Merge tag 'for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux...
[linux-2.6-microblaze.git] / drivers / spi / spi-atmel.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for Atmel AT32 and AT91 SPI Controllers
4  *
5  * Copyright (C) 2006 Atmel Corporation
6  */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26
27 /* SPI register offsets */
28 #define SPI_CR                                  0x0000
29 #define SPI_MR                                  0x0004
30 #define SPI_RDR                                 0x0008
31 #define SPI_TDR                                 0x000c
32 #define SPI_SR                                  0x0010
33 #define SPI_IER                                 0x0014
34 #define SPI_IDR                                 0x0018
35 #define SPI_IMR                                 0x001c
36 #define SPI_CSR0                                0x0030
37 #define SPI_CSR1                                0x0034
38 #define SPI_CSR2                                0x0038
39 #define SPI_CSR3                                0x003c
40 #define SPI_FMR                                 0x0040
41 #define SPI_FLR                                 0x0044
42 #define SPI_VERSION                             0x00fc
43 #define SPI_RPR                                 0x0100
44 #define SPI_RCR                                 0x0104
45 #define SPI_TPR                                 0x0108
46 #define SPI_TCR                                 0x010c
47 #define SPI_RNPR                                0x0110
48 #define SPI_RNCR                                0x0114
49 #define SPI_TNPR                                0x0118
50 #define SPI_TNCR                                0x011c
51 #define SPI_PTCR                                0x0120
52 #define SPI_PTSR                                0x0124
53
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET                        0
56 #define SPI_SPIEN_SIZE                          1
57 #define SPI_SPIDIS_OFFSET                       1
58 #define SPI_SPIDIS_SIZE                         1
59 #define SPI_SWRST_OFFSET                        7
60 #define SPI_SWRST_SIZE                          1
61 #define SPI_LASTXFER_OFFSET                     24
62 #define SPI_LASTXFER_SIZE                       1
63 #define SPI_TXFCLR_OFFSET                       16
64 #define SPI_TXFCLR_SIZE                         1
65 #define SPI_RXFCLR_OFFSET                       17
66 #define SPI_RXFCLR_SIZE                         1
67 #define SPI_FIFOEN_OFFSET                       30
68 #define SPI_FIFOEN_SIZE                         1
69 #define SPI_FIFODIS_OFFSET                      31
70 #define SPI_FIFODIS_SIZE                        1
71
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET                         0
74 #define SPI_MSTR_SIZE                           1
75 #define SPI_PS_OFFSET                           1
76 #define SPI_PS_SIZE                             1
77 #define SPI_PCSDEC_OFFSET                       2
78 #define SPI_PCSDEC_SIZE                         1
79 #define SPI_FDIV_OFFSET                         3
80 #define SPI_FDIV_SIZE                           1
81 #define SPI_MODFDIS_OFFSET                      4
82 #define SPI_MODFDIS_SIZE                        1
83 #define SPI_WDRBT_OFFSET                        5
84 #define SPI_WDRBT_SIZE                          1
85 #define SPI_LLB_OFFSET                          7
86 #define SPI_LLB_SIZE                            1
87 #define SPI_PCS_OFFSET                          16
88 #define SPI_PCS_SIZE                            4
89 #define SPI_DLYBCS_OFFSET                       24
90 #define SPI_DLYBCS_SIZE                         8
91
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET                           0
94 #define SPI_RD_SIZE                             16
95
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET                           0
98 #define SPI_TD_SIZE                             16
99
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET                         0
102 #define SPI_RDRF_SIZE                           1
103 #define SPI_TDRE_OFFSET                         1
104 #define SPI_TDRE_SIZE                           1
105 #define SPI_MODF_OFFSET                         2
106 #define SPI_MODF_SIZE                           1
107 #define SPI_OVRES_OFFSET                        3
108 #define SPI_OVRES_SIZE                          1
109 #define SPI_ENDRX_OFFSET                        4
110 #define SPI_ENDRX_SIZE                          1
111 #define SPI_ENDTX_OFFSET                        5
112 #define SPI_ENDTX_SIZE                          1
113 #define SPI_RXBUFF_OFFSET                       6
114 #define SPI_RXBUFF_SIZE                         1
115 #define SPI_TXBUFE_OFFSET                       7
116 #define SPI_TXBUFE_SIZE                         1
117 #define SPI_NSSR_OFFSET                         8
118 #define SPI_NSSR_SIZE                           1
119 #define SPI_TXEMPTY_OFFSET                      9
120 #define SPI_TXEMPTY_SIZE                        1
121 #define SPI_SPIENS_OFFSET                       16
122 #define SPI_SPIENS_SIZE                         1
123 #define SPI_TXFEF_OFFSET                        24
124 #define SPI_TXFEF_SIZE                          1
125 #define SPI_TXFFF_OFFSET                        25
126 #define SPI_TXFFF_SIZE                          1
127 #define SPI_TXFTHF_OFFSET                       26
128 #define SPI_TXFTHF_SIZE                         1
129 #define SPI_RXFEF_OFFSET                        27
130 #define SPI_RXFEF_SIZE                          1
131 #define SPI_RXFFF_OFFSET                        28
132 #define SPI_RXFFF_SIZE                          1
133 #define SPI_RXFTHF_OFFSET                       29
134 #define SPI_RXFTHF_SIZE                         1
135 #define SPI_TXFPTEF_OFFSET                      30
136 #define SPI_TXFPTEF_SIZE                        1
137 #define SPI_RXFPTEF_OFFSET                      31
138 #define SPI_RXFPTEF_SIZE                        1
139
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET                         0
142 #define SPI_CPOL_SIZE                           1
143 #define SPI_NCPHA_OFFSET                        1
144 #define SPI_NCPHA_SIZE                          1
145 #define SPI_CSAAT_OFFSET                        3
146 #define SPI_CSAAT_SIZE                          1
147 #define SPI_BITS_OFFSET                         4
148 #define SPI_BITS_SIZE                           4
149 #define SPI_SCBR_OFFSET                         8
150 #define SPI_SCBR_SIZE                           8
151 #define SPI_DLYBS_OFFSET                        16
152 #define SPI_DLYBS_SIZE                          8
153 #define SPI_DLYBCT_OFFSET                       24
154 #define SPI_DLYBCT_SIZE                         8
155
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET                        0
158 #define SPI_RXCTR_SIZE                          16
159
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET                        0
162 #define SPI_TXCTR_SIZE                          16
163
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET                        0
166 #define SPI_RXNCR_SIZE                          16
167
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET                        0
170 #define SPI_TXNCR_SIZE                          16
171
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET                        0
174 #define SPI_RXTEN_SIZE                          1
175 #define SPI_RXTDIS_OFFSET                       1
176 #define SPI_RXTDIS_SIZE                         1
177 #define SPI_TXTEN_OFFSET                        8
178 #define SPI_TXTEN_SIZE                          1
179 #define SPI_TXTDIS_OFFSET                       9
180 #define SPI_TXTDIS_SIZE                         1
181
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET                       0
184 #define SPI_TXRDYM_SIZE                         2
185 #define SPI_RXRDYM_OFFSET                       4
186 #define SPI_RXRDYM_SIZE                         2
187 #define SPI_TXFTHRES_OFFSET                     16
188 #define SPI_TXFTHRES_SIZE                       6
189 #define SPI_RXFTHRES_OFFSET                     24
190 #define SPI_RXFTHRES_SIZE                       6
191
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET                         0
194 #define SPI_TXFL_SIZE                           6
195 #define SPI_RXFL_OFFSET                         16
196 #define SPI_RXFL_SIZE                           6
197
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT                          0
200 #define SPI_BITS_9_BPT                          1
201 #define SPI_BITS_10_BPT                         2
202 #define SPI_BITS_11_BPT                         3
203 #define SPI_BITS_12_BPT                         4
204 #define SPI_BITS_13_BPT                         5
205 #define SPI_BITS_14_BPT                         6
206 #define SPI_BITS_15_BPT                         7
207 #define SPI_BITS_16_BPT                         8
208 #define SPI_ONE_DATA                            0
209 #define SPI_TWO_DATA                            1
210 #define SPI_FOUR_DATA                           2
211
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214         (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216         (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218         (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220         (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221           | SPI_BF(name, value))
222
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225         readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227         writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229         writew_relaxed((value), (port)->regs + SPI_##reg)
230
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232  * cache operations; better heuristics consider wordsize and bitrate.
233  */
234 #define DMA_MIN_BYTES   16
235
236 #define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
237
238 #define AUTOSUSPEND_TIMEOUT     2000
239
240 struct atmel_spi_caps {
241         bool    is_spi2;
242         bool    has_wdrbt;
243         bool    has_dma_support;
244         bool    has_pdc_support;
245 };
246
247 /*
248  * The core SPI transfer engine just talks to a register bank to set up
249  * DMA transfers; transfer queue progress is driven by IRQs.  The clock
250  * framework provides the base clock, subdivided for each spi_device.
251  */
252 struct atmel_spi {
253         spinlock_t              lock;
254         unsigned long           flags;
255
256         phys_addr_t             phybase;
257         void __iomem            *regs;
258         int                     irq;
259         struct clk              *clk;
260         struct platform_device  *pdev;
261         unsigned long           spi_clk;
262
263         struct spi_transfer     *current_transfer;
264         int                     current_remaining_bytes;
265         int                     done_status;
266         dma_addr_t              dma_addr_rx_bbuf;
267         dma_addr_t              dma_addr_tx_bbuf;
268         void                    *addr_rx_bbuf;
269         void                    *addr_tx_bbuf;
270
271         struct completion       xfer_completion;
272
273         struct atmel_spi_caps   caps;
274
275         bool                    use_dma;
276         bool                    use_pdc;
277
278         bool                    keep_cs;
279
280         u32                     fifo_size;
281         u8                      native_cs_free;
282         u8                      native_cs_for_gpio;
283 };
284
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287         u32                     csr;
288 };
289
290 #define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS     0xffffffff
292
293 /*
294  * Version 2 of the SPI controller has
295  *  - CR.LASTXFER
296  *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297  *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298  *  - SPI_CSRx.CSAAT
299  *  - SPI_CSRx.SBCR allows faster clocking
300  */
301 static bool atmel_spi_is_v2(struct atmel_spi *as)
302 {
303         return as->caps.is_spi2;
304 }
305
306 /*
307  * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308  * they assume that spi slave device state will not change on deselect, so
309  * that automagic deselection is OK.  ("NPCSx rises if no data is to be
310  * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
311  * controllers have CSAAT and friends.
312  *
313  * Even controller newer than ar91rm9200, using GPIOs can make sens as
314  * it lets us support active-high chipselects despite the controller's
315  * belief that only active-low devices/systems exists.
316  *
317  * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318  * right when driven with GPIO.  ("Mode Fault does not allow more than one
319  * Master on Chip Select 0.")  No workaround exists for that ... so for
320  * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321  * and (c) will trigger that first erratum in some cases.
322  */
323
324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325 {
326         struct atmel_spi_device *asd = spi->controller_state;
327         int chip_select;
328         u32 mr;
329
330         if (spi->cs_gpiod)
331                 chip_select = as->native_cs_for_gpio;
332         else
333                 chip_select = spi->chip_select;
334
335         if (atmel_spi_is_v2(as)) {
336                 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337                 /* For the low SPI version, there is a issue that PDC transfer
338                  * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339                  */
340                 spi_writel(as, CSR0, asd->csr);
341                 if (as->caps.has_wdrbt) {
342                         spi_writel(as, MR,
343                                         SPI_BF(PCS, ~(0x01 << chip_select))
344                                         | SPI_BIT(WDRBT)
345                                         | SPI_BIT(MODFDIS)
346                                         | SPI_BIT(MSTR));
347                 } else {
348                         spi_writel(as, MR,
349                                         SPI_BF(PCS, ~(0x01 << chip_select))
350                                         | SPI_BIT(MODFDIS)
351                                         | SPI_BIT(MSTR));
352                 }
353
354                 mr = spi_readl(as, MR);
355         } else {
356                 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
357                 int i;
358                 u32 csr;
359
360                 /* Make sure clock polarity is correct */
361                 for (i = 0; i < spi->master->num_chipselect; i++) {
362                         csr = spi_readl(as, CSR0 + 4 * i);
363                         if ((csr ^ cpol) & SPI_BIT(CPOL))
364                                 spi_writel(as, CSR0 + 4 * i,
365                                                 csr ^ SPI_BIT(CPOL));
366                 }
367
368                 mr = spi_readl(as, MR);
369                 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
370                 spi_writel(as, MR, mr);
371         }
372
373         dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
374 }
375
376 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
377 {
378         int chip_select;
379         u32 mr;
380
381         if (spi->cs_gpiod)
382                 chip_select = as->native_cs_for_gpio;
383         else
384                 chip_select = spi->chip_select;
385
386         /* only deactivate *this* device; sometimes transfers to
387          * another device may be active when this routine is called.
388          */
389         mr = spi_readl(as, MR);
390         if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
391                 mr = SPI_BFINS(PCS, 0xf, mr);
392                 spi_writel(as, MR, mr);
393         }
394
395         dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
396
397         if (!spi->cs_gpiod)
398                 spi_writel(as, CR, SPI_BIT(LASTXFER));
399 }
400
401 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
402 {
403         spin_lock_irqsave(&as->lock, as->flags);
404 }
405
406 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
407 {
408         spin_unlock_irqrestore(&as->lock, as->flags);
409 }
410
411 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
412 {
413         return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
414 }
415
416 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
417                                 struct spi_transfer *xfer)
418 {
419         return as->use_dma && xfer->len >= DMA_MIN_BYTES;
420 }
421
422 static bool atmel_spi_can_dma(struct spi_master *master,
423                               struct spi_device *spi,
424                               struct spi_transfer *xfer)
425 {
426         struct atmel_spi *as = spi_master_get_devdata(master);
427
428         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
429                 return atmel_spi_use_dma(as, xfer) &&
430                         !atmel_spi_is_vmalloc_xfer(xfer);
431         else
432                 return atmel_spi_use_dma(as, xfer);
433
434 }
435
436 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
437                                 struct dma_slave_config *slave_config,
438                                 u8 bits_per_word)
439 {
440         struct spi_master *master = platform_get_drvdata(as->pdev);
441         int err = 0;
442
443         if (bits_per_word > 8) {
444                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
446         } else {
447                 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448                 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
449         }
450
451         slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
452         slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
453         slave_config->src_maxburst = 1;
454         slave_config->dst_maxburst = 1;
455         slave_config->device_fc = false;
456
457         /*
458          * This driver uses fixed peripheral select mode (PS bit set to '0' in
459          * the Mode Register).
460          * So according to the datasheet, when FIFOs are available (and
461          * enabled), the Transmit FIFO operates in Multiple Data Mode.
462          * In this mode, up to 2 data, not 4, can be written into the Transmit
463          * Data Register in a single access.
464          * However, the first data has to be written into the lowest 16 bits and
465          * the second data into the highest 16 bits of the Transmit
466          * Data Register. For 8bit data (the most frequent case), it would
467          * require to rework tx_buf so each data would actualy fit 16 bits.
468          * So we'd rather write only one data at the time. Hence the transmit
469          * path works the same whether FIFOs are available (and enabled) or not.
470          */
471         slave_config->direction = DMA_MEM_TO_DEV;
472         if (dmaengine_slave_config(master->dma_tx, slave_config)) {
473                 dev_err(&as->pdev->dev,
474                         "failed to configure tx dma channel\n");
475                 err = -EINVAL;
476         }
477
478         /*
479          * This driver configures the spi controller for master mode (MSTR bit
480          * set to '1' in the Mode Register).
481          * So according to the datasheet, when FIFOs are available (and
482          * enabled), the Receive FIFO operates in Single Data Mode.
483          * So the receive path works the same whether FIFOs are available (and
484          * enabled) or not.
485          */
486         slave_config->direction = DMA_DEV_TO_MEM;
487         if (dmaengine_slave_config(master->dma_rx, slave_config)) {
488                 dev_err(&as->pdev->dev,
489                         "failed to configure rx dma channel\n");
490                 err = -EINVAL;
491         }
492
493         return err;
494 }
495
496 static int atmel_spi_configure_dma(struct spi_master *master,
497                                    struct atmel_spi *as)
498 {
499         struct dma_slave_config slave_config;
500         struct device *dev = &as->pdev->dev;
501         int err;
502
503         master->dma_tx = dma_request_chan(dev, "tx");
504         if (IS_ERR(master->dma_tx)) {
505                 err = PTR_ERR(master->dma_tx);
506                 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
507                 goto error_clear;
508         }
509
510         master->dma_rx = dma_request_chan(dev, "rx");
511         if (IS_ERR(master->dma_rx)) {
512                 err = PTR_ERR(master->dma_rx);
513                 /*
514                  * No reason to check EPROBE_DEFER here since we have already
515                  * requested tx channel.
516                  */
517                 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
518                 goto error;
519         }
520
521         err = atmel_spi_dma_slave_config(as, &slave_config, 8);
522         if (err)
523                 goto error;
524
525         dev_info(&as->pdev->dev,
526                         "Using %s (tx) and %s (rx) for DMA transfers\n",
527                         dma_chan_name(master->dma_tx),
528                         dma_chan_name(master->dma_rx));
529
530         return 0;
531 error:
532         if (!IS_ERR(master->dma_rx))
533                 dma_release_channel(master->dma_rx);
534         if (!IS_ERR(master->dma_tx))
535                 dma_release_channel(master->dma_tx);
536 error_clear:
537         master->dma_tx = master->dma_rx = NULL;
538         return err;
539 }
540
541 static void atmel_spi_stop_dma(struct spi_master *master)
542 {
543         if (master->dma_rx)
544                 dmaengine_terminate_all(master->dma_rx);
545         if (master->dma_tx)
546                 dmaengine_terminate_all(master->dma_tx);
547 }
548
549 static void atmel_spi_release_dma(struct spi_master *master)
550 {
551         if (master->dma_rx) {
552                 dma_release_channel(master->dma_rx);
553                 master->dma_rx = NULL;
554         }
555         if (master->dma_tx) {
556                 dma_release_channel(master->dma_tx);
557                 master->dma_tx = NULL;
558         }
559 }
560
561 /* This function is called by the DMA driver from tasklet context */
562 static void dma_callback(void *data)
563 {
564         struct spi_master       *master = data;
565         struct atmel_spi        *as = spi_master_get_devdata(master);
566
567         if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
568             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
569                 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
570                        as->current_transfer->len);
571         }
572         complete(&as->xfer_completion);
573 }
574
575 /*
576  * Next transfer using PIO without FIFO.
577  */
578 static void atmel_spi_next_xfer_single(struct spi_master *master,
579                                        struct spi_transfer *xfer)
580 {
581         struct atmel_spi        *as = spi_master_get_devdata(master);
582         unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
583
584         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
585
586         /* Make sure data is not remaining in RDR */
587         spi_readl(as, RDR);
588         while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
589                 spi_readl(as, RDR);
590                 cpu_relax();
591         }
592
593         if (xfer->bits_per_word > 8)
594                 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
595         else
596                 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
597
598         dev_dbg(master->dev.parent,
599                 "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
600                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
601                 xfer->bits_per_word);
602
603         /* Enable relevant interrupts */
604         spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
605 }
606
607 /*
608  * Next transfer using PIO with FIFO.
609  */
610 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
611                                      struct spi_transfer *xfer)
612 {
613         struct atmel_spi *as = spi_master_get_devdata(master);
614         u32 current_remaining_data, num_data;
615         u32 offset = xfer->len - as->current_remaining_bytes;
616         const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
617         const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
618         u16 td0, td1;
619         u32 fifomr;
620
621         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
622
623         /* Compute the number of data to transfer in the current iteration */
624         current_remaining_data = ((xfer->bits_per_word > 8) ?
625                                   ((u32)as->current_remaining_bytes >> 1) :
626                                   (u32)as->current_remaining_bytes);
627         num_data = min(current_remaining_data, as->fifo_size);
628
629         /* Flush RX and TX FIFOs */
630         spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
631         while (spi_readl(as, FLR))
632                 cpu_relax();
633
634         /* Set RX FIFO Threshold to the number of data to transfer */
635         fifomr = spi_readl(as, FMR);
636         spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
637
638         /* Clear FIFO flags in the Status Register, especially RXFTHF */
639         (void)spi_readl(as, SR);
640
641         /* Fill TX FIFO */
642         while (num_data >= 2) {
643                 if (xfer->bits_per_word > 8) {
644                         td0 = *words++;
645                         td1 = *words++;
646                 } else {
647                         td0 = *bytes++;
648                         td1 = *bytes++;
649                 }
650
651                 spi_writel(as, TDR, (td1 << 16) | td0);
652                 num_data -= 2;
653         }
654
655         if (num_data) {
656                 if (xfer->bits_per_word > 8)
657                         td0 = *words++;
658                 else
659                         td0 = *bytes++;
660
661                 spi_writew(as, TDR, td0);
662                 num_data--;
663         }
664
665         dev_dbg(master->dev.parent,
666                 "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
667                 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
668                 xfer->bits_per_word);
669
670         /*
671          * Enable RX FIFO Threshold Flag interrupt to be notified about
672          * transfer completion.
673          */
674         spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
675 }
676
677 /*
678  * Next transfer using PIO.
679  */
680 static void atmel_spi_next_xfer_pio(struct spi_master *master,
681                                     struct spi_transfer *xfer)
682 {
683         struct atmel_spi *as = spi_master_get_devdata(master);
684
685         if (as->fifo_size)
686                 atmel_spi_next_xfer_fifo(master, xfer);
687         else
688                 atmel_spi_next_xfer_single(master, xfer);
689 }
690
691 /*
692  * Submit next transfer for DMA.
693  */
694 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
695                                 struct spi_transfer *xfer,
696                                 u32 *plen)
697 {
698         struct atmel_spi        *as = spi_master_get_devdata(master);
699         struct dma_chan         *rxchan = master->dma_rx;
700         struct dma_chan         *txchan = master->dma_tx;
701         struct dma_async_tx_descriptor *rxdesc;
702         struct dma_async_tx_descriptor *txdesc;
703         struct dma_slave_config slave_config;
704         dma_cookie_t            cookie;
705
706         dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
707
708         /* Check that the channels are available */
709         if (!rxchan || !txchan)
710                 return -ENODEV;
711
712
713         *plen = xfer->len;
714
715         if (atmel_spi_dma_slave_config(as, &slave_config,
716                                        xfer->bits_per_word))
717                 goto err_exit;
718
719         /* Send both scatterlists */
720         if (atmel_spi_is_vmalloc_xfer(xfer) &&
721             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
722                 rxdesc = dmaengine_prep_slave_single(rxchan,
723                                                      as->dma_addr_rx_bbuf,
724                                                      xfer->len,
725                                                      DMA_DEV_TO_MEM,
726                                                      DMA_PREP_INTERRUPT |
727                                                      DMA_CTRL_ACK);
728         } else {
729                 rxdesc = dmaengine_prep_slave_sg(rxchan,
730                                                  xfer->rx_sg.sgl,
731                                                  xfer->rx_sg.nents,
732                                                  DMA_DEV_TO_MEM,
733                                                  DMA_PREP_INTERRUPT |
734                                                  DMA_CTRL_ACK);
735         }
736         if (!rxdesc)
737                 goto err_dma;
738
739         if (atmel_spi_is_vmalloc_xfer(xfer) &&
740             IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
741                 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
742                 txdesc = dmaengine_prep_slave_single(txchan,
743                                                      as->dma_addr_tx_bbuf,
744                                                      xfer->len, DMA_MEM_TO_DEV,
745                                                      DMA_PREP_INTERRUPT |
746                                                      DMA_CTRL_ACK);
747         } else {
748                 txdesc = dmaengine_prep_slave_sg(txchan,
749                                                  xfer->tx_sg.sgl,
750                                                  xfer->tx_sg.nents,
751                                                  DMA_MEM_TO_DEV,
752                                                  DMA_PREP_INTERRUPT |
753                                                  DMA_CTRL_ACK);
754         }
755         if (!txdesc)
756                 goto err_dma;
757
758         dev_dbg(master->dev.parent,
759                 "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
760                 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
761                 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
762
763         /* Enable relevant interrupts */
764         spi_writel(as, IER, SPI_BIT(OVRES));
765
766         /* Put the callback on the RX transfer only, that should finish last */
767         rxdesc->callback = dma_callback;
768         rxdesc->callback_param = master;
769
770         /* Submit and fire RX and TX with TX last so we're ready to read! */
771         cookie = rxdesc->tx_submit(rxdesc);
772         if (dma_submit_error(cookie))
773                 goto err_dma;
774         cookie = txdesc->tx_submit(txdesc);
775         if (dma_submit_error(cookie))
776                 goto err_dma;
777         rxchan->device->device_issue_pending(rxchan);
778         txchan->device->device_issue_pending(txchan);
779
780         return 0;
781
782 err_dma:
783         spi_writel(as, IDR, SPI_BIT(OVRES));
784         atmel_spi_stop_dma(master);
785 err_exit:
786         return -ENOMEM;
787 }
788
789 static void atmel_spi_next_xfer_data(struct spi_master *master,
790                                 struct spi_transfer *xfer,
791                                 dma_addr_t *tx_dma,
792                                 dma_addr_t *rx_dma,
793                                 u32 *plen)
794 {
795         *rx_dma = xfer->rx_dma + xfer->len - *plen;
796         *tx_dma = xfer->tx_dma + xfer->len - *plen;
797         if (*plen > master->max_dma_len)
798                 *plen = master->max_dma_len;
799 }
800
801 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
802                                     struct spi_device *spi,
803                                     struct spi_transfer *xfer)
804 {
805         u32                     scbr, csr;
806         unsigned long           bus_hz;
807         int chip_select;
808
809         if (spi->cs_gpiod)
810                 chip_select = as->native_cs_for_gpio;
811         else
812                 chip_select = spi->chip_select;
813
814         /* v1 chips start out at half the peripheral bus speed. */
815         bus_hz = as->spi_clk;
816         if (!atmel_spi_is_v2(as))
817                 bus_hz /= 2;
818
819         /*
820          * Calculate the lowest divider that satisfies the
821          * constraint, assuming div32/fdiv/mbz == 0.
822          */
823         scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
824
825         /*
826          * If the resulting divider doesn't fit into the
827          * register bitfield, we can't satisfy the constraint.
828          */
829         if (scbr >= (1 << SPI_SCBR_SIZE)) {
830                 dev_err(&spi->dev,
831                         "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
832                         xfer->speed_hz, scbr, bus_hz/255);
833                 return -EINVAL;
834         }
835         if (scbr == 0) {
836                 dev_err(&spi->dev,
837                         "setup: %d Hz too high, scbr %u; max %ld Hz\n",
838                         xfer->speed_hz, scbr, bus_hz);
839                 return -EINVAL;
840         }
841         csr = spi_readl(as, CSR0 + 4 * chip_select);
842         csr = SPI_BFINS(SCBR, scbr, csr);
843         spi_writel(as, CSR0 + 4 * chip_select, csr);
844         xfer->effective_speed_hz = bus_hz / scbr;
845
846         return 0;
847 }
848
849 /*
850  * Submit next transfer for PDC.
851  * lock is held, spi irq is blocked
852  */
853 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
854                                         struct spi_transfer *xfer)
855 {
856         struct atmel_spi        *as = spi_master_get_devdata(master);
857         u32                     len;
858         dma_addr_t              tx_dma, rx_dma;
859
860         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
861
862         len = as->current_remaining_bytes;
863         atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
864         as->current_remaining_bytes -= len;
865
866         spi_writel(as, RPR, rx_dma);
867         spi_writel(as, TPR, tx_dma);
868
869         if (xfer->bits_per_word > 8)
870                 len >>= 1;
871         spi_writel(as, RCR, len);
872         spi_writel(as, TCR, len);
873
874         dev_dbg(&master->dev,
875                 "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
876                 xfer, xfer->len, xfer->tx_buf,
877                 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
878                 (unsigned long long)xfer->rx_dma);
879
880         if (as->current_remaining_bytes) {
881                 len = as->current_remaining_bytes;
882                 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
883                 as->current_remaining_bytes -= len;
884
885                 spi_writel(as, RNPR, rx_dma);
886                 spi_writel(as, TNPR, tx_dma);
887
888                 if (xfer->bits_per_word > 8)
889                         len >>= 1;
890                 spi_writel(as, RNCR, len);
891                 spi_writel(as, TNCR, len);
892
893                 dev_dbg(&master->dev,
894                         "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
895                         xfer, xfer->len, xfer->tx_buf,
896                         (unsigned long long)xfer->tx_dma, xfer->rx_buf,
897                         (unsigned long long)xfer->rx_dma);
898         }
899
900         /* REVISIT: We're waiting for RXBUFF before we start the next
901          * transfer because we need to handle some difficult timing
902          * issues otherwise. If we wait for TXBUFE in one transfer and
903          * then starts waiting for RXBUFF in the next, it's difficult
904          * to tell the difference between the RXBUFF interrupt we're
905          * actually waiting for and the RXBUFF interrupt of the
906          * previous transfer.
907          *
908          * It should be doable, though. Just not now...
909          */
910         spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
911         spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
912 }
913
914 /*
915  * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
916  *  - The buffer is either valid for CPU access, else NULL
917  *  - If the buffer is valid, so is its DMA address
918  *
919  * This driver manages the dma address unless message->is_dma_mapped.
920  */
921 static int
922 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
923 {
924         struct device   *dev = &as->pdev->dev;
925
926         xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
927         if (xfer->tx_buf) {
928                 /* tx_buf is a const void* where we need a void * for the dma
929                  * mapping */
930                 void *nonconst_tx = (void *)xfer->tx_buf;
931
932                 xfer->tx_dma = dma_map_single(dev,
933                                 nonconst_tx, xfer->len,
934                                 DMA_TO_DEVICE);
935                 if (dma_mapping_error(dev, xfer->tx_dma))
936                         return -ENOMEM;
937         }
938         if (xfer->rx_buf) {
939                 xfer->rx_dma = dma_map_single(dev,
940                                 xfer->rx_buf, xfer->len,
941                                 DMA_FROM_DEVICE);
942                 if (dma_mapping_error(dev, xfer->rx_dma)) {
943                         if (xfer->tx_buf)
944                                 dma_unmap_single(dev,
945                                                 xfer->tx_dma, xfer->len,
946                                                 DMA_TO_DEVICE);
947                         return -ENOMEM;
948                 }
949         }
950         return 0;
951 }
952
953 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
954                                      struct spi_transfer *xfer)
955 {
956         if (xfer->tx_dma != INVALID_DMA_ADDRESS)
957                 dma_unmap_single(master->dev.parent, xfer->tx_dma,
958                                  xfer->len, DMA_TO_DEVICE);
959         if (xfer->rx_dma != INVALID_DMA_ADDRESS)
960                 dma_unmap_single(master->dev.parent, xfer->rx_dma,
961                                  xfer->len, DMA_FROM_DEVICE);
962 }
963
964 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
965 {
966         spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
967 }
968
969 static void
970 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
971 {
972         u8              *rxp;
973         u16             *rxp16;
974         unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
975
976         if (xfer->bits_per_word > 8) {
977                 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
978                 *rxp16 = spi_readl(as, RDR);
979         } else {
980                 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
981                 *rxp = spi_readl(as, RDR);
982         }
983         if (xfer->bits_per_word > 8) {
984                 if (as->current_remaining_bytes > 2)
985                         as->current_remaining_bytes -= 2;
986                 else
987                         as->current_remaining_bytes = 0;
988         } else {
989                 as->current_remaining_bytes--;
990         }
991 }
992
993 static void
994 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
995 {
996         u32 fifolr = spi_readl(as, FLR);
997         u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
998         u32 offset = xfer->len - as->current_remaining_bytes;
999         u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1000         u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1001         u16 rd; /* RD field is the lowest 16 bits of RDR */
1002
1003         /* Update the number of remaining bytes to transfer */
1004         num_bytes = ((xfer->bits_per_word > 8) ?
1005                      (num_data << 1) :
1006                      num_data);
1007
1008         if (as->current_remaining_bytes > num_bytes)
1009                 as->current_remaining_bytes -= num_bytes;
1010         else
1011                 as->current_remaining_bytes = 0;
1012
1013         /* Handle odd number of bytes when data are more than 8bit width */
1014         if (xfer->bits_per_word > 8)
1015                 as->current_remaining_bytes &= ~0x1;
1016
1017         /* Read data */
1018         while (num_data) {
1019                 rd = spi_readl(as, RDR);
1020                 if (xfer->bits_per_word > 8)
1021                         *words++ = rd;
1022                 else
1023                         *bytes++ = rd;
1024                 num_data--;
1025         }
1026 }
1027
1028 /* Called from IRQ
1029  *
1030  * Must update "current_remaining_bytes" to keep track of data
1031  * to transfer.
1032  */
1033 static void
1034 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1035 {
1036         if (as->fifo_size)
1037                 atmel_spi_pump_fifo_data(as, xfer);
1038         else
1039                 atmel_spi_pump_single_data(as, xfer);
1040 }
1041
1042 /* Interrupt
1043  *
1044  */
1045 static irqreturn_t
1046 atmel_spi_pio_interrupt(int irq, void *dev_id)
1047 {
1048         struct spi_master       *master = dev_id;
1049         struct atmel_spi        *as = spi_master_get_devdata(master);
1050         u32                     status, pending, imr;
1051         struct spi_transfer     *xfer;
1052         int                     ret = IRQ_NONE;
1053
1054         imr = spi_readl(as, IMR);
1055         status = spi_readl(as, SR);
1056         pending = status & imr;
1057
1058         if (pending & SPI_BIT(OVRES)) {
1059                 ret = IRQ_HANDLED;
1060                 spi_writel(as, IDR, SPI_BIT(OVRES));
1061                 dev_warn(master->dev.parent, "overrun\n");
1062
1063                 /*
1064                  * When we get an overrun, we disregard the current
1065                  * transfer. Data will not be copied back from any
1066                  * bounce buffer and msg->actual_len will not be
1067                  * updated with the last xfer.
1068                  *
1069                  * We will also not process any remaning transfers in
1070                  * the message.
1071                  */
1072                 as->done_status = -EIO;
1073                 smp_wmb();
1074
1075                 /* Clear any overrun happening while cleaning up */
1076                 spi_readl(as, SR);
1077
1078                 complete(&as->xfer_completion);
1079
1080         } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1081                 atmel_spi_lock(as);
1082
1083                 if (as->current_remaining_bytes) {
1084                         ret = IRQ_HANDLED;
1085                         xfer = as->current_transfer;
1086                         atmel_spi_pump_pio_data(as, xfer);
1087                         if (!as->current_remaining_bytes)
1088                                 spi_writel(as, IDR, pending);
1089
1090                         complete(&as->xfer_completion);
1091                 }
1092
1093                 atmel_spi_unlock(as);
1094         } else {
1095                 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1096                 ret = IRQ_HANDLED;
1097                 spi_writel(as, IDR, pending);
1098         }
1099
1100         return ret;
1101 }
1102
1103 static irqreturn_t
1104 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1105 {
1106         struct spi_master       *master = dev_id;
1107         struct atmel_spi        *as = spi_master_get_devdata(master);
1108         u32                     status, pending, imr;
1109         int                     ret = IRQ_NONE;
1110
1111         imr = spi_readl(as, IMR);
1112         status = spi_readl(as, SR);
1113         pending = status & imr;
1114
1115         if (pending & SPI_BIT(OVRES)) {
1116
1117                 ret = IRQ_HANDLED;
1118
1119                 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1120                                      | SPI_BIT(OVRES)));
1121
1122                 /* Clear any overrun happening while cleaning up */
1123                 spi_readl(as, SR);
1124
1125                 as->done_status = -EIO;
1126
1127                 complete(&as->xfer_completion);
1128
1129         } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1130                 ret = IRQ_HANDLED;
1131
1132                 spi_writel(as, IDR, pending);
1133
1134                 complete(&as->xfer_completion);
1135         }
1136
1137         return ret;
1138 }
1139
1140 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1141 {
1142         struct spi_delay *delay = &spi->word_delay;
1143         u32 value = delay->value;
1144
1145         switch (delay->unit) {
1146         case SPI_DELAY_UNIT_NSECS:
1147                 value /= 1000;
1148                 break;
1149         case SPI_DELAY_UNIT_USECS:
1150                 break;
1151         default:
1152                 return -EINVAL;
1153         }
1154
1155         return (as->spi_clk / 1000000 * value) >> 5;
1156 }
1157
1158 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1159 {
1160         int i;
1161         struct spi_master *master = platform_get_drvdata(as->pdev);
1162
1163         if (!as->native_cs_free)
1164                 return; /* already initialized */
1165
1166         if (!master->cs_gpiods)
1167                 return; /* No CS GPIO */
1168
1169         /*
1170          * On the first version of the controller (AT91RM9200), CS0
1171          * can't be used associated with GPIO
1172          */
1173         if (atmel_spi_is_v2(as))
1174                 i = 0;
1175         else
1176                 i = 1;
1177
1178         for (; i < 4; i++)
1179                 if (master->cs_gpiods[i])
1180                         as->native_cs_free |= BIT(i);
1181
1182         if (as->native_cs_free)
1183                 as->native_cs_for_gpio = ffs(as->native_cs_free);
1184 }
1185
1186 static int atmel_spi_setup(struct spi_device *spi)
1187 {
1188         struct atmel_spi        *as;
1189         struct atmel_spi_device *asd;
1190         u32                     csr;
1191         unsigned int            bits = spi->bits_per_word;
1192         int chip_select;
1193         int                     word_delay_csr;
1194
1195         as = spi_master_get_devdata(spi->master);
1196
1197         /* see notes above re chipselect */
1198         if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1199                 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1200                 return -EINVAL;
1201         }
1202
1203         /* Setup() is called during spi_register_controller(aka
1204          * spi_register_master) but after all membmers of the cs_gpiod
1205          * array have been filled, so we can looked for which native
1206          * CS will be free for using with GPIO
1207          */
1208         initialize_native_cs_for_gpio(as);
1209
1210         if (spi->cs_gpiod && as->native_cs_free) {
1211                 dev_err(&spi->dev,
1212                         "No native CS available to support this GPIO CS\n");
1213                 return -EBUSY;
1214         }
1215
1216         if (spi->cs_gpiod)
1217                 chip_select = as->native_cs_for_gpio;
1218         else
1219                 chip_select = spi->chip_select;
1220
1221         csr = SPI_BF(BITS, bits - 8);
1222         if (spi->mode & SPI_CPOL)
1223                 csr |= SPI_BIT(CPOL);
1224         if (!(spi->mode & SPI_CPHA))
1225                 csr |= SPI_BIT(NCPHA);
1226
1227         if (!spi->cs_gpiod)
1228                 csr |= SPI_BIT(CSAAT);
1229         csr |= SPI_BF(DLYBS, 0);
1230
1231         word_delay_csr = atmel_word_delay_csr(spi, as);
1232         if (word_delay_csr < 0)
1233                 return word_delay_csr;
1234
1235         /* DLYBCT adds delays between words.  This is useful for slow devices
1236          * that need a bit of time to setup the next transfer.
1237          */
1238         csr |= SPI_BF(DLYBCT, word_delay_csr);
1239
1240         asd = spi->controller_state;
1241         if (!asd) {
1242                 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1243                 if (!asd)
1244                         return -ENOMEM;
1245
1246                 spi->controller_state = asd;
1247         }
1248
1249         asd->csr = csr;
1250
1251         dev_dbg(&spi->dev,
1252                 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1253                 bits, spi->mode, spi->chip_select, csr);
1254
1255         if (!atmel_spi_is_v2(as))
1256                 spi_writel(as, CSR0 + 4 * chip_select, csr);
1257
1258         return 0;
1259 }
1260
1261 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1262 {
1263         struct atmel_spi *as = spi_master_get_devdata(spi->master);
1264         /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1265          * since we already have routines for activate/deactivate translate
1266          * high/low to active/inactive
1267          */
1268         enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1269
1270         if (enable) {
1271                 cs_activate(as, spi);
1272         } else {
1273                 cs_deactivate(as, spi);
1274         }
1275
1276 }
1277
1278 static int atmel_spi_one_transfer(struct spi_master *master,
1279                                         struct spi_device *spi,
1280                                         struct spi_transfer *xfer)
1281 {
1282         struct atmel_spi        *as;
1283         u8                      bits;
1284         u32                     len;
1285         struct atmel_spi_device *asd;
1286         int                     timeout;
1287         int                     ret;
1288         unsigned long           dma_timeout;
1289
1290         as = spi_master_get_devdata(master);
1291
1292         asd = spi->controller_state;
1293         bits = (asd->csr >> 4) & 0xf;
1294         if (bits != xfer->bits_per_word - 8) {
1295                 dev_dbg(&spi->dev,
1296                         "you can't yet change bits_per_word in transfers\n");
1297                 return -ENOPROTOOPT;
1298         }
1299
1300         /*
1301          * DMA map early, for performance (empties dcache ASAP) and
1302          * better fault reporting.
1303          */
1304         if ((!master->cur_msg_mapped)
1305                 && as->use_pdc) {
1306                 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1307                         return -ENOMEM;
1308         }
1309
1310         atmel_spi_set_xfer_speed(as, spi, xfer);
1311
1312         as->done_status = 0;
1313         as->current_transfer = xfer;
1314         as->current_remaining_bytes = xfer->len;
1315         while (as->current_remaining_bytes) {
1316                 reinit_completion(&as->xfer_completion);
1317
1318                 if (as->use_pdc) {
1319                         atmel_spi_lock(as);
1320                         atmel_spi_pdc_next_xfer(master, xfer);
1321                         atmel_spi_unlock(as);
1322                 } else if (atmel_spi_use_dma(as, xfer)) {
1323                         len = as->current_remaining_bytes;
1324                         ret = atmel_spi_next_xfer_dma_submit(master,
1325                                                                 xfer, &len);
1326                         if (ret) {
1327                                 dev_err(&spi->dev,
1328                                         "unable to use DMA, fallback to PIO\n");
1329                                 as->done_status = ret;
1330                                 break;
1331                         } else {
1332                                 as->current_remaining_bytes -= len;
1333                                 if (as->current_remaining_bytes < 0)
1334                                         as->current_remaining_bytes = 0;
1335                         }
1336                 } else {
1337                         atmel_spi_lock(as);
1338                         atmel_spi_next_xfer_pio(master, xfer);
1339                         atmel_spi_unlock(as);
1340                 }
1341
1342                 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1343                                                           SPI_DMA_TIMEOUT);
1344                 if (WARN_ON(dma_timeout == 0)) {
1345                         dev_err(&spi->dev, "spi transfer timeout\n");
1346                         as->done_status = -EIO;
1347                 }
1348
1349                 if (as->done_status)
1350                         break;
1351         }
1352
1353         if (as->done_status) {
1354                 if (as->use_pdc) {
1355                         dev_warn(master->dev.parent,
1356                                 "overrun (%u/%u remaining)\n",
1357                                 spi_readl(as, TCR), spi_readl(as, RCR));
1358
1359                         /*
1360                          * Clean up DMA registers and make sure the data
1361                          * registers are empty.
1362                          */
1363                         spi_writel(as, RNCR, 0);
1364                         spi_writel(as, TNCR, 0);
1365                         spi_writel(as, RCR, 0);
1366                         spi_writel(as, TCR, 0);
1367                         for (timeout = 1000; timeout; timeout--)
1368                                 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1369                                         break;
1370                         if (!timeout)
1371                                 dev_warn(master->dev.parent,
1372                                          "timeout waiting for TXEMPTY");
1373                         while (spi_readl(as, SR) & SPI_BIT(RDRF))
1374                                 spi_readl(as, RDR);
1375
1376                         /* Clear any overrun happening while cleaning up */
1377                         spi_readl(as, SR);
1378
1379                 } else if (atmel_spi_use_dma(as, xfer)) {
1380                         atmel_spi_stop_dma(master);
1381                 }
1382         }
1383
1384         if (!master->cur_msg_mapped
1385                 && as->use_pdc)
1386                 atmel_spi_dma_unmap_xfer(master, xfer);
1387
1388         if (as->use_pdc)
1389                 atmel_spi_disable_pdc_transfer(as);
1390
1391         return as->done_status;
1392 }
1393
1394 static void atmel_spi_cleanup(struct spi_device *spi)
1395 {
1396         struct atmel_spi_device *asd = spi->controller_state;
1397
1398         if (!asd)
1399                 return;
1400
1401         spi->controller_state = NULL;
1402         kfree(asd);
1403 }
1404
1405 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1406 {
1407         return spi_readl(as, VERSION) & 0x00000fff;
1408 }
1409
1410 static void atmel_get_caps(struct atmel_spi *as)
1411 {
1412         unsigned int version;
1413
1414         version = atmel_get_version(as);
1415
1416         as->caps.is_spi2 = version > 0x121;
1417         as->caps.has_wdrbt = version >= 0x210;
1418         as->caps.has_dma_support = version >= 0x212;
1419         as->caps.has_pdc_support = version < 0x212;
1420 }
1421
1422 static void atmel_spi_init(struct atmel_spi *as)
1423 {
1424         spi_writel(as, CR, SPI_BIT(SWRST));
1425         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1426
1427         /* It is recommended to enable FIFOs first thing after reset */
1428         if (as->fifo_size)
1429                 spi_writel(as, CR, SPI_BIT(FIFOEN));
1430
1431         if (as->caps.has_wdrbt) {
1432                 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1433                                 | SPI_BIT(MSTR));
1434         } else {
1435                 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1436         }
1437
1438         if (as->use_pdc)
1439                 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1440         spi_writel(as, CR, SPI_BIT(SPIEN));
1441 }
1442
1443 static int atmel_spi_probe(struct platform_device *pdev)
1444 {
1445         struct resource         *regs;
1446         int                     irq;
1447         struct clk              *clk;
1448         int                     ret;
1449         struct spi_master       *master;
1450         struct atmel_spi        *as;
1451
1452         /* Select default pin state */
1453         pinctrl_pm_select_default_state(&pdev->dev);
1454
1455         regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1456         if (!regs)
1457                 return -ENXIO;
1458
1459         irq = platform_get_irq(pdev, 0);
1460         if (irq < 0)
1461                 return irq;
1462
1463         clk = devm_clk_get(&pdev->dev, "spi_clk");
1464         if (IS_ERR(clk))
1465                 return PTR_ERR(clk);
1466
1467         /* setup spi core then atmel-specific driver state */
1468         master = spi_alloc_master(&pdev->dev, sizeof(*as));
1469         if (!master)
1470                 return -ENOMEM;
1471
1472         /* the spi->mode bits understood by this driver: */
1473         master->use_gpio_descriptors = true;
1474         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1475         master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1476         master->dev.of_node = pdev->dev.of_node;
1477         master->bus_num = pdev->id;
1478         master->num_chipselect = 4;
1479         master->setup = atmel_spi_setup;
1480         master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1481                         SPI_MASTER_GPIO_SS);
1482         master->transfer_one = atmel_spi_one_transfer;
1483         master->set_cs = atmel_spi_set_cs;
1484         master->cleanup = atmel_spi_cleanup;
1485         master->auto_runtime_pm = true;
1486         master->max_dma_len = SPI_MAX_DMA_XFER;
1487         master->can_dma = atmel_spi_can_dma;
1488         platform_set_drvdata(pdev, master);
1489
1490         as = spi_master_get_devdata(master);
1491
1492         spin_lock_init(&as->lock);
1493
1494         as->pdev = pdev;
1495         as->regs = devm_ioremap_resource(&pdev->dev, regs);
1496         if (IS_ERR(as->regs)) {
1497                 ret = PTR_ERR(as->regs);
1498                 goto out_unmap_regs;
1499         }
1500         as->phybase = regs->start;
1501         as->irq = irq;
1502         as->clk = clk;
1503
1504         init_completion(&as->xfer_completion);
1505
1506         atmel_get_caps(as);
1507
1508         as->use_dma = false;
1509         as->use_pdc = false;
1510         if (as->caps.has_dma_support) {
1511                 ret = atmel_spi_configure_dma(master, as);
1512                 if (ret == 0) {
1513                         as->use_dma = true;
1514                 } else if (ret == -EPROBE_DEFER) {
1515                         goto out_unmap_regs;
1516                 }
1517         } else if (as->caps.has_pdc_support) {
1518                 as->use_pdc = true;
1519         }
1520
1521         if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1522                 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1523                                                       SPI_MAX_DMA_XFER,
1524                                                       &as->dma_addr_rx_bbuf,
1525                                                       GFP_KERNEL | GFP_DMA);
1526                 if (!as->addr_rx_bbuf) {
1527                         as->use_dma = false;
1528                 } else {
1529                         as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1530                                         SPI_MAX_DMA_XFER,
1531                                         &as->dma_addr_tx_bbuf,
1532                                         GFP_KERNEL | GFP_DMA);
1533                         if (!as->addr_tx_bbuf) {
1534                                 as->use_dma = false;
1535                                 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1536                                                   as->addr_rx_bbuf,
1537                                                   as->dma_addr_rx_bbuf);
1538                         }
1539                 }
1540                 if (!as->use_dma)
1541                         dev_info(master->dev.parent,
1542                                  "  can not allocate dma coherent memory\n");
1543         }
1544
1545         if (as->caps.has_dma_support && !as->use_dma)
1546                 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1547
1548         if (as->use_pdc) {
1549                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1550                                         0, dev_name(&pdev->dev), master);
1551         } else {
1552                 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1553                                         0, dev_name(&pdev->dev), master);
1554         }
1555         if (ret)
1556                 goto out_unmap_regs;
1557
1558         /* Initialize the hardware */
1559         ret = clk_prepare_enable(clk);
1560         if (ret)
1561                 goto out_free_irq;
1562
1563         as->spi_clk = clk_get_rate(clk);
1564
1565         as->fifo_size = 0;
1566         if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1567                                   &as->fifo_size)) {
1568                 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1569         }
1570
1571         atmel_spi_init(as);
1572
1573         pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1574         pm_runtime_use_autosuspend(&pdev->dev);
1575         pm_runtime_set_active(&pdev->dev);
1576         pm_runtime_enable(&pdev->dev);
1577
1578         ret = devm_spi_register_master(&pdev->dev, master);
1579         if (ret)
1580                 goto out_free_dma;
1581
1582         /* go! */
1583         dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1584                         atmel_get_version(as), (unsigned long)regs->start,
1585                         irq);
1586
1587         return 0;
1588
1589 out_free_dma:
1590         pm_runtime_disable(&pdev->dev);
1591         pm_runtime_set_suspended(&pdev->dev);
1592
1593         if (as->use_dma)
1594                 atmel_spi_release_dma(master);
1595
1596         spi_writel(as, CR, SPI_BIT(SWRST));
1597         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1598         clk_disable_unprepare(clk);
1599 out_free_irq:
1600 out_unmap_regs:
1601         spi_master_put(master);
1602         return ret;
1603 }
1604
1605 static int atmel_spi_remove(struct platform_device *pdev)
1606 {
1607         struct spi_master       *master = platform_get_drvdata(pdev);
1608         struct atmel_spi        *as = spi_master_get_devdata(master);
1609
1610         pm_runtime_get_sync(&pdev->dev);
1611
1612         /* reset the hardware and block queue progress */
1613         if (as->use_dma) {
1614                 atmel_spi_stop_dma(master);
1615                 atmel_spi_release_dma(master);
1616                 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1617                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1618                                           as->addr_tx_bbuf,
1619                                           as->dma_addr_tx_bbuf);
1620                         dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1621                                           as->addr_rx_bbuf,
1622                                           as->dma_addr_rx_bbuf);
1623                 }
1624         }
1625
1626         spin_lock_irq(&as->lock);
1627         spi_writel(as, CR, SPI_BIT(SWRST));
1628         spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1629         spi_readl(as, SR);
1630         spin_unlock_irq(&as->lock);
1631
1632         clk_disable_unprepare(as->clk);
1633
1634         pm_runtime_put_noidle(&pdev->dev);
1635         pm_runtime_disable(&pdev->dev);
1636
1637         return 0;
1638 }
1639
1640 #ifdef CONFIG_PM
1641 static int atmel_spi_runtime_suspend(struct device *dev)
1642 {
1643         struct spi_master *master = dev_get_drvdata(dev);
1644         struct atmel_spi *as = spi_master_get_devdata(master);
1645
1646         clk_disable_unprepare(as->clk);
1647         pinctrl_pm_select_sleep_state(dev);
1648
1649         return 0;
1650 }
1651
1652 static int atmel_spi_runtime_resume(struct device *dev)
1653 {
1654         struct spi_master *master = dev_get_drvdata(dev);
1655         struct atmel_spi *as = spi_master_get_devdata(master);
1656
1657         pinctrl_pm_select_default_state(dev);
1658
1659         return clk_prepare_enable(as->clk);
1660 }
1661
1662 #ifdef CONFIG_PM_SLEEP
1663 static int atmel_spi_suspend(struct device *dev)
1664 {
1665         struct spi_master *master = dev_get_drvdata(dev);
1666         int ret;
1667
1668         /* Stop the queue running */
1669         ret = spi_master_suspend(master);
1670         if (ret)
1671                 return ret;
1672
1673         if (!pm_runtime_suspended(dev))
1674                 atmel_spi_runtime_suspend(dev);
1675
1676         return 0;
1677 }
1678
1679 static int atmel_spi_resume(struct device *dev)
1680 {
1681         struct spi_master *master = dev_get_drvdata(dev);
1682         struct atmel_spi *as = spi_master_get_devdata(master);
1683         int ret;
1684
1685         ret = clk_prepare_enable(as->clk);
1686         if (ret)
1687                 return ret;
1688
1689         atmel_spi_init(as);
1690
1691         clk_disable_unprepare(as->clk);
1692
1693         if (!pm_runtime_suspended(dev)) {
1694                 ret = atmel_spi_runtime_resume(dev);
1695                 if (ret)
1696                         return ret;
1697         }
1698
1699         /* Start the queue running */
1700         return spi_master_resume(master);
1701 }
1702 #endif
1703
1704 static const struct dev_pm_ops atmel_spi_pm_ops = {
1705         SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1706         SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1707                            atmel_spi_runtime_resume, NULL)
1708 };
1709 #define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1710 #else
1711 #define ATMEL_SPI_PM_OPS        NULL
1712 #endif
1713
1714 static const struct of_device_id atmel_spi_dt_ids[] = {
1715         { .compatible = "atmel,at91rm9200-spi" },
1716         { /* sentinel */ }
1717 };
1718
1719 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1720
1721 static struct platform_driver atmel_spi_driver = {
1722         .driver         = {
1723                 .name   = "atmel_spi",
1724                 .pm     = ATMEL_SPI_PM_OPS,
1725                 .of_match_table = atmel_spi_dt_ids,
1726         },
1727         .probe          = atmel_spi_probe,
1728         .remove         = atmel_spi_remove,
1729 };
1730 module_platform_driver(atmel_spi_driver);
1731
1732 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1733 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1734 MODULE_LICENSE("GPL");
1735 MODULE_ALIAS("platform:atmel_spi");