tools headers UAPI: Sync linux/prctl.h with the kernel sources
[linux-2.6-microblaze.git] / drivers / soundwire / bus.c
1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include "bus.h"
11 #include "sysfs_local.h"
12
13 static DEFINE_IDA(sdw_ida);
14
15 static int sdw_get_id(struct sdw_bus *bus)
16 {
17         int rc = ida_alloc(&sdw_ida, GFP_KERNEL);
18
19         if (rc < 0)
20                 return rc;
21
22         bus->id = rc;
23         return 0;
24 }
25
26 /**
27  * sdw_bus_master_add() - add a bus Master instance
28  * @bus: bus instance
29  * @parent: parent device
30  * @fwnode: firmware node handle
31  *
32  * Initializes the bus instance, read properties and create child
33  * devices.
34  */
35 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
36                        struct fwnode_handle *fwnode)
37 {
38         struct sdw_master_prop *prop = NULL;
39         int ret;
40
41         if (!parent) {
42                 pr_err("SoundWire parent device is not set\n");
43                 return -ENODEV;
44         }
45
46         ret = sdw_get_id(bus);
47         if (ret < 0) {
48                 dev_err(parent, "Failed to get bus id\n");
49                 return ret;
50         }
51
52         ret = sdw_master_device_add(bus, parent, fwnode);
53         if (ret < 0) {
54                 dev_err(parent, "Failed to add master device at link %d\n",
55                         bus->link_id);
56                 return ret;
57         }
58
59         if (!bus->ops) {
60                 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
61                 return -EINVAL;
62         }
63
64         if (!bus->compute_params) {
65                 dev_err(bus->dev,
66                         "Bandwidth allocation not configured, compute_params no set\n");
67                 return -EINVAL;
68         }
69
70         mutex_init(&bus->msg_lock);
71         mutex_init(&bus->bus_lock);
72         INIT_LIST_HEAD(&bus->slaves);
73         INIT_LIST_HEAD(&bus->m_rt_list);
74
75         /*
76          * Initialize multi_link flag
77          * TODO: populate this flag by reading property from FW node
78          */
79         bus->multi_link = false;
80         if (bus->ops->read_prop) {
81                 ret = bus->ops->read_prop(bus);
82                 if (ret < 0) {
83                         dev_err(bus->dev,
84                                 "Bus read properties failed:%d\n", ret);
85                         return ret;
86                 }
87         }
88
89         sdw_bus_debugfs_init(bus);
90
91         /*
92          * Device numbers in SoundWire are 0 through 15. Enumeration device
93          * number (0), Broadcast device number (15), Group numbers (12 and
94          * 13) and Master device number (14) are not used for assignment so
95          * mask these and other higher bits.
96          */
97
98         /* Set higher order bits */
99         *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
100
101         /* Set enumuration device number and broadcast device number */
102         set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
103         set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
104
105         /* Set group device numbers and master device number */
106         set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
107         set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
108         set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
109
110         /*
111          * SDW is an enumerable bus, but devices can be powered off. So,
112          * they won't be able to report as present.
113          *
114          * Create Slave devices based on Slaves described in
115          * the respective firmware (ACPI/DT)
116          */
117         if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
118                 ret = sdw_acpi_find_slaves(bus);
119         else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
120                 ret = sdw_of_find_slaves(bus);
121         else
122                 ret = -ENOTSUPP; /* No ACPI/DT so error out */
123
124         if (ret < 0) {
125                 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
126                 return ret;
127         }
128
129         /*
130          * Initialize clock values based on Master properties. The max
131          * frequency is read from max_clk_freq property. Current assumption
132          * is that the bus will start at highest clock frequency when
133          * powered on.
134          *
135          * Default active bank will be 0 as out of reset the Slaves have
136          * to start with bank 0 (Table 40 of Spec)
137          */
138         prop = &bus->prop;
139         bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
140         bus->params.curr_dr_freq = bus->params.max_dr_freq;
141         bus->params.curr_bank = SDW_BANK0;
142         bus->params.next_bank = SDW_BANK1;
143
144         return 0;
145 }
146 EXPORT_SYMBOL(sdw_bus_master_add);
147
148 static int sdw_delete_slave(struct device *dev, void *data)
149 {
150         struct sdw_slave *slave = dev_to_sdw_dev(dev);
151         struct sdw_bus *bus = slave->bus;
152
153         pm_runtime_disable(dev);
154
155         sdw_slave_debugfs_exit(slave);
156
157         mutex_lock(&bus->bus_lock);
158
159         if (slave->dev_num) /* clear dev_num if assigned */
160                 clear_bit(slave->dev_num, bus->assigned);
161
162         list_del_init(&slave->node);
163         mutex_unlock(&bus->bus_lock);
164
165         device_unregister(dev);
166         return 0;
167 }
168
169 /**
170  * sdw_bus_master_delete() - delete the bus master instance
171  * @bus: bus to be deleted
172  *
173  * Remove the instance, delete the child devices.
174  */
175 void sdw_bus_master_delete(struct sdw_bus *bus)
176 {
177         device_for_each_child(bus->dev, NULL, sdw_delete_slave);
178         sdw_master_device_del(bus);
179
180         sdw_bus_debugfs_exit(bus);
181         ida_free(&sdw_ida, bus->id);
182 }
183 EXPORT_SYMBOL(sdw_bus_master_delete);
184
185 /*
186  * SDW IO Calls
187  */
188
189 static inline int find_response_code(enum sdw_command_response resp)
190 {
191         switch (resp) {
192         case SDW_CMD_OK:
193                 return 0;
194
195         case SDW_CMD_IGNORED:
196                 return -ENODATA;
197
198         case SDW_CMD_TIMEOUT:
199                 return -ETIMEDOUT;
200
201         default:
202                 return -EIO;
203         }
204 }
205
206 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
207 {
208         int retry = bus->prop.err_threshold;
209         enum sdw_command_response resp;
210         int ret = 0, i;
211
212         for (i = 0; i <= retry; i++) {
213                 resp = bus->ops->xfer_msg(bus, msg);
214                 ret = find_response_code(resp);
215
216                 /* if cmd is ok or ignored return */
217                 if (ret == 0 || ret == -ENODATA)
218                         return ret;
219         }
220
221         return ret;
222 }
223
224 static inline int do_transfer_defer(struct sdw_bus *bus,
225                                     struct sdw_msg *msg,
226                                     struct sdw_defer *defer)
227 {
228         int retry = bus->prop.err_threshold;
229         enum sdw_command_response resp;
230         int ret = 0, i;
231
232         defer->msg = msg;
233         defer->length = msg->len;
234         init_completion(&defer->complete);
235
236         for (i = 0; i <= retry; i++) {
237                 resp = bus->ops->xfer_msg_defer(bus, msg, defer);
238                 ret = find_response_code(resp);
239                 /* if cmd is ok or ignored return */
240                 if (ret == 0 || ret == -ENODATA)
241                         return ret;
242         }
243
244         return ret;
245 }
246
247 static int sdw_reset_page(struct sdw_bus *bus, u16 dev_num)
248 {
249         int retry = bus->prop.err_threshold;
250         enum sdw_command_response resp;
251         int ret = 0, i;
252
253         for (i = 0; i <= retry; i++) {
254                 resp = bus->ops->reset_page_addr(bus, dev_num);
255                 ret = find_response_code(resp);
256                 /* if cmd is ok or ignored return */
257                 if (ret == 0 || ret == -ENODATA)
258                         return ret;
259         }
260
261         return ret;
262 }
263
264 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
265 {
266         int ret;
267
268         ret = do_transfer(bus, msg);
269         if (ret != 0 && ret != -ENODATA)
270                 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
271                         msg->dev_num, ret,
272                         (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
273                         msg->addr, msg->len);
274
275         if (msg->page)
276                 sdw_reset_page(bus, msg->dev_num);
277
278         return ret;
279 }
280
281 /**
282  * sdw_transfer() - Synchronous transfer message to a SDW Slave device
283  * @bus: SDW bus
284  * @msg: SDW message to be xfered
285  */
286 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
287 {
288         int ret;
289
290         mutex_lock(&bus->msg_lock);
291
292         ret = sdw_transfer_unlocked(bus, msg);
293
294         mutex_unlock(&bus->msg_lock);
295
296         return ret;
297 }
298
299 /**
300  * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
301  * @bus: SDW bus
302  * @msg: SDW message to be xfered
303  * @defer: Defer block for signal completion
304  *
305  * Caller needs to hold the msg_lock lock while calling this
306  */
307 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg,
308                        struct sdw_defer *defer)
309 {
310         int ret;
311
312         if (!bus->ops->xfer_msg_defer)
313                 return -ENOTSUPP;
314
315         ret = do_transfer_defer(bus, msg, defer);
316         if (ret != 0 && ret != -ENODATA)
317                 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
318                         msg->dev_num, ret);
319
320         if (msg->page)
321                 sdw_reset_page(bus, msg->dev_num);
322
323         return ret;
324 }
325
326 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
327                  u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
328 {
329         memset(msg, 0, sizeof(*msg));
330         msg->addr = addr; /* addr is 16 bit and truncated here */
331         msg->len = count;
332         msg->dev_num = dev_num;
333         msg->flags = flags;
334         msg->buf = buf;
335
336         if (addr < SDW_REG_NO_PAGE) /* no paging area */
337                 return 0;
338
339         if (addr >= SDW_REG_MAX) { /* illegal addr */
340                 pr_err("SDW: Invalid address %x passed\n", addr);
341                 return -EINVAL;
342         }
343
344         if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
345                 if (slave && !slave->prop.paging_support)
346                         return 0;
347                 /* no need for else as that will fall-through to paging */
348         }
349
350         /* paging mandatory */
351         if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
352                 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
353                 return -EINVAL;
354         }
355
356         if (!slave) {
357                 pr_err("SDW: No slave for paging addr\n");
358                 return -EINVAL;
359         }
360
361         if (!slave->prop.paging_support) {
362                 dev_err(&slave->dev,
363                         "address %x needs paging but no support\n", addr);
364                 return -EINVAL;
365         }
366
367         msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
368         msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
369         msg->addr |= BIT(15);
370         msg->page = true;
371
372         return 0;
373 }
374
375 /*
376  * Read/Write IO functions.
377  * no_pm versions can only be called by the bus, e.g. while enumerating or
378  * handling suspend-resume sequences.
379  * all clients need to use the pm versions
380  */
381
382 static int
383 sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
384 {
385         struct sdw_msg msg;
386         int ret;
387
388         ret = sdw_fill_msg(&msg, slave, addr, count,
389                            slave->dev_num, SDW_MSG_FLAG_READ, val);
390         if (ret < 0)
391                 return ret;
392
393         return sdw_transfer(slave->bus, &msg);
394 }
395
396 static int
397 sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
398 {
399         struct sdw_msg msg;
400         int ret;
401
402         ret = sdw_fill_msg(&msg, slave, addr, count,
403                            slave->dev_num, SDW_MSG_FLAG_WRITE, val);
404         if (ret < 0)
405                 return ret;
406
407         return sdw_transfer(slave->bus, &msg);
408 }
409
410 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
411 {
412         return sdw_nwrite_no_pm(slave, addr, 1, &value);
413 }
414 EXPORT_SYMBOL(sdw_write_no_pm);
415
416 static int
417 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
418 {
419         struct sdw_msg msg;
420         u8 buf;
421         int ret;
422
423         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
424                            SDW_MSG_FLAG_READ, &buf);
425         if (ret < 0)
426                 return ret;
427
428         ret = sdw_transfer(bus, &msg);
429         if (ret < 0)
430                 return ret;
431
432         return buf;
433 }
434
435 static int
436 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
437 {
438         struct sdw_msg msg;
439         int ret;
440
441         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
442                            SDW_MSG_FLAG_WRITE, &value);
443         if (ret < 0)
444                 return ret;
445
446         return sdw_transfer(bus, &msg);
447 }
448
449 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
450 {
451         struct sdw_msg msg;
452         u8 buf;
453         int ret;
454
455         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
456                            SDW_MSG_FLAG_READ, &buf);
457         if (ret < 0)
458                 return ret;
459
460         ret = sdw_transfer_unlocked(bus, &msg);
461         if (ret < 0)
462                 return ret;
463
464         return buf;
465 }
466 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
467
468 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
469 {
470         struct sdw_msg msg;
471         int ret;
472
473         ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
474                            SDW_MSG_FLAG_WRITE, &value);
475         if (ret < 0)
476                 return ret;
477
478         return sdw_transfer_unlocked(bus, &msg);
479 }
480 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
481
482 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
483 {
484         u8 buf;
485         int ret;
486
487         ret = sdw_nread_no_pm(slave, addr, 1, &buf);
488         if (ret < 0)
489                 return ret;
490         else
491                 return buf;
492 }
493 EXPORT_SYMBOL(sdw_read_no_pm);
494
495 static int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
496 {
497         int tmp;
498
499         tmp = sdw_read_no_pm(slave, addr);
500         if (tmp < 0)
501                 return tmp;
502
503         tmp = (tmp & ~mask) | val;
504         return sdw_write_no_pm(slave, addr, tmp);
505 }
506
507 /**
508  * sdw_nread() - Read "n" contiguous SDW Slave registers
509  * @slave: SDW Slave
510  * @addr: Register address
511  * @count: length
512  * @val: Buffer for values to be read
513  */
514 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
515 {
516         int ret;
517
518         ret = pm_runtime_get_sync(&slave->dev);
519         if (ret < 0 && ret != -EACCES) {
520                 pm_runtime_put_noidle(&slave->dev);
521                 return ret;
522         }
523
524         ret = sdw_nread_no_pm(slave, addr, count, val);
525
526         pm_runtime_mark_last_busy(&slave->dev);
527         pm_runtime_put(&slave->dev);
528
529         return ret;
530 }
531 EXPORT_SYMBOL(sdw_nread);
532
533 /**
534  * sdw_nwrite() - Write "n" contiguous SDW Slave registers
535  * @slave: SDW Slave
536  * @addr: Register address
537  * @count: length
538  * @val: Buffer for values to be read
539  */
540 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
541 {
542         int ret;
543
544         ret = pm_runtime_get_sync(&slave->dev);
545         if (ret < 0 && ret != -EACCES) {
546                 pm_runtime_put_noidle(&slave->dev);
547                 return ret;
548         }
549
550         ret = sdw_nwrite_no_pm(slave, addr, count, val);
551
552         pm_runtime_mark_last_busy(&slave->dev);
553         pm_runtime_put(&slave->dev);
554
555         return ret;
556 }
557 EXPORT_SYMBOL(sdw_nwrite);
558
559 /**
560  * sdw_read() - Read a SDW Slave register
561  * @slave: SDW Slave
562  * @addr: Register address
563  */
564 int sdw_read(struct sdw_slave *slave, u32 addr)
565 {
566         u8 buf;
567         int ret;
568
569         ret = sdw_nread(slave, addr, 1, &buf);
570         if (ret < 0)
571                 return ret;
572
573         return buf;
574 }
575 EXPORT_SYMBOL(sdw_read);
576
577 /**
578  * sdw_write() - Write a SDW Slave register
579  * @slave: SDW Slave
580  * @addr: Register address
581  * @value: Register value
582  */
583 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
584 {
585         return sdw_nwrite(slave, addr, 1, &value);
586 }
587 EXPORT_SYMBOL(sdw_write);
588
589 /*
590  * SDW alert handling
591  */
592
593 /* called with bus_lock held */
594 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
595 {
596         struct sdw_slave *slave;
597
598         list_for_each_entry(slave, &bus->slaves, node) {
599                 if (slave->dev_num == i)
600                         return slave;
601         }
602
603         return NULL;
604 }
605
606 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
607 {
608         if (slave->id.mfg_id != id.mfg_id ||
609             slave->id.part_id != id.part_id ||
610             slave->id.class_id != id.class_id ||
611             (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
612              slave->id.unique_id != id.unique_id))
613                 return -ENODEV;
614
615         return 0;
616 }
617 EXPORT_SYMBOL(sdw_compare_devid);
618
619 /* called with bus_lock held */
620 static int sdw_get_device_num(struct sdw_slave *slave)
621 {
622         int bit;
623
624         bit = find_first_zero_bit(slave->bus->assigned, SDW_MAX_DEVICES);
625         if (bit == SDW_MAX_DEVICES) {
626                 bit = -ENODEV;
627                 goto err;
628         }
629
630         /*
631          * Do not update dev_num in Slave data structure here,
632          * Update once program dev_num is successful
633          */
634         set_bit(bit, slave->bus->assigned);
635
636 err:
637         return bit;
638 }
639
640 static int sdw_assign_device_num(struct sdw_slave *slave)
641 {
642         struct sdw_bus *bus = slave->bus;
643         int ret, dev_num;
644         bool new_device = false;
645
646         /* check first if device number is assigned, if so reuse that */
647         if (!slave->dev_num) {
648                 if (!slave->dev_num_sticky) {
649                         mutex_lock(&slave->bus->bus_lock);
650                         dev_num = sdw_get_device_num(slave);
651                         mutex_unlock(&slave->bus->bus_lock);
652                         if (dev_num < 0) {
653                                 dev_err(bus->dev, "Get dev_num failed: %d\n",
654                                         dev_num);
655                                 return dev_num;
656                         }
657                         slave->dev_num = dev_num;
658                         slave->dev_num_sticky = dev_num;
659                         new_device = true;
660                 } else {
661                         slave->dev_num = slave->dev_num_sticky;
662                 }
663         }
664
665         if (!new_device)
666                 dev_dbg(bus->dev,
667                         "Slave already registered, reusing dev_num:%d\n",
668                         slave->dev_num);
669
670         /* Clear the slave->dev_num to transfer message on device 0 */
671         dev_num = slave->dev_num;
672         slave->dev_num = 0;
673
674         ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
675         if (ret < 0) {
676                 dev_err(bus->dev, "Program device_num %d failed: %d\n",
677                         dev_num, ret);
678                 return ret;
679         }
680
681         /* After xfer of msg, restore dev_num */
682         slave->dev_num = slave->dev_num_sticky;
683
684         return 0;
685 }
686
687 void sdw_extract_slave_id(struct sdw_bus *bus,
688                           u64 addr, struct sdw_slave_id *id)
689 {
690         dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
691
692         id->sdw_version = SDW_VERSION(addr);
693         id->unique_id = SDW_UNIQUE_ID(addr);
694         id->mfg_id = SDW_MFG_ID(addr);
695         id->part_id = SDW_PART_ID(addr);
696         id->class_id = SDW_CLASS_ID(addr);
697
698         dev_dbg(bus->dev,
699                 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
700                 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
701 }
702 EXPORT_SYMBOL(sdw_extract_slave_id);
703
704 static int sdw_program_device_num(struct sdw_bus *bus)
705 {
706         u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
707         struct sdw_slave *slave, *_s;
708         struct sdw_slave_id id;
709         struct sdw_msg msg;
710         bool found;
711         int count = 0, ret;
712         u64 addr;
713
714         /* No Slave, so use raw xfer api */
715         ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
716                            SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
717         if (ret < 0)
718                 return ret;
719
720         do {
721                 ret = sdw_transfer(bus, &msg);
722                 if (ret == -ENODATA) { /* end of device id reads */
723                         dev_dbg(bus->dev, "No more devices to enumerate\n");
724                         ret = 0;
725                         break;
726                 }
727                 if (ret < 0) {
728                         dev_err(bus->dev, "DEVID read fail:%d\n", ret);
729                         break;
730                 }
731
732                 /*
733                  * Construct the addr and extract. Cast the higher shift
734                  * bits to avoid truncation due to size limit.
735                  */
736                 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
737                         ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
738                         ((u64)buf[0] << 40);
739
740                 sdw_extract_slave_id(bus, addr, &id);
741
742                 found = false;
743                 /* Now compare with entries */
744                 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
745                         if (sdw_compare_devid(slave, id) == 0) {
746                                 found = true;
747
748                                 /*
749                                  * Assign a new dev_num to this Slave and
750                                  * not mark it present. It will be marked
751                                  * present after it reports ATTACHED on new
752                                  * dev_num
753                                  */
754                                 ret = sdw_assign_device_num(slave);
755                                 if (ret < 0) {
756                                         dev_err(bus->dev,
757                                                 "Assign dev_num failed:%d\n",
758                                                 ret);
759                                         return ret;
760                                 }
761
762                                 break;
763                         }
764                 }
765
766                 if (!found) {
767                         /* TODO: Park this device in Group 13 */
768
769                         /*
770                          * add Slave device even if there is no platform
771                          * firmware description. There will be no driver probe
772                          * but the user/integration will be able to see the
773                          * device, enumeration status and device number in sysfs
774                          */
775                         sdw_slave_add(bus, &id, NULL);
776
777                         dev_err(bus->dev, "Slave Entry not found\n");
778                 }
779
780                 count++;
781
782                 /*
783                  * Check till error out or retry (count) exhausts.
784                  * Device can drop off and rejoin during enumeration
785                  * so count till twice the bound.
786                  */
787
788         } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
789
790         return ret;
791 }
792
793 static void sdw_modify_slave_status(struct sdw_slave *slave,
794                                     enum sdw_slave_status status)
795 {
796         struct sdw_bus *bus = slave->bus;
797
798         mutex_lock(&bus->bus_lock);
799
800         dev_vdbg(bus->dev,
801                  "%s: changing status slave %d status %d new status %d\n",
802                  __func__, slave->dev_num, slave->status, status);
803
804         if (status == SDW_SLAVE_UNATTACHED) {
805                 dev_dbg(&slave->dev,
806                         "%s: initializing enumeration and init completion for Slave %d\n",
807                         __func__, slave->dev_num);
808
809                 init_completion(&slave->enumeration_complete);
810                 init_completion(&slave->initialization_complete);
811
812         } else if ((status == SDW_SLAVE_ATTACHED) &&
813                    (slave->status == SDW_SLAVE_UNATTACHED)) {
814                 dev_dbg(&slave->dev,
815                         "%s: signaling enumeration completion for Slave %d\n",
816                         __func__, slave->dev_num);
817
818                 complete(&slave->enumeration_complete);
819         }
820         slave->status = status;
821         mutex_unlock(&bus->bus_lock);
822 }
823
824 static enum sdw_clk_stop_mode sdw_get_clk_stop_mode(struct sdw_slave *slave)
825 {
826         enum sdw_clk_stop_mode mode;
827
828         /*
829          * Query for clock stop mode if Slave implements
830          * ops->get_clk_stop_mode, else read from property.
831          */
832         if (slave->ops && slave->ops->get_clk_stop_mode) {
833                 mode = slave->ops->get_clk_stop_mode(slave);
834         } else {
835                 if (slave->prop.clk_stop_mode1)
836                         mode = SDW_CLK_STOP_MODE1;
837                 else
838                         mode = SDW_CLK_STOP_MODE0;
839         }
840
841         return mode;
842 }
843
844 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
845                                        enum sdw_clk_stop_mode mode,
846                                        enum sdw_clk_stop_type type)
847 {
848         int ret;
849
850         if (slave->ops && slave->ops->clk_stop) {
851                 ret = slave->ops->clk_stop(slave, mode, type);
852                 if (ret < 0) {
853                         dev_err(&slave->dev,
854                                 "Clk Stop type =%d failed: %d\n", type, ret);
855                         return ret;
856                 }
857         }
858
859         return 0;
860 }
861
862 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
863                                       enum sdw_clk_stop_mode mode,
864                                       bool prepare)
865 {
866         bool wake_en;
867         u32 val = 0;
868         int ret;
869
870         wake_en = slave->prop.wake_capable;
871
872         if (prepare) {
873                 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
874
875                 if (mode == SDW_CLK_STOP_MODE1)
876                         val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
877
878                 if (wake_en)
879                         val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
880         } else {
881                 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
882                 if (ret < 0) {
883                         dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
884                         return ret;
885                 }
886                 val = ret;
887                 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
888         }
889
890         ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
891
892         if (ret < 0)
893                 dev_err(&slave->dev,
894                         "Clock Stop prepare failed for slave: %d", ret);
895
896         return ret;
897 }
898
899 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
900 {
901         int retry = bus->clk_stop_timeout;
902         int val;
903
904         do {
905                 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
906                 if (val < 0) {
907                         dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
908                         return val;
909                 }
910                 val &= SDW_SCP_STAT_CLK_STP_NF;
911                 if (!val) {
912                         dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d",
913                                 dev_num);
914                         return 0;
915                 }
916
917                 usleep_range(1000, 1500);
918                 retry--;
919         } while (retry);
920
921         dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d",
922                 dev_num);
923
924         return -ETIMEDOUT;
925 }
926
927 /**
928  * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
929  *
930  * @bus: SDW bus instance
931  *
932  * Query Slave for clock stop mode and prepare for that mode.
933  */
934 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
935 {
936         enum sdw_clk_stop_mode slave_mode;
937         bool simple_clk_stop = true;
938         struct sdw_slave *slave;
939         bool is_slave = false;
940         int ret = 0;
941
942         /*
943          * In order to save on transition time, prepare
944          * each Slave and then wait for all Slave(s) to be
945          * prepared for clock stop.
946          */
947         list_for_each_entry(slave, &bus->slaves, node) {
948                 if (!slave->dev_num)
949                         continue;
950
951                 if (slave->status != SDW_SLAVE_ATTACHED &&
952                     slave->status != SDW_SLAVE_ALERT)
953                         continue;
954
955                 /* Identify if Slave(s) are available on Bus */
956                 is_slave = true;
957
958                 slave_mode = sdw_get_clk_stop_mode(slave);
959                 slave->curr_clk_stop_mode = slave_mode;
960
961                 ret = sdw_slave_clk_stop_callback(slave, slave_mode,
962                                                   SDW_CLK_PRE_PREPARE);
963                 if (ret < 0) {
964                         dev_err(&slave->dev,
965                                 "pre-prepare failed:%d", ret);
966                         return ret;
967                 }
968
969                 ret = sdw_slave_clk_stop_prepare(slave,
970                                                  slave_mode, true);
971                 if (ret < 0) {
972                         dev_err(&slave->dev,
973                                 "pre-prepare failed:%d", ret);
974                         return ret;
975                 }
976
977                 if (slave_mode == SDW_CLK_STOP_MODE1)
978                         simple_clk_stop = false;
979         }
980
981         /* Skip remaining clock stop preparation if no Slave is attached */
982         if (!is_slave)
983                 return ret;
984
985         if (!simple_clk_stop) {
986                 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
987                                                        SDW_BROADCAST_DEV_NUM);
988                 if (ret < 0)
989                         return ret;
990         }
991
992         /* Inform slaves that prep is done */
993         list_for_each_entry(slave, &bus->slaves, node) {
994                 if (!slave->dev_num)
995                         continue;
996
997                 if (slave->status != SDW_SLAVE_ATTACHED &&
998                     slave->status != SDW_SLAVE_ALERT)
999                         continue;
1000
1001                 slave_mode = slave->curr_clk_stop_mode;
1002
1003                 if (slave_mode == SDW_CLK_STOP_MODE1) {
1004                         ret = sdw_slave_clk_stop_callback(slave,
1005                                                           slave_mode,
1006                                                           SDW_CLK_POST_PREPARE);
1007
1008                         if (ret < 0) {
1009                                 dev_err(&slave->dev,
1010                                         "post-prepare failed:%d", ret);
1011                         }
1012                 }
1013         }
1014
1015         return ret;
1016 }
1017 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1018
1019 /**
1020  * sdw_bus_clk_stop: stop bus clock
1021  *
1022  * @bus: SDW bus instance
1023  *
1024  * After preparing the Slaves for clock stop, stop the clock by broadcasting
1025  * write to SCP_CTRL register.
1026  */
1027 int sdw_bus_clk_stop(struct sdw_bus *bus)
1028 {
1029         int ret;
1030
1031         /*
1032          * broadcast clock stop now, attached Slaves will ACK this,
1033          * unattached will ignore
1034          */
1035         ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1036                                SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1037         if (ret < 0) {
1038                 if (ret == -ENODATA)
1039                         dev_dbg(bus->dev,
1040                                 "ClockStopNow Broadcast msg ignored %d", ret);
1041                 else
1042                         dev_err(bus->dev,
1043                                 "ClockStopNow Broadcast msg failed %d", ret);
1044                 return ret;
1045         }
1046
1047         return 0;
1048 }
1049 EXPORT_SYMBOL(sdw_bus_clk_stop);
1050
1051 /**
1052  * sdw_bus_exit_clk_stop: Exit clock stop mode
1053  *
1054  * @bus: SDW bus instance
1055  *
1056  * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1057  * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1058  * back.
1059  */
1060 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1061 {
1062         enum sdw_clk_stop_mode mode;
1063         bool simple_clk_stop = true;
1064         struct sdw_slave *slave;
1065         bool is_slave = false;
1066         int ret;
1067
1068         /*
1069          * In order to save on transition time, de-prepare
1070          * each Slave and then wait for all Slave(s) to be
1071          * de-prepared after clock resume.
1072          */
1073         list_for_each_entry(slave, &bus->slaves, node) {
1074                 if (!slave->dev_num)
1075                         continue;
1076
1077                 if (slave->status != SDW_SLAVE_ATTACHED &&
1078                     slave->status != SDW_SLAVE_ALERT)
1079                         continue;
1080
1081                 /* Identify if Slave(s) are available on Bus */
1082                 is_slave = true;
1083
1084                 mode = slave->curr_clk_stop_mode;
1085
1086                 if (mode == SDW_CLK_STOP_MODE1) {
1087                         simple_clk_stop = false;
1088                         continue;
1089                 }
1090
1091                 ret = sdw_slave_clk_stop_callback(slave, mode,
1092                                                   SDW_CLK_PRE_DEPREPARE);
1093                 if (ret < 0)
1094                         dev_warn(&slave->dev,
1095                                  "clk stop deprep failed:%d", ret);
1096
1097                 ret = sdw_slave_clk_stop_prepare(slave, mode,
1098                                                  false);
1099
1100                 if (ret < 0)
1101                         dev_warn(&slave->dev,
1102                                  "clk stop deprep failed:%d", ret);
1103         }
1104
1105         /* Skip remaining clock stop de-preparation if no Slave is attached */
1106         if (!is_slave)
1107                 return 0;
1108
1109         if (!simple_clk_stop)
1110                 sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1111
1112         list_for_each_entry(slave, &bus->slaves, node) {
1113                 if (!slave->dev_num)
1114                         continue;
1115
1116                 if (slave->status != SDW_SLAVE_ATTACHED &&
1117                     slave->status != SDW_SLAVE_ALERT)
1118                         continue;
1119
1120                 mode = slave->curr_clk_stop_mode;
1121                 sdw_slave_clk_stop_callback(slave, mode,
1122                                             SDW_CLK_POST_DEPREPARE);
1123         }
1124
1125         return 0;
1126 }
1127 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1128
1129 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1130                            int port, bool enable, int mask)
1131 {
1132         u32 addr;
1133         int ret;
1134         u8 val = 0;
1135
1136         if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1137                 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1138                         enable ? "on" : "off");
1139                 mask |= SDW_DPN_INT_TEST_FAIL;
1140         }
1141
1142         addr = SDW_DPN_INTMASK(port);
1143
1144         /* Set/Clear port ready interrupt mask */
1145         if (enable) {
1146                 val |= mask;
1147                 val |= SDW_DPN_INT_PORT_READY;
1148         } else {
1149                 val &= ~(mask);
1150                 val &= ~SDW_DPN_INT_PORT_READY;
1151         }
1152
1153         ret = sdw_update(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1154         if (ret < 0)
1155                 dev_err(&slave->dev,
1156                         "SDW_DPN_INTMASK write failed:%d\n", val);
1157
1158         return ret;
1159 }
1160
1161 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1162 {
1163         u32 mclk_freq = slave->bus->prop.mclk_freq;
1164         u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1165         unsigned int scale;
1166         u8 scale_index;
1167         u8 base;
1168         int ret;
1169
1170         /*
1171          * frequency base and scale registers are required for SDCA
1172          * devices. They may also be used for 1.2+/non-SDCA devices,
1173          * but we will need a DisCo property to cover this case
1174          */
1175         if (!slave->id.class_id)
1176                 return 0;
1177
1178         if (!mclk_freq) {
1179                 dev_err(&slave->dev,
1180                         "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1181                 return -EINVAL;
1182         }
1183
1184         /*
1185          * map base frequency using Table 89 of SoundWire 1.2 spec.
1186          * The order of the tests just follows the specification, this
1187          * is not a selection between possible values or a search for
1188          * the best value but just a mapping.  Only one case per platform
1189          * is relevant.
1190          * Some BIOS have inconsistent values for mclk_freq but a
1191          * correct root so we force the mclk_freq to avoid variations.
1192          */
1193         if (!(19200000 % mclk_freq)) {
1194                 mclk_freq = 19200000;
1195                 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1196         } else if (!(24000000 % mclk_freq)) {
1197                 mclk_freq = 24000000;
1198                 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1199         } else if (!(24576000 % mclk_freq)) {
1200                 mclk_freq = 24576000;
1201                 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1202         } else if (!(22579200 % mclk_freq)) {
1203                 mclk_freq = 22579200;
1204                 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1205         } else if (!(32000000 % mclk_freq)) {
1206                 mclk_freq = 32000000;
1207                 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1208         } else {
1209                 dev_err(&slave->dev,
1210                         "Unsupported clock base, mclk %d\n",
1211                         mclk_freq);
1212                 return -EINVAL;
1213         }
1214
1215         if (mclk_freq % curr_freq) {
1216                 dev_err(&slave->dev,
1217                         "mclk %d is not multiple of bus curr_freq %d\n",
1218                         mclk_freq, curr_freq);
1219                 return -EINVAL;
1220         }
1221
1222         scale = mclk_freq / curr_freq;
1223
1224         /*
1225          * map scale to Table 90 of SoundWire 1.2 spec - and check
1226          * that the scale is a power of two and maximum 64
1227          */
1228         scale_index = ilog2(scale);
1229
1230         if (BIT(scale_index) != scale || scale_index > 6) {
1231                 dev_err(&slave->dev,
1232                         "No match found for scale %d, bus mclk %d curr_freq %d\n",
1233                         scale, mclk_freq, curr_freq);
1234                 return -EINVAL;
1235         }
1236         scale_index++;
1237
1238         ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1239         if (ret < 0) {
1240                 dev_err(&slave->dev,
1241                         "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1242                 return ret;
1243         }
1244
1245         /* initialize scale for both banks */
1246         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1247         if (ret < 0) {
1248                 dev_err(&slave->dev,
1249                         "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1250                 return ret;
1251         }
1252         ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1253         if (ret < 0)
1254                 dev_err(&slave->dev,
1255                         "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1256
1257         dev_dbg(&slave->dev,
1258                 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1259                 base, scale_index, mclk_freq, curr_freq);
1260
1261         return ret;
1262 }
1263
1264 static int sdw_initialize_slave(struct sdw_slave *slave)
1265 {
1266         struct sdw_slave_prop *prop = &slave->prop;
1267         int status;
1268         int ret;
1269         u8 val;
1270
1271         ret = sdw_slave_set_frequency(slave);
1272         if (ret < 0)
1273                 return ret;
1274
1275         if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1276                 /* Clear bus clash interrupt before enabling interrupt mask */
1277                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1278                 if (status < 0) {
1279                         dev_err(&slave->dev,
1280                                 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1281                         return status;
1282                 }
1283                 if (status & SDW_SCP_INT1_BUS_CLASH) {
1284                         dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1285                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1286                         if (ret < 0) {
1287                                 dev_err(&slave->dev,
1288                                         "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1289                                 return ret;
1290                         }
1291                 }
1292         }
1293         if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1294             !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1295                 /* Clear parity interrupt before enabling interrupt mask */
1296                 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1297                 if (status < 0) {
1298                         dev_err(&slave->dev,
1299                                 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1300                         return status;
1301                 }
1302                 if (status & SDW_SCP_INT1_PARITY) {
1303                         dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1304                         ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1305                         if (ret < 0) {
1306                                 dev_err(&slave->dev,
1307                                         "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1308                                 return ret;
1309                         }
1310                 }
1311         }
1312
1313         /*
1314          * Set SCP_INT1_MASK register, typically bus clash and
1315          * implementation-defined interrupt mask. The Parity detection
1316          * may not always be correct on startup so its use is
1317          * device-dependent, it might e.g. only be enabled in
1318          * steady-state after a couple of frames.
1319          */
1320         val = slave->prop.scp_int1_mask;
1321
1322         /* Enable SCP interrupts */
1323         ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1324         if (ret < 0) {
1325                 dev_err(&slave->dev,
1326                         "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1327                 return ret;
1328         }
1329
1330         /* No need to continue if DP0 is not present */
1331         if (!slave->prop.dp0_prop)
1332                 return 0;
1333
1334         /* Enable DP0 interrupts */
1335         val = prop->dp0_prop->imp_def_interrupts;
1336         val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1337
1338         ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1339         if (ret < 0)
1340                 dev_err(&slave->dev,
1341                         "SDW_DP0_INTMASK read failed:%d\n", ret);
1342         return ret;
1343 }
1344
1345 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1346 {
1347         u8 clear, impl_int_mask;
1348         int status, status2, ret, count = 0;
1349
1350         status = sdw_read_no_pm(slave, SDW_DP0_INT);
1351         if (status < 0) {
1352                 dev_err(&slave->dev,
1353                         "SDW_DP0_INT read failed:%d\n", status);
1354                 return status;
1355         }
1356
1357         do {
1358                 clear = status & ~SDW_DP0_INTERRUPTS;
1359
1360                 if (status & SDW_DP0_INT_TEST_FAIL) {
1361                         dev_err(&slave->dev, "Test fail for port 0\n");
1362                         clear |= SDW_DP0_INT_TEST_FAIL;
1363                 }
1364
1365                 /*
1366                  * Assumption: PORT_READY interrupt will be received only for
1367                  * ports implementing Channel Prepare state machine (CP_SM)
1368                  */
1369
1370                 if (status & SDW_DP0_INT_PORT_READY) {
1371                         complete(&slave->port_ready[0]);
1372                         clear |= SDW_DP0_INT_PORT_READY;
1373                 }
1374
1375                 if (status & SDW_DP0_INT_BRA_FAILURE) {
1376                         dev_err(&slave->dev, "BRA failed\n");
1377                         clear |= SDW_DP0_INT_BRA_FAILURE;
1378                 }
1379
1380                 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1381                         SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1382
1383                 if (status & impl_int_mask) {
1384                         clear |= impl_int_mask;
1385                         *slave_status = clear;
1386                 }
1387
1388                 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1389                 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1390                 if (ret < 0) {
1391                         dev_err(&slave->dev,
1392                                 "SDW_DP0_INT write failed:%d\n", ret);
1393                         return ret;
1394                 }
1395
1396                 /* Read DP0 interrupt again */
1397                 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1398                 if (status2 < 0) {
1399                         dev_err(&slave->dev,
1400                                 "SDW_DP0_INT read failed:%d\n", status2);
1401                         return status2;
1402                 }
1403                 /* filter to limit loop to interrupts identified in the first status read */
1404                 status &= status2;
1405
1406                 count++;
1407
1408                 /* we can get alerts while processing so keep retrying */
1409         } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1410
1411         if (count == SDW_READ_INTR_CLEAR_RETRY)
1412                 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1413
1414         return ret;
1415 }
1416
1417 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1418                                      int port, u8 *slave_status)
1419 {
1420         u8 clear, impl_int_mask;
1421         int status, status2, ret, count = 0;
1422         u32 addr;
1423
1424         if (port == 0)
1425                 return sdw_handle_dp0_interrupt(slave, slave_status);
1426
1427         addr = SDW_DPN_INT(port);
1428         status = sdw_read_no_pm(slave, addr);
1429         if (status < 0) {
1430                 dev_err(&slave->dev,
1431                         "SDW_DPN_INT read failed:%d\n", status);
1432
1433                 return status;
1434         }
1435
1436         do {
1437                 clear = status & ~SDW_DPN_INTERRUPTS;
1438
1439                 if (status & SDW_DPN_INT_TEST_FAIL) {
1440                         dev_err(&slave->dev, "Test fail for port:%d\n", port);
1441                         clear |= SDW_DPN_INT_TEST_FAIL;
1442                 }
1443
1444                 /*
1445                  * Assumption: PORT_READY interrupt will be received only
1446                  * for ports implementing CP_SM.
1447                  */
1448                 if (status & SDW_DPN_INT_PORT_READY) {
1449                         complete(&slave->port_ready[port]);
1450                         clear |= SDW_DPN_INT_PORT_READY;
1451                 }
1452
1453                 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1454                         SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1455
1456                 if (status & impl_int_mask) {
1457                         clear |= impl_int_mask;
1458                         *slave_status = clear;
1459                 }
1460
1461                 /* clear the interrupt but don't touch reserved fields */
1462                 ret = sdw_write_no_pm(slave, addr, clear);
1463                 if (ret < 0) {
1464                         dev_err(&slave->dev,
1465                                 "SDW_DPN_INT write failed:%d\n", ret);
1466                         return ret;
1467                 }
1468
1469                 /* Read DPN interrupt again */
1470                 status2 = sdw_read_no_pm(slave, addr);
1471                 if (status2 < 0) {
1472                         dev_err(&slave->dev,
1473                                 "SDW_DPN_INT read failed:%d\n", status2);
1474                         return status2;
1475                 }
1476                 /* filter to limit loop to interrupts identified in the first status read */
1477                 status &= status2;
1478
1479                 count++;
1480
1481                 /* we can get alerts while processing so keep retrying */
1482         } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1483
1484         if (count == SDW_READ_INTR_CLEAR_RETRY)
1485                 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1486
1487         return ret;
1488 }
1489
1490 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1491 {
1492         struct sdw_slave_intr_status slave_intr;
1493         u8 clear = 0, bit, port_status[15] = {0};
1494         int port_num, stat, ret, count = 0;
1495         unsigned long port;
1496         bool slave_notify;
1497         u8 sdca_cascade = 0;
1498         u8 buf, buf2[2], _buf, _buf2[2];
1499         bool parity_check;
1500         bool parity_quirk;
1501
1502         sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1503
1504         ret = pm_runtime_get_sync(&slave->dev);
1505         if (ret < 0 && ret != -EACCES) {
1506                 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1507                 pm_runtime_put_noidle(&slave->dev);
1508                 return ret;
1509         }
1510
1511         /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1512         ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1513         if (ret < 0) {
1514                 dev_err(&slave->dev,
1515                         "SDW_SCP_INT1 read failed:%d\n", ret);
1516                 goto io_err;
1517         }
1518         buf = ret;
1519
1520         ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1521         if (ret < 0) {
1522                 dev_err(&slave->dev,
1523                         "SDW_SCP_INT2/3 read failed:%d\n", ret);
1524                 goto io_err;
1525         }
1526
1527         if (slave->prop.is_sdca) {
1528                 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1529                 if (ret < 0) {
1530                         dev_err(&slave->dev,
1531                                 "SDW_DP0_INT read failed:%d\n", ret);
1532                         goto io_err;
1533                 }
1534                 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1535         }
1536
1537         do {
1538                 slave_notify = false;
1539
1540                 /*
1541                  * Check parity, bus clash and Slave (impl defined)
1542                  * interrupt
1543                  */
1544                 if (buf & SDW_SCP_INT1_PARITY) {
1545                         parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1546                         parity_quirk = !slave->first_interrupt_done &&
1547                                 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1548
1549                         if (parity_check && !parity_quirk)
1550                                 dev_err(&slave->dev, "Parity error detected\n");
1551                         clear |= SDW_SCP_INT1_PARITY;
1552                 }
1553
1554                 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1555                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1556                                 dev_err(&slave->dev, "Bus clash detected\n");
1557                         clear |= SDW_SCP_INT1_BUS_CLASH;
1558                 }
1559
1560                 /*
1561                  * When bus clash or parity errors are detected, such errors
1562                  * are unlikely to be recoverable errors.
1563                  * TODO: In such scenario, reset bus. Make this configurable
1564                  * via sysfs property with bus reset being the default.
1565                  */
1566
1567                 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1568                         if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1569                                 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1570                                 slave_notify = true;
1571                         }
1572                         clear |= SDW_SCP_INT1_IMPL_DEF;
1573                 }
1574
1575                 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1576                 if (sdca_cascade)
1577                         slave_notify = true;
1578
1579                 /* Check port 0 - 3 interrupts */
1580                 port = buf & SDW_SCP_INT1_PORT0_3;
1581
1582                 /* To get port number corresponding to bits, shift it */
1583                 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1584                 for_each_set_bit(bit, &port, 8) {
1585                         sdw_handle_port_interrupt(slave, bit,
1586                                                   &port_status[bit]);
1587                 }
1588
1589                 /* Check if cascade 2 interrupt is present */
1590                 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1591                         port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1592                         for_each_set_bit(bit, &port, 8) {
1593                                 /* scp2 ports start from 4 */
1594                                 port_num = bit + 3;
1595                                 sdw_handle_port_interrupt(slave,
1596                                                 port_num,
1597                                                 &port_status[port_num]);
1598                         }
1599                 }
1600
1601                 /* now check last cascade */
1602                 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1603                         port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1604                         for_each_set_bit(bit, &port, 8) {
1605                                 /* scp3 ports start from 11 */
1606                                 port_num = bit + 10;
1607                                 sdw_handle_port_interrupt(slave,
1608                                                 port_num,
1609                                                 &port_status[port_num]);
1610                         }
1611                 }
1612
1613                 /* Update the Slave driver */
1614                 if (slave_notify && slave->ops &&
1615                     slave->ops->interrupt_callback) {
1616                         slave_intr.sdca_cascade = sdca_cascade;
1617                         slave_intr.control_port = clear;
1618                         memcpy(slave_intr.port, &port_status,
1619                                sizeof(slave_intr.port));
1620
1621                         slave->ops->interrupt_callback(slave, &slave_intr);
1622                 }
1623
1624                 /* Ack interrupt */
1625                 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1626                 if (ret < 0) {
1627                         dev_err(&slave->dev,
1628                                 "SDW_SCP_INT1 write failed:%d\n", ret);
1629                         goto io_err;
1630                 }
1631
1632                 /* at this point all initial interrupt sources were handled */
1633                 slave->first_interrupt_done = true;
1634
1635                 /*
1636                  * Read status again to ensure no new interrupts arrived
1637                  * while servicing interrupts.
1638                  */
1639                 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1640                 if (ret < 0) {
1641                         dev_err(&slave->dev,
1642                                 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1643                         goto io_err;
1644                 }
1645                 _buf = ret;
1646
1647                 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, _buf2);
1648                 if (ret < 0) {
1649                         dev_err(&slave->dev,
1650                                 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1651                         goto io_err;
1652                 }
1653
1654                 if (slave->prop.is_sdca) {
1655                         ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1656                         if (ret < 0) {
1657                                 dev_err(&slave->dev,
1658                                         "SDW_DP0_INT recheck read failed:%d\n", ret);
1659                                 goto io_err;
1660                         }
1661                         sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1662                 }
1663
1664                 /*
1665                  * Make sure no interrupts are pending, but filter to limit loop
1666                  * to interrupts identified in the first status read
1667                  */
1668                 buf &= _buf;
1669                 buf2[0] &= _buf2[0];
1670                 buf2[1] &= _buf2[1];
1671                 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1672
1673                 /*
1674                  * Exit loop if Slave is continuously in ALERT state even
1675                  * after servicing the interrupt multiple times.
1676                  */
1677                 count++;
1678
1679                 /* we can get alerts while processing so keep retrying */
1680         } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1681
1682         if (count == SDW_READ_INTR_CLEAR_RETRY)
1683                 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1684
1685 io_err:
1686         pm_runtime_mark_last_busy(&slave->dev);
1687         pm_runtime_put_autosuspend(&slave->dev);
1688
1689         return ret;
1690 }
1691
1692 static int sdw_update_slave_status(struct sdw_slave *slave,
1693                                    enum sdw_slave_status status)
1694 {
1695         unsigned long time;
1696
1697         if (!slave->probed) {
1698                 /*
1699                  * the slave status update is typically handled in an
1700                  * interrupt thread, which can race with the driver
1701                  * probe, e.g. when a module needs to be loaded.
1702                  *
1703                  * make sure the probe is complete before updating
1704                  * status.
1705                  */
1706                 time = wait_for_completion_timeout(&slave->probe_complete,
1707                                 msecs_to_jiffies(DEFAULT_PROBE_TIMEOUT));
1708                 if (!time) {
1709                         dev_err(&slave->dev, "Probe not complete, timed out\n");
1710                         return -ETIMEDOUT;
1711                 }
1712         }
1713
1714         if (!slave->ops || !slave->ops->update_status)
1715                 return 0;
1716
1717         return slave->ops->update_status(slave, status);
1718 }
1719
1720 /**
1721  * sdw_handle_slave_status() - Handle Slave status
1722  * @bus: SDW bus instance
1723  * @status: Status for all Slave(s)
1724  */
1725 int sdw_handle_slave_status(struct sdw_bus *bus,
1726                             enum sdw_slave_status status[])
1727 {
1728         enum sdw_slave_status prev_status;
1729         struct sdw_slave *slave;
1730         bool attached_initializing;
1731         int i, ret = 0;
1732
1733         /* first check if any Slaves fell off the bus */
1734         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1735                 mutex_lock(&bus->bus_lock);
1736                 if (test_bit(i, bus->assigned) == false) {
1737                         mutex_unlock(&bus->bus_lock);
1738                         continue;
1739                 }
1740                 mutex_unlock(&bus->bus_lock);
1741
1742                 slave = sdw_get_slave(bus, i);
1743                 if (!slave)
1744                         continue;
1745
1746                 if (status[i] == SDW_SLAVE_UNATTACHED &&
1747                     slave->status != SDW_SLAVE_UNATTACHED)
1748                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1749         }
1750
1751         if (status[0] == SDW_SLAVE_ATTACHED) {
1752                 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1753                 ret = sdw_program_device_num(bus);
1754                 if (ret < 0)
1755                         dev_err(bus->dev, "Slave attach failed: %d\n", ret);
1756                 /*
1757                  * programming a device number will have side effects,
1758                  * so we deal with other devices at a later time
1759                  */
1760                 return ret;
1761         }
1762
1763         /* Continue to check other slave statuses */
1764         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1765                 mutex_lock(&bus->bus_lock);
1766                 if (test_bit(i, bus->assigned) == false) {
1767                         mutex_unlock(&bus->bus_lock);
1768                         continue;
1769                 }
1770                 mutex_unlock(&bus->bus_lock);
1771
1772                 slave = sdw_get_slave(bus, i);
1773                 if (!slave)
1774                         continue;
1775
1776                 attached_initializing = false;
1777
1778                 switch (status[i]) {
1779                 case SDW_SLAVE_UNATTACHED:
1780                         if (slave->status == SDW_SLAVE_UNATTACHED)
1781                                 break;
1782
1783                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1784                         break;
1785
1786                 case SDW_SLAVE_ALERT:
1787                         ret = sdw_handle_slave_alerts(slave);
1788                         if (ret < 0)
1789                                 dev_err(&slave->dev,
1790                                         "Slave %d alert handling failed: %d\n",
1791                                         i, ret);
1792                         break;
1793
1794                 case SDW_SLAVE_ATTACHED:
1795                         if (slave->status == SDW_SLAVE_ATTACHED)
1796                                 break;
1797
1798                         prev_status = slave->status;
1799                         sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1800
1801                         if (prev_status == SDW_SLAVE_ALERT)
1802                                 break;
1803
1804                         attached_initializing = true;
1805
1806                         ret = sdw_initialize_slave(slave);
1807                         if (ret < 0)
1808                                 dev_err(&slave->dev,
1809                                         "Slave %d initialization failed: %d\n",
1810                                         i, ret);
1811
1812                         break;
1813
1814                 default:
1815                         dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1816                                 i, status[i]);
1817                         break;
1818                 }
1819
1820                 ret = sdw_update_slave_status(slave, status[i]);
1821                 if (ret < 0)
1822                         dev_err(&slave->dev,
1823                                 "Update Slave status failed:%d\n", ret);
1824                 if (attached_initializing) {
1825                         dev_dbg(&slave->dev,
1826                                 "%s: signaling initialization completion for Slave %d\n",
1827                                 __func__, slave->dev_num);
1828
1829                         complete(&slave->initialization_complete);
1830                 }
1831         }
1832
1833         return ret;
1834 }
1835 EXPORT_SYMBOL(sdw_handle_slave_status);
1836
1837 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1838 {
1839         struct sdw_slave *slave;
1840         int i;
1841
1842         /* Check all non-zero devices */
1843         for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1844                 mutex_lock(&bus->bus_lock);
1845                 if (test_bit(i, bus->assigned) == false) {
1846                         mutex_unlock(&bus->bus_lock);
1847                         continue;
1848                 }
1849                 mutex_unlock(&bus->bus_lock);
1850
1851                 slave = sdw_get_slave(bus, i);
1852                 if (!slave)
1853                         continue;
1854
1855                 if (slave->status != SDW_SLAVE_UNATTACHED) {
1856                         sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1857                         slave->first_interrupt_done = false;
1858                 }
1859
1860                 /* keep track of request, used in pm_runtime resume */
1861                 slave->unattach_request = request;
1862         }
1863 }
1864 EXPORT_SYMBOL(sdw_clear_slave_status);