SPI_BF(BITS, bits - 8);
1237         if (spi->mode & SPI_CPOL)
1238                 csr |= SPI_BIT(CPOL);
1239         if (!(spi->mode & SPI_CPHA))
1240                 csr |= SPI_BIT(NCPHA);
1241
1242         if (!spi->cs_gpiod)
1243                 csr |= SPI_BIT(CSAAT);
1244         csr |= SPI_BF(DLYBS, 0);
1245
1246         word_delay_csr = atmel_word_delay_csr(spi, as);
1247         if (word_delay_csr < 0)
1248                 return word_delay_csr;
1249
1250         /* DLYBCT adds delays between words.  This is useful for slow devices
1251          * that need a bit of time to setup the next transfer.
1252          */
1253         csr |= SPI_BF(DLYBCT, word_delay_csr);
1254
1255         asd = spi->controller_state;
1256         if (!asd) {
1257                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1258                 if (!asd)
1259                         return -ENOMEM;
1260
1261                 spi->controller_state = asd;
1262         }
1263
1264         asd->csr = csr;
1265
1266         dev_dbg(&spi->dev,
1267                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1268                 bits, spi->mode, spi->chip_select, csr);
1269
1270         if (!atmel_spi_is_v2(as))
1271                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1272
1273         return 0;
1274 }
1275
1276 static int atmel_spi_one_transfer(struct spi_master *master,
1277                                         struct spi_message *msg,
1278                                         struct spi_transfer *xfer)
1279 {
1280         struct atmel_spi        *as;
1281         struct spi_device       *spi = msg->spi;
1282         u8                      bits;
1283         u32                     len;
1284         struct atmel_spi_device *asd;
1285         int                     timeout;
1286         int                     ret;
1287         unsigned long           dma_timeout;
1288
1289         as = spi_master_get_devdata(master);
1290
1291         if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1292                 dev_dbg(&spi->dev, "missing rx or tx buf\n");
1293                 return -EINVAL;
1294         }
1295
1296         asd = spi->controller_state;
1297         bits = (asd->csr >> 4) & 0xf;
1298         if (bits != xfer->bits_per_word - 8) {
1299                 dev_dbg(&spi->dev,
1300                         "you can't yet change bits_per_word in transfers\n");
1301                 return -ENOPROTOOPT;
1302         }
1303
1304         /*
1305          * DMA map early, for performance (empties dcache ASAP) and
1306          * better fault reporting.
1307          */
1308         if ((!msg->is_dma_mapped)
1309                 && as->use_pdc) {
1310                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1311                         return -ENOMEM;
1312         }
1313
1314         atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1315
1316         as->done_status = 0;
1317         as->current_transfer = xfer;
1318         as->current_remaining_bytes = xfer->len;
1319         while (as->current_remaining_bytes) {
1320                 reinit_completion(&as->xfer_completion);
1321
1322                 if (as->use_pdc) {
1323                         atmel_spi_pdc_next_xfer(master, msg, xfer);
1324                 } else if (atmel_spi_use_dma(as, xfer)) {
1325                         len = as->current_remaining_bytes;
1326                         ret = atmel_spi_next_xfer_dma_submit(master,
1327                                                                 xfer, &len);
1328                         if (ret) {
1329                                 dev_err(&spi->dev,
1330                                         "unable to use DMA, fallback to PIO\n");
1331                                 atmel_spi_next_xfer_pio(master, xfer);
1332                         } else {
1333                                 as->current_remaining_bytes -= len;
1334                                 if (as->current_remaining_bytes < 0)
1335                                         as->current_remaining_bytes = 0;
1336                         }
1337                 } else {
1338                         atmel_spi_next_xfer_pio(master, xfer);
1339                 }
1340
1341                 /* interrupts are disabled, so free the lock for schedule */
1342                 atmel_spi_unlock(as);
1343                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1344                                                           SPI_DMA_TIMEOUT);
1345                 atmel_spi_lock(as);
1346                 if (WARN_ON(dma_timeout == 0)) {
1347                         dev_err(&spi->dev, "spi transfer timeout\n");
1348                         as->done_status = -EIO;
1349                 }
1350
1351                 if (as->done_status)
1352                         break;
1353         }
1354
1355         if (as->done_status) {
1356                 if (as->use_pdc) {
1357                         dev_warn(master->dev.parent,
1358                                 "overrun (%u/%u remaining)\n",
1359                                 spi_readl(as, TCR), spi_readl(as, RCR));
1360
1361                         /*
1362                          * Clean up DMA registers and make sure the data
1363                          * registers are empty.
1364                          */
1365                         spi_writel(as, RNCR, 0);
1366                         spi_writel(as, TNCR, 0);
1367                         spi_writel(as, RCR, 0);
1368                         spi_writel(as, TCR, 0);
1369                         for (timeout = 1000; timeout; timeout--)
1370                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1371                                         break;
1372                         if (!timeout)
1373                                 dev_warn(master->dev.parent,
1374                                          "timeout waiting for TXEMPTY");
1375                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1376                                 spi_readl(as, RDR);
1377
1378                         /* Clear any overrun happening while cleaning up */
1379                         spi_readl(as, SR);
1380
1381                 } else if (atmel_spi_use_dma(as, xfer)) {
1382                         atmel_spi_stop_dma(master);
1383                 }
1384
1385                 if (!msg->is_dma_mapped
1386                         && as->use_pdc)
1387                         atmel_spi_dma_unmap_xfer(master, xfer);
1388
1389                 return 0;
1390
1391         } else {
1392                 /* only update length if no error */
1393                 msg->actual_length += xfer->len;
1394         }
1395
1396         if (!msg->is_dma_mapped
1397                 && as->use_pdc)
1398                 atmel_spi_dma_unmap_xfer(master, xfer);
1399
1400         spi_transfer_delay_exec(xfer);
1401
1402         if (xfer->cs_change) {
1403                 if (list_is_last(&xfer->transfer_list,
1404                                  &msg->transfers)) {
1405                         as->keep_cs = true;
1406                 } else {
1407                         cs_deactivate(as, msg->spi);
1408                         udelay(10);
1409                         cs_activate(as, msg->spi);
1410                 }
1411         }
1412
1413         return 0;
1414 }
1415
1416 static int atmel_spi_transfer_one_message(struct spi_master *master,
1417                                                 struct spi_message *msg)
1418 {
1419         struct atmel_spi *as;
1420         struct spi_transfer *xfer;
1421         struct spi_device *spi = msg->spi;
1422         int ret = 0;
1423
1424         as = spi_master_get_devdata(master);
1425
1426         dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1427                                         msg, dev_name(&spi->dev));
1428
1429         atmel_spi_lock(as);
1430         cs_activate(as, spi);
1431
1432         as->keep_cs = false;
1433
1434         msg->status = 0;
1435         msg->actual_length = 0;
1436
1437         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1438                 trace_spi_transfer_start(msg, xfer);
1439
1440                 ret = atmel_spi_one_transfer(master, msg, xfer);
1441                 if (ret)
1442                         goto msg_done;
1443
1444                 trace_spi_transfer_stop(msg, xfer);
1445         }
1446
1447         if (as->use_pdc)
1448                 atmel_spi_disable_pdc_transfer(as);
1449
1450         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1451                 dev_dbg(&spi->dev,
1452                         "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1453                         xfer, xfer->len,
1454                         xfer->tx_buf, &xfer->tx_dma,
1455                         xfer->rx_buf, &xfer->rx_dma);
1456         }
1457
1458 msg_done:
1459         if (!as->keep_cs)
1460                 cs_deactivate(as, msg->spi);
1461
1462         atmel_spi_unlock(as);
1463
1464         msg->status = as->done_status;
1465         spi_finalize_current_message(spi->master);
1466
1467         return ret;
1468 }
1469
1470 static void atmel_spi_cleanup(struct spi_device *spi)
1471 {
1472         struct atmel_spi_device *asd = spi->controller_state;
1473
1474         if (!asd)
1475                 return;
1476
1477         spi->controller_state = NULL;
1478         kfree(asd);
1479 }
1480
1481 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1482 {
1483         return spi_readl(as, VERSION) & 0x00000fff;
1484 }
1485
1486 static void atmel_get_caps(struct atmel_spi *as)
1487 {
1488         unsigned int version;
1489
1490         version = atmel_get_version(as);
1491
1492         as->caps.is_spi2 = version > 0x121;
1493         as->caps.has_wdrbt = version >= 0x210;
1494         as->caps.has_dma_support = version >= 0x212;
1495         as->caps.has_pdc_support = version < 0x212;
1496 }
1497
1498 static void atmel_spi_init(struct atmel_spi *as)
1499 {
1500         spi_writel(as, CR, SPI_BIT(SWRST));
1501         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1502
1503         /* It is recommended to enable FIFOs first thing after reset */
1504         if (as->fifo_size)
1505                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1506
1507         if (as->caps.has_wdrbt) {
1508                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1509                                 | SPI_BIT(MSTR));
1510         } else {
1511                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1512         }
1513
1514         if (as->use_pdc)
1515                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1516         spi_writel(as, CR, SPI_BIT(SPIEN));
1517 }
1518
1519 static int atmel_spi_probe(struct platform_device *pdev)
1520 {
1521         struct resource         *regs;
1522         int                     irq;
1523         struct clk              *clk;
1524         int                     ret;
1525         struct spi_master       *master;
1526         struct atmel_spi        *as;
1527
1528         /* Select default pin state */
1529         pinctrl_pm_select_default_state(&pdev->dev);
1530
1531         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1532         if (!regs)
1533                 return -ENXIO;
1534
1535         irq = platform_get_irq(pdev, 0);
1536         if (irq < 0)
1537                 return irq;
1538
1539         clk = devm_clk_get(&pdev->dev, "spi_clk");
1540         if (IS_ERR(clk))
1541                 return PTR_ERR(clk);
1542
1543         /* setup spi core then atmel-specific driver state */
1544         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1545         if (!master)
1546                 return -ENOMEM;
1547
1548         /* the spi->mode bits understood by this driver: */
1549         master->use_gpio_descriptors = true;
1550         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1551         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1552         master->dev.of_node = pdev->dev.of_node;
1553         master->bus_num = pdev->id;
1554         master->num_chipselect = 4;
1555         master->setup = atmel_spi_setup;
1556         master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1557         master->transfer_one_message = atmel_spi_transfer_one_message;
1558         master->cleanup = atmel_spi_cleanup;
1559         master->auto_runtime_pm = true;
1560         master->max_dma_len = SPI_MAX_DMA_XFER;
1561         master->can_dma = atmel_spi_can_dma;
1562         platform_set_drvdata(pdev, master);
1563
1564         as = spi_master_get_devdata(master);
1565
1566         spin_lock_init(&as->lock);
1567
1568         as->pdev = pdev;
1569         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1570         if (IS_ERR(as->regs)) {
1571                 ret = PTR_ERR(as->regs);
1572                 goto out_unmap_regs;
1573         }
1574         as->phybase = regs->start;
1575         as->irq = irq;
1576         as->clk = clk;
1577
1578         init_completion(&as->xfer_completion);
1579
1580         atmel_get_caps(as);
1581
1582         as->use_dma = false;
1583         as->use_pdc = false;
1584         if (as->caps.has_dma_support) {
1585                 ret = atmel_spi_configure_dma(master, as);
1586                 if (ret == 0) {
1587                         as->use_dma = true;
1588                 } else if (ret == -EPROBE_DEFER) {
1589                         goto out_unmap_regs;
1590                 }
1591         } else if (as->caps.has_pdc_support) {
1592                 as->use_pdc = true;
1593         }
1594
1595         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1596                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1597                                                       SPI_MAX_DMA_XFER,
1598                                                       &as->dma_addr_rx_bbuf,
1599                                                       GFP_KERNEL | GFP_DMA);
1600                 if (!as->addr_rx_bbuf) {
1601                         as->use_dma = false;
1602                 } else {
1603                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1604                                         SPI_MAX_DMA_XFER,
1605                                         &as->dma_addr_tx_bbuf,
1606                                         GFP_KERNEL | GFP_DMA);
1607                         if (!as->addr_tx_bbuf) {
1608                                 as->use_dma = false;
1609                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1610                                                   as->addr_rx_bbuf,
1611                                                   as->dma_addr_rx_bbuf);
1612                         }
1613                 }
1614                 if (!as->use_dma)
1615                         dev_info(master->dev.parent,
1616                                  "  can not allocate dma coherent memory\n");
1617         }
1618
1619         if (as->caps.has_dma_support && !as->use_dma)
1620                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1621
1622         if (as->use_pdc) {
1623                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1624                                         0, dev_name(&pdev->dev), master);
1625         } else {
1626                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1627                                         0, dev_name(&pdev->dev), master);
1628         }
1629         if (ret)
1630                 goto out_unmap_regs;
1631
1632         /* Initialize the hardware */
1633         ret = clk_prepare_enable(clk);
1634         if (ret)
1635                 goto out_free_irq;
1636
1637         as->spi_clk = clk_get_rate(clk);
1638
1639         as->fifo_size = 0;
1640         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1641                                   &as->fifo_size)) {
1642                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1643         }
1644
1645         atmel_spi_init(as);
1646
1647         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1648         pm_runtime_use_autosuspend(&pdev->dev);
1649         pm_runtime_set_active(&pdev->dev);
1650         pm_runtime_enable(&pdev->dev);
1651
1652         ret = devm_spi_register_master(&pdev->dev, master);
1653         if (ret)
1654                 goto out_free_dma;
1655
1656         /* go! */
1657         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1658                         atmel_get_version(as), (unsigned long)regs->start,
1659                         irq);
1660
1661         return 0;
1662
1663 out_free_dma:
1664         pm_runtime_disable(&pdev->dev);
1665         pm_runtime_set_suspended(&pdev->dev);
1666
1667         if (as->use_dma)
1668                 atmel_spi_release_dma(master);
1669
1670         spi_writel(as, CR, SPI_BIT(SWRST));
1671         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1672         clk_disable_unprepare(clk);
1673 out_free_irq:
1674 out_unmap_regs:
1675         spi_master_put(master);
1676         return ret;
1677 }
1678
1679 static int atmel_spi_remove(struct platform_device *pdev)
1680 {
1681         struct spi_master       *master = platform_get_drvdata(pdev);
1682         struct atmel_spi        *as = spi_master_get_devdata(master);
1683
1684         pm_runtime_get_sync(&pdev->dev);
1685
1686         /* reset the hardware and block queue progress */
1687         if (as->use_dma) {
1688                 atmel_spi_stop_dma(master);
1689                 atmel_spi_release_dma(master);
1690                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1691                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1692                                           as->addr_tx_bbuf,
1693                                           as->dma_addr_tx_bbuf);
1694                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1695                                           as->addr_rx_bbuf,
1696                                           as->dma_addr_rx_bbuf);
1697                 }
1698         }
1699
1700         spin_lock_irq(&as->lock);
1701         spi_writel(as, CR, SPI_BIT(SWRST));
1702         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1703         spi_readl(as, SR);
1704         spin_unlock_irq(&as->lock);
1705
1706         clk_disable_unprepare(as->clk);
1707
1708         pm_runtime_put_noidle(&pdev->dev);
1709         pm_runtime_disable(&pdev->dev);
1710
1711         return 0;
1712 }
1713
1714 #ifdef CONFIG_PM
1715 static int atmel_spi_runtime_suspend(struct device *dev)
1716 {
1717         struct spi_master *master = dev_get_drvdata(dev);
1718         struct atmel_spi *as = spi_master_get_devdata(master);
1719
1720         clk_disable_unprepare(as->clk);
1721         pinctrl_pm_select_sleep_state(dev);
1722
1723         return 0;
1724 }
1725
1726 static int atmel_spi_runtime_resume(struct device *dev)
1727 {
1728         struct spi_master *master = dev_get_drvdata(dev);
1729         struct atmel_spi *as = spi_master_get_devdata(master);
1730
1731         pinctrl_pm_select_default_state(dev);
1732
1733         return clk_prepare_enable(as->clk);
1734 }
1735
1736 #ifdef CONFIG_PM_SLEEP
1737 static int atmel_spi_suspend(struct device *dev)
1738 {
1739         struct spi_master *master = dev_get_drvdata(dev);
1740         int ret;
1741
1742         /* Stop the queue running */
1743         ret = spi_master_suspend(master);
1744         if (ret)
1745                 return ret;
1746
1747         if (!pm_runtime_suspended(dev))
1748                 atmel_spi_runtime_suspend(dev);
1749
1750         return 0;
1751 }
1752
1753 static int atmel_spi_resume(struct device *dev)
1754 {
1755         struct spi_master *master = dev_get_drvdata(dev);
1756         struct atmel_spi *as = spi_master_get_devdata(master);
1757         int ret;
1758
1759         ret = clk_prepare_enable(as->clk);
1760         if (ret)
1761                 return ret;
1762
1763         atmel_spi_init(as);
1764
1765         clk_disable_unprepare(as->clk);
1766
1767         if (!pm_runtime_suspended(dev)) {
1768                 ret = atmel_spi_runtime_resume(dev);
1769                 if (ret)
1770                         return ret;
1771         }
1772
1773         /* Start the queue running */
1774         return spi_master_resume(master);
1775 }
1776 #endif
1777
1778 static const struct dev_pm_ops atmel_spi_pm_ops = {
1779         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1780         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1781                            atmel_spi_runtime_resume, NULL)
1782 };
1783 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1784 #else
1785 #define ATMEL_SPI_PM_OPS        NULL
1786 #endif
1787
1788 static const struct of_device_id atmel_spi_dt_ids[] = {
1789         { .compatible = "atmel,at91rm9200-spi" },
1790         { /* sentinel */ }
1791 };
1792
1793 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1794
1795 static struct platform_driver atmel_spi_driver = {
1796         .driver         = {
1797                 .name   = "atmel_spi",
1798                 .pm     = ATMEL_SPI_PM_OPS,
1799                 .of_match_table = atmel_spi_dt_ids,
1800         },
1801         .probe          = atmel_spi_probe,
1802         .remove         = atmel_spi_remove,
1803 };
1804 module_platform_driver(atmel_spi_driver);
1805
1806 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1807 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1808 MODULE_LICENSE("GPL");
1809 MODULE_ALIAS("platform:atmel_spi");