Merge tag 'for-5.11/io_uring-2020-12-14' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / drivers / scsi / mpt3sas / mpt3sas_base.c
1 /*
2  * This is the Fusion MPT base driver providing common API layer interface
3  * for access to MPT (Message Passing Technology) firmware.
4  *
5  * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6  * Copyright (C) 2012-2014  LSI Corporation
7  * Copyright (C) 2013-2014 Avago Technologies
8  *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License
12  * as published by the Free Software Foundation; either version 2
13  * of the License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * NO WARRANTY
21  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25  * solely responsible for determining the appropriateness of using and
26  * distributing the Program and assumes all risks associated with its
27  * exercise of rights under this Agreement, including but not limited to
28  * the risks and costs of program errors, damage to or loss of data,
29  * programs or equipment, and unavailability or interruption of operations.
30
31  * DISCLAIMER OF LIABILITY
32  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40  * You should have received a copy of the GNU General Public License
41  * along with this program; if not, write to the Free Software
42  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43  * USA.
44  */
45
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/errno.h>
49 #include <linux/init.h>
50 #include <linux/slab.h>
51 #include <linux/types.h>
52 #include <linux/pci.h>
53 #include <linux/kdev_t.h>
54 #include <linux/blkdev.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/dma-mapping.h>
58 #include <linux/io.h>
59 #include <linux/time.h>
60 #include <linux/ktime.h>
61 #include <linux/kthread.h>
62 #include <asm/page.h>        /* To get host page size per arch */
63 #include <linux/aer.h>
64
65
66 #include "mpt3sas_base.h"
67
68 static MPT_CALLBACK     mpt_callbacks[MPT_MAX_CALLBACKS];
69
70
71 #define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
72
73  /* maximum controller queue depth */
74 #define MAX_HBA_QUEUE_DEPTH     30000
75 #define MAX_CHAIN_DEPTH         100000
76 static int max_queue_depth = -1;
77 module_param(max_queue_depth, int, 0444);
78 MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
79
80 static int max_sgl_entries = -1;
81 module_param(max_sgl_entries, int, 0444);
82 MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
83
84 static int msix_disable = -1;
85 module_param(msix_disable, int, 0444);
86 MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
87
88 static int smp_affinity_enable = 1;
89 module_param(smp_affinity_enable, int, 0444);
90 MODULE_PARM_DESC(smp_affinity_enable, "SMP affinity feature enable/disable Default: enable(1)");
91
92 static int max_msix_vectors = -1;
93 module_param(max_msix_vectors, int, 0444);
94 MODULE_PARM_DESC(max_msix_vectors,
95         " max msix vectors");
96
97 static int irqpoll_weight = -1;
98 module_param(irqpoll_weight, int, 0444);
99 MODULE_PARM_DESC(irqpoll_weight,
100         "irq poll weight (default= one fourth of HBA queue depth)");
101
102 static int mpt3sas_fwfault_debug;
103 MODULE_PARM_DESC(mpt3sas_fwfault_debug,
104         " enable detection of firmware fault and halt firmware - (default=0)");
105
106 static int perf_mode = -1;
107 module_param(perf_mode, int, 0444);
108 MODULE_PARM_DESC(perf_mode,
109         "Performance mode (only for Aero/Sea Generation), options:\n\t\t"
110         "0 - balanced: high iops mode is enabled &\n\t\t"
111         "interrupt coalescing is enabled only on high iops queues,\n\t\t"
112         "1 - iops: high iops mode is disabled &\n\t\t"
113         "interrupt coalescing is enabled on all queues,\n\t\t"
114         "2 - latency: high iops mode is disabled &\n\t\t"
115         "interrupt coalescing is enabled on all queues with timeout value 0xA,\n"
116         "\t\tdefault - default perf_mode is 'balanced'"
117         );
118
119 enum mpt3sas_perf_mode {
120         MPT_PERF_MODE_DEFAULT   = -1,
121         MPT_PERF_MODE_BALANCED  = 0,
122         MPT_PERF_MODE_IOPS      = 1,
123         MPT_PERF_MODE_LATENCY   = 2,
124 };
125
126 static int
127 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc,
128                 u32 ioc_state, int timeout);
129 static int
130 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc);
131 static void
132 _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc);
133
134 /**
135  * mpt3sas_base_check_cmd_timeout - Function
136  *              to check timeout and command termination due
137  *              to Host reset.
138  *
139  * @ioc:        per adapter object.
140  * @status:     Status of issued command.
141  * @mpi_request:mf request pointer.
142  * @sz:         size of buffer.
143  *
144  * @Returns - 1/0 Reset to be done or Not
145  */
146 u8
147 mpt3sas_base_check_cmd_timeout(struct MPT3SAS_ADAPTER *ioc,
148                 u8 status, void *mpi_request, int sz)
149 {
150         u8 issue_reset = 0;
151
152         if (!(status & MPT3_CMD_RESET))
153                 issue_reset = 1;
154
155         ioc_err(ioc, "Command %s\n",
156                 issue_reset == 0 ? "terminated due to Host Reset" : "Timeout");
157         _debug_dump_mf(mpi_request, sz);
158
159         return issue_reset;
160 }
161
162 /**
163  * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
164  * @val: ?
165  * @kp: ?
166  *
167  * Return: ?
168  */
169 static int
170 _scsih_set_fwfault_debug(const char *val, const struct kernel_param *kp)
171 {
172         int ret = param_set_int(val, kp);
173         struct MPT3SAS_ADAPTER *ioc;
174
175         if (ret)
176                 return ret;
177
178         /* global ioc spinlock to protect controller list on list operations */
179         pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
180         spin_lock(&gioc_lock);
181         list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
182                 ioc->fwfault_debug = mpt3sas_fwfault_debug;
183         spin_unlock(&gioc_lock);
184         return 0;
185 }
186 module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
187         param_get_int, &mpt3sas_fwfault_debug, 0644);
188
189 /**
190  * _base_readl_aero - retry readl for max three times.
191  * @addr: MPT Fusion system interface register address
192  *
193  * Retry the readl() for max three times if it gets zero value
194  * while reading the system interface register.
195  */
196 static inline u32
197 _base_readl_aero(const volatile void __iomem *addr)
198 {
199         u32 i = 0, ret_val;
200
201         do {
202                 ret_val = readl(addr);
203                 i++;
204         } while (ret_val == 0 && i < 3);
205
206         return ret_val;
207 }
208
209 static inline u32
210 _base_readl(const volatile void __iomem *addr)
211 {
212         return readl(addr);
213 }
214
215 /**
216  * _base_clone_reply_to_sys_mem - copies reply to reply free iomem
217  *                                in BAR0 space.
218  *
219  * @ioc: per adapter object
220  * @reply: reply message frame(lower 32bit addr)
221  * @index: System request message index.
222  */
223 static void
224 _base_clone_reply_to_sys_mem(struct MPT3SAS_ADAPTER *ioc, u32 reply,
225                 u32 index)
226 {
227         /*
228          * 256 is offset within sys register.
229          * 256 offset MPI frame starts. Max MPI frame supported is 32.
230          * 32 * 128 = 4K. From here, Clone of reply free for mcpu starts
231          */
232         u16 cmd_credit = ioc->facts.RequestCredit + 1;
233         void __iomem *reply_free_iomem = (void __iomem *)ioc->chip +
234                         MPI_FRAME_START_OFFSET +
235                         (cmd_credit * ioc->request_sz) + (index * sizeof(u32));
236
237         writel(reply, reply_free_iomem);
238 }
239
240 /**
241  * _base_clone_mpi_to_sys_mem - Writes/copies MPI frames
242  *                              to system/BAR0 region.
243  *
244  * @dst_iomem: Pointer to the destination location in BAR0 space.
245  * @src: Pointer to the Source data.
246  * @size: Size of data to be copied.
247  */
248 static void
249 _base_clone_mpi_to_sys_mem(void *dst_iomem, void *src, u32 size)
250 {
251         int i;
252         u32 *src_virt_mem = (u32 *)src;
253
254         for (i = 0; i < size/4; i++)
255                 writel((u32)src_virt_mem[i],
256                                 (void __iomem *)dst_iomem + (i * 4));
257 }
258
259 /**
260  * _base_clone_to_sys_mem - Writes/copies data to system/BAR0 region
261  *
262  * @dst_iomem: Pointer to the destination location in BAR0 space.
263  * @src: Pointer to the Source data.
264  * @size: Size of data to be copied.
265  */
266 static void
267 _base_clone_to_sys_mem(void __iomem *dst_iomem, void *src, u32 size)
268 {
269         int i;
270         u32 *src_virt_mem = (u32 *)(src);
271
272         for (i = 0; i < size/4; i++)
273                 writel((u32)src_virt_mem[i],
274                         (void __iomem *)dst_iomem + (i * 4));
275 }
276
277 /**
278  * _base_get_chain - Calculates and Returns virtual chain address
279  *                       for the provided smid in BAR0 space.
280  *
281  * @ioc: per adapter object
282  * @smid: system request message index
283  * @sge_chain_count: Scatter gather chain count.
284  *
285  * Return: the chain address.
286  */
287 static inline void __iomem*
288 _base_get_chain(struct MPT3SAS_ADAPTER *ioc, u16 smid,
289                 u8 sge_chain_count)
290 {
291         void __iomem *base_chain, *chain_virt;
292         u16 cmd_credit = ioc->facts.RequestCredit + 1;
293
294         base_chain  = (void __iomem *)ioc->chip + MPI_FRAME_START_OFFSET +
295                 (cmd_credit * ioc->request_sz) +
296                 REPLY_FREE_POOL_SIZE;
297         chain_virt = base_chain + (smid * ioc->facts.MaxChainDepth *
298                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
299         return chain_virt;
300 }
301
302 /**
303  * _base_get_chain_phys - Calculates and Returns physical address
304  *                      in BAR0 for scatter gather chains, for
305  *                      the provided smid.
306  *
307  * @ioc: per adapter object
308  * @smid: system request message index
309  * @sge_chain_count: Scatter gather chain count.
310  *
311  * Return: Physical chain address.
312  */
313 static inline phys_addr_t
314 _base_get_chain_phys(struct MPT3SAS_ADAPTER *ioc, u16 smid,
315                 u8 sge_chain_count)
316 {
317         phys_addr_t base_chain_phys, chain_phys;
318         u16 cmd_credit = ioc->facts.RequestCredit + 1;
319
320         base_chain_phys  = ioc->chip_phys + MPI_FRAME_START_OFFSET +
321                 (cmd_credit * ioc->request_sz) +
322                 REPLY_FREE_POOL_SIZE;
323         chain_phys = base_chain_phys + (smid * ioc->facts.MaxChainDepth *
324                         ioc->request_sz) + (sge_chain_count * ioc->request_sz);
325         return chain_phys;
326 }
327
328 /**
329  * _base_get_buffer_bar0 - Calculates and Returns BAR0 mapped Host
330  *                      buffer address for the provided smid.
331  *                      (Each smid can have 64K starts from 17024)
332  *
333  * @ioc: per adapter object
334  * @smid: system request message index
335  *
336  * Return: Pointer to buffer location in BAR0.
337  */
338
339 static void __iomem *
340 _base_get_buffer_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
341 {
342         u16 cmd_credit = ioc->facts.RequestCredit + 1;
343         // Added extra 1 to reach end of chain.
344         void __iomem *chain_end = _base_get_chain(ioc,
345                         cmd_credit + 1,
346                         ioc->facts.MaxChainDepth);
347         return chain_end + (smid * 64 * 1024);
348 }
349
350 /**
351  * _base_get_buffer_phys_bar0 - Calculates and Returns BAR0 mapped
352  *              Host buffer Physical address for the provided smid.
353  *              (Each smid can have 64K starts from 17024)
354  *
355  * @ioc: per adapter object
356  * @smid: system request message index
357  *
358  * Return: Pointer to buffer location in BAR0.
359  */
360 static phys_addr_t
361 _base_get_buffer_phys_bar0(struct MPT3SAS_ADAPTER *ioc, u16 smid)
362 {
363         u16 cmd_credit = ioc->facts.RequestCredit + 1;
364         phys_addr_t chain_end_phys = _base_get_chain_phys(ioc,
365                         cmd_credit + 1,
366                         ioc->facts.MaxChainDepth);
367         return chain_end_phys + (smid * 64 * 1024);
368 }
369
370 /**
371  * _base_get_chain_buffer_dma_to_chain_buffer - Iterates chain
372  *                      lookup list and Provides chain_buffer
373  *                      address for the matching dma address.
374  *                      (Each smid can have 64K starts from 17024)
375  *
376  * @ioc: per adapter object
377  * @chain_buffer_dma: Chain buffer dma address.
378  *
379  * Return: Pointer to chain buffer. Or Null on Failure.
380  */
381 static void *
382 _base_get_chain_buffer_dma_to_chain_buffer(struct MPT3SAS_ADAPTER *ioc,
383                 dma_addr_t chain_buffer_dma)
384 {
385         u16 index, j;
386         struct chain_tracker *ct;
387
388         for (index = 0; index < ioc->scsiio_depth; index++) {
389                 for (j = 0; j < ioc->chains_needed_per_io; j++) {
390                         ct = &ioc->chain_lookup[index].chains_per_smid[j];
391                         if (ct && ct->chain_buffer_dma == chain_buffer_dma)
392                                 return ct->chain_buffer;
393                 }
394         }
395         ioc_info(ioc, "Provided chain_buffer_dma address is not in the lookup list\n");
396         return NULL;
397 }
398
399 /**
400  * _clone_sg_entries -  MPI EP's scsiio and config requests
401  *                      are handled here. Base function for
402  *                      double buffering, before submitting
403  *                      the requests.
404  *
405  * @ioc: per adapter object.
406  * @mpi_request: mf request pointer.
407  * @smid: system request message index.
408  */
409 static void _clone_sg_entries(struct MPT3SAS_ADAPTER *ioc,
410                 void *mpi_request, u16 smid)
411 {
412         Mpi2SGESimple32_t *sgel, *sgel_next;
413         u32  sgl_flags, sge_chain_count = 0;
414         bool is_write = false;
415         u16 i = 0;
416         void __iomem *buffer_iomem;
417         phys_addr_t buffer_iomem_phys;
418         void __iomem *buff_ptr;
419         phys_addr_t buff_ptr_phys;
420         void __iomem *dst_chain_addr[MCPU_MAX_CHAINS_PER_IO];
421         void *src_chain_addr[MCPU_MAX_CHAINS_PER_IO];
422         phys_addr_t dst_addr_phys;
423         MPI2RequestHeader_t *request_hdr;
424         struct scsi_cmnd *scmd;
425         struct scatterlist *sg_scmd = NULL;
426         int is_scsiio_req = 0;
427
428         request_hdr = (MPI2RequestHeader_t *) mpi_request;
429
430         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST) {
431                 Mpi25SCSIIORequest_t *scsiio_request =
432                         (Mpi25SCSIIORequest_t *)mpi_request;
433                 sgel = (Mpi2SGESimple32_t *) &scsiio_request->SGL;
434                 is_scsiio_req = 1;
435         } else if (request_hdr->Function == MPI2_FUNCTION_CONFIG) {
436                 Mpi2ConfigRequest_t  *config_req =
437                         (Mpi2ConfigRequest_t *)mpi_request;
438                 sgel = (Mpi2SGESimple32_t *) &config_req->PageBufferSGE;
439         } else
440                 return;
441
442         /* From smid we can get scsi_cmd, once we have sg_scmd,
443          * we just need to get sg_virt and sg_next to get virual
444          * address associated with sgel->Address.
445          */
446
447         if (is_scsiio_req) {
448                 /* Get scsi_cmd using smid */
449                 scmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
450                 if (scmd == NULL) {
451                         ioc_err(ioc, "scmd is NULL\n");
452                         return;
453                 }
454
455                 /* Get sg_scmd from scmd provided */
456                 sg_scmd = scsi_sglist(scmd);
457         }
458
459         /*
460          * 0 - 255      System register
461          * 256 - 4352   MPI Frame. (This is based on maxCredit 32)
462          * 4352 - 4864  Reply_free pool (512 byte is reserved
463          *              considering maxCredit 32. Reply need extra
464          *              room, for mCPU case kept four times of
465          *              maxCredit).
466          * 4864 - 17152 SGE chain element. (32cmd * 3 chain of
467          *              128 byte size = 12288)
468          * 17152 - x    Host buffer mapped with smid.
469          *              (Each smid can have 64K Max IO.)
470          * BAR0+Last 1K MSIX Addr and Data
471          * Total size in use 2113664 bytes of 4MB BAR0
472          */
473
474         buffer_iomem = _base_get_buffer_bar0(ioc, smid);
475         buffer_iomem_phys = _base_get_buffer_phys_bar0(ioc, smid);
476
477         buff_ptr = buffer_iomem;
478         buff_ptr_phys = buffer_iomem_phys;
479         WARN_ON(buff_ptr_phys > U32_MAX);
480
481         if (le32_to_cpu(sgel->FlagsLength) &
482                         (MPI2_SGE_FLAGS_HOST_TO_IOC << MPI2_SGE_FLAGS_SHIFT))
483                 is_write = true;
484
485         for (i = 0; i < MPT_MIN_PHYS_SEGMENTS + ioc->facts.MaxChainDepth; i++) {
486
487                 sgl_flags =
488                     (le32_to_cpu(sgel->FlagsLength) >> MPI2_SGE_FLAGS_SHIFT);
489
490                 switch (sgl_flags & MPI2_SGE_FLAGS_ELEMENT_MASK) {
491                 case MPI2_SGE_FLAGS_CHAIN_ELEMENT:
492                         /*
493                          * Helper function which on passing
494                          * chain_buffer_dma returns chain_buffer. Get
495                          * the virtual address for sgel->Address
496                          */
497                         sgel_next =
498                                 _base_get_chain_buffer_dma_to_chain_buffer(ioc,
499                                                 le32_to_cpu(sgel->Address));
500                         if (sgel_next == NULL)
501                                 return;
502                         /*
503                          * This is coping 128 byte chain
504                          * frame (not a host buffer)
505                          */
506                         dst_chain_addr[sge_chain_count] =
507                                 _base_get_chain(ioc,
508                                         smid, sge_chain_count);
509                         src_chain_addr[sge_chain_count] =
510                                                 (void *) sgel_next;
511                         dst_addr_phys = _base_get_chain_phys(ioc,
512                                                 smid, sge_chain_count);
513                         WARN_ON(dst_addr_phys > U32_MAX);
514                         sgel->Address =
515                                 cpu_to_le32(lower_32_bits(dst_addr_phys));
516                         sgel = sgel_next;
517                         sge_chain_count++;
518                         break;
519                 case MPI2_SGE_FLAGS_SIMPLE_ELEMENT:
520                         if (is_write) {
521                                 if (is_scsiio_req) {
522                                         _base_clone_to_sys_mem(buff_ptr,
523                                             sg_virt(sg_scmd),
524                                             (le32_to_cpu(sgel->FlagsLength) &
525                                             0x00ffffff));
526                                         /*
527                                          * FIXME: this relies on a a zero
528                                          * PCI mem_offset.
529                                          */
530                                         sgel->Address =
531                                             cpu_to_le32((u32)buff_ptr_phys);
532                                 } else {
533                                         _base_clone_to_sys_mem(buff_ptr,
534                                             ioc->config_vaddr,
535                                             (le32_to_cpu(sgel->FlagsLength) &
536                                             0x00ffffff));
537                                         sgel->Address =
538                                             cpu_to_le32((u32)buff_ptr_phys);
539                                 }
540                         }
541                         buff_ptr += (le32_to_cpu(sgel->FlagsLength) &
542                             0x00ffffff);
543                         buff_ptr_phys += (le32_to_cpu(sgel->FlagsLength) &
544                             0x00ffffff);
545                         if ((le32_to_cpu(sgel->FlagsLength) &
546                             (MPI2_SGE_FLAGS_END_OF_BUFFER
547                                         << MPI2_SGE_FLAGS_SHIFT)))
548                                 goto eob_clone_chain;
549                         else {
550                                 /*
551                                  * Every single element in MPT will have
552                                  * associated sg_next. Better to sanity that
553                                  * sg_next is not NULL, but it will be a bug
554                                  * if it is null.
555                                  */
556                                 if (is_scsiio_req) {
557                                         sg_scmd = sg_next(sg_scmd);
558                                         if (sg_scmd)
559                                                 sgel++;
560                                         else
561                                                 goto eob_clone_chain;
562                                 }
563                         }
564                         break;
565                 }
566         }
567
568 eob_clone_chain:
569         for (i = 0; i < sge_chain_count; i++) {
570                 if (is_scsiio_req)
571                         _base_clone_to_sys_mem(dst_chain_addr[i],
572                                 src_chain_addr[i], ioc->request_sz);
573         }
574 }
575
576 /**
577  *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
578  * @arg: input argument, used to derive ioc
579  *
580  * Return:
581  * 0 if controller is removed from pci subsystem.
582  * -1 for other case.
583  */
584 static int mpt3sas_remove_dead_ioc_func(void *arg)
585 {
586         struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
587         struct pci_dev *pdev;
588
589         if (!ioc)
590                 return -1;
591
592         pdev = ioc->pdev;
593         if (!pdev)
594                 return -1;
595         pci_stop_and_remove_bus_device_locked(pdev);
596         return 0;
597 }
598
599 /**
600  * _base_fault_reset_work - workq handling ioc fault conditions
601  * @work: input argument, used to derive ioc
602  *
603  * Context: sleep.
604  */
605 static void
606 _base_fault_reset_work(struct work_struct *work)
607 {
608         struct MPT3SAS_ADAPTER *ioc =
609             container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
610         unsigned long    flags;
611         u32 doorbell;
612         int rc;
613         struct task_struct *p;
614
615
616         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
617         if ((ioc->shost_recovery && (ioc->ioc_coredump_loop == 0)) ||
618                         ioc->pci_error_recovery)
619                 goto rearm_timer;
620         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
621
622         doorbell = mpt3sas_base_get_iocstate(ioc, 0);
623         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
624                 ioc_err(ioc, "SAS host is non-operational !!!!\n");
625
626                 /* It may be possible that EEH recovery can resolve some of
627                  * pci bus failure issues rather removing the dead ioc function
628                  * by considering controller is in a non-operational state. So
629                  * here priority is given to the EEH recovery. If it doesn't
630                  * not resolve this issue, mpt3sas driver will consider this
631                  * controller to non-operational state and remove the dead ioc
632                  * function.
633                  */
634                 if (ioc->non_operational_loop++ < 5) {
635                         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock,
636                                                          flags);
637                         goto rearm_timer;
638                 }
639
640                 /*
641                  * Call _scsih_flush_pending_cmds callback so that we flush all
642                  * pending commands back to OS. This call is required to aovid
643                  * deadlock at block layer. Dead IOC will fail to do diag reset,
644                  * and this call is safe since dead ioc will never return any
645                  * command back from HW.
646                  */
647                 ioc->schedule_dead_ioc_flush_running_cmds(ioc);
648                 /*
649                  * Set remove_host flag early since kernel thread will
650                  * take some time to execute.
651                  */
652                 ioc->remove_host = 1;
653                 /*Remove the Dead Host */
654                 p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
655                     "%s_dead_ioc_%d", ioc->driver_name, ioc->id);
656                 if (IS_ERR(p))
657                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
658                                 __func__);
659                 else
660                         ioc_err(ioc, "%s: Running mpt3sas_dead_ioc thread success !!!!\n",
661                                 __func__);
662                 return; /* don't rearm timer */
663         }
664
665         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
666                 u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
667                     ioc->manu_pg11.CoreDumpTOSec :
668                     MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
669
670                 timeout /= (FAULT_POLLING_INTERVAL/1000);
671
672                 if (ioc->ioc_coredump_loop == 0) {
673                         mpt3sas_print_coredump_info(ioc,
674                             doorbell & MPI2_DOORBELL_DATA_MASK);
675                         /* do not accept any IOs and disable the interrupts */
676                         spin_lock_irqsave(
677                             &ioc->ioc_reset_in_progress_lock, flags);
678                         ioc->shost_recovery = 1;
679                         spin_unlock_irqrestore(
680                             &ioc->ioc_reset_in_progress_lock, flags);
681                         mpt3sas_base_mask_interrupts(ioc);
682                         _base_clear_outstanding_commands(ioc);
683                 }
684
685                 ioc_info(ioc, "%s: CoreDump loop %d.",
686                     __func__, ioc->ioc_coredump_loop);
687
688                 /* Wait until CoreDump completes or times out */
689                 if (ioc->ioc_coredump_loop++ < timeout) {
690                         spin_lock_irqsave(
691                             &ioc->ioc_reset_in_progress_lock, flags);
692                         goto rearm_timer;
693                 }
694         }
695
696         if (ioc->ioc_coredump_loop) {
697                 if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_COREDUMP)
698                         ioc_err(ioc, "%s: CoreDump completed. LoopCount: %d",
699                             __func__, ioc->ioc_coredump_loop);
700                 else
701                         ioc_err(ioc, "%s: CoreDump Timed out. LoopCount: %d",
702                             __func__, ioc->ioc_coredump_loop);
703                 ioc->ioc_coredump_loop = MPT3SAS_COREDUMP_LOOP_DONE;
704         }
705         ioc->non_operational_loop = 0;
706         if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
707                 rc = mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
708                 ioc_warn(ioc, "%s: hard reset: %s\n",
709                          __func__, rc == 0 ? "success" : "failed");
710                 doorbell = mpt3sas_base_get_iocstate(ioc, 0);
711                 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
712                         mpt3sas_print_fault_code(ioc, doorbell &
713                             MPI2_DOORBELL_DATA_MASK);
714                 } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
715                     MPI2_IOC_STATE_COREDUMP)
716                         mpt3sas_print_coredump_info(ioc, doorbell &
717                             MPI2_DOORBELL_DATA_MASK);
718                 if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
719                     MPI2_IOC_STATE_OPERATIONAL)
720                         return; /* don't rearm timer */
721         }
722         ioc->ioc_coredump_loop = 0;
723
724         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
725  rearm_timer:
726         if (ioc->fault_reset_work_q)
727                 queue_delayed_work(ioc->fault_reset_work_q,
728                     &ioc->fault_reset_work,
729                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
730         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
731 }
732
733 /**
734  * mpt3sas_base_start_watchdog - start the fault_reset_work_q
735  * @ioc: per adapter object
736  *
737  * Context: sleep.
738  */
739 void
740 mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
741 {
742         unsigned long    flags;
743
744         if (ioc->fault_reset_work_q)
745                 return;
746
747         /* initialize fault polling */
748
749         INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
750         snprintf(ioc->fault_reset_work_q_name,
751             sizeof(ioc->fault_reset_work_q_name), "poll_%s%d_status",
752             ioc->driver_name, ioc->id);
753         ioc->fault_reset_work_q =
754                 create_singlethread_workqueue(ioc->fault_reset_work_q_name);
755         if (!ioc->fault_reset_work_q) {
756                 ioc_err(ioc, "%s: failed (line=%d)\n", __func__, __LINE__);
757                 return;
758         }
759         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
760         if (ioc->fault_reset_work_q)
761                 queue_delayed_work(ioc->fault_reset_work_q,
762                     &ioc->fault_reset_work,
763                     msecs_to_jiffies(FAULT_POLLING_INTERVAL));
764         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
765 }
766
767 /**
768  * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
769  * @ioc: per adapter object
770  *
771  * Context: sleep.
772  */
773 void
774 mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
775 {
776         unsigned long flags;
777         struct workqueue_struct *wq;
778
779         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
780         wq = ioc->fault_reset_work_q;
781         ioc->fault_reset_work_q = NULL;
782         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
783         if (wq) {
784                 if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
785                         flush_workqueue(wq);
786                 destroy_workqueue(wq);
787         }
788 }
789
790 /**
791  * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
792  * @ioc: per adapter object
793  * @fault_code: fault code
794  */
795 void
796 mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
797 {
798         ioc_err(ioc, "fault_state(0x%04x)!\n", fault_code);
799 }
800
801 /**
802  * mpt3sas_base_coredump_info - verbose translation of firmware CoreDump state
803  * @ioc: per adapter object
804  * @fault_code: fault code
805  *
806  * Return nothing.
807  */
808 void
809 mpt3sas_base_coredump_info(struct MPT3SAS_ADAPTER *ioc, u16 fault_code)
810 {
811         ioc_err(ioc, "coredump_state(0x%04x)!\n", fault_code);
812 }
813
814 /**
815  * mpt3sas_base_wait_for_coredump_completion - Wait until coredump
816  * completes or times out
817  * @ioc: per adapter object
818  * @caller: caller function name
819  *
820  * Returns 0 for success, non-zero for failure.
821  */
822 int
823 mpt3sas_base_wait_for_coredump_completion(struct MPT3SAS_ADAPTER *ioc,
824                 const char *caller)
825 {
826         u8 timeout = (ioc->manu_pg11.CoreDumpTOSec) ?
827                         ioc->manu_pg11.CoreDumpTOSec :
828                         MPT3SAS_DEFAULT_COREDUMP_TIMEOUT_SECONDS;
829
830         int ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_FAULT,
831                                         timeout);
832
833         if (ioc_state)
834                 ioc_err(ioc,
835                     "%s: CoreDump timed out. (ioc_state=0x%x)\n",
836                     caller, ioc_state);
837         else
838                 ioc_info(ioc,
839                     "%s: CoreDump completed. (ioc_state=0x%x)\n",
840                     caller, ioc_state);
841
842         return ioc_state;
843 }
844
845 /**
846  * mpt3sas_halt_firmware - halt's mpt controller firmware
847  * @ioc: per adapter object
848  *
849  * For debugging timeout related issues.  Writing 0xCOFFEE00
850  * to the doorbell register will halt controller firmware. With
851  * the purpose to stop both driver and firmware, the enduser can
852  * obtain a ring buffer from controller UART.
853  */
854 void
855 mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
856 {
857         u32 doorbell;
858
859         if (!ioc->fwfault_debug)
860                 return;
861
862         dump_stack();
863
864         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
865         if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
866                 mpt3sas_print_fault_code(ioc, doorbell &
867                     MPI2_DOORBELL_DATA_MASK);
868         } else if ((doorbell & MPI2_IOC_STATE_MASK) ==
869             MPI2_IOC_STATE_COREDUMP) {
870                 mpt3sas_print_coredump_info(ioc, doorbell &
871                     MPI2_DOORBELL_DATA_MASK);
872         } else {
873                 writel(0xC0FFEE00, &ioc->chip->Doorbell);
874                 ioc_err(ioc, "Firmware is halted due to command timeout\n");
875         }
876
877         if (ioc->fwfault_debug == 2)
878                 for (;;)
879                         ;
880         else
881                 panic("panic in %s\n", __func__);
882 }
883
884 /**
885  * _base_sas_ioc_info - verbose translation of the ioc status
886  * @ioc: per adapter object
887  * @mpi_reply: reply mf payload returned from firmware
888  * @request_hdr: request mf
889  */
890 static void
891 _base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
892         MPI2RequestHeader_t *request_hdr)
893 {
894         u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
895             MPI2_IOCSTATUS_MASK;
896         char *desc = NULL;
897         u16 frame_sz;
898         char *func_str = NULL;
899
900         /* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
901         if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
902             request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
903             request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
904                 return;
905
906         if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
907                 return;
908
909         switch (ioc_status) {
910
911 /****************************************************************************
912 *  Common IOCStatus values for all replies
913 ****************************************************************************/
914
915         case MPI2_IOCSTATUS_INVALID_FUNCTION:
916                 desc = "invalid function";
917                 break;
918         case MPI2_IOCSTATUS_BUSY:
919                 desc = "busy";
920                 break;
921         case MPI2_IOCSTATUS_INVALID_SGL:
922                 desc = "invalid sgl";
923                 break;
924         case MPI2_IOCSTATUS_INTERNAL_ERROR:
925                 desc = "internal error";
926                 break;
927         case MPI2_IOCSTATUS_INVALID_VPID:
928                 desc = "invalid vpid";
929                 break;
930         case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
931                 desc = "insufficient resources";
932                 break;
933         case MPI2_IOCSTATUS_INSUFFICIENT_POWER:
934                 desc = "insufficient power";
935                 break;
936         case MPI2_IOCSTATUS_INVALID_FIELD:
937                 desc = "invalid field";
938                 break;
939         case MPI2_IOCSTATUS_INVALID_STATE:
940                 desc = "invalid state";
941                 break;
942         case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
943                 desc = "op state not supported";
944                 break;
945
946 /****************************************************************************
947 *  Config IOCStatus values
948 ****************************************************************************/
949
950         case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
951                 desc = "config invalid action";
952                 break;
953         case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
954                 desc = "config invalid type";
955                 break;
956         case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
957                 desc = "config invalid page";
958                 break;
959         case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
960                 desc = "config invalid data";
961                 break;
962         case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
963                 desc = "config no defaults";
964                 break;
965         case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
966                 desc = "config cant commit";
967                 break;
968
969 /****************************************************************************
970 *  SCSI IO Reply
971 ****************************************************************************/
972
973         case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
974         case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
975         case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
976         case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
977         case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
978         case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
979         case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
980         case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
981         case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
982         case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
983         case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
984         case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
985                 break;
986
987 /****************************************************************************
988 *  For use by SCSI Initiator and SCSI Target end-to-end data protection
989 ****************************************************************************/
990
991         case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
992                 desc = "eedp guard error";
993                 break;
994         case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
995                 desc = "eedp ref tag error";
996                 break;
997         case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
998                 desc = "eedp app tag error";
999                 break;
1000
1001 /****************************************************************************
1002 *  SCSI Target values
1003 ****************************************************************************/
1004
1005         case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
1006                 desc = "target invalid io index";
1007                 break;
1008         case MPI2_IOCSTATUS_TARGET_ABORTED:
1009                 desc = "target aborted";
1010                 break;
1011         case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
1012                 desc = "target no conn retryable";
1013                 break;
1014         case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
1015                 desc = "target no connection";
1016                 break;
1017         case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
1018                 desc = "target xfer count mismatch";
1019                 break;
1020         case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
1021                 desc = "target data offset error";
1022                 break;
1023         case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
1024                 desc = "target too much write data";
1025                 break;
1026         case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
1027                 desc = "target iu too short";
1028                 break;
1029         case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
1030                 desc = "target ack nak timeout";
1031                 break;
1032         case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
1033                 desc = "target nak received";
1034                 break;
1035
1036 /****************************************************************************
1037 *  Serial Attached SCSI values
1038 ****************************************************************************/
1039
1040         case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
1041                 desc = "smp request failed";
1042                 break;
1043         case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
1044                 desc = "smp data overrun";
1045                 break;
1046
1047 /****************************************************************************
1048 *  Diagnostic Buffer Post / Diagnostic Release values
1049 ****************************************************************************/
1050
1051         case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
1052                 desc = "diagnostic released";
1053                 break;
1054         default:
1055                 break;
1056         }
1057
1058         if (!desc)
1059                 return;
1060
1061         switch (request_hdr->Function) {
1062         case MPI2_FUNCTION_CONFIG:
1063                 frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
1064                 func_str = "config_page";
1065                 break;
1066         case MPI2_FUNCTION_SCSI_TASK_MGMT:
1067                 frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
1068                 func_str = "task_mgmt";
1069                 break;
1070         case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
1071                 frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
1072                 func_str = "sas_iounit_ctl";
1073                 break;
1074         case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
1075                 frame_sz = sizeof(Mpi2SepRequest_t);
1076                 func_str = "enclosure";
1077                 break;
1078         case MPI2_FUNCTION_IOC_INIT:
1079                 frame_sz = sizeof(Mpi2IOCInitRequest_t);
1080                 func_str = "ioc_init";
1081                 break;
1082         case MPI2_FUNCTION_PORT_ENABLE:
1083                 frame_sz = sizeof(Mpi2PortEnableRequest_t);
1084                 func_str = "port_enable";
1085                 break;
1086         case MPI2_FUNCTION_SMP_PASSTHROUGH:
1087                 frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
1088                 func_str = "smp_passthru";
1089                 break;
1090         case MPI2_FUNCTION_NVME_ENCAPSULATED:
1091                 frame_sz = sizeof(Mpi26NVMeEncapsulatedRequest_t) +
1092                     ioc->sge_size;
1093                 func_str = "nvme_encapsulated";
1094                 break;
1095         default:
1096                 frame_sz = 32;
1097                 func_str = "unknown";
1098                 break;
1099         }
1100
1101         ioc_warn(ioc, "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
1102                  desc, ioc_status, request_hdr, func_str);
1103
1104         _debug_dump_mf(request_hdr, frame_sz/4);
1105 }
1106
1107 /**
1108  * _base_display_event_data - verbose translation of firmware asyn events
1109  * @ioc: per adapter object
1110  * @mpi_reply: reply mf payload returned from firmware
1111  */
1112 static void
1113 _base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
1114         Mpi2EventNotificationReply_t *mpi_reply)
1115 {
1116         char *desc = NULL;
1117         u16 event;
1118
1119         if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
1120                 return;
1121
1122         event = le16_to_cpu(mpi_reply->Event);
1123
1124         switch (event) {
1125         case MPI2_EVENT_LOG_DATA:
1126                 desc = "Log Data";
1127                 break;
1128         case MPI2_EVENT_STATE_CHANGE:
1129                 desc = "Status Change";
1130                 break;
1131         case MPI2_EVENT_HARD_RESET_RECEIVED:
1132                 desc = "Hard Reset Received";
1133                 break;
1134         case MPI2_EVENT_EVENT_CHANGE:
1135                 desc = "Event Change";
1136                 break;
1137         case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
1138                 desc = "Device Status Change";
1139                 break;
1140         case MPI2_EVENT_IR_OPERATION_STATUS:
1141                 if (!ioc->hide_ir_msg)
1142                         desc = "IR Operation Status";
1143                 break;
1144         case MPI2_EVENT_SAS_DISCOVERY:
1145         {
1146                 Mpi2EventDataSasDiscovery_t *event_data =
1147                     (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
1148                 ioc_info(ioc, "Discovery: (%s)",
1149                          event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED ?
1150                          "start" : "stop");
1151                 if (event_data->DiscoveryStatus)
1152                         pr_cont(" discovery_status(0x%08x)",
1153                             le32_to_cpu(event_data->DiscoveryStatus));
1154                 pr_cont("\n");
1155                 return;
1156         }
1157         case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
1158                 desc = "SAS Broadcast Primitive";
1159                 break;
1160         case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
1161                 desc = "SAS Init Device Status Change";
1162                 break;
1163         case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
1164                 desc = "SAS Init Table Overflow";
1165                 break;
1166         case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
1167                 desc = "SAS Topology Change List";
1168                 break;
1169         case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
1170                 desc = "SAS Enclosure Device Status Change";
1171                 break;
1172         case MPI2_EVENT_IR_VOLUME:
1173                 if (!ioc->hide_ir_msg)
1174                         desc = "IR Volume";
1175                 break;
1176         case MPI2_EVENT_IR_PHYSICAL_DISK:
1177                 if (!ioc->hide_ir_msg)
1178                         desc = "IR Physical Disk";
1179                 break;
1180         case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
1181                 if (!ioc->hide_ir_msg)
1182                         desc = "IR Configuration Change List";
1183                 break;
1184         case MPI2_EVENT_LOG_ENTRY_ADDED:
1185                 if (!ioc->hide_ir_msg)
1186                         desc = "Log Entry Added";
1187                 break;
1188         case MPI2_EVENT_TEMP_THRESHOLD:
1189                 desc = "Temperature Threshold";
1190                 break;
1191         case MPI2_EVENT_ACTIVE_CABLE_EXCEPTION:
1192                 desc = "Cable Event";
1193                 break;
1194         case MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR:
1195                 desc = "SAS Device Discovery Error";
1196                 break;
1197         case MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE:
1198                 desc = "PCIE Device Status Change";
1199                 break;
1200         case MPI2_EVENT_PCIE_ENUMERATION:
1201         {
1202                 Mpi26EventDataPCIeEnumeration_t *event_data =
1203                         (Mpi26EventDataPCIeEnumeration_t *)mpi_reply->EventData;
1204                 ioc_info(ioc, "PCIE Enumeration: (%s)",
1205                          event_data->ReasonCode == MPI26_EVENT_PCIE_ENUM_RC_STARTED ?
1206                          "start" : "stop");
1207                 if (event_data->EnumerationStatus)
1208                         pr_cont("enumeration_status(0x%08x)",
1209                                 le32_to_cpu(event_data->EnumerationStatus));
1210                 pr_cont("\n");
1211                 return;
1212         }
1213         case MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST:
1214                 desc = "PCIE Topology Change List";
1215                 break;
1216         }
1217
1218         if (!desc)
1219                 return;
1220
1221         ioc_info(ioc, "%s\n", desc);
1222 }
1223
1224 /**
1225  * _base_sas_log_info - verbose translation of firmware log info
1226  * @ioc: per adapter object
1227  * @log_info: log info
1228  */
1229 static void
1230 _base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
1231 {
1232         union loginfo_type {
1233                 u32     loginfo;
1234                 struct {
1235                         u32     subcode:16;
1236                         u32     code:8;
1237                         u32     originator:4;
1238                         u32     bus_type:4;
1239                 } dw;
1240         };
1241         union loginfo_type sas_loginfo;
1242         char *originator_str = NULL;
1243
1244         sas_loginfo.loginfo = log_info;
1245         if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
1246                 return;
1247
1248         /* each nexus loss loginfo */
1249         if (log_info == 0x31170000)
1250                 return;
1251
1252         /* eat the loginfos associated with task aborts */
1253         if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
1254             0x31140000 || log_info == 0x31130000))
1255                 return;
1256
1257         switch (sas_loginfo.dw.originator) {
1258         case 0:
1259                 originator_str = "IOP";
1260                 break;
1261         case 1:
1262                 originator_str = "PL";
1263                 break;
1264         case 2:
1265                 if (!ioc->hide_ir_msg)
1266                         originator_str = "IR";
1267                 else
1268                         originator_str = "WarpDrive";
1269                 break;
1270         }
1271
1272         ioc_warn(ioc, "log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
1273                  log_info,
1274                  originator_str, sas_loginfo.dw.code, sas_loginfo.dw.subcode);
1275 }
1276
1277 /**
1278  * _base_display_reply_info -
1279  * @ioc: per adapter object
1280  * @smid: system request message index
1281  * @msix_index: MSIX table index supplied by the OS
1282  * @reply: reply message frame(lower 32bit addr)
1283  */
1284 static void
1285 _base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1286         u32 reply)
1287 {
1288         MPI2DefaultReply_t *mpi_reply;
1289         u16 ioc_status;
1290         u32 loginfo = 0;
1291
1292         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1293         if (unlikely(!mpi_reply)) {
1294                 ioc_err(ioc, "mpi_reply not valid at %s:%d/%s()!\n",
1295                         __FILE__, __LINE__, __func__);
1296                 return;
1297         }
1298         ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
1299
1300         if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
1301             (ioc->logging_level & MPT_DEBUG_REPLY)) {
1302                 _base_sas_ioc_info(ioc , mpi_reply,
1303                    mpt3sas_base_get_msg_frame(ioc, smid));
1304         }
1305
1306         if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
1307                 loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
1308                 _base_sas_log_info(ioc, loginfo);
1309         }
1310
1311         if (ioc_status || loginfo) {
1312                 ioc_status &= MPI2_IOCSTATUS_MASK;
1313                 mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
1314         }
1315 }
1316
1317 /**
1318  * mpt3sas_base_done - base internal command completion routine
1319  * @ioc: per adapter object
1320  * @smid: system request message index
1321  * @msix_index: MSIX table index supplied by the OS
1322  * @reply: reply message frame(lower 32bit addr)
1323  *
1324  * Return:
1325  * 1 meaning mf should be freed from _base_interrupt
1326  * 0 means the mf is freed from this function.
1327  */
1328 u8
1329 mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
1330         u32 reply)
1331 {
1332         MPI2DefaultReply_t *mpi_reply;
1333
1334         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1335         if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
1336                 return mpt3sas_check_for_pending_internal_cmds(ioc, smid);
1337
1338         if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
1339                 return 1;
1340
1341         ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
1342         if (mpi_reply) {
1343                 ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
1344                 memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
1345         }
1346         ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
1347
1348         complete(&ioc->base_cmds.done);
1349         return 1;
1350 }
1351
1352 /**
1353  * _base_async_event - main callback handler for firmware asyn events
1354  * @ioc: per adapter object
1355  * @msix_index: MSIX table index supplied by the OS
1356  * @reply: reply message frame(lower 32bit addr)
1357  *
1358  * Return:
1359  * 1 meaning mf should be freed from _base_interrupt
1360  * 0 means the mf is freed from this function.
1361  */
1362 static u8
1363 _base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
1364 {
1365         Mpi2EventNotificationReply_t *mpi_reply;
1366         Mpi2EventAckRequest_t *ack_request;
1367         u16 smid;
1368         struct _event_ack_list *delayed_event_ack;
1369
1370         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
1371         if (!mpi_reply)
1372                 return 1;
1373         if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
1374                 return 1;
1375
1376         _base_display_event_data(ioc, mpi_reply);
1377
1378         if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
1379                 goto out;
1380         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
1381         if (!smid) {
1382                 delayed_event_ack = kzalloc(sizeof(*delayed_event_ack),
1383                                         GFP_ATOMIC);
1384                 if (!delayed_event_ack)
1385                         goto out;
1386                 INIT_LIST_HEAD(&delayed_event_ack->list);
1387                 delayed_event_ack->Event = mpi_reply->Event;
1388                 delayed_event_ack->EventContext = mpi_reply->EventContext;
1389                 list_add_tail(&delayed_event_ack->list,
1390                                 &ioc->delayed_event_ack_list);
1391                 dewtprintk(ioc,
1392                            ioc_info(ioc, "DELAYED: EVENT ACK: event (0x%04x)\n",
1393                                     le16_to_cpu(mpi_reply->Event)));
1394                 goto out;
1395         }
1396
1397         ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
1398         memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
1399         ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
1400         ack_request->Event = mpi_reply->Event;
1401         ack_request->EventContext = mpi_reply->EventContext;
1402         ack_request->VF_ID = 0;  /* TODO */
1403         ack_request->VP_ID = 0;
1404         ioc->put_smid_default(ioc, smid);
1405
1406  out:
1407
1408         /* scsih callback handler */
1409         mpt3sas_scsih_event_callback(ioc, msix_index, reply);
1410
1411         /* ctl callback handler */
1412         mpt3sas_ctl_event_callback(ioc, msix_index, reply);
1413
1414         return 1;
1415 }
1416
1417 static struct scsiio_tracker *
1418 _get_st_from_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1419 {
1420         struct scsi_cmnd *cmd;
1421
1422         if (WARN_ON(!smid) ||
1423             WARN_ON(smid >= ioc->hi_priority_smid))
1424                 return NULL;
1425
1426         cmd = mpt3sas_scsih_scsi_lookup_get(ioc, smid);
1427         if (cmd)
1428                 return scsi_cmd_priv(cmd);
1429
1430         return NULL;
1431 }
1432
1433 /**
1434  * _base_get_cb_idx - obtain the callback index
1435  * @ioc: per adapter object
1436  * @smid: system request message index
1437  *
1438  * Return: callback index.
1439  */
1440 static u8
1441 _base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1442 {
1443         int i;
1444         u16 ctl_smid = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT + 1;
1445         u8 cb_idx = 0xFF;
1446
1447         if (smid < ioc->hi_priority_smid) {
1448                 struct scsiio_tracker *st;
1449
1450                 if (smid < ctl_smid) {
1451                         st = _get_st_from_smid(ioc, smid);
1452                         if (st)
1453                                 cb_idx = st->cb_idx;
1454                 } else if (smid == ctl_smid)
1455                         cb_idx = ioc->ctl_cb_idx;
1456         } else if (smid < ioc->internal_smid) {
1457                 i = smid - ioc->hi_priority_smid;
1458                 cb_idx = ioc->hpr_lookup[i].cb_idx;
1459         } else if (smid <= ioc->hba_queue_depth) {
1460                 i = smid - ioc->internal_smid;
1461                 cb_idx = ioc->internal_lookup[i].cb_idx;
1462         }
1463         return cb_idx;
1464 }
1465
1466 /**
1467  * mpt3sas_base_mask_interrupts - disable interrupts
1468  * @ioc: per adapter object
1469  *
1470  * Disabling ResetIRQ, Reply and Doorbell Interrupts
1471  */
1472 void
1473 mpt3sas_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1474 {
1475         u32 him_register;
1476
1477         ioc->mask_interrupts = 1;
1478         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1479         him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
1480         writel(him_register, &ioc->chip->HostInterruptMask);
1481         ioc->base_readl(&ioc->chip->HostInterruptMask);
1482 }
1483
1484 /**
1485  * mpt3sas_base_unmask_interrupts - enable interrupts
1486  * @ioc: per adapter object
1487  *
1488  * Enabling only Reply Interrupts
1489  */
1490 void
1491 mpt3sas_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
1492 {
1493         u32 him_register;
1494
1495         him_register = ioc->base_readl(&ioc->chip->HostInterruptMask);
1496         him_register &= ~MPI2_HIM_RIM;
1497         writel(him_register, &ioc->chip->HostInterruptMask);
1498         ioc->mask_interrupts = 0;
1499 }
1500
1501 union reply_descriptor {
1502         u64 word;
1503         struct {
1504                 u32 low;
1505                 u32 high;
1506         } u;
1507 };
1508
1509 static u32 base_mod64(u64 dividend, u32 divisor)
1510 {
1511         u32 remainder;
1512
1513         if (!divisor)
1514                 pr_err("mpt3sas: DIVISOR is zero, in div fn\n");
1515         remainder = do_div(dividend, divisor);
1516         return remainder;
1517 }
1518
1519 /**
1520  * _base_process_reply_queue - Process reply descriptors from reply
1521  *              descriptor post queue.
1522  * @reply_q: per IRQ's reply queue object.
1523  *
1524  * Return: number of reply descriptors processed from reply
1525  *              descriptor queue.
1526  */
1527 static int
1528 _base_process_reply_queue(struct adapter_reply_queue *reply_q)
1529 {
1530         union reply_descriptor rd;
1531         u64 completed_cmds;
1532         u8 request_descript_type;
1533         u16 smid;
1534         u8 cb_idx;
1535         u32 reply;
1536         u8 msix_index = reply_q->msix_index;
1537         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1538         Mpi2ReplyDescriptorsUnion_t *rpf;
1539         u8 rc;
1540
1541         completed_cmds = 0;
1542         if (!atomic_add_unless(&reply_q->busy, 1, 1))
1543                 return completed_cmds;
1544
1545         rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
1546         request_descript_type = rpf->Default.ReplyFlags
1547              & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1548         if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
1549                 atomic_dec(&reply_q->busy);
1550                 return completed_cmds;
1551         }
1552
1553         cb_idx = 0xFF;
1554         do {
1555                 rd.word = le64_to_cpu(rpf->Words);
1556                 if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
1557                         goto out;
1558                 reply = 0;
1559                 smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
1560                 if (request_descript_type ==
1561                     MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
1562                     request_descript_type ==
1563                     MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS ||
1564                     request_descript_type ==
1565                     MPI26_RPY_DESCRIPT_FLAGS_PCIE_ENCAPSULATED_SUCCESS) {
1566                         cb_idx = _base_get_cb_idx(ioc, smid);
1567                         if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1568                             (likely(mpt_callbacks[cb_idx] != NULL))) {
1569                                 rc = mpt_callbacks[cb_idx](ioc, smid,
1570                                     msix_index, 0);
1571                                 if (rc)
1572                                         mpt3sas_base_free_smid(ioc, smid);
1573                         }
1574                 } else if (request_descript_type ==
1575                     MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
1576                         reply = le32_to_cpu(
1577                             rpf->AddressReply.ReplyFrameAddress);
1578                         if (reply > ioc->reply_dma_max_address ||
1579                             reply < ioc->reply_dma_min_address)
1580                                 reply = 0;
1581                         if (smid) {
1582                                 cb_idx = _base_get_cb_idx(ioc, smid);
1583                                 if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
1584                                     (likely(mpt_callbacks[cb_idx] != NULL))) {
1585                                         rc = mpt_callbacks[cb_idx](ioc, smid,
1586                                             msix_index, reply);
1587                                         if (reply)
1588                                                 _base_display_reply_info(ioc,
1589                                                     smid, msix_index, reply);
1590                                         if (rc)
1591                                                 mpt3sas_base_free_smid(ioc,
1592                                                     smid);
1593                                 }
1594                         } else {
1595                                 _base_async_event(ioc, msix_index, reply);
1596                         }
1597
1598                         /* reply free queue handling */
1599                         if (reply) {
1600                                 ioc->reply_free_host_index =
1601                                     (ioc->reply_free_host_index ==
1602                                     (ioc->reply_free_queue_depth - 1)) ?
1603                                     0 : ioc->reply_free_host_index + 1;
1604                                 ioc->reply_free[ioc->reply_free_host_index] =
1605                                     cpu_to_le32(reply);
1606                                 if (ioc->is_mcpu_endpoint)
1607                                         _base_clone_reply_to_sys_mem(ioc,
1608                                                 reply,
1609                                                 ioc->reply_free_host_index);
1610                                 writel(ioc->reply_free_host_index,
1611                                     &ioc->chip->ReplyFreeHostIndex);
1612                         }
1613                 }
1614
1615                 rpf->Words = cpu_to_le64(ULLONG_MAX);
1616                 reply_q->reply_post_host_index =
1617                     (reply_q->reply_post_host_index ==
1618                     (ioc->reply_post_queue_depth - 1)) ? 0 :
1619                     reply_q->reply_post_host_index + 1;
1620                 request_descript_type =
1621                     reply_q->reply_post_free[reply_q->reply_post_host_index].
1622                     Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
1623                 completed_cmds++;
1624                 /* Update the reply post host index after continuously
1625                  * processing the threshold number of Reply Descriptors.
1626                  * So that FW can find enough entries to post the Reply
1627                  * Descriptors in the reply descriptor post queue.
1628                  */
1629                 if (completed_cmds >= ioc->thresh_hold) {
1630                         if (ioc->combined_reply_queue) {
1631                                 writel(reply_q->reply_post_host_index |
1632                                                 ((msix_index  & 7) <<
1633                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1634                                     ioc->replyPostRegisterIndex[msix_index/8]);
1635                         } else {
1636                                 writel(reply_q->reply_post_host_index |
1637                                                 (msix_index <<
1638                                                  MPI2_RPHI_MSIX_INDEX_SHIFT),
1639                                                 &ioc->chip->ReplyPostHostIndex);
1640                         }
1641                         if (!reply_q->irq_poll_scheduled) {
1642                                 reply_q->irq_poll_scheduled = true;
1643                                 irq_poll_sched(&reply_q->irqpoll);
1644                         }
1645                         atomic_dec(&reply_q->busy);
1646                         return completed_cmds;
1647                 }
1648                 if (request_descript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
1649                         goto out;
1650                 if (!reply_q->reply_post_host_index)
1651                         rpf = reply_q->reply_post_free;
1652                 else
1653                         rpf++;
1654         } while (1);
1655
1656  out:
1657
1658         if (!completed_cmds) {
1659                 atomic_dec(&reply_q->busy);
1660                 return completed_cmds;
1661         }
1662
1663         if (ioc->is_warpdrive) {
1664                 writel(reply_q->reply_post_host_index,
1665                 ioc->reply_post_host_index[msix_index]);
1666                 atomic_dec(&reply_q->busy);
1667                 return completed_cmds;
1668         }
1669
1670         /* Update Reply Post Host Index.
1671          * For those HBA's which support combined reply queue feature
1672          * 1. Get the correct Supplemental Reply Post Host Index Register.
1673          *    i.e. (msix_index / 8)th entry from Supplemental Reply Post Host
1674          *    Index Register address bank i.e replyPostRegisterIndex[],
1675          * 2. Then update this register with new reply host index value
1676          *    in ReplyPostIndex field and the MSIxIndex field with
1677          *    msix_index value reduced to a value between 0 and 7,
1678          *    using a modulo 8 operation. Since each Supplemental Reply Post
1679          *    Host Index Register supports 8 MSI-X vectors.
1680          *
1681          * For other HBA's just update the Reply Post Host Index register with
1682          * new reply host index value in ReplyPostIndex Field and msix_index
1683          * value in MSIxIndex field.
1684          */
1685         if (ioc->combined_reply_queue)
1686                 writel(reply_q->reply_post_host_index | ((msix_index  & 7) <<
1687                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1688                         ioc->replyPostRegisterIndex[msix_index/8]);
1689         else
1690                 writel(reply_q->reply_post_host_index | (msix_index <<
1691                         MPI2_RPHI_MSIX_INDEX_SHIFT),
1692                         &ioc->chip->ReplyPostHostIndex);
1693         atomic_dec(&reply_q->busy);
1694         return completed_cmds;
1695 }
1696
1697 /**
1698  * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
1699  * @irq: irq number (not used)
1700  * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
1701  *
1702  * Return: IRQ_HANDLED if processed, else IRQ_NONE.
1703  */
1704 static irqreturn_t
1705 _base_interrupt(int irq, void *bus_id)
1706 {
1707         struct adapter_reply_queue *reply_q = bus_id;
1708         struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
1709
1710         if (ioc->mask_interrupts)
1711                 return IRQ_NONE;
1712         if (reply_q->irq_poll_scheduled)
1713                 return IRQ_HANDLED;
1714         return ((_base_process_reply_queue(reply_q) > 0) ?
1715                         IRQ_HANDLED : IRQ_NONE);
1716 }
1717
1718 /**
1719  * _base_irqpoll - IRQ poll callback handler
1720  * @irqpoll: irq_poll object
1721  * @budget: irq poll weight
1722  *
1723  * returns number of reply descriptors processed
1724  */
1725 static int
1726 _base_irqpoll(struct irq_poll *irqpoll, int budget)
1727 {
1728         struct adapter_reply_queue *reply_q;
1729         int num_entries = 0;
1730
1731         reply_q = container_of(irqpoll, struct adapter_reply_queue,
1732                         irqpoll);
1733         if (reply_q->irq_line_enable) {
1734                 disable_irq_nosync(reply_q->os_irq);
1735                 reply_q->irq_line_enable = false;
1736         }
1737         num_entries = _base_process_reply_queue(reply_q);
1738         if (num_entries < budget) {
1739                 irq_poll_complete(irqpoll);
1740                 reply_q->irq_poll_scheduled = false;
1741                 reply_q->irq_line_enable = true;
1742                 enable_irq(reply_q->os_irq);
1743                 /*
1744                  * Go for one more round of processing the
1745                  * reply descriptor post queue incase if HBA
1746                  * Firmware has posted some reply descriptors
1747                  * while reenabling the IRQ.
1748                  */
1749                 _base_process_reply_queue(reply_q);
1750         }
1751
1752         return num_entries;
1753 }
1754
1755 /**
1756  * _base_init_irqpolls - initliaze IRQ polls
1757  * @ioc: per adapter object
1758  *
1759  * returns nothing
1760  */
1761 static void
1762 _base_init_irqpolls(struct MPT3SAS_ADAPTER *ioc)
1763 {
1764         struct adapter_reply_queue *reply_q, *next;
1765
1766         if (list_empty(&ioc->reply_queue_list))
1767                 return;
1768
1769         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1770                 irq_poll_init(&reply_q->irqpoll,
1771                         ioc->hba_queue_depth/4, _base_irqpoll);
1772                 reply_q->irq_poll_scheduled = false;
1773                 reply_q->irq_line_enable = true;
1774                 reply_q->os_irq = pci_irq_vector(ioc->pdev,
1775                     reply_q->msix_index);
1776         }
1777 }
1778
1779 /**
1780  * _base_is_controller_msix_enabled - is controller support muli-reply queues
1781  * @ioc: per adapter object
1782  *
1783  * Return: Whether or not MSI/X is enabled.
1784  */
1785 static inline int
1786 _base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1787 {
1788         return (ioc->facts.IOCCapabilities &
1789             MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1790 }
1791
1792 /**
1793  * mpt3sas_base_sync_reply_irqs - flush pending MSIX interrupts
1794  * @ioc: per adapter object
1795  * @poll: poll over reply descriptor pools incase interrupt for
1796  *              timed-out SCSI command got delayed
1797  * Context: non ISR conext
1798  *
1799  * Called when a Task Management request has completed.
1800  */
1801 void
1802 mpt3sas_base_sync_reply_irqs(struct MPT3SAS_ADAPTER *ioc, u8 poll)
1803 {
1804         struct adapter_reply_queue *reply_q;
1805
1806         /* If MSIX capability is turned off
1807          * then multi-queues are not enabled
1808          */
1809         if (!_base_is_controller_msix_enabled(ioc))
1810                 return;
1811
1812         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1813                 if (ioc->shost_recovery || ioc->remove_host ||
1814                                 ioc->pci_error_recovery)
1815                         return;
1816                 /* TMs are on msix_index == 0 */
1817                 if (reply_q->msix_index == 0)
1818                         continue;
1819                 synchronize_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index));
1820                 if (reply_q->irq_poll_scheduled) {
1821                         /* Calling irq_poll_disable will wait for any pending
1822                          * callbacks to have completed.
1823                          */
1824                         irq_poll_disable(&reply_q->irqpoll);
1825                         irq_poll_enable(&reply_q->irqpoll);
1826                         /* check how the scheduled poll has ended,
1827                          * clean up only if necessary
1828                          */
1829                         if (reply_q->irq_poll_scheduled) {
1830                                 reply_q->irq_poll_scheduled = false;
1831                                 reply_q->irq_line_enable = true;
1832                                 enable_irq(reply_q->os_irq);
1833                         }
1834                 }
1835         }
1836         if (poll)
1837                 _base_process_reply_queue(reply_q);
1838 }
1839
1840 /**
1841  * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1842  * @cb_idx: callback index
1843  */
1844 void
1845 mpt3sas_base_release_callback_handler(u8 cb_idx)
1846 {
1847         mpt_callbacks[cb_idx] = NULL;
1848 }
1849
1850 /**
1851  * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1852  * @cb_func: callback function
1853  *
1854  * Return: Index of @cb_func.
1855  */
1856 u8
1857 mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1858 {
1859         u8 cb_idx;
1860
1861         for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1862                 if (mpt_callbacks[cb_idx] == NULL)
1863                         break;
1864
1865         mpt_callbacks[cb_idx] = cb_func;
1866         return cb_idx;
1867 }
1868
1869 /**
1870  * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1871  */
1872 void
1873 mpt3sas_base_initialize_callback_handler(void)
1874 {
1875         u8 cb_idx;
1876
1877         for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1878                 mpt3sas_base_release_callback_handler(cb_idx);
1879 }
1880
1881
1882 /**
1883  * _base_build_zero_len_sge - build zero length sg entry
1884  * @ioc: per adapter object
1885  * @paddr: virtual address for SGE
1886  *
1887  * Create a zero length scatter gather entry to insure the IOCs hardware has
1888  * something to use if the target device goes brain dead and tries
1889  * to send data even when none is asked for.
1890  */
1891 static void
1892 _base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1893 {
1894         u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1895             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1896             MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1897             MPI2_SGE_FLAGS_SHIFT);
1898         ioc->base_add_sg_single(paddr, flags_length, -1);
1899 }
1900
1901 /**
1902  * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1903  * @paddr: virtual address for SGE
1904  * @flags_length: SGE flags and data transfer length
1905  * @dma_addr: Physical address
1906  */
1907 static void
1908 _base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1909 {
1910         Mpi2SGESimple32_t *sgel = paddr;
1911
1912         flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1913             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1914         sgel->FlagsLength = cpu_to_le32(flags_length);
1915         sgel->Address = cpu_to_le32(dma_addr);
1916 }
1917
1918
1919 /**
1920  * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1921  * @paddr: virtual address for SGE
1922  * @flags_length: SGE flags and data transfer length
1923  * @dma_addr: Physical address
1924  */
1925 static void
1926 _base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1927 {
1928         Mpi2SGESimple64_t *sgel = paddr;
1929
1930         flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1931             MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1932         sgel->FlagsLength = cpu_to_le32(flags_length);
1933         sgel->Address = cpu_to_le64(dma_addr);
1934 }
1935
1936 /**
1937  * _base_get_chain_buffer_tracker - obtain chain tracker
1938  * @ioc: per adapter object
1939  * @scmd: SCSI commands of the IO request
1940  *
1941  * Return: chain tracker from chain_lookup table using key as
1942  * smid and smid's chain_offset.
1943  */
1944 static struct chain_tracker *
1945 _base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc,
1946                                struct scsi_cmnd *scmd)
1947 {
1948         struct chain_tracker *chain_req;
1949         struct scsiio_tracker *st = scsi_cmd_priv(scmd);
1950         u16 smid = st->smid;
1951         u8 chain_offset =
1952            atomic_read(&ioc->chain_lookup[smid - 1].chain_offset);
1953
1954         if (chain_offset == ioc->chains_needed_per_io)
1955                 return NULL;
1956
1957         chain_req = &ioc->chain_lookup[smid - 1].chains_per_smid[chain_offset];
1958         atomic_inc(&ioc->chain_lookup[smid - 1].chain_offset);
1959         return chain_req;
1960 }
1961
1962
1963 /**
1964  * _base_build_sg - build generic sg
1965  * @ioc: per adapter object
1966  * @psge: virtual address for SGE
1967  * @data_out_dma: physical address for WRITES
1968  * @data_out_sz: data xfer size for WRITES
1969  * @data_in_dma: physical address for READS
1970  * @data_in_sz: data xfer size for READS
1971  */
1972 static void
1973 _base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1974         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1975         size_t data_in_sz)
1976 {
1977         u32 sgl_flags;
1978
1979         if (!data_out_sz && !data_in_sz) {
1980                 _base_build_zero_len_sge(ioc, psge);
1981                 return;
1982         }
1983
1984         if (data_out_sz && data_in_sz) {
1985                 /* WRITE sgel first */
1986                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1987                     MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1988                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1989                 ioc->base_add_sg_single(psge, sgl_flags |
1990                     data_out_sz, data_out_dma);
1991
1992                 /* incr sgel */
1993                 psge += ioc->sge_size;
1994
1995                 /* READ sgel last */
1996                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1997                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1998                     MPI2_SGE_FLAGS_END_OF_LIST);
1999                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2000                 ioc->base_add_sg_single(psge, sgl_flags |
2001                     data_in_sz, data_in_dma);
2002         } else if (data_out_sz) /* WRITE */ {
2003                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2004                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2005                     MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
2006                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2007                 ioc->base_add_sg_single(psge, sgl_flags |
2008                     data_out_sz, data_out_dma);
2009         } else if (data_in_sz) /* READ */ {
2010                 sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
2011                     MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
2012                     MPI2_SGE_FLAGS_END_OF_LIST);
2013                 sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2014                 ioc->base_add_sg_single(psge, sgl_flags |
2015                     data_in_sz, data_in_dma);
2016         }
2017 }
2018
2019 /* IEEE format sgls */
2020
2021 /**
2022  * _base_build_nvme_prp - This function is called for NVMe end devices to build
2023  * a native SGL (NVMe PRP). The native SGL is built starting in the first PRP
2024  * entry of the NVMe message (PRP1).  If the data buffer is small enough to be
2025  * described entirely using PRP1, then PRP2 is not used.  If needed, PRP2 is
2026  * used to describe a larger data buffer.  If the data buffer is too large to
2027  * describe using the two PRP entriess inside the NVMe message, then PRP1
2028  * describes the first data memory segment, and PRP2 contains a pointer to a PRP
2029  * list located elsewhere in memory to describe the remaining data memory
2030  * segments.  The PRP list will be contiguous.
2031  *
2032  * The native SGL for NVMe devices is a Physical Region Page (PRP).  A PRP
2033  * consists of a list of PRP entries to describe a number of noncontigous
2034  * physical memory segments as a single memory buffer, just as a SGL does.  Note
2035  * however, that this function is only used by the IOCTL call, so the memory
2036  * given will be guaranteed to be contiguous.  There is no need to translate
2037  * non-contiguous SGL into a PRP in this case.  All PRPs will describe
2038  * contiguous space that is one page size each.
2039  *
2040  * Each NVMe message contains two PRP entries.  The first (PRP1) either contains
2041  * a PRP list pointer or a PRP element, depending upon the command.  PRP2
2042  * contains the second PRP element if the memory being described fits within 2
2043  * PRP entries, or a PRP list pointer if the PRP spans more than two entries.
2044  *
2045  * A PRP list pointer contains the address of a PRP list, structured as a linear
2046  * array of PRP entries.  Each PRP entry in this list describes a segment of
2047  * physical memory.
2048  *
2049  * Each 64-bit PRP entry comprises an address and an offset field.  The address
2050  * always points at the beginning of a 4KB physical memory page, and the offset
2051  * describes where within that 4KB page the memory segment begins.  Only the
2052  * first element in a PRP list may contain a non-zero offest, implying that all
2053  * memory segments following the first begin at the start of a 4KB page.
2054  *
2055  * Each PRP element normally describes 4KB of physical memory, with exceptions
2056  * for the first and last elements in the list.  If the memory being described
2057  * by the list begins at a non-zero offset within the first 4KB page, then the
2058  * first PRP element will contain a non-zero offset indicating where the region
2059  * begins within the 4KB page.  The last memory segment may end before the end
2060  * of the 4KB segment, depending upon the overall size of the memory being
2061  * described by the PRP list.
2062  *
2063  * Since PRP entries lack any indication of size, the overall data buffer length
2064  * is used to determine where the end of the data memory buffer is located, and
2065  * how many PRP entries are required to describe it.
2066  *
2067  * @ioc: per adapter object
2068  * @smid: system request message index for getting asscociated SGL
2069  * @nvme_encap_request: the NVMe request msg frame pointer
2070  * @data_out_dma: physical address for WRITES
2071  * @data_out_sz: data xfer size for WRITES
2072  * @data_in_dma: physical address for READS
2073  * @data_in_sz: data xfer size for READS
2074  */
2075 static void
2076 _base_build_nvme_prp(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2077         Mpi26NVMeEncapsulatedRequest_t *nvme_encap_request,
2078         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2079         size_t data_in_sz)
2080 {
2081         int             prp_size = NVME_PRP_SIZE;
2082         __le64          *prp_entry, *prp1_entry, *prp2_entry;
2083         __le64          *prp_page;
2084         dma_addr_t      prp_entry_dma, prp_page_dma, dma_addr;
2085         u32             offset, entry_len;
2086         u32             page_mask_result, page_mask;
2087         size_t          length;
2088         struct mpt3sas_nvme_cmd *nvme_cmd =
2089                 (void *)nvme_encap_request->NVMe_Command;
2090
2091         /*
2092          * Not all commands require a data transfer. If no data, just return
2093          * without constructing any PRP.
2094          */
2095         if (!data_in_sz && !data_out_sz)
2096                 return;
2097         prp1_entry = &nvme_cmd->prp1;
2098         prp2_entry = &nvme_cmd->prp2;
2099         prp_entry = prp1_entry;
2100         /*
2101          * For the PRP entries, use the specially allocated buffer of
2102          * contiguous memory.
2103          */
2104         prp_page = (__le64 *)mpt3sas_base_get_pcie_sgl(ioc, smid);
2105         prp_page_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2106
2107         /*
2108          * Check if we are within 1 entry of a page boundary we don't
2109          * want our first entry to be a PRP List entry.
2110          */
2111         page_mask = ioc->page_size - 1;
2112         page_mask_result = (uintptr_t)((u8 *)prp_page + prp_size) & page_mask;
2113         if (!page_mask_result) {
2114                 /* Bump up to next page boundary. */
2115                 prp_page = (__le64 *)((u8 *)prp_page + prp_size);
2116                 prp_page_dma = prp_page_dma + prp_size;
2117         }
2118
2119         /*
2120          * Set PRP physical pointer, which initially points to the current PRP
2121          * DMA memory page.
2122          */
2123         prp_entry_dma = prp_page_dma;
2124
2125         /* Get physical address and length of the data buffer. */
2126         if (data_in_sz) {
2127                 dma_addr = data_in_dma;
2128                 length = data_in_sz;
2129         } else {
2130                 dma_addr = data_out_dma;
2131                 length = data_out_sz;
2132         }
2133
2134         /* Loop while the length is not zero. */
2135         while (length) {
2136                 /*
2137                  * Check if we need to put a list pointer here if we are at
2138                  * page boundary - prp_size (8 bytes).
2139                  */
2140                 page_mask_result = (prp_entry_dma + prp_size) & page_mask;
2141                 if (!page_mask_result) {
2142                         /*
2143                          * This is the last entry in a PRP List, so we need to
2144                          * put a PRP list pointer here.  What this does is:
2145                          *   - bump the current memory pointer to the next
2146                          *     address, which will be the next full page.
2147                          *   - set the PRP Entry to point to that page.  This
2148                          *     is now the PRP List pointer.
2149                          *   - bump the PRP Entry pointer the start of the
2150                          *     next page.  Since all of this PRP memory is
2151                          *     contiguous, no need to get a new page - it's
2152                          *     just the next address.
2153                          */
2154                         prp_entry_dma++;
2155                         *prp_entry = cpu_to_le64(prp_entry_dma);
2156                         prp_entry++;
2157                 }
2158
2159                 /* Need to handle if entry will be part of a page. */
2160                 offset = dma_addr & page_mask;
2161                 entry_len = ioc->page_size - offset;
2162
2163                 if (prp_entry == prp1_entry) {
2164                         /*
2165                          * Must fill in the first PRP pointer (PRP1) before
2166                          * moving on.
2167                          */
2168                         *prp1_entry = cpu_to_le64(dma_addr);
2169
2170                         /*
2171                          * Now point to the second PRP entry within the
2172                          * command (PRP2).
2173                          */
2174                         prp_entry = prp2_entry;
2175                 } else if (prp_entry == prp2_entry) {
2176                         /*
2177                          * Should the PRP2 entry be a PRP List pointer or just
2178                          * a regular PRP pointer?  If there is more than one
2179                          * more page of data, must use a PRP List pointer.
2180                          */
2181                         if (length > ioc->page_size) {
2182                                 /*
2183                                  * PRP2 will contain a PRP List pointer because
2184                                  * more PRP's are needed with this command. The
2185                                  * list will start at the beginning of the
2186                                  * contiguous buffer.
2187                                  */
2188                                 *prp2_entry = cpu_to_le64(prp_entry_dma);
2189
2190                                 /*
2191                                  * The next PRP Entry will be the start of the
2192                                  * first PRP List.
2193                                  */
2194                                 prp_entry = prp_page;
2195                         } else {
2196                                 /*
2197                                  * After this, the PRP Entries are complete.
2198                                  * This command uses 2 PRP's and no PRP list.
2199                                  */
2200                                 *prp2_entry = cpu_to_le64(dma_addr);
2201                         }
2202                 } else {
2203                         /*
2204                          * Put entry in list and bump the addresses.
2205                          *
2206                          * After PRP1 and PRP2 are filled in, this will fill in
2207                          * all remaining PRP entries in a PRP List, one per
2208                          * each time through the loop.
2209                          */
2210                         *prp_entry = cpu_to_le64(dma_addr);
2211                         prp_entry++;
2212                         prp_entry_dma++;
2213                 }
2214
2215                 /*
2216                  * Bump the phys address of the command's data buffer by the
2217                  * entry_len.
2218                  */
2219                 dma_addr += entry_len;
2220
2221                 /* Decrement length accounting for last partial page. */
2222                 if (entry_len > length)
2223                         length = 0;
2224                 else
2225                         length -= entry_len;
2226         }
2227 }
2228
2229 /**
2230  * base_make_prp_nvme -
2231  * Prepare PRPs(Physical Region Page)- SGLs specific to NVMe drives only
2232  *
2233  * @ioc:                per adapter object
2234  * @scmd:               SCSI command from the mid-layer
2235  * @mpi_request:        mpi request
2236  * @smid:               msg Index
2237  * @sge_count:          scatter gather element count.
2238  *
2239  * Return:              true: PRPs are built
2240  *                      false: IEEE SGLs needs to be built
2241  */
2242 static void
2243 base_make_prp_nvme(struct MPT3SAS_ADAPTER *ioc,
2244                 struct scsi_cmnd *scmd,
2245                 Mpi25SCSIIORequest_t *mpi_request,
2246                 u16 smid, int sge_count)
2247 {
2248         int sge_len, num_prp_in_chain = 0;
2249         Mpi25IeeeSgeChain64_t *main_chain_element, *ptr_first_sgl;
2250         __le64 *curr_buff;
2251         dma_addr_t msg_dma, sge_addr, offset;
2252         u32 page_mask, page_mask_result;
2253         struct scatterlist *sg_scmd;
2254         u32 first_prp_len;
2255         int data_len = scsi_bufflen(scmd);
2256         u32 nvme_pg_size;
2257
2258         nvme_pg_size = max_t(u32, ioc->page_size, NVME_PRP_PAGE_SIZE);
2259         /*
2260          * Nvme has a very convoluted prp format.  One prp is required
2261          * for each page or partial page. Driver need to split up OS sg_list
2262          * entries if it is longer than one page or cross a page
2263          * boundary.  Driver also have to insert a PRP list pointer entry as
2264          * the last entry in each physical page of the PRP list.
2265          *
2266          * NOTE: The first PRP "entry" is actually placed in the first
2267          * SGL entry in the main message as IEEE 64 format.  The 2nd
2268          * entry in the main message is the chain element, and the rest
2269          * of the PRP entries are built in the contiguous pcie buffer.
2270          */
2271         page_mask = nvme_pg_size - 1;
2272
2273         /*
2274          * Native SGL is needed.
2275          * Put a chain element in main message frame that points to the first
2276          * chain buffer.
2277          *
2278          * NOTE:  The ChainOffset field must be 0 when using a chain pointer to
2279          *        a native SGL.
2280          */
2281
2282         /* Set main message chain element pointer */
2283         main_chain_element = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2284         /*
2285          * For NVMe the chain element needs to be the 2nd SG entry in the main
2286          * message.
2287          */
2288         main_chain_element = (Mpi25IeeeSgeChain64_t *)
2289                 ((u8 *)main_chain_element + sizeof(MPI25_IEEE_SGE_CHAIN64));
2290
2291         /*
2292          * For the PRP entries, use the specially allocated buffer of
2293          * contiguous memory.  Normal chain buffers can't be used
2294          * because each chain buffer would need to be the size of an OS
2295          * page (4k).
2296          */
2297         curr_buff = mpt3sas_base_get_pcie_sgl(ioc, smid);
2298         msg_dma = mpt3sas_base_get_pcie_sgl_dma(ioc, smid);
2299
2300         main_chain_element->Address = cpu_to_le64(msg_dma);
2301         main_chain_element->NextChainOffset = 0;
2302         main_chain_element->Flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2303                         MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2304                         MPI26_IEEE_SGE_FLAGS_NSF_NVME_PRP;
2305
2306         /* Build first prp, sge need not to be page aligned*/
2307         ptr_first_sgl = (pMpi25IeeeSgeChain64_t)&mpi_request->SGL;
2308         sg_scmd = scsi_sglist(scmd);
2309         sge_addr = sg_dma_address(sg_scmd);
2310         sge_len = sg_dma_len(sg_scmd);
2311
2312         offset = sge_addr & page_mask;
2313         first_prp_len = nvme_pg_size - offset;
2314
2315         ptr_first_sgl->Address = cpu_to_le64(sge_addr);
2316         ptr_first_sgl->Length = cpu_to_le32(first_prp_len);
2317
2318         data_len -= first_prp_len;
2319
2320         if (sge_len > first_prp_len) {
2321                 sge_addr += first_prp_len;
2322                 sge_len -= first_prp_len;
2323         } else if (data_len && (sge_len == first_prp_len)) {
2324                 sg_scmd = sg_next(sg_scmd);
2325                 sge_addr = sg_dma_address(sg_scmd);
2326                 sge_len = sg_dma_len(sg_scmd);
2327         }
2328
2329         for (;;) {
2330                 offset = sge_addr & page_mask;
2331
2332                 /* Put PRP pointer due to page boundary*/
2333                 page_mask_result = (uintptr_t)(curr_buff + 1) & page_mask;
2334                 if (unlikely(!page_mask_result)) {
2335                         scmd_printk(KERN_NOTICE,
2336                                 scmd, "page boundary curr_buff: 0x%p\n",
2337                                 curr_buff);
2338                         msg_dma += 8;
2339                         *curr_buff = cpu_to_le64(msg_dma);
2340                         curr_buff++;
2341                         num_prp_in_chain++;
2342                 }
2343
2344                 *curr_buff = cpu_to_le64(sge_addr);
2345                 curr_buff++;
2346                 msg_dma += 8;
2347                 num_prp_in_chain++;
2348
2349                 sge_addr += nvme_pg_size;
2350                 sge_len -= nvme_pg_size;
2351                 data_len -= nvme_pg_size;
2352
2353                 if (data_len <= 0)
2354                         break;
2355
2356                 if (sge_len > 0)
2357                         continue;
2358
2359                 sg_scmd = sg_next(sg_scmd);
2360                 sge_addr = sg_dma_address(sg_scmd);
2361                 sge_len = sg_dma_len(sg_scmd);
2362         }
2363
2364         main_chain_element->Length =
2365                 cpu_to_le32(num_prp_in_chain * sizeof(u64));
2366         return;
2367 }
2368
2369 static bool
2370 base_is_prp_possible(struct MPT3SAS_ADAPTER *ioc,
2371         struct _pcie_device *pcie_device, struct scsi_cmnd *scmd, int sge_count)
2372 {
2373         u32 data_length = 0;
2374         bool build_prp = true;
2375
2376         data_length = scsi_bufflen(scmd);
2377         if (pcie_device &&
2378             (mpt3sas_scsih_is_pcie_scsi_device(pcie_device->device_info))) {
2379                 build_prp = false;
2380                 return build_prp;
2381         }
2382
2383         /* If Datalenth is <= 16K and number of SGE’s entries are <= 2
2384          * we built IEEE SGL
2385          */
2386         if ((data_length <= NVME_PRP_PAGE_SIZE*4) && (sge_count <= 2))
2387                 build_prp = false;
2388
2389         return build_prp;
2390 }
2391
2392 /**
2393  * _base_check_pcie_native_sgl - This function is called for PCIe end devices to
2394  * determine if the driver needs to build a native SGL.  If so, that native
2395  * SGL is built in the special contiguous buffers allocated especially for
2396  * PCIe SGL creation.  If the driver will not build a native SGL, return
2397  * TRUE and a normal IEEE SGL will be built.  Currently this routine
2398  * supports NVMe.
2399  * @ioc: per adapter object
2400  * @mpi_request: mf request pointer
2401  * @smid: system request message index
2402  * @scmd: scsi command
2403  * @pcie_device: points to the PCIe device's info
2404  *
2405  * Return: 0 if native SGL was built, 1 if no SGL was built
2406  */
2407 static int
2408 _base_check_pcie_native_sgl(struct MPT3SAS_ADAPTER *ioc,
2409         Mpi25SCSIIORequest_t *mpi_request, u16 smid, struct scsi_cmnd *scmd,
2410         struct _pcie_device *pcie_device)
2411 {
2412         int sges_left;
2413
2414         /* Get the SG list pointer and info. */
2415         sges_left = scsi_dma_map(scmd);
2416         if (sges_left < 0) {
2417                 sdev_printk(KERN_ERR, scmd->device,
2418                         "scsi_dma_map failed: request for %d bytes!\n",
2419                         scsi_bufflen(scmd));
2420                 return 1;
2421         }
2422
2423         /* Check if we need to build a native SG list. */
2424         if (base_is_prp_possible(ioc, pcie_device,
2425                                 scmd, sges_left) == 0) {
2426                 /* We built a native SG list, just return. */
2427                 goto out;
2428         }
2429
2430         /*
2431          * Build native NVMe PRP.
2432          */
2433         base_make_prp_nvme(ioc, scmd, mpi_request,
2434                         smid, sges_left);
2435
2436         return 0;
2437 out:
2438         scsi_dma_unmap(scmd);
2439         return 1;
2440 }
2441
2442 /**
2443  * _base_add_sg_single_ieee - add sg element for IEEE format
2444  * @paddr: virtual address for SGE
2445  * @flags: SGE flags
2446  * @chain_offset: number of 128 byte elements from start of segment
2447  * @length: data transfer length
2448  * @dma_addr: Physical address
2449  */
2450 static void
2451 _base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
2452         dma_addr_t dma_addr)
2453 {
2454         Mpi25IeeeSgeChain64_t *sgel = paddr;
2455
2456         sgel->Flags = flags;
2457         sgel->NextChainOffset = chain_offset;
2458         sgel->Length = cpu_to_le32(length);
2459         sgel->Address = cpu_to_le64(dma_addr);
2460 }
2461
2462 /**
2463  * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
2464  * @ioc: per adapter object
2465  * @paddr: virtual address for SGE
2466  *
2467  * Create a zero length scatter gather entry to insure the IOCs hardware has
2468  * something to use if the target device goes brain dead and tries
2469  * to send data even when none is asked for.
2470  */
2471 static void
2472 _base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
2473 {
2474         u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2475                 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
2476                 MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
2477
2478         _base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
2479 }
2480
2481 /**
2482  * _base_build_sg_scmd - main sg creation routine
2483  *              pcie_device is unused here!
2484  * @ioc: per adapter object
2485  * @scmd: scsi command
2486  * @smid: system request message index
2487  * @unused: unused pcie_device pointer
2488  * Context: none.
2489  *
2490  * The main routine that builds scatter gather table from a given
2491  * scsi request sent via the .queuecommand main handler.
2492  *
2493  * Return: 0 success, anything else error
2494  */
2495 static int
2496 _base_build_sg_scmd(struct MPT3SAS_ADAPTER *ioc,
2497         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *unused)
2498 {
2499         Mpi2SCSIIORequest_t *mpi_request;
2500         dma_addr_t chain_dma;
2501         struct scatterlist *sg_scmd;
2502         void *sg_local, *chain;
2503         u32 chain_offset;
2504         u32 chain_length;
2505         u32 chain_flags;
2506         int sges_left;
2507         u32 sges_in_segment;
2508         u32 sgl_flags;
2509         u32 sgl_flags_last_element;
2510         u32 sgl_flags_end_buffer;
2511         struct chain_tracker *chain_req;
2512
2513         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2514
2515         /* init scatter gather flags */
2516         sgl_flags = MPI2_SGE_FLAGS_SIMPLE_ELEMENT;
2517         if (scmd->sc_data_direction == DMA_TO_DEVICE)
2518                 sgl_flags |= MPI2_SGE_FLAGS_HOST_TO_IOC;
2519         sgl_flags_last_element = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT)
2520             << MPI2_SGE_FLAGS_SHIFT;
2521         sgl_flags_end_buffer = (sgl_flags | MPI2_SGE_FLAGS_LAST_ELEMENT |
2522             MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST)
2523             << MPI2_SGE_FLAGS_SHIFT;
2524         sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
2525
2526         sg_scmd = scsi_sglist(scmd);
2527         sges_left = scsi_dma_map(scmd);
2528         if (sges_left < 0) {
2529                 sdev_printk(KERN_ERR, scmd->device,
2530                  "scsi_dma_map failed: request for %d bytes!\n",
2531                  scsi_bufflen(scmd));
2532                 return -ENOMEM;
2533         }
2534
2535         sg_local = &mpi_request->SGL;
2536         sges_in_segment = ioc->max_sges_in_main_message;
2537         if (sges_left <= sges_in_segment)
2538                 goto fill_in_last_segment;
2539
2540         mpi_request->ChainOffset = (offsetof(Mpi2SCSIIORequest_t, SGL) +
2541             (sges_in_segment * ioc->sge_size))/4;
2542
2543         /* fill in main message segment when there is a chain following */
2544         while (sges_in_segment) {
2545                 if (sges_in_segment == 1)
2546                         ioc->base_add_sg_single(sg_local,
2547                             sgl_flags_last_element | sg_dma_len(sg_scmd),
2548                             sg_dma_address(sg_scmd));
2549                 else
2550                         ioc->base_add_sg_single(sg_local, sgl_flags |
2551                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2552                 sg_scmd = sg_next(sg_scmd);
2553                 sg_local += ioc->sge_size;
2554                 sges_left--;
2555                 sges_in_segment--;
2556         }
2557
2558         /* initializing the chain flags and pointers */
2559         chain_flags = MPI2_SGE_FLAGS_CHAIN_ELEMENT << MPI2_SGE_FLAGS_SHIFT;
2560         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2561         if (!chain_req)
2562                 return -1;
2563         chain = chain_req->chain_buffer;
2564         chain_dma = chain_req->chain_buffer_dma;
2565         do {
2566                 sges_in_segment = (sges_left <=
2567                     ioc->max_sges_in_chain_message) ? sges_left :
2568                     ioc->max_sges_in_chain_message;
2569                 chain_offset = (sges_left == sges_in_segment) ?
2570                     0 : (sges_in_segment * ioc->sge_size)/4;
2571                 chain_length = sges_in_segment * ioc->sge_size;
2572                 if (chain_offset) {
2573                         chain_offset = chain_offset <<
2574                             MPI2_SGE_CHAIN_OFFSET_SHIFT;
2575                         chain_length += ioc->sge_size;
2576                 }
2577                 ioc->base_add_sg_single(sg_local, chain_flags | chain_offset |
2578                     chain_length, chain_dma);
2579                 sg_local = chain;
2580                 if (!chain_offset)
2581                         goto fill_in_last_segment;
2582
2583                 /* fill in chain segments */
2584                 while (sges_in_segment) {
2585                         if (sges_in_segment == 1)
2586                                 ioc->base_add_sg_single(sg_local,
2587                                     sgl_flags_last_element |
2588                                     sg_dma_len(sg_scmd),
2589                                     sg_dma_address(sg_scmd));
2590                         else
2591                                 ioc->base_add_sg_single(sg_local, sgl_flags |
2592                                     sg_dma_len(sg_scmd),
2593                                     sg_dma_address(sg_scmd));
2594                         sg_scmd = sg_next(sg_scmd);
2595                         sg_local += ioc->sge_size;
2596                         sges_left--;
2597                         sges_in_segment--;
2598                 }
2599
2600                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2601                 if (!chain_req)
2602                         return -1;
2603                 chain = chain_req->chain_buffer;
2604                 chain_dma = chain_req->chain_buffer_dma;
2605         } while (1);
2606
2607
2608  fill_in_last_segment:
2609
2610         /* fill the last segment */
2611         while (sges_left) {
2612                 if (sges_left == 1)
2613                         ioc->base_add_sg_single(sg_local, sgl_flags_end_buffer |
2614                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2615                 else
2616                         ioc->base_add_sg_single(sg_local, sgl_flags |
2617                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2618                 sg_scmd = sg_next(sg_scmd);
2619                 sg_local += ioc->sge_size;
2620                 sges_left--;
2621         }
2622
2623         return 0;
2624 }
2625
2626 /**
2627  * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
2628  * @ioc: per adapter object
2629  * @scmd: scsi command
2630  * @smid: system request message index
2631  * @pcie_device: Pointer to pcie_device. If set, the pcie native sgl will be
2632  * constructed on need.
2633  * Context: none.
2634  *
2635  * The main routine that builds scatter gather table from a given
2636  * scsi request sent via the .queuecommand main handler.
2637  *
2638  * Return: 0 success, anything else error
2639  */
2640 static int
2641 _base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
2642         struct scsi_cmnd *scmd, u16 smid, struct _pcie_device *pcie_device)
2643 {
2644         Mpi25SCSIIORequest_t *mpi_request;
2645         dma_addr_t chain_dma;
2646         struct scatterlist *sg_scmd;
2647         void *sg_local, *chain;
2648         u32 chain_offset;
2649         u32 chain_length;
2650         int sges_left;
2651         u32 sges_in_segment;
2652         u8 simple_sgl_flags;
2653         u8 simple_sgl_flags_last;
2654         u8 chain_sgl_flags;
2655         struct chain_tracker *chain_req;
2656
2657         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
2658
2659         /* init scatter gather flags */
2660         simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2661             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2662         simple_sgl_flags_last = simple_sgl_flags |
2663             MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2664         chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
2665             MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2666
2667         /* Check if we need to build a native SG list. */
2668         if ((pcie_device) && (_base_check_pcie_native_sgl(ioc, mpi_request,
2669                         smid, scmd, pcie_device) == 0)) {
2670                 /* We built a native SG list, just return. */
2671                 return 0;
2672         }
2673
2674         sg_scmd = scsi_sglist(scmd);
2675         sges_left = scsi_dma_map(scmd);
2676         if (sges_left < 0) {
2677                 sdev_printk(KERN_ERR, scmd->device,
2678                         "scsi_dma_map failed: request for %d bytes!\n",
2679                         scsi_bufflen(scmd));
2680                 return -ENOMEM;
2681         }
2682
2683         sg_local = &mpi_request->SGL;
2684         sges_in_segment = (ioc->request_sz -
2685                    offsetof(Mpi25SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
2686         if (sges_left <= sges_in_segment)
2687                 goto fill_in_last_segment;
2688
2689         mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
2690             (offsetof(Mpi25SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
2691
2692         /* fill in main message segment when there is a chain following */
2693         while (sges_in_segment > 1) {
2694                 _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2695                     sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2696                 sg_scmd = sg_next(sg_scmd);
2697                 sg_local += ioc->sge_size_ieee;
2698                 sges_left--;
2699                 sges_in_segment--;
2700         }
2701
2702         /* initializing the pointers */
2703         chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2704         if (!chain_req)
2705                 return -1;
2706         chain = chain_req->chain_buffer;
2707         chain_dma = chain_req->chain_buffer_dma;
2708         do {
2709                 sges_in_segment = (sges_left <=
2710                     ioc->max_sges_in_chain_message) ? sges_left :
2711                     ioc->max_sges_in_chain_message;
2712                 chain_offset = (sges_left == sges_in_segment) ?
2713                     0 : sges_in_segment;
2714                 chain_length = sges_in_segment * ioc->sge_size_ieee;
2715                 if (chain_offset)
2716                         chain_length += ioc->sge_size_ieee;
2717                 _base_add_sg_single_ieee(sg_local, chain_sgl_flags,
2718                     chain_offset, chain_length, chain_dma);
2719
2720                 sg_local = chain;
2721                 if (!chain_offset)
2722                         goto fill_in_last_segment;
2723
2724                 /* fill in chain segments */
2725                 while (sges_in_segment) {
2726                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2727                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2728                         sg_scmd = sg_next(sg_scmd);
2729                         sg_local += ioc->sge_size_ieee;
2730                         sges_left--;
2731                         sges_in_segment--;
2732                 }
2733
2734                 chain_req = _base_get_chain_buffer_tracker(ioc, scmd);
2735                 if (!chain_req)
2736                         return -1;
2737                 chain = chain_req->chain_buffer;
2738                 chain_dma = chain_req->chain_buffer_dma;
2739         } while (1);
2740
2741
2742  fill_in_last_segment:
2743
2744         /* fill the last segment */
2745         while (sges_left > 0) {
2746                 if (sges_left == 1)
2747                         _base_add_sg_single_ieee(sg_local,
2748                             simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
2749                             sg_dma_address(sg_scmd));
2750                 else
2751                         _base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
2752                             sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
2753                 sg_scmd = sg_next(sg_scmd);
2754                 sg_local += ioc->sge_size_ieee;
2755                 sges_left--;
2756         }
2757
2758         return 0;
2759 }
2760
2761 /**
2762  * _base_build_sg_ieee - build generic sg for IEEE format
2763  * @ioc: per adapter object
2764  * @psge: virtual address for SGE
2765  * @data_out_dma: physical address for WRITES
2766  * @data_out_sz: data xfer size for WRITES
2767  * @data_in_dma: physical address for READS
2768  * @data_in_sz: data xfer size for READS
2769  */
2770 static void
2771 _base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
2772         dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
2773         size_t data_in_sz)
2774 {
2775         u8 sgl_flags;
2776
2777         if (!data_out_sz && !data_in_sz) {
2778                 _base_build_zero_len_sge_ieee(ioc, psge);
2779                 return;
2780         }
2781
2782         if (data_out_sz && data_in_sz) {
2783                 /* WRITE sgel first */
2784                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2785                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2786                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2787                     data_out_dma);
2788
2789                 /* incr sgel */
2790                 psge += ioc->sge_size_ieee;
2791
2792                 /* READ sgel last */
2793                 sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
2794                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2795                     data_in_dma);
2796         } else if (data_out_sz) /* WRITE */ {
2797                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2798                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2799                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2800                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
2801                     data_out_dma);
2802         } else if (data_in_sz) /* READ */ {
2803                 sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
2804                     MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
2805                     MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
2806                 _base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
2807                     data_in_dma);
2808         }
2809 }
2810
2811 #define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
2812
2813 /**
2814  * _base_config_dma_addressing - set dma addressing
2815  * @ioc: per adapter object
2816  * @pdev: PCI device struct
2817  *
2818  * Return: 0 for success, non-zero for failure.
2819  */
2820 static int
2821 _base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
2822 {
2823         struct sysinfo s;
2824         int dma_mask;
2825
2826         if (ioc->is_mcpu_endpoint ||
2827             sizeof(dma_addr_t) == 4 || ioc->use_32bit_dma ||
2828             dma_get_required_mask(&pdev->dev) <= 32)
2829                 dma_mask = 32;
2830         /* Set 63 bit DMA mask for all SAS3 and SAS35 controllers */
2831         else if (ioc->hba_mpi_version_belonged > MPI2_VERSION)
2832                 dma_mask = 63;
2833         else
2834                 dma_mask = 64;
2835
2836         if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)) ||
2837             dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(dma_mask)))
2838                 return -ENODEV;
2839
2840         if (dma_mask > 32) {
2841                 ioc->base_add_sg_single = &_base_add_sg_single_64;
2842                 ioc->sge_size = sizeof(Mpi2SGESimple64_t);
2843         } else {
2844                 ioc->base_add_sg_single = &_base_add_sg_single_32;
2845                 ioc->sge_size = sizeof(Mpi2SGESimple32_t);
2846         }
2847
2848         si_meminfo(&s);
2849         ioc_info(ioc, "%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
2850                 dma_mask, convert_to_kb(s.totalram));
2851
2852         return 0;
2853 }
2854
2855 /**
2856  * _base_check_enable_msix - checks MSIX capabable.
2857  * @ioc: per adapter object
2858  *
2859  * Check to see if card is capable of MSIX, and set number
2860  * of available msix vectors
2861  */
2862 static int
2863 _base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
2864 {
2865         int base;
2866         u16 message_control;
2867
2868         /* Check whether controller SAS2008 B0 controller,
2869          * if it is SAS2008 B0 controller use IO-APIC instead of MSIX
2870          */
2871         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 &&
2872             ioc->pdev->revision == SAS2_PCI_DEVICE_B0_REVISION) {
2873                 return -EINVAL;
2874         }
2875
2876         base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
2877         if (!base) {
2878                 dfailprintk(ioc, ioc_info(ioc, "msix not supported\n"));
2879                 return -EINVAL;
2880         }
2881
2882         /* get msix vector count */
2883         /* NUMA_IO not supported for older controllers */
2884         if (ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2004 ||
2885             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2008 ||
2886             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_1 ||
2887             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_2 ||
2888             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2108_3 ||
2889             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_1 ||
2890             ioc->pdev->device == MPI2_MFGPAGE_DEVID_SAS2116_2)
2891                 ioc->msix_vector_count = 1;
2892         else {
2893                 pci_read_config_word(ioc->pdev, base + 2, &message_control);
2894                 ioc->msix_vector_count = (message_control & 0x3FF) + 1;
2895         }
2896         dinitprintk(ioc, ioc_info(ioc, "msix is supported, vector_count(%d)\n",
2897                                   ioc->msix_vector_count));
2898         return 0;
2899 }
2900
2901 /**
2902  * _base_free_irq - free irq
2903  * @ioc: per adapter object
2904  *
2905  * Freeing respective reply_queue from the list.
2906  */
2907 static void
2908 _base_free_irq(struct MPT3SAS_ADAPTER *ioc)
2909 {
2910         struct adapter_reply_queue *reply_q, *next;
2911
2912         if (list_empty(&ioc->reply_queue_list))
2913                 return;
2914
2915         list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
2916                 list_del(&reply_q->list);
2917                 if (ioc->smp_affinity_enable)
2918                         irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
2919                             reply_q->msix_index), NULL);
2920                 free_irq(pci_irq_vector(ioc->pdev, reply_q->msix_index),
2921                          reply_q);
2922                 kfree(reply_q);
2923         }
2924 }
2925
2926 /**
2927  * _base_request_irq - request irq
2928  * @ioc: per adapter object
2929  * @index: msix index into vector table
2930  *
2931  * Inserting respective reply_queue into the list.
2932  */
2933 static int
2934 _base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index)
2935 {
2936         struct pci_dev *pdev = ioc->pdev;
2937         struct adapter_reply_queue *reply_q;
2938         int r;
2939
2940         reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
2941         if (!reply_q) {
2942                 ioc_err(ioc, "unable to allocate memory %zu!\n",
2943                         sizeof(struct adapter_reply_queue));
2944                 return -ENOMEM;
2945         }
2946         reply_q->ioc = ioc;
2947         reply_q->msix_index = index;
2948
2949         atomic_set(&reply_q->busy, 0);
2950         if (ioc->msix_enable)
2951                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
2952                     ioc->driver_name, ioc->id, index);
2953         else
2954                 snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
2955                     ioc->driver_name, ioc->id);
2956         r = request_irq(pci_irq_vector(pdev, index), _base_interrupt,
2957                         IRQF_SHARED, reply_q->name, reply_q);
2958         if (r) {
2959                 pr_err("%s: unable to allocate interrupt %d!\n",
2960                        reply_q->name, pci_irq_vector(pdev, index));
2961                 kfree(reply_q);
2962                 return -EBUSY;
2963         }
2964
2965         INIT_LIST_HEAD(&reply_q->list);
2966         list_add_tail(&reply_q->list, &ioc->reply_queue_list);
2967         return 0;
2968 }
2969
2970 /**
2971  * _base_assign_reply_queues - assigning msix index for each cpu
2972  * @ioc: per adapter object
2973  *
2974  * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
2975  *
2976  * It would nice if we could call irq_set_affinity, however it is not
2977  * an exported symbol
2978  */
2979 static void
2980 _base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
2981 {
2982         unsigned int cpu, nr_cpus, nr_msix, index = 0;
2983         struct adapter_reply_queue *reply_q;
2984         int local_numa_node;
2985
2986         if (!_base_is_controller_msix_enabled(ioc))
2987                 return;
2988
2989         if (ioc->msix_load_balance)
2990                 return;
2991
2992         memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
2993
2994         nr_cpus = num_online_cpus();
2995         nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
2996                                                ioc->facts.MaxMSIxVectors);
2997         if (!nr_msix)
2998                 return;
2999
3000         if (ioc->smp_affinity_enable) {
3001
3002                 /*
3003                  * set irq affinity to local numa node for those irqs
3004                  * corresponding to high iops queues.
3005                  */
3006                 if (ioc->high_iops_queues) {
3007                         local_numa_node = dev_to_node(&ioc->pdev->dev);
3008                         for (index = 0; index < ioc->high_iops_queues;
3009                             index++) {
3010                                 irq_set_affinity_hint(pci_irq_vector(ioc->pdev,
3011                                     index), cpumask_of_node(local_numa_node));
3012                         }
3013                 }
3014
3015                 list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3016                         const cpumask_t *mask;
3017
3018                         if (reply_q->msix_index < ioc->high_iops_queues)
3019                                 continue;
3020
3021                         mask = pci_irq_get_affinity(ioc->pdev,
3022                             reply_q->msix_index);
3023                         if (!mask) {
3024                                 ioc_warn(ioc, "no affinity for msi %x\n",
3025                                          reply_q->msix_index);
3026                                 goto fall_back;
3027                         }
3028
3029                         for_each_cpu_and(cpu, mask, cpu_online_mask) {
3030                                 if (cpu >= ioc->cpu_msix_table_sz)
3031                                         break;
3032                                 ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3033                         }
3034                 }
3035                 return;
3036         }
3037
3038 fall_back:
3039         cpu = cpumask_first(cpu_online_mask);
3040         nr_msix -= ioc->high_iops_queues;
3041         index = 0;
3042
3043         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
3044                 unsigned int i, group = nr_cpus / nr_msix;
3045
3046                 if (reply_q->msix_index < ioc->high_iops_queues)
3047                         continue;
3048
3049                 if (cpu >= nr_cpus)
3050                         break;
3051
3052                 if (index < nr_cpus % nr_msix)
3053                         group++;
3054
3055                 for (i = 0 ; i < group ; i++) {
3056                         ioc->cpu_msix_table[cpu] = reply_q->msix_index;
3057                         cpu = cpumask_next(cpu, cpu_online_mask);
3058                 }
3059                 index++;
3060         }
3061 }
3062
3063 /**
3064  * _base_check_and_enable_high_iops_queues - enable high iops mode
3065  * @ioc: per adapter object
3066  * @hba_msix_vector_count: msix vectors supported by HBA
3067  *
3068  * Enable high iops queues only if
3069  *  - HBA is a SEA/AERO controller and
3070  *  - MSI-Xs vector supported by the HBA is 128 and
3071  *  - total CPU count in the system >=16 and
3072  *  - loaded driver with default max_msix_vectors module parameter and
3073  *  - system booted in non kdump mode
3074  *
3075  * returns nothing.
3076  */
3077 static void
3078 _base_check_and_enable_high_iops_queues(struct MPT3SAS_ADAPTER *ioc,
3079                 int hba_msix_vector_count)
3080 {
3081         u16 lnksta, speed;
3082
3083         if (perf_mode == MPT_PERF_MODE_IOPS ||
3084             perf_mode == MPT_PERF_MODE_LATENCY) {
3085                 ioc->high_iops_queues = 0;
3086                 return;
3087         }
3088
3089         if (perf_mode == MPT_PERF_MODE_DEFAULT) {
3090
3091                 pcie_capability_read_word(ioc->pdev, PCI_EXP_LNKSTA, &lnksta);
3092                 speed = lnksta & PCI_EXP_LNKSTA_CLS;
3093
3094                 if (speed < 0x4) {
3095                         ioc->high_iops_queues = 0;
3096                         return;
3097                 }
3098         }
3099
3100         if (!reset_devices && ioc->is_aero_ioc &&
3101             hba_msix_vector_count == MPT3SAS_GEN35_MAX_MSIX_QUEUES &&
3102             num_online_cpus() >= MPT3SAS_HIGH_IOPS_REPLY_QUEUES &&
3103             max_msix_vectors == -1)
3104                 ioc->high_iops_queues = MPT3SAS_HIGH_IOPS_REPLY_QUEUES;
3105         else
3106                 ioc->high_iops_queues = 0;
3107 }
3108
3109 /**
3110  * _base_disable_msix - disables msix
3111  * @ioc: per adapter object
3112  *
3113  */
3114 static void
3115 _base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
3116 {
3117         if (!ioc->msix_enable)
3118                 return;
3119         pci_free_irq_vectors(ioc->pdev);
3120         ioc->msix_enable = 0;
3121 }
3122
3123 /**
3124  * _base_alloc_irq_vectors - allocate msix vectors
3125  * @ioc: per adapter object
3126  *
3127  */
3128 static int
3129 _base_alloc_irq_vectors(struct MPT3SAS_ADAPTER *ioc)
3130 {
3131         int i, irq_flags = PCI_IRQ_MSIX;
3132         struct irq_affinity desc = { .pre_vectors = ioc->high_iops_queues };
3133         struct irq_affinity *descp = &desc;
3134
3135         if (ioc->smp_affinity_enable)
3136                 irq_flags |= PCI_IRQ_AFFINITY;
3137         else
3138                 descp = NULL;
3139
3140         ioc_info(ioc, " %d %d\n", ioc->high_iops_queues,
3141             ioc->reply_queue_count);
3142
3143         i = pci_alloc_irq_vectors_affinity(ioc->pdev,
3144             ioc->high_iops_queues,
3145             ioc->reply_queue_count, irq_flags, descp);
3146
3147         return i;
3148 }
3149
3150 /**
3151  * _base_enable_msix - enables msix, failback to io_apic
3152  * @ioc: per adapter object
3153  *
3154  */
3155 static int
3156 _base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
3157 {
3158         int r;
3159         int i, local_max_msix_vectors;
3160         u8 try_msix = 0;
3161
3162         ioc->msix_load_balance = false;
3163
3164         if (msix_disable == -1 || msix_disable == 0)
3165                 try_msix = 1;
3166
3167         if (!try_msix)
3168                 goto try_ioapic;
3169
3170         if (_base_check_enable_msix(ioc) != 0)
3171                 goto try_ioapic;
3172
3173         ioc_info(ioc, "MSI-X vectors supported: %d\n", ioc->msix_vector_count);
3174         pr_info("\t no of cores: %d, max_msix_vectors: %d\n",
3175                 ioc->cpu_count, max_msix_vectors);
3176         if (ioc->is_aero_ioc)
3177                 _base_check_and_enable_high_iops_queues(ioc,
3178                         ioc->msix_vector_count);
3179         ioc->reply_queue_count =
3180                 min_t(int, ioc->cpu_count + ioc->high_iops_queues,
3181                 ioc->msix_vector_count);
3182
3183         if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
3184                 local_max_msix_vectors = (reset_devices) ? 1 : 8;
3185         else
3186                 local_max_msix_vectors = max_msix_vectors;
3187
3188         if (local_max_msix_vectors > 0)
3189                 ioc->reply_queue_count = min_t(int, local_max_msix_vectors,
3190                         ioc->reply_queue_count);
3191         else if (local_max_msix_vectors == 0)
3192                 goto try_ioapic;
3193
3194         /*
3195          * Enable msix_load_balance only if combined reply queue mode is
3196          * disabled on SAS3 & above generation HBA devices.
3197          */
3198         if (!ioc->combined_reply_queue &&
3199             ioc->hba_mpi_version_belonged != MPI2_VERSION) {
3200                 ioc_info(ioc,
3201                     "combined ReplyQueue is off, Enabling msix load balance\n");
3202                 ioc->msix_load_balance = true;
3203         }
3204
3205         /*
3206          * smp affinity setting is not need when msix load balance
3207          * is enabled.
3208          */
3209         if (ioc->msix_load_balance)
3210                 ioc->smp_affinity_enable = 0;
3211
3212         r = _base_alloc_irq_vectors(ioc);
3213         if (r < 0) {
3214                 ioc_info(ioc, "pci_alloc_irq_vectors failed (r=%d) !!!\n", r);
3215                 goto try_ioapic;
3216         }
3217
3218         ioc->msix_enable = 1;
3219         ioc->reply_queue_count = r;
3220         for (i = 0; i < ioc->reply_queue_count; i++) {
3221                 r = _base_request_irq(ioc, i);
3222                 if (r) {
3223                         _base_free_irq(ioc);
3224                         _base_disable_msix(ioc);
3225                         goto try_ioapic;
3226                 }
3227         }
3228
3229         ioc_info(ioc, "High IOPs queues : %s\n",
3230                         ioc->high_iops_queues ? "enabled" : "disabled");
3231
3232         return 0;
3233
3234 /* failback to io_apic interrupt routing */
3235  try_ioapic:
3236         ioc->high_iops_queues = 0;
3237         ioc_info(ioc, "High IOPs queues : disabled\n");
3238         ioc->reply_queue_count = 1;
3239         r = pci_alloc_irq_vectors(ioc->pdev, 1, 1, PCI_IRQ_LEGACY);
3240         if (r < 0) {
3241                 dfailprintk(ioc,
3242                             ioc_info(ioc, "pci_alloc_irq_vector(legacy) failed (r=%d) !!!\n",
3243                                      r));
3244         } else
3245                 r = _base_request_irq(ioc, 0);
3246
3247         return r;
3248 }
3249
3250 /**
3251  * mpt3sas_base_unmap_resources - free controller resources
3252  * @ioc: per adapter object
3253  */
3254 static void
3255 mpt3sas_base_unmap_resources(struct MPT3SAS_ADAPTER *ioc)
3256 {
3257         struct pci_dev *pdev = ioc->pdev;
3258
3259         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3260
3261         _base_free_irq(ioc);
3262         _base_disable_msix(ioc);
3263
3264         kfree(ioc->replyPostRegisterIndex);
3265         ioc->replyPostRegisterIndex = NULL;
3266
3267
3268         if (ioc->chip_phys) {
3269                 iounmap(ioc->chip);
3270                 ioc->chip_phys = 0;
3271         }
3272
3273         if (pci_is_enabled(pdev)) {
3274                 pci_release_selected_regions(ioc->pdev, ioc->bars);
3275                 pci_disable_pcie_error_reporting(pdev);
3276                 pci_disable_device(pdev);
3277         }
3278 }
3279
3280 static int
3281 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc);
3282
3283 /**
3284  * _base_check_for_fault_and_issue_reset - check if IOC is in fault state
3285  *     and if it is in fault state then issue diag reset.
3286  * @ioc: per adapter object
3287  *
3288  * Returns: 0 for success, non-zero for failure.
3289  */
3290 static int
3291 _base_check_for_fault_and_issue_reset(struct MPT3SAS_ADAPTER *ioc)
3292 {
3293         u32 ioc_state;
3294         int rc = -EFAULT;
3295
3296         dinitprintk(ioc, pr_info("%s\n", __func__));
3297         if (ioc->pci_error_recovery)
3298                 return 0;
3299         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
3300         dhsprintk(ioc, pr_info("%s: ioc_state(0x%08x)\n", __func__, ioc_state));
3301
3302         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
3303                 mpt3sas_print_fault_code(ioc, ioc_state &
3304                     MPI2_DOORBELL_DATA_MASK);
3305                 rc = _base_diag_reset(ioc);
3306         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
3307             MPI2_IOC_STATE_COREDUMP) {
3308                 mpt3sas_print_coredump_info(ioc, ioc_state &
3309                      MPI2_DOORBELL_DATA_MASK);
3310                 mpt3sas_base_wait_for_coredump_completion(ioc, __func__);
3311                 rc = _base_diag_reset(ioc);
3312         }
3313
3314         return rc;
3315 }
3316
3317 /**
3318  * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
3319  * @ioc: per adapter object
3320  *
3321  * Return: 0 for success, non-zero for failure.
3322  */
3323 int
3324 mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
3325 {
3326         struct pci_dev *pdev = ioc->pdev;
3327         u32 memap_sz;
3328         u32 pio_sz;
3329         int i, r = 0, rc;
3330         u64 pio_chip = 0;
3331         phys_addr_t chip_phys = 0;
3332         struct adapter_reply_queue *reply_q;
3333
3334         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
3335
3336         ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
3337         if (pci_enable_device_mem(pdev)) {
3338                 ioc_warn(ioc, "pci_enable_device_mem: failed\n");
3339                 ioc->bars = 0;
3340                 return -ENODEV;
3341         }
3342
3343
3344         if (pci_request_selected_regions(pdev, ioc->bars,
3345             ioc->driver_name)) {
3346                 ioc_warn(ioc, "pci_request_selected_regions: failed\n");
3347                 ioc->bars = 0;
3348                 r = -ENODEV;
3349                 goto out_fail;
3350         }
3351
3352 /* AER (Advanced Error Reporting) hooks */
3353         pci_enable_pcie_error_reporting(pdev);
3354
3355         pci_set_master(pdev);
3356
3357
3358         if (_base_config_dma_addressing(ioc, pdev) != 0) {
3359                 ioc_warn(ioc, "no suitable DMA mask for %s\n", pci_name(pdev));
3360                 r = -ENODEV;
3361                 goto out_fail;
3362         }
3363
3364         for (i = 0, memap_sz = 0, pio_sz = 0; (i < DEVICE_COUNT_RESOURCE) &&
3365              (!memap_sz || !pio_sz); i++) {
3366                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
3367                         if (pio_sz)
3368                                 continue;
3369                         pio_chip = (u64)pci_resource_start(pdev, i);
3370                         pio_sz = pci_resource_len(pdev, i);
3371                 } else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3372                         if (memap_sz)
3373                                 continue;
3374                         ioc->chip_phys = pci_resource_start(pdev, i);
3375                         chip_phys = ioc->chip_phys;
3376                         memap_sz = pci_resource_len(pdev, i);
3377                         ioc->chip = ioremap(ioc->chip_phys, memap_sz);
3378                 }
3379         }
3380
3381         if (ioc->chip == NULL) {
3382                 ioc_err(ioc,
3383                     "unable to map adapter memory! or resource not found\n");
3384                 r = -EINVAL;
3385                 goto out_fail;
3386         }
3387
3388         mpt3sas_base_mask_interrupts(ioc);
3389
3390         r = _base_get_ioc_facts(ioc);
3391         if (r) {
3392                 rc = _base_check_for_fault_and_issue_reset(ioc);
3393                 if (rc || (_base_get_ioc_facts(ioc)))
3394                         goto out_fail;
3395         }
3396
3397         if (!ioc->rdpq_array_enable_assigned) {
3398                 ioc->rdpq_array_enable = ioc->rdpq_array_capable;
3399                 ioc->rdpq_array_enable_assigned = 1;
3400         }
3401
3402         r = _base_enable_msix(ioc);
3403         if (r)
3404                 goto out_fail;
3405
3406         if (!ioc->is_driver_loading)
3407                 _base_init_irqpolls(ioc);
3408         /* Use the Combined reply queue feature only for SAS3 C0 & higher
3409          * revision HBAs and also only when reply queue count is greater than 8
3410          */
3411         if (ioc->combined_reply_queue) {
3412                 /* Determine the Supplemental Reply Post Host Index Registers
3413                  * Addresse. Supplemental Reply Post Host Index Registers
3414                  * starts at offset MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET and
3415                  * each register is at offset bytes of
3416                  * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET from previous one.
3417                  */
3418                 ioc->replyPostRegisterIndex = kcalloc(
3419                      ioc->combined_reply_index_count,
3420                      sizeof(resource_size_t *), GFP_KERNEL);
3421                 if (!ioc->replyPostRegisterIndex) {
3422                         ioc_err(ioc,
3423                             "allocation for replyPostRegisterIndex failed!\n");
3424                         r = -ENOMEM;
3425                         goto out_fail;
3426                 }
3427
3428                 for (i = 0; i < ioc->combined_reply_index_count; i++) {
3429                         ioc->replyPostRegisterIndex[i] = (resource_size_t *)
3430                              ((u8 __force *)&ioc->chip->Doorbell +
3431                              MPI25_SUP_REPLY_POST_HOST_INDEX_OFFSET +
3432                              (i * MPT3_SUP_REPLY_POST_HOST_INDEX_REG_OFFSET));
3433                 }
3434         }
3435
3436         if (ioc->is_warpdrive) {
3437                 ioc->reply_post_host_index[0] = (resource_size_t __iomem *)
3438                     &ioc->chip->ReplyPostHostIndex;
3439
3440                 for (i = 1; i < ioc->cpu_msix_table_sz; i++)
3441                         ioc->reply_post_host_index[i] =
3442                         (resource_size_t __iomem *)
3443                         ((u8 __iomem *)&ioc->chip->Doorbell + (0x4000 + ((i - 1)
3444                         * 4)));
3445         }
3446
3447         list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
3448                 pr_info("%s: %s enabled: IRQ %d\n",
3449                         reply_q->name,
3450                         ioc->msix_enable ? "PCI-MSI-X" : "IO-APIC",
3451                         pci_irq_vector(ioc->pdev, reply_q->msix_index));
3452
3453         ioc_info(ioc, "iomem(%pap), mapped(0x%p), size(%d)\n",
3454                  &chip_phys, ioc->chip, memap_sz);
3455         ioc_info(ioc, "ioport(0x%016llx), size(%d)\n",
3456                  (unsigned long long)pio_chip, pio_sz);
3457
3458         /* Save PCI configuration state for recovery from PCI AER/EEH errors */
3459         pci_save_state(pdev);
3460         return 0;
3461
3462  out_fail:
3463         mpt3sas_base_unmap_resources(ioc);
3464         return r;
3465 }
3466
3467 /**
3468  * mpt3sas_base_get_msg_frame - obtain request mf pointer
3469  * @ioc: per adapter object
3470  * @smid: system request message index(smid zero is invalid)
3471  *
3472  * Return: virt pointer to message frame.
3473  */
3474 void *
3475 mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3476 {
3477         return (void *)(ioc->request + (smid * ioc->request_sz));
3478 }
3479
3480 /**
3481  * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
3482  * @ioc: per adapter object
3483  * @smid: system request message index
3484  *
3485  * Return: virt pointer to sense buffer.
3486  */
3487 void *
3488 mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3489 {
3490         return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
3491 }
3492
3493 /**
3494  * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
3495  * @ioc: per adapter object
3496  * @smid: system request message index
3497  *
3498  * Return: phys pointer to the low 32bit address of the sense buffer.
3499  */
3500 __le32
3501 mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3502 {
3503         return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
3504             SCSI_SENSE_BUFFERSIZE));
3505 }
3506
3507 /**
3508  * mpt3sas_base_get_pcie_sgl - obtain a PCIe SGL virt addr
3509  * @ioc: per adapter object
3510  * @smid: system request message index
3511  *
3512  * Return: virt pointer to a PCIe SGL.
3513  */
3514 void *
3515 mpt3sas_base_get_pcie_sgl(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3516 {
3517         return (void *)(ioc->pcie_sg_lookup[smid - 1].pcie_sgl);
3518 }
3519
3520 /**
3521  * mpt3sas_base_get_pcie_sgl_dma - obtain a PCIe SGL dma addr
3522  * @ioc: per adapter object
3523  * @smid: system request message index
3524  *
3525  * Return: phys pointer to the address of the PCIe buffer.
3526  */
3527 dma_addr_t
3528 mpt3sas_base_get_pcie_sgl_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3529 {
3530         return ioc->pcie_sg_lookup[smid - 1].pcie_sgl_dma;
3531 }
3532
3533 /**
3534  * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
3535  * @ioc: per adapter object
3536  * @phys_addr: lower 32 physical addr of the reply
3537  *
3538  * Converts 32bit lower physical addr into a virt address.
3539  */
3540 void *
3541 mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
3542 {
3543         if (!phys_addr)
3544                 return NULL;
3545         return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
3546 }
3547
3548 /**
3549  * _base_get_msix_index - get the msix index
3550  * @ioc: per adapter object
3551  * @scmd: scsi_cmnd object
3552  *
3553  * returns msix index of general reply queues,
3554  * i.e. reply queue on which IO request's reply
3555  * should be posted by the HBA firmware.
3556  */
3557 static inline u8
3558 _base_get_msix_index(struct MPT3SAS_ADAPTER *ioc,
3559         struct scsi_cmnd *scmd)
3560 {
3561         /* Enables reply_queue load balancing */
3562         if (ioc->msix_load_balance)
3563                 return ioc->reply_queue_count ?
3564                     base_mod64(atomic64_add_return(1,
3565                     &ioc->total_io_cnt), ioc->reply_queue_count) : 0;
3566
3567         return ioc->cpu_msix_table[raw_smp_processor_id()];
3568 }
3569
3570 /**
3571  * _base_sdev_nr_inflight_request -get number of inflight requests
3572  *                                 of a request queue.
3573  * @q: request_queue object
3574  *
3575  * returns number of inflight request of a request queue.
3576  */
3577 inline unsigned long
3578 _base_sdev_nr_inflight_request(struct request_queue *q)
3579 {
3580         struct blk_mq_hw_ctx *hctx = q->queue_hw_ctx[0];
3581
3582         return atomic_read(&hctx->nr_active);
3583 }
3584
3585
3586 /**
3587  * _base_get_high_iops_msix_index - get the msix index of
3588  *                              high iops queues
3589  * @ioc: per adapter object
3590  * @scmd: scsi_cmnd object
3591  *
3592  * Returns: msix index of high iops reply queues.
3593  * i.e. high iops reply queue on which IO request's
3594  * reply should be posted by the HBA firmware.
3595  */
3596 static inline u8
3597 _base_get_high_iops_msix_index(struct MPT3SAS_ADAPTER *ioc,
3598         struct scsi_cmnd *scmd)
3599 {
3600         /**
3601          * Round robin the IO interrupts among the high iops
3602          * reply queues in terms of batch count 16 when outstanding
3603          * IOs on the target device is >=8.
3604          */
3605         if (_base_sdev_nr_inflight_request(scmd->device->request_queue) >
3606             MPT3SAS_DEVICE_HIGH_IOPS_DEPTH)
3607                 return base_mod64((
3608                     atomic64_add_return(1, &ioc->high_iops_outstanding) /
3609                     MPT3SAS_HIGH_IOPS_BATCH_COUNT),
3610                     MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
3611
3612         return _base_get_msix_index(ioc, scmd);
3613 }
3614
3615 /**
3616  * mpt3sas_base_get_smid - obtain a free smid from internal queue
3617  * @ioc: per adapter object
3618  * @cb_idx: callback index
3619  *
3620  * Return: smid (zero is invalid)
3621  */
3622 u16
3623 mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3624 {
3625         unsigned long flags;
3626         struct request_tracker *request;
3627         u16 smid;
3628
3629         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3630         if (list_empty(&ioc->internal_free_list)) {
3631                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3632                 ioc_err(ioc, "%s: smid not available\n", __func__);
3633                 return 0;
3634         }
3635
3636         request = list_entry(ioc->internal_free_list.next,
3637             struct request_tracker, tracker_list);
3638         request->cb_idx = cb_idx;
3639         smid = request->smid;
3640         list_del(&request->tracker_list);
3641         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3642         return smid;
3643 }
3644
3645 /**
3646  * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
3647  * @ioc: per adapter object
3648  * @cb_idx: callback index
3649  * @scmd: pointer to scsi command object
3650  *
3651  * Return: smid (zero is invalid)
3652  */
3653 u16
3654 mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
3655         struct scsi_cmnd *scmd)
3656 {
3657         struct scsiio_tracker *request = scsi_cmd_priv(scmd);
3658         unsigned int tag = scmd->request->tag;
3659         u16 smid;
3660
3661         smid = tag + 1;
3662         request->cb_idx = cb_idx;
3663         request->smid = smid;
3664         request->scmd = scmd;
3665         INIT_LIST_HEAD(&request->chain_list);
3666         return smid;
3667 }
3668
3669 /**
3670  * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
3671  * @ioc: per adapter object
3672  * @cb_idx: callback index
3673  *
3674  * Return: smid (zero is invalid)
3675  */
3676 u16
3677 mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
3678 {
3679         unsigned long flags;
3680         struct request_tracker *request;
3681         u16 smid;
3682
3683         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3684         if (list_empty(&ioc->hpr_free_list)) {
3685                 spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3686                 return 0;
3687         }
3688
3689         request = list_entry(ioc->hpr_free_list.next,
3690             struct request_tracker, tracker_list);
3691         request->cb_idx = cb_idx;
3692         smid = request->smid;
3693         list_del(&request->tracker_list);
3694         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3695         return smid;
3696 }
3697
3698 static void
3699 _base_recovery_check(struct MPT3SAS_ADAPTER *ioc)
3700 {
3701         /*
3702          * See _wait_for_commands_to_complete() call with regards to this code.
3703          */
3704         if (ioc->shost_recovery && ioc->pending_io_count) {
3705                 ioc->pending_io_count = scsi_host_busy(ioc->shost);
3706                 if (ioc->pending_io_count == 0)
3707                         wake_up(&ioc->reset_wq);
3708         }
3709 }
3710
3711 void mpt3sas_base_clear_st(struct MPT3SAS_ADAPTER *ioc,
3712                            struct scsiio_tracker *st)
3713 {
3714         if (WARN_ON(st->smid == 0))
3715                 return;
3716         st->cb_idx = 0xFF;
3717         st->direct_io = 0;
3718         st->scmd = NULL;
3719         atomic_set(&ioc->chain_lookup[st->smid - 1].chain_offset, 0);
3720         st->smid = 0;
3721 }
3722
3723 /**
3724  * mpt3sas_base_free_smid - put smid back on free_list
3725  * @ioc: per adapter object
3726  * @smid: system request message index
3727  */
3728 void
3729 mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3730 {
3731         unsigned long flags;
3732         int i;
3733
3734         if (smid < ioc->hi_priority_smid) {
3735                 struct scsiio_tracker *st;
3736                 void *request;
3737
3738                 st = _get_st_from_smid(ioc, smid);
3739                 if (!st) {
3740                         _base_recovery_check(ioc);
3741                         return;
3742                 }
3743
3744                 /* Clear MPI request frame */
3745                 request = mpt3sas_base_get_msg_frame(ioc, smid);
3746                 memset(request, 0, ioc->request_sz);
3747
3748                 mpt3sas_base_clear_st(ioc, st);
3749                 _base_recovery_check(ioc);
3750                 return;
3751         }
3752
3753         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
3754         if (smid < ioc->internal_smid) {
3755                 /* hi-priority */
3756                 i = smid - ioc->hi_priority_smid;
3757                 ioc->hpr_lookup[i].cb_idx = 0xFF;
3758                 list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
3759         } else if (smid <= ioc->hba_queue_depth) {
3760                 /* internal queue */
3761                 i = smid - ioc->internal_smid;
3762                 ioc->internal_lookup[i].cb_idx = 0xFF;
3763                 list_add(&ioc->internal_lookup[i].tracker_list,
3764                     &ioc->internal_free_list);
3765         }
3766         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
3767 }
3768
3769 /**
3770  * _base_mpi_ep_writeq - 32 bit write to MMIO
3771  * @b: data payload
3772  * @addr: address in MMIO space
3773  * @writeq_lock: spin lock
3774  *
3775  * This special handling for MPI EP to take care of 32 bit
3776  * environment where its not quarenteed to send the entire word
3777  * in one transfer.
3778  */
3779 static inline void
3780 _base_mpi_ep_writeq(__u64 b, volatile void __iomem *addr,
3781                                         spinlock_t *writeq_lock)
3782 {
3783         unsigned long flags;
3784
3785         spin_lock_irqsave(writeq_lock, flags);
3786         __raw_writel((u32)(b), addr);
3787         __raw_writel((u32)(b >> 32), (addr + 4));
3788         spin_unlock_irqrestore(writeq_lock, flags);
3789 }
3790
3791 /**
3792  * _base_writeq - 64 bit write to MMIO
3793  * @b: data payload
3794  * @addr: address in MMIO space
3795  * @writeq_lock: spin lock
3796  *
3797  * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
3798  * care of 32 bit environment where its not quarenteed to send the entire word
3799  * in one transfer.
3800  */
3801 #if defined(writeq) && defined(CONFIG_64BIT)
3802 static inline void
3803 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3804 {
3805         wmb();
3806         __raw_writeq(b, addr);
3807         barrier();
3808 }
3809 #else
3810 static inline void
3811 _base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
3812 {
3813         _base_mpi_ep_writeq(b, addr, writeq_lock);
3814 }
3815 #endif
3816
3817 /**
3818  * _base_set_and_get_msix_index - get the msix index and assign to msix_io
3819  *                                variable of scsi tracker
3820  * @ioc: per adapter object
3821  * @smid: system request message index
3822  *
3823  * returns msix index.
3824  */
3825 static u8
3826 _base_set_and_get_msix_index(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3827 {
3828         struct scsiio_tracker *st = NULL;
3829
3830         if (smid < ioc->hi_priority_smid)
3831                 st = _get_st_from_smid(ioc, smid);
3832
3833         if (st == NULL)
3834                 return  _base_get_msix_index(ioc, NULL);
3835
3836         st->msix_io = ioc->get_msix_index_for_smlio(ioc, st->scmd);
3837         return st->msix_io;
3838 }
3839
3840 /**
3841  * _base_put_smid_mpi_ep_scsi_io - send SCSI_IO request to firmware
3842  * @ioc: per adapter object
3843  * @smid: system request message index
3844  * @handle: device handle
3845  */
3846 static void
3847 _base_put_smid_mpi_ep_scsi_io(struct MPT3SAS_ADAPTER *ioc,
3848         u16 smid, u16 handle)
3849 {
3850         Mpi2RequestDescriptorUnion_t descriptor;
3851         u64 *request = (u64 *)&descriptor;
3852         void *mpi_req_iomem;
3853         __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3854
3855         _clone_sg_entries(ioc, (void *) mfp, smid);
3856         mpi_req_iomem = (void __force *)ioc->chip +
3857                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3858         _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3859                                         ioc->request_sz);
3860         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3861         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3862         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3863         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3864         descriptor.SCSIIO.LMID = 0;
3865         _base_mpi_ep_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3866             &ioc->scsi_lookup_lock);
3867 }
3868
3869 /**
3870  * _base_put_smid_scsi_io - send SCSI_IO request to firmware
3871  * @ioc: per adapter object
3872  * @smid: system request message index
3873  * @handle: device handle
3874  */
3875 static void
3876 _base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
3877 {
3878         Mpi2RequestDescriptorUnion_t descriptor;
3879         u64 *request = (u64 *)&descriptor;
3880
3881
3882         descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
3883         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3884         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3885         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3886         descriptor.SCSIIO.LMID = 0;
3887         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3888             &ioc->scsi_lookup_lock);
3889 }
3890
3891 /**
3892  * _base_put_smid_fast_path - send fast path request to firmware
3893  * @ioc: per adapter object
3894  * @smid: system request message index
3895  * @handle: device handle
3896  */
3897 static void
3898 _base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3899         u16 handle)
3900 {
3901         Mpi2RequestDescriptorUnion_t descriptor;
3902         u64 *request = (u64 *)&descriptor;
3903
3904         descriptor.SCSIIO.RequestFlags =
3905             MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
3906         descriptor.SCSIIO.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
3907         descriptor.SCSIIO.SMID = cpu_to_le16(smid);
3908         descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
3909         descriptor.SCSIIO.LMID = 0;
3910         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3911             &ioc->scsi_lookup_lock);
3912 }
3913
3914 /**
3915  * _base_put_smid_hi_priority - send Task Management request to firmware
3916  * @ioc: per adapter object
3917  * @smid: system request message index
3918  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0.
3919  */
3920 static void
3921 _base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid,
3922         u16 msix_task)
3923 {
3924         Mpi2RequestDescriptorUnion_t descriptor;
3925         void *mpi_req_iomem;
3926         u64 *request;
3927
3928         if (ioc->is_mcpu_endpoint) {
3929                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3930
3931                 /* TBD 256 is offset within sys register. */
3932                 mpi_req_iomem = (void __force *)ioc->chip
3933                                         + MPI_FRAME_START_OFFSET
3934                                         + (smid * ioc->request_sz);
3935                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3936                                                         ioc->request_sz);
3937         }
3938
3939         request = (u64 *)&descriptor;
3940
3941         descriptor.HighPriority.RequestFlags =
3942             MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
3943         descriptor.HighPriority.MSIxIndex =  msix_task;
3944         descriptor.HighPriority.SMID = cpu_to_le16(smid);
3945         descriptor.HighPriority.LMID = 0;
3946         descriptor.HighPriority.Reserved1 = 0;
3947         if (ioc->is_mcpu_endpoint)
3948                 _base_mpi_ep_writeq(*request,
3949                                 &ioc->chip->RequestDescriptorPostLow,
3950                                 &ioc->scsi_lookup_lock);
3951         else
3952                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3953                     &ioc->scsi_lookup_lock);
3954 }
3955
3956 /**
3957  * mpt3sas_base_put_smid_nvme_encap - send NVMe encapsulated request to
3958  *  firmware
3959  * @ioc: per adapter object
3960  * @smid: system request message index
3961  */
3962 void
3963 mpt3sas_base_put_smid_nvme_encap(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3964 {
3965         Mpi2RequestDescriptorUnion_t descriptor;
3966         u64 *request = (u64 *)&descriptor;
3967
3968         descriptor.Default.RequestFlags =
3969                 MPI26_REQ_DESCRIPT_FLAGS_PCIE_ENCAPSULATED;
3970         descriptor.Default.MSIxIndex =  _base_set_and_get_msix_index(ioc, smid);
3971         descriptor.Default.SMID = cpu_to_le16(smid);
3972         descriptor.Default.LMID = 0;
3973         descriptor.Default.DescriptorTypeDependent = 0;
3974         _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
3975             &ioc->scsi_lookup_lock);
3976 }
3977
3978 /**
3979  * _base_put_smid_default - Default, primarily used for config pages
3980  * @ioc: per adapter object
3981  * @smid: system request message index
3982  */
3983 static void
3984 _base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
3985 {
3986         Mpi2RequestDescriptorUnion_t descriptor;
3987         void *mpi_req_iomem;
3988         u64 *request;
3989
3990         if (ioc->is_mcpu_endpoint) {
3991                 __le32 *mfp = (__le32 *)mpt3sas_base_get_msg_frame(ioc, smid);
3992
3993                 _clone_sg_entries(ioc, (void *) mfp, smid);
3994                 /* TBD 256 is offset within sys register */
3995                 mpi_req_iomem = (void __force *)ioc->chip +
3996                         MPI_FRAME_START_OFFSET + (smid * ioc->request_sz);
3997                 _base_clone_mpi_to_sys_mem(mpi_req_iomem, (void *)mfp,
3998                                                         ioc->request_sz);
3999         }
4000         request = (u64 *)&descriptor;
4001         descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4002         descriptor.Default.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4003         descriptor.Default.SMID = cpu_to_le16(smid);
4004         descriptor.Default.LMID = 0;
4005         descriptor.Default.DescriptorTypeDependent = 0;
4006         if (ioc->is_mcpu_endpoint)
4007                 _base_mpi_ep_writeq(*request,
4008                                 &ioc->chip->RequestDescriptorPostLow,
4009                                 &ioc->scsi_lookup_lock);
4010         else
4011                 _base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
4012                                 &ioc->scsi_lookup_lock);
4013 }
4014
4015 /**
4016  * _base_put_smid_scsi_io_atomic - send SCSI_IO request to firmware using
4017  *   Atomic Request Descriptor
4018  * @ioc: per adapter object
4019  * @smid: system request message index
4020  * @handle: device handle, unused in this function, for function type match
4021  *
4022  * Return nothing.
4023  */
4024 static void
4025 _base_put_smid_scsi_io_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4026         u16 handle)
4027 {
4028         Mpi26AtomicRequestDescriptor_t descriptor;
4029         u32 *request = (u32 *)&descriptor;
4030
4031         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
4032         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4033         descriptor.SMID = cpu_to_le16(smid);
4034
4035         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4036 }
4037
4038 /**
4039  * _base_put_smid_fast_path_atomic - send fast path request to firmware
4040  * using Atomic Request Descriptor
4041  * @ioc: per adapter object
4042  * @smid: system request message index
4043  * @handle: device handle, unused in this function, for function type match
4044  * Return nothing
4045  */
4046 static void
4047 _base_put_smid_fast_path_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4048         u16 handle)
4049 {
4050         Mpi26AtomicRequestDescriptor_t descriptor;
4051         u32 *request = (u32 *)&descriptor;
4052
4053         descriptor.RequestFlags = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
4054         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4055         descriptor.SMID = cpu_to_le16(smid);
4056
4057         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4058 }
4059
4060 /**
4061  * _base_put_smid_hi_priority_atomic - send Task Management request to
4062  * firmware using Atomic Request Descriptor
4063  * @ioc: per adapter object
4064  * @smid: system request message index
4065  * @msix_task: msix_task will be same as msix of IO incase of task abort else 0
4066  *
4067  * Return nothing.
4068  */
4069 static void
4070 _base_put_smid_hi_priority_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid,
4071         u16 msix_task)
4072 {
4073         Mpi26AtomicRequestDescriptor_t descriptor;
4074         u32 *request = (u32 *)&descriptor;
4075
4076         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
4077         descriptor.MSIxIndex = msix_task;
4078         descriptor.SMID = cpu_to_le16(smid);
4079
4080         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4081 }
4082
4083 /**
4084  * _base_put_smid_default - Default, primarily used for config pages
4085  * use Atomic Request Descriptor
4086  * @ioc: per adapter object
4087  * @smid: system request message index
4088  *
4089  * Return nothing.
4090  */
4091 static void
4092 _base_put_smid_default_atomic(struct MPT3SAS_ADAPTER *ioc, u16 smid)
4093 {
4094         Mpi26AtomicRequestDescriptor_t descriptor;
4095         u32 *request = (u32 *)&descriptor;
4096
4097         descriptor.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
4098         descriptor.MSIxIndex = _base_set_and_get_msix_index(ioc, smid);
4099         descriptor.SMID = cpu_to_le16(smid);
4100
4101         writel(cpu_to_le32(*request), &ioc->chip->AtomicRequestDescriptorPost);
4102 }
4103
4104 /**
4105  * _base_display_OEMs_branding - Display branding string
4106  * @ioc: per adapter object
4107  */
4108 static void
4109 _base_display_OEMs_branding(struct MPT3SAS_ADAPTER *ioc)
4110 {
4111         if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
4112                 return;
4113
4114         switch (ioc->pdev->subsystem_vendor) {
4115         case PCI_VENDOR_ID_INTEL:
4116                 switch (ioc->pdev->device) {
4117                 case MPI2_MFGPAGE_DEVID_SAS2008:
4118                         switch (ioc->pdev->subsystem_device) {
4119                         case MPT2SAS_INTEL_RMS2LL080_SSDID:
4120                                 ioc_info(ioc, "%s\n",
4121                                          MPT2SAS_INTEL_RMS2LL080_BRANDING);
4122                                 break;
4123                         case MPT2SAS_INTEL_RMS2LL040_SSDID:
4124                                 ioc_info(ioc, "%s\n",
4125                                          MPT2SAS_INTEL_RMS2LL040_BRANDING);
4126                                 break;
4127                         case MPT2SAS_INTEL_SSD910_SSDID:
4128                                 ioc_info(ioc, "%s\n",
4129                                          MPT2SAS_INTEL_SSD910_BRANDING);
4130                                 break;
4131                         default:
4132                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4133                                          ioc->pdev->subsystem_device);
4134                                 break;
4135                         }
4136                         break;
4137                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4138                         switch (ioc->pdev->subsystem_device) {
4139                         case MPT2SAS_INTEL_RS25GB008_SSDID:
4140                                 ioc_info(ioc, "%s\n",
4141                                          MPT2SAS_INTEL_RS25GB008_BRANDING);
4142                                 break;
4143                         case MPT2SAS_INTEL_RMS25JB080_SSDID:
4144                                 ioc_info(ioc, "%s\n",
4145                                          MPT2SAS_INTEL_RMS25JB080_BRANDING);
4146                                 break;
4147                         case MPT2SAS_INTEL_RMS25JB040_SSDID:
4148                                 ioc_info(ioc, "%s\n",
4149                                          MPT2SAS_INTEL_RMS25JB040_BRANDING);
4150                                 break;
4151                         case MPT2SAS_INTEL_RMS25KB080_SSDID:
4152                                 ioc_info(ioc, "%s\n",
4153                                          MPT2SAS_INTEL_RMS25KB080_BRANDING);
4154                                 break;
4155                         case MPT2SAS_INTEL_RMS25KB040_SSDID:
4156                                 ioc_info(ioc, "%s\n",
4157                                          MPT2SAS_INTEL_RMS25KB040_BRANDING);
4158                                 break;
4159                         case MPT2SAS_INTEL_RMS25LB040_SSDID:
4160                                 ioc_info(ioc, "%s\n",
4161                                          MPT2SAS_INTEL_RMS25LB040_BRANDING);
4162                                 break;
4163                         case MPT2SAS_INTEL_RMS25LB080_SSDID:
4164                                 ioc_info(ioc, "%s\n",
4165                                          MPT2SAS_INTEL_RMS25LB080_BRANDING);
4166                                 break;
4167                         default:
4168                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4169                                          ioc->pdev->subsystem_device);
4170                                 break;
4171                         }
4172                         break;
4173                 case MPI25_MFGPAGE_DEVID_SAS3008:
4174                         switch (ioc->pdev->subsystem_device) {
4175                         case MPT3SAS_INTEL_RMS3JC080_SSDID:
4176                                 ioc_info(ioc, "%s\n",
4177                                          MPT3SAS_INTEL_RMS3JC080_BRANDING);
4178                                 break;
4179
4180                         case MPT3SAS_INTEL_RS3GC008_SSDID:
4181                                 ioc_info(ioc, "%s\n",
4182                                          MPT3SAS_INTEL_RS3GC008_BRANDING);
4183                                 break;
4184                         case MPT3SAS_INTEL_RS3FC044_SSDID:
4185                                 ioc_info(ioc, "%s\n",
4186                                          MPT3SAS_INTEL_RS3FC044_BRANDING);
4187                                 break;
4188                         case MPT3SAS_INTEL_RS3UC080_SSDID:
4189                                 ioc_info(ioc, "%s\n",
4190                                          MPT3SAS_INTEL_RS3UC080_BRANDING);
4191                                 break;
4192                         default:
4193                                 ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4194                                          ioc->pdev->subsystem_device);
4195                                 break;
4196                         }
4197                         break;
4198                 default:
4199                         ioc_info(ioc, "Intel(R) Controller: Subsystem ID: 0x%X\n",
4200                                  ioc->pdev->subsystem_device);
4201                         break;
4202                 }
4203                 break;
4204         case PCI_VENDOR_ID_DELL:
4205                 switch (ioc->pdev->device) {
4206                 case MPI2_MFGPAGE_DEVID_SAS2008:
4207                         switch (ioc->pdev->subsystem_device) {
4208                         case MPT2SAS_DELL_6GBPS_SAS_HBA_SSDID:
4209                                 ioc_info(ioc, "%s\n",
4210                                          MPT2SAS_DELL_6GBPS_SAS_HBA_BRANDING);
4211                                 break;
4212                         case MPT2SAS_DELL_PERC_H200_ADAPTER_SSDID:
4213                                 ioc_info(ioc, "%s\n",
4214                                          MPT2SAS_DELL_PERC_H200_ADAPTER_BRANDING);
4215                                 break;
4216                         case MPT2SAS_DELL_PERC_H200_INTEGRATED_SSDID:
4217                                 ioc_info(ioc, "%s\n",
4218                                          MPT2SAS_DELL_PERC_H200_INTEGRATED_BRANDING);
4219                                 break;
4220                         case MPT2SAS_DELL_PERC_H200_MODULAR_SSDID:
4221                                 ioc_info(ioc, "%s\n",
4222                                          MPT2SAS_DELL_PERC_H200_MODULAR_BRANDING);
4223                                 break;
4224                         case MPT2SAS_DELL_PERC_H200_EMBEDDED_SSDID:
4225                                 ioc_info(ioc, "%s\n",
4226                                          MPT2SAS_DELL_PERC_H200_EMBEDDED_BRANDING);
4227                                 break;
4228                         case MPT2SAS_DELL_PERC_H200_SSDID:
4229                                 ioc_info(ioc, "%s\n",
4230                                          MPT2SAS_DELL_PERC_H200_BRANDING);
4231                                 break;
4232                         case MPT2SAS_DELL_6GBPS_SAS_SSDID:
4233                                 ioc_info(ioc, "%s\n",
4234                                          MPT2SAS_DELL_6GBPS_SAS_BRANDING);
4235                                 break;
4236                         default:
4237                                 ioc_info(ioc, "Dell 6Gbps HBA: Subsystem ID: 0x%X\n",
4238                                          ioc->pdev->subsystem_device);
4239                                 break;
4240                         }
4241                         break;
4242                 case MPI25_MFGPAGE_DEVID_SAS3008:
4243                         switch (ioc->pdev->subsystem_device) {
4244                         case MPT3SAS_DELL_12G_HBA_SSDID:
4245                                 ioc_info(ioc, "%s\n",
4246                                          MPT3SAS_DELL_12G_HBA_BRANDING);
4247                                 break;
4248                         default:
4249                                 ioc_info(ioc, "Dell 12Gbps HBA: Subsystem ID: 0x%X\n",
4250                                          ioc->pdev->subsystem_device);
4251                                 break;
4252                         }
4253                         break;
4254                 default:
4255                         ioc_info(ioc, "Dell HBA: Subsystem ID: 0x%X\n",
4256                                  ioc->pdev->subsystem_device);
4257                         break;
4258                 }
4259                 break;
4260         case PCI_VENDOR_ID_CISCO:
4261                 switch (ioc->pdev->device) {
4262                 case MPI25_MFGPAGE_DEVID_SAS3008:
4263                         switch (ioc->pdev->subsystem_device) {
4264                         case MPT3SAS_CISCO_12G_8E_HBA_SSDID:
4265                                 ioc_info(ioc, "%s\n",
4266                                          MPT3SAS_CISCO_12G_8E_HBA_BRANDING);
4267                                 break;
4268                         case MPT3SAS_CISCO_12G_8I_HBA_SSDID:
4269                                 ioc_info(ioc, "%s\n",
4270                                          MPT3SAS_CISCO_12G_8I_HBA_BRANDING);
4271                                 break;
4272                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4273                                 ioc_info(ioc, "%s\n",
4274                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4275                                 break;
4276                         default:
4277                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4278                                          ioc->pdev->subsystem_device);
4279                                 break;
4280                         }
4281                         break;
4282                 case MPI25_MFGPAGE_DEVID_SAS3108_1:
4283                         switch (ioc->pdev->subsystem_device) {
4284                         case MPT3SAS_CISCO_12G_AVILA_HBA_SSDID:
4285                                 ioc_info(ioc, "%s\n",
4286                                          MPT3SAS_CISCO_12G_AVILA_HBA_BRANDING);
4287                                 break;
4288                         case MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_SSDID:
4289                                 ioc_info(ioc, "%s\n",
4290                                          MPT3SAS_CISCO_12G_COLUSA_MEZZANINE_HBA_BRANDING);
4291                                 break;
4292                         default:
4293                                 ioc_info(ioc, "Cisco 12Gbps SAS HBA: Subsystem ID: 0x%X\n",
4294                                          ioc->pdev->subsystem_device);
4295                                 break;
4296                         }
4297                         break;
4298                 default:
4299                         ioc_info(ioc, "Cisco SAS HBA: Subsystem ID: 0x%X\n",
4300                                  ioc->pdev->subsystem_device);
4301                         break;
4302                 }
4303                 break;
4304         case MPT2SAS_HP_3PAR_SSVID:
4305                 switch (ioc->pdev->device) {
4306                 case MPI2_MFGPAGE_DEVID_SAS2004:
4307                         switch (ioc->pdev->subsystem_device) {
4308                         case MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_SSDID:
4309                                 ioc_info(ioc, "%s\n",
4310                                          MPT2SAS_HP_DAUGHTER_2_4_INTERNAL_BRANDING);
4311                                 break;
4312                         default:
4313                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4314                                          ioc->pdev->subsystem_device);
4315                                 break;
4316                         }
4317                         break;
4318                 case MPI2_MFGPAGE_DEVID_SAS2308_2:
4319                         switch (ioc->pdev->subsystem_device) {
4320                         case MPT2SAS_HP_2_4_INTERNAL_SSDID:
4321                                 ioc_info(ioc, "%s\n",
4322                                          MPT2SAS_HP_2_4_INTERNAL_BRANDING);
4323                                 break;
4324                         case MPT2SAS_HP_2_4_EXTERNAL_SSDID:
4325                                 ioc_info(ioc, "%s\n",
4326                                          MPT2SAS_HP_2_4_EXTERNAL_BRANDING);
4327                                 break;
4328                         case MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_SSDID:
4329                                 ioc_info(ioc, "%s\n",
4330                                          MPT2SAS_HP_1_4_INTERNAL_1_4_EXTERNAL_BRANDING);
4331                                 break;
4332                         case MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_SSDID:
4333                                 ioc_info(ioc, "%s\n",
4334                                          MPT2SAS_HP_EMBEDDED_2_4_INTERNAL_BRANDING);
4335                                 break;
4336                         default:
4337                                 ioc_info(ioc, "HP 6Gbps SAS HBA: Subsystem ID: 0x%X\n",
4338                                          ioc->pdev->subsystem_device);
4339                                 break;
4340                         }
4341                         break;
4342                 default:
4343                         ioc_info(ioc, "HP SAS HBA: Subsystem ID: 0x%X\n",
4344                                  ioc->pdev->subsystem_device);
4345                         break;
4346                 }
4347         default:
4348                 break;
4349         }
4350 }
4351
4352 /**
4353  * _base_display_fwpkg_version - sends FWUpload request to pull FWPkg
4354  *                              version from FW Image Header.
4355  * @ioc: per adapter object
4356  *
4357  * Return: 0 for success, non-zero for failure.
4358  */
4359         static int
4360 _base_display_fwpkg_version(struct MPT3SAS_ADAPTER *ioc)
4361 {
4362         Mpi2FWImageHeader_t *fw_img_hdr;
4363         Mpi26ComponentImageHeader_t *cmp_img_hdr;
4364         Mpi25FWUploadRequest_t *mpi_request;
4365         Mpi2FWUploadReply_t mpi_reply;
4366         int r = 0;
4367         u32  package_version = 0;
4368         void *fwpkg_data = NULL;
4369         dma_addr_t fwpkg_data_dma;
4370         u16 smid, ioc_status;
4371         size_t data_length;
4372
4373         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4374
4375         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4376                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
4377                 return -EAGAIN;
4378         }
4379
4380         data_length = sizeof(Mpi2FWImageHeader_t);
4381         fwpkg_data = dma_alloc_coherent(&ioc->pdev->dev, data_length,
4382                         &fwpkg_data_dma, GFP_KERNEL);
4383         if (!fwpkg_data) {
4384                 ioc_err(ioc,
4385                     "Memory allocation for fwpkg data failed at %s:%d/%s()!\n",
4386                         __FILE__, __LINE__, __func__);
4387                 return -ENOMEM;
4388         }
4389
4390         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4391         if (!smid) {
4392                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
4393                 r = -EAGAIN;
4394                 goto out;
4395         }
4396
4397         ioc->base_cmds.status = MPT3_CMD_PENDING;
4398         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4399         ioc->base_cmds.smid = smid;
4400         memset(mpi_request, 0, sizeof(Mpi25FWUploadRequest_t));
4401         mpi_request->Function = MPI2_FUNCTION_FW_UPLOAD;
4402         mpi_request->ImageType = MPI2_FW_UPLOAD_ITYPE_FW_FLASH;
4403         mpi_request->ImageSize = cpu_to_le32(data_length);
4404         ioc->build_sg(ioc, &mpi_request->SGL, 0, 0, fwpkg_data_dma,
4405                         data_length);
4406         init_completion(&ioc->base_cmds.done);
4407         ioc->put_smid_default(ioc, smid);
4408         /* Wait for 15 seconds */
4409         wait_for_completion_timeout(&ioc->base_cmds.done,
4410                         FW_IMG_HDR_READ_TIMEOUT*HZ);
4411         ioc_info(ioc, "%s: complete\n", __func__);
4412         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4413                 ioc_err(ioc, "%s: timeout\n", __func__);
4414                 _debug_dump_mf(mpi_request,
4415                                 sizeof(Mpi25FWUploadRequest_t)/4);
4416                 r = -ETIME;
4417         } else {
4418                 memset(&mpi_reply, 0, sizeof(Mpi2FWUploadReply_t));
4419                 if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID) {
4420                         memcpy(&mpi_reply, ioc->base_cmds.reply,
4421                                         sizeof(Mpi2FWUploadReply_t));
4422                         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4423                                                 MPI2_IOCSTATUS_MASK;
4424                         if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
4425                                 fw_img_hdr = (Mpi2FWImageHeader_t *)fwpkg_data;
4426                                 if (le32_to_cpu(fw_img_hdr->Signature) ==
4427                                     MPI26_IMAGE_HEADER_SIGNATURE0_MPI26) {
4428                                         cmp_img_hdr =
4429                                             (Mpi26ComponentImageHeader_t *)
4430                                             (fwpkg_data);
4431                                         package_version =
4432                                             le32_to_cpu(
4433                                             cmp_img_hdr->ApplicationSpecific);
4434                                 } else
4435                                         package_version =
4436                                             le32_to_cpu(
4437                                             fw_img_hdr->PackageVersion.Word);
4438                                 if (package_version)
4439                                         ioc_info(ioc,
4440                                         "FW Package Ver(%02d.%02d.%02d.%02d)\n",
4441                                         ((package_version) & 0xFF000000) >> 24,
4442                                         ((package_version) & 0x00FF0000) >> 16,
4443                                         ((package_version) & 0x0000FF00) >> 8,
4444                                         (package_version) & 0x000000FF);
4445                         } else {
4446                                 _debug_dump_mf(&mpi_reply,
4447                                                 sizeof(Mpi2FWUploadReply_t)/4);
4448                         }
4449                 }
4450         }
4451         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4452 out:
4453         if (fwpkg_data)
4454                 dma_free_coherent(&ioc->pdev->dev, data_length, fwpkg_data,
4455                                 fwpkg_data_dma);
4456         return r;
4457 }
4458
4459 /**
4460  * _base_display_ioc_capabilities - Disply IOC's capabilities.
4461  * @ioc: per adapter object
4462  */
4463 static void
4464 _base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
4465 {
4466         int i = 0;
4467         char desc[16];
4468         u32 iounit_pg1_flags;
4469         u32 bios_version;
4470
4471         bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
4472         strncpy(desc, ioc->manu_pg0.ChipName, 16);
4473         ioc_info(ioc, "%s: FWVersion(%02d.%02d.%02d.%02d), ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
4474                  desc,
4475                  (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
4476                  (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
4477                  (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
4478                  ioc->facts.FWVersion.Word & 0x000000FF,
4479                  ioc->pdev->revision,
4480                  (bios_version & 0xFF000000) >> 24,
4481                  (bios_version & 0x00FF0000) >> 16,
4482                  (bios_version & 0x0000FF00) >> 8,
4483                  bios_version & 0x000000FF);
4484
4485         _base_display_OEMs_branding(ioc);
4486
4487         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
4488                 pr_info("%sNVMe", i ? "," : "");
4489                 i++;
4490         }
4491
4492         ioc_info(ioc, "Protocol=(");
4493
4494         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
4495                 pr_cont("Initiator");
4496                 i++;
4497         }
4498
4499         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
4500                 pr_cont("%sTarget", i ? "," : "");
4501                 i++;
4502         }
4503
4504         i = 0;
4505         pr_cont("), Capabilities=(");
4506
4507         if (!ioc->hide_ir_msg) {
4508                 if (ioc->facts.IOCCapabilities &
4509                     MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
4510                         pr_cont("Raid");
4511                         i++;
4512                 }
4513         }
4514
4515         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
4516                 pr_cont("%sTLR", i ? "," : "");
4517                 i++;
4518         }
4519
4520         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
4521                 pr_cont("%sMulticast", i ? "," : "");
4522                 i++;
4523         }
4524
4525         if (ioc->facts.IOCCapabilities &
4526             MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
4527                 pr_cont("%sBIDI Target", i ? "," : "");
4528                 i++;
4529         }
4530
4531         if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
4532                 pr_cont("%sEEDP", i ? "," : "");
4533                 i++;
4534         }
4535
4536         if (ioc->facts.IOCCapabilities &
4537             MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
4538                 pr_cont("%sSnapshot Buffer", i ? "," : "");
4539                 i++;
4540         }
4541
4542         if (ioc->facts.IOCCapabilities &
4543             MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
4544                 pr_cont("%sDiag Trace Buffer", i ? "," : "");
4545                 i++;
4546         }
4547
4548         if (ioc->facts.IOCCapabilities &
4549             MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
4550                 pr_cont("%sDiag Extended Buffer", i ? "," : "");
4551                 i++;
4552         }
4553
4554         if (ioc->facts.IOCCapabilities &
4555             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
4556                 pr_cont("%sTask Set Full", i ? "," : "");
4557                 i++;
4558         }
4559
4560         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4561         if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
4562                 pr_cont("%sNCQ", i ? "," : "");
4563                 i++;
4564         }
4565
4566         pr_cont(")\n");
4567 }
4568
4569 /**
4570  * mpt3sas_base_update_missing_delay - change the missing delay timers
4571  * @ioc: per adapter object
4572  * @device_missing_delay: amount of time till device is reported missing
4573  * @io_missing_delay: interval IO is returned when there is a missing device
4574  *
4575  * Passed on the command line, this function will modify the device missing
4576  * delay, as well as the io missing delay. This should be called at driver
4577  * load time.
4578  */
4579 void
4580 mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
4581         u16 device_missing_delay, u8 io_missing_delay)
4582 {
4583         u16 dmd, dmd_new, dmd_orignal;
4584         u8 io_missing_delay_original;
4585         u16 sz;
4586         Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
4587         Mpi2ConfigReply_t mpi_reply;
4588         u8 num_phys = 0;
4589         u16 ioc_status;
4590
4591         mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
4592         if (!num_phys)
4593                 return;
4594
4595         sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
4596             sizeof(Mpi2SasIOUnit1PhyData_t));
4597         sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
4598         if (!sas_iounit_pg1) {
4599                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4600                         __FILE__, __LINE__, __func__);
4601                 goto out;
4602         }
4603         if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
4604             sas_iounit_pg1, sz))) {
4605                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4606                         __FILE__, __LINE__, __func__);
4607                 goto out;
4608         }
4609         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
4610             MPI2_IOCSTATUS_MASK;
4611         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
4612                 ioc_err(ioc, "failure at %s:%d/%s()!\n",
4613                         __FILE__, __LINE__, __func__);
4614                 goto out;
4615         }
4616
4617         /* device missing delay */
4618         dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
4619         if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4620                 dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4621         else
4622                 dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4623         dmd_orignal = dmd;
4624         if (device_missing_delay > 0x7F) {
4625                 dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
4626                     device_missing_delay;
4627                 dmd = dmd / 16;
4628                 dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
4629         } else
4630                 dmd = device_missing_delay;
4631         sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
4632
4633         /* io missing delay */
4634         io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
4635         sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
4636
4637         if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
4638             sz)) {
4639                 if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
4640                         dmd_new = (dmd &
4641                             MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
4642                 else
4643                         dmd_new =
4644                     dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
4645                 ioc_info(ioc, "device_missing_delay: old(%d), new(%d)\n",
4646                          dmd_orignal, dmd_new);
4647                 ioc_info(ioc, "ioc_missing_delay: old(%d), new(%d)\n",
4648                          io_missing_delay_original,
4649                          io_missing_delay);
4650                 ioc->device_missing_delay = dmd_new;
4651                 ioc->io_missing_delay = io_missing_delay;
4652         }
4653
4654 out:
4655         kfree(sas_iounit_pg1);
4656 }
4657
4658 /**
4659  * _base_update_ioc_page1_inlinewith_perf_mode - Update IOC Page1 fields
4660  *    according to performance mode.
4661  * @ioc : per adapter object
4662  *
4663  * Return nothing.
4664  */
4665 static void
4666 _base_update_ioc_page1_inlinewith_perf_mode(struct MPT3SAS_ADAPTER *ioc)
4667 {
4668         Mpi2IOCPage1_t ioc_pg1;
4669         Mpi2ConfigReply_t mpi_reply;
4670
4671         mpt3sas_config_get_ioc_pg1(ioc, &mpi_reply, &ioc->ioc_pg1_copy);
4672         memcpy(&ioc_pg1, &ioc->ioc_pg1_copy, sizeof(Mpi2IOCPage1_t));
4673
4674         switch (perf_mode) {
4675         case MPT_PERF_MODE_DEFAULT:
4676         case MPT_PERF_MODE_BALANCED:
4677                 if (ioc->high_iops_queues) {
4678                         ioc_info(ioc,
4679                                 "Enable interrupt coalescing only for first\t"
4680                                 "%d reply queues\n",
4681                                 MPT3SAS_HIGH_IOPS_REPLY_QUEUES);
4682                         /*
4683                          * If 31st bit is zero then interrupt coalescing is
4684                          * enabled for all reply descriptor post queues.
4685                          * If 31st bit is set to one then user can
4686                          * enable/disable interrupt coalescing on per reply
4687                          * descriptor post queue group(8) basis. So to enable
4688                          * interrupt coalescing only on first reply descriptor
4689                          * post queue group 31st bit and zero th bit is enabled.
4690                          */
4691                         ioc_pg1.ProductSpecific = cpu_to_le32(0x80000000 |
4692                             ((1 << MPT3SAS_HIGH_IOPS_REPLY_QUEUES/8) - 1));
4693                         mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4694                         ioc_info(ioc, "performance mode: balanced\n");
4695                         return;
4696                 }
4697                 fallthrough;
4698         case MPT_PERF_MODE_LATENCY:
4699                 /*
4700                  * Enable interrupt coalescing on all reply queues
4701                  * with timeout value 0xA
4702                  */
4703                 ioc_pg1.CoalescingTimeout = cpu_to_le32(0xa);
4704                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4705                 ioc_pg1.ProductSpecific = 0;
4706                 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4707                 ioc_info(ioc, "performance mode: latency\n");
4708                 break;
4709         case MPT_PERF_MODE_IOPS:
4710                 /*
4711                  * Enable interrupt coalescing on all reply queues.
4712                  */
4713                 ioc_info(ioc,
4714                     "performance mode: iops with coalescing timeout: 0x%x\n",
4715                     le32_to_cpu(ioc_pg1.CoalescingTimeout));
4716                 ioc_pg1.Flags |= cpu_to_le32(MPI2_IOCPAGE1_REPLY_COALESCING);
4717                 ioc_pg1.ProductSpecific = 0;
4718                 mpt3sas_config_set_ioc_pg1(ioc, &mpi_reply, &ioc_pg1);
4719                 break;
4720         }
4721 }
4722
4723 /**
4724  * _base_static_config_pages - static start of day config pages
4725  * @ioc: per adapter object
4726  */
4727 static void
4728 _base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
4729 {
4730         Mpi2ConfigReply_t mpi_reply;
4731         u32 iounit_pg1_flags;
4732
4733         ioc->nvme_abort_timeout = 30;
4734         mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
4735         if (ioc->ir_firmware)
4736                 mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
4737                     &ioc->manu_pg10);
4738
4739         /*
4740          * Ensure correct T10 PI operation if vendor left EEDPTagMode
4741          * flag unset in NVDATA.
4742          */
4743         mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
4744         if (!ioc->is_gen35_ioc && ioc->manu_pg11.EEDPTagMode == 0) {
4745                 pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
4746                     ioc->name);
4747                 ioc->manu_pg11.EEDPTagMode &= ~0x3;
4748                 ioc->manu_pg11.EEDPTagMode |= 0x1;
4749                 mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
4750                     &ioc->manu_pg11);
4751         }
4752         if (ioc->manu_pg11.AddlFlags2 & NVME_TASK_MNGT_CUSTOM_MASK)
4753                 ioc->tm_custom_handling = 1;
4754         else {
4755                 ioc->tm_custom_handling = 0;
4756                 if (ioc->manu_pg11.NVMeAbortTO < NVME_TASK_ABORT_MIN_TIMEOUT)
4757                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MIN_TIMEOUT;
4758                 else if (ioc->manu_pg11.NVMeAbortTO >
4759                                         NVME_TASK_ABORT_MAX_TIMEOUT)
4760                         ioc->nvme_abort_timeout = NVME_TASK_ABORT_MAX_TIMEOUT;
4761                 else
4762                         ioc->nvme_abort_timeout = ioc->manu_pg11.NVMeAbortTO;
4763         }
4764
4765         mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
4766         mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
4767         mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
4768         mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
4769         mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4770         mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
4771         _base_display_ioc_capabilities(ioc);
4772
4773         /*
4774          * Enable task_set_full handling in iounit_pg1 when the
4775          * facts capabilities indicate that its supported.
4776          */
4777         iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
4778         if ((ioc->facts.IOCCapabilities &
4779             MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
4780                 iounit_pg1_flags &=
4781                     ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4782         else
4783                 iounit_pg1_flags |=
4784                     MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
4785         ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
4786         mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
4787
4788         if (ioc->iounit_pg8.NumSensors)
4789                 ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
4790         if (ioc->is_aero_ioc)
4791                 _base_update_ioc_page1_inlinewith_perf_mode(ioc);
4792 }
4793
4794 /**
4795  * mpt3sas_free_enclosure_list - release memory
4796  * @ioc: per adapter object
4797  *
4798  * Free memory allocated during encloure add.
4799  */
4800 void
4801 mpt3sas_free_enclosure_list(struct MPT3SAS_ADAPTER *ioc)
4802 {
4803         struct _enclosure_node *enclosure_dev, *enclosure_dev_next;
4804
4805         /* Free enclosure list */
4806         list_for_each_entry_safe(enclosure_dev,
4807                         enclosure_dev_next, &ioc->enclosure_list, list) {
4808                 list_del(&enclosure_dev->list);
4809                 kfree(enclosure_dev);
4810         }
4811 }
4812
4813 /**
4814  * _base_release_memory_pools - release memory
4815  * @ioc: per adapter object
4816  *
4817  * Free memory allocated from _base_allocate_memory_pools.
4818  */
4819 static void
4820 _base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
4821 {
4822         int i = 0;
4823         int j = 0;
4824         int dma_alloc_count = 0;
4825         struct chain_tracker *ct;
4826         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4827
4828         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
4829
4830         if (ioc->request) {
4831                 dma_free_coherent(&ioc->pdev->dev, ioc->request_dma_sz,
4832                     ioc->request,  ioc->request_dma);
4833                 dexitprintk(ioc,
4834                             ioc_info(ioc, "request_pool(0x%p): free\n",
4835                                      ioc->request));
4836                 ioc->request = NULL;
4837         }
4838
4839         if (ioc->sense) {
4840                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
4841                 dma_pool_destroy(ioc->sense_dma_pool);
4842                 dexitprintk(ioc,
4843                             ioc_info(ioc, "sense_pool(0x%p): free\n",
4844                                      ioc->sense));
4845                 ioc->sense = NULL;
4846         }
4847
4848         if (ioc->reply) {
4849                 dma_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
4850                 dma_pool_destroy(ioc->reply_dma_pool);
4851                 dexitprintk(ioc,
4852                             ioc_info(ioc, "reply_pool(0x%p): free\n",
4853                                      ioc->reply));
4854                 ioc->reply = NULL;
4855         }
4856
4857         if (ioc->reply_free) {
4858                 dma_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
4859                     ioc->reply_free_dma);
4860                 dma_pool_destroy(ioc->reply_free_dma_pool);
4861                 dexitprintk(ioc,
4862                             ioc_info(ioc, "reply_free_pool(0x%p): free\n",
4863                                      ioc->reply_free));
4864                 ioc->reply_free = NULL;
4865         }
4866
4867         if (ioc->reply_post) {
4868                 dma_alloc_count = DIV_ROUND_UP(count,
4869                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4870                 for (i = 0; i < count; i++) {
4871                         if (i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0
4872                             && dma_alloc_count) {
4873                                 if (ioc->reply_post[i].reply_post_free) {
4874                                         dma_pool_free(
4875                                             ioc->reply_post_free_dma_pool,
4876                                             ioc->reply_post[i].reply_post_free,
4877                                         ioc->reply_post[i].reply_post_free_dma);
4878                                         dexitprintk(ioc, ioc_info(ioc,
4879                                            "reply_post_free_pool(0x%p): free\n",
4880                                            ioc->reply_post[i].reply_post_free));
4881                                         ioc->reply_post[i].reply_post_free =
4882                                                                         NULL;
4883                                 }
4884                                 --dma_alloc_count;
4885                         }
4886                 }
4887                 dma_pool_destroy(ioc->reply_post_free_dma_pool);
4888                 if (ioc->reply_post_free_array &&
4889                         ioc->rdpq_array_enable) {
4890                         dma_pool_free(ioc->reply_post_free_array_dma_pool,
4891                             ioc->reply_post_free_array,
4892                             ioc->reply_post_free_array_dma);
4893                         ioc->reply_post_free_array = NULL;
4894                 }
4895                 dma_pool_destroy(ioc->reply_post_free_array_dma_pool);
4896                 kfree(ioc->reply_post);
4897         }
4898
4899         if (ioc->pcie_sgl_dma_pool) {
4900                 for (i = 0; i < ioc->scsiio_depth; i++) {
4901                         dma_pool_free(ioc->pcie_sgl_dma_pool,
4902                                         ioc->pcie_sg_lookup[i].pcie_sgl,
4903                                         ioc->pcie_sg_lookup[i].pcie_sgl_dma);
4904                 }
4905                 dma_pool_destroy(ioc->pcie_sgl_dma_pool);
4906         }
4907
4908         if (ioc->config_page) {
4909                 dexitprintk(ioc,
4910                             ioc_info(ioc, "config_page(0x%p): free\n",
4911                                      ioc->config_page));
4912                 dma_free_coherent(&ioc->pdev->dev, ioc->config_page_sz,
4913                     ioc->config_page, ioc->config_page_dma);
4914         }
4915
4916         kfree(ioc->hpr_lookup);
4917         ioc->hpr_lookup = NULL;
4918         kfree(ioc->internal_lookup);
4919         ioc->internal_lookup = NULL;
4920         if (ioc->chain_lookup) {
4921                 for (i = 0; i < ioc->scsiio_depth; i++) {
4922                         for (j = ioc->chains_per_prp_buffer;
4923                             j < ioc->chains_needed_per_io; j++) {
4924                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
4925                                 if (ct && ct->chain_buffer)
4926                                         dma_pool_free(ioc->chain_dma_pool,
4927                                                 ct->chain_buffer,
4928                                                 ct->chain_buffer_dma);
4929                         }
4930                         kfree(ioc->chain_lookup[i].chains_per_smid);
4931                 }
4932                 dma_pool_destroy(ioc->chain_dma_pool);
4933                 kfree(ioc->chain_lookup);
4934                 ioc->chain_lookup = NULL;
4935         }
4936 }
4937
4938 /**
4939  * mpt3sas_check_same_4gb_region - checks whether all reply queues in a set are
4940  *      having same upper 32bits in their base memory address.
4941  * @reply_pool_start_address: Base address of a reply queue set
4942  * @pool_sz: Size of single Reply Descriptor Post Queues pool size
4943  *
4944  * Return: 1 if reply queues in a set have a same upper 32bits in their base
4945  * memory address, else 0.
4946  */
4947
4948 static int
4949 mpt3sas_check_same_4gb_region(long reply_pool_start_address, u32 pool_sz)
4950 {
4951         long reply_pool_end_address;
4952
4953         reply_pool_end_address = reply_pool_start_address + pool_sz;
4954
4955         if (upper_32_bits(reply_pool_start_address) ==
4956                 upper_32_bits(reply_pool_end_address))
4957                 return 1;
4958         else
4959                 return 0;
4960 }
4961
4962 /**
4963  * base_alloc_rdpq_dma_pool - Allocating DMA'able memory
4964  *                     for reply queues.
4965  * @ioc: per adapter object
4966  * @sz: DMA Pool size
4967  * Return: 0 for success, non-zero for failure.
4968  */
4969 static int
4970 base_alloc_rdpq_dma_pool(struct MPT3SAS_ADAPTER *ioc, int sz)
4971 {
4972         int i = 0;
4973         u32 dma_alloc_count = 0;
4974         int reply_post_free_sz = ioc->reply_post_queue_depth *
4975                 sizeof(Mpi2DefaultReplyDescriptor_t);
4976         int count = ioc->rdpq_array_enable ? ioc->reply_queue_count : 1;
4977
4978         ioc->reply_post = kcalloc(count, sizeof(struct reply_post_struct),
4979                         GFP_KERNEL);
4980         if (!ioc->reply_post)
4981                 return -ENOMEM;
4982         /*
4983          *  For INVADER_SERIES each set of 8 reply queues(0-7, 8-15, ..) and
4984          *  VENTURA_SERIES each set of 16 reply queues(0-15, 16-31, ..) should
4985          *  be within 4GB boundary i.e reply queues in a set must have same
4986          *  upper 32-bits in their memory address. so here driver is allocating
4987          *  the DMA'able memory for reply queues according.
4988          *  Driver uses limitation of
4989          *  VENTURA_SERIES to manage INVADER_SERIES as well.
4990          */
4991         dma_alloc_count = DIV_ROUND_UP(count,
4992                                 RDPQ_MAX_INDEX_IN_ONE_CHUNK);
4993         ioc->reply_post_free_dma_pool =
4994                 dma_pool_create("reply_post_free pool",
4995                     &ioc->pdev->dev, sz, 16, 0);
4996         if (!ioc->reply_post_free_dma_pool)
4997                 return -ENOMEM;
4998         for (i = 0; i < count; i++) {
4999                 if ((i % RDPQ_MAX_INDEX_IN_ONE_CHUNK == 0) && dma_alloc_count) {
5000                         ioc->reply_post[i].reply_post_free =
5001                             dma_pool_zalloc(ioc->reply_post_free_dma_pool,
5002                                 GFP_KERNEL,
5003                                 &ioc->reply_post[i].reply_post_free_dma);
5004                         if (!ioc->reply_post[i].reply_post_free)
5005                                 return -ENOMEM;
5006                         /*
5007                          * Each set of RDPQ pool must satisfy 4gb boundary
5008                          * restriction.
5009                          * 1) Check if allocated resources for RDPQ pool are in
5010                          *      the same 4GB range.
5011                          * 2) If #1 is true, continue with 64 bit DMA.
5012                          * 3) If #1 is false, return 1. which means free all the
5013                          * resources and set DMA mask to 32 and allocate.
5014                          */
5015                         if (!mpt3sas_check_same_4gb_region(
5016                                 (long)ioc->reply_post[i].reply_post_free, sz)) {
5017                                 dinitprintk(ioc,
5018                                     ioc_err(ioc, "bad Replypost free pool(0x%p)"
5019                                     "reply_post_free_dma = (0x%llx)\n",
5020                                     ioc->reply_post[i].reply_post_free,
5021                                     (unsigned long long)
5022                                     ioc->reply_post[i].reply_post_free_dma));
5023                                 return -EAGAIN;
5024                         }
5025                         dma_alloc_count--;
5026
5027                 } else {
5028                         ioc->reply_post[i].reply_post_free =
5029                             (Mpi2ReplyDescriptorsUnion_t *)
5030                             ((long)ioc->reply_post[i-1].reply_post_free
5031                             + reply_post_free_sz);
5032                         ioc->reply_post[i].reply_post_free_dma =
5033                             (dma_addr_t)
5034                             (ioc->reply_post[i-1].reply_post_free_dma +
5035                             reply_post_free_sz);
5036                 }
5037         }
5038         return 0;
5039 }
5040
5041 /**
5042  * _base_allocate_memory_pools - allocate start of day memory pools
5043  * @ioc: per adapter object
5044  *
5045  * Return: 0 success, anything else error.
5046  */
5047 static int
5048 _base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc)
5049 {
5050         struct mpt3sas_facts *facts;
5051         u16 max_sge_elements;
5052         u16 chains_needed_per_io;
5053         u32 sz, total_sz, reply_post_free_sz, reply_post_free_array_sz;
5054         u32 retry_sz;
5055         u32 rdpq_sz = 0;
5056         u16 max_request_credit, nvme_blocks_needed;
5057         unsigned short sg_tablesize;
5058         u16 sge_size;
5059         int i, j;
5060         int ret = 0;
5061         struct chain_tracker *ct;
5062
5063         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
5064
5065
5066         retry_sz = 0;
5067         facts = &ioc->facts;
5068
5069         /* command line tunables for max sgl entries */
5070         if (max_sgl_entries != -1)
5071                 sg_tablesize = max_sgl_entries;
5072         else {
5073                 if (ioc->hba_mpi_version_belonged == MPI2_VERSION)
5074                         sg_tablesize = MPT2SAS_SG_DEPTH;
5075                 else
5076                         sg_tablesize = MPT3SAS_SG_DEPTH;
5077         }
5078
5079         /* max sgl entries <= MPT_KDUMP_MIN_PHYS_SEGMENTS in KDUMP mode */
5080         if (reset_devices)
5081                 sg_tablesize = min_t(unsigned short, sg_tablesize,
5082                    MPT_KDUMP_MIN_PHYS_SEGMENTS);
5083
5084         if (ioc->is_mcpu_endpoint)
5085                 ioc->shost->sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5086         else {
5087                 if (sg_tablesize < MPT_MIN_PHYS_SEGMENTS)
5088                         sg_tablesize = MPT_MIN_PHYS_SEGMENTS;
5089                 else if (sg_tablesize > MPT_MAX_PHYS_SEGMENTS) {
5090                         sg_tablesize = min_t(unsigned short, sg_tablesize,
5091                                         SG_MAX_SEGMENTS);
5092                         ioc_warn(ioc, "sg_tablesize(%u) is bigger than kernel defined SG_CHUNK_SIZE(%u)\n",
5093                                  sg_tablesize, MPT_MAX_PHYS_SEGMENTS);
5094                 }
5095                 ioc->shost->sg_tablesize = sg_tablesize;
5096         }
5097
5098         ioc->internal_depth = min_t(int, (facts->HighPriorityCredit + (5)),
5099                 (facts->RequestCredit / 4));
5100         if (ioc->internal_depth < INTERNAL_CMDS_COUNT) {
5101                 if (facts->RequestCredit <= (INTERNAL_CMDS_COUNT +
5102                                 INTERNAL_SCSIIO_CMDS_COUNT)) {
5103                         ioc_err(ioc, "IOC doesn't have enough Request Credits, it has just %d number of credits\n",
5104                                 facts->RequestCredit);
5105                         return -ENOMEM;
5106                 }
5107                 ioc->internal_depth = 10;
5108         }
5109
5110         ioc->hi_priority_depth = ioc->internal_depth - (5);
5111         /* command line tunables  for max controller queue depth */
5112         if (max_queue_depth != -1 && max_queue_depth != 0) {
5113                 max_request_credit = min_t(u16, max_queue_depth +
5114                         ioc->internal_depth, facts->RequestCredit);
5115                 if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
5116                         max_request_credit =  MAX_HBA_QUEUE_DEPTH;
5117         } else if (reset_devices)
5118                 max_request_credit = min_t(u16, facts->RequestCredit,
5119                     (MPT3SAS_KDUMP_SCSI_IO_DEPTH + ioc->internal_depth));
5120         else
5121                 max_request_credit = min_t(u16, facts->RequestCredit,
5122                     MAX_HBA_QUEUE_DEPTH);
5123
5124         /* Firmware maintains additional facts->HighPriorityCredit number of
5125          * credits for HiPriprity Request messages, so hba queue depth will be
5126          * sum of max_request_credit and high priority queue depth.
5127          */
5128         ioc->hba_queue_depth = max_request_credit + ioc->hi_priority_depth;
5129
5130         /* request frame size */
5131         ioc->request_sz = facts->IOCRequestFrameSize * 4;
5132
5133         /* reply frame size */
5134         ioc->reply_sz = facts->ReplyFrameSize * 4;
5135
5136         /* chain segment size */
5137         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
5138                 if (facts->IOCMaxChainSegmentSize)
5139                         ioc->chain_segment_sz =
5140                                         facts->IOCMaxChainSegmentSize *
5141                                         MAX_CHAIN_ELEMT_SZ;
5142                 else
5143                 /* set to 128 bytes size if IOCMaxChainSegmentSize is zero */
5144                         ioc->chain_segment_sz = DEFAULT_NUM_FWCHAIN_ELEMTS *
5145                                                     MAX_CHAIN_ELEMT_SZ;
5146         } else
5147                 ioc->chain_segment_sz = ioc->request_sz;
5148
5149         /* calculate the max scatter element size */
5150         sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
5151
5152  retry_allocation:
5153         total_sz = 0;
5154         /* calculate number of sg elements left over in the 1st frame */
5155         max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
5156             sizeof(Mpi2SGEIOUnion_t)) + sge_size);
5157         ioc->max_sges_in_main_message = max_sge_elements/sge_size;
5158
5159         /* now do the same for a chain buffer */
5160         max_sge_elements = ioc->chain_segment_sz - sge_size;
5161         ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
5162
5163         /*
5164          *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
5165          */
5166         chains_needed_per_io = ((ioc->shost->sg_tablesize -
5167            ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
5168             + 1;
5169         if (chains_needed_per_io > facts->MaxChainDepth) {
5170                 chains_needed_per_io = facts->MaxChainDepth;
5171                 ioc->shost->sg_tablesize = min_t(u16,
5172                 ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
5173                 * chains_needed_per_io), ioc->shost->sg_tablesize);
5174         }
5175         ioc->chains_needed_per_io = chains_needed_per_io;
5176
5177         /* reply free queue sizing - taking into account for 64 FW events */
5178         ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5179
5180         /* mCPU manage single counters for simplicity */
5181         if (ioc->is_mcpu_endpoint)
5182                 ioc->reply_post_queue_depth = ioc->reply_free_queue_depth;
5183         else {
5184                 /* calculate reply descriptor post queue depth */
5185                 ioc->reply_post_queue_depth = ioc->hba_queue_depth +
5186                         ioc->reply_free_queue_depth +  1;
5187                 /* align the reply post queue on the next 16 count boundary */
5188                 if (ioc->reply_post_queue_depth % 16)
5189                         ioc->reply_post_queue_depth += 16 -
5190                                 (ioc->reply_post_queue_depth % 16);
5191         }
5192
5193         if (ioc->reply_post_queue_depth >
5194             facts->MaxReplyDescriptorPostQueueDepth) {
5195                 ioc->reply_post_queue_depth =
5196                                 facts->MaxReplyDescriptorPostQueueDepth -
5197                     (facts->MaxReplyDescriptorPostQueueDepth % 16);
5198                 ioc->hba_queue_depth =
5199                                 ((ioc->reply_post_queue_depth - 64) / 2) - 1;
5200                 ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
5201         }
5202
5203         ioc_info(ioc,
5204             "scatter gather: sge_in_main_msg(%d), sge_per_chain(%d), "
5205             "sge_per_io(%d), chains_per_io(%d)\n",
5206             ioc->max_sges_in_main_message,
5207             ioc->max_sges_in_chain_message,
5208             ioc->shost->sg_tablesize,
5209             ioc->chains_needed_per_io);
5210
5211         /* reply post queue, 16 byte align */
5212         reply_post_free_sz = ioc->reply_post_queue_depth *
5213             sizeof(Mpi2DefaultReplyDescriptor_t);
5214         rdpq_sz = reply_post_free_sz * RDPQ_MAX_INDEX_IN_ONE_CHUNK;
5215         if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
5216                 rdpq_sz = reply_post_free_sz * ioc->reply_queue_count;
5217         ret = base_alloc_rdpq_dma_pool(ioc, rdpq_sz);
5218         if (ret == -EAGAIN) {
5219                 /*
5220                  * Free allocated bad RDPQ memory pools.
5221                  * Change dma coherent mask to 32 bit and reallocate RDPQ
5222                  */
5223                 _base_release_memory_pools(ioc);
5224                 ioc->use_32bit_dma = true;
5225                 if (_base_config_dma_addressing(ioc, ioc->pdev) != 0) {
5226                         ioc_err(ioc,
5227                             "32 DMA mask failed %s\n", pci_name(ioc->pdev));
5228                         return -ENODEV;
5229                 }
5230                 if (base_alloc_rdpq_dma_pool(ioc, rdpq_sz))
5231                         return -ENOMEM;
5232         } else if (ret == -ENOMEM)
5233                 return -ENOMEM;
5234         total_sz = rdpq_sz * (!ioc->rdpq_array_enable ? 1 :
5235             DIV_ROUND_UP(ioc->reply_queue_count, RDPQ_MAX_INDEX_IN_ONE_CHUNK));
5236         ioc->scsiio_depth = ioc->hba_queue_depth -
5237             ioc->hi_priority_depth - ioc->internal_depth;
5238
5239         /* set the scsi host can_queue depth
5240          * with some internal commands that could be outstanding
5241          */
5242         ioc->shost->can_queue = ioc->scsiio_depth - INTERNAL_SCSIIO_CMDS_COUNT;
5243         dinitprintk(ioc,
5244                     ioc_info(ioc, "scsi host: can_queue depth (%d)\n",
5245                              ioc->shost->can_queue));
5246
5247         /* contiguous pool for request and chains, 16 byte align, one extra "
5248          * "frame for smid=0
5249          */
5250         ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
5251         sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
5252
5253         /* hi-priority queue */
5254         sz += (ioc->hi_priority_depth * ioc->request_sz);
5255
5256         /* internal queue */
5257         sz += (ioc->internal_depth * ioc->request_sz);
5258
5259         ioc->request_dma_sz = sz;
5260         ioc->request = dma_alloc_coherent(&ioc->pdev->dev, sz,
5261                         &ioc->request_dma, GFP_KERNEL);
5262         if (!ioc->request) {
5263                 ioc_err(ioc, "request pool: dma_alloc_coherent failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kB)\n",
5264                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
5265                         ioc->request_sz, sz / 1024);
5266                 if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
5267                         goto out;
5268                 retry_sz = 64;
5269                 ioc->hba_queue_depth -= retry_sz;
5270                 _base_release_memory_pools(ioc);
5271                 goto retry_allocation;
5272         }
5273
5274         if (retry_sz)
5275                 ioc_err(ioc, "request pool: dma_alloc_coherent succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), total(%d kb)\n",
5276                         ioc->hba_queue_depth, ioc->chains_needed_per_io,
5277                         ioc->request_sz, sz / 1024);
5278
5279         /* hi-priority queue */
5280         ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
5281             ioc->request_sz);
5282         ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
5283             ioc->request_sz);
5284
5285         /* internal queue */
5286         ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
5287             ioc->request_sz);
5288         ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
5289             ioc->request_sz);
5290
5291         ioc_info(ioc,
5292             "request pool(0x%p) - dma(0x%llx): "
5293             "depth(%d), frame_size(%d), pool_size(%d kB)\n",
5294             ioc->request, (unsigned long long) ioc->request_dma,
5295             ioc->hba_queue_depth, ioc->request_sz,
5296             (ioc->hba_queue_depth * ioc->request_sz) / 1024);
5297
5298         total_sz += sz;
5299
5300         dinitprintk(ioc,
5301                     ioc_info(ioc, "scsiio(0x%p): depth(%d)\n",
5302                              ioc->request, ioc->scsiio_depth));
5303
5304         ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
5305         sz = ioc->scsiio_depth * sizeof(struct chain_lookup);
5306         ioc->chain_lookup = kzalloc(sz, GFP_KERNEL);
5307         if (!ioc->chain_lookup) {
5308                 ioc_err(ioc, "chain_lookup: __get_free_pages failed\n");
5309                 goto out;
5310         }
5311
5312         sz = ioc->chains_needed_per_io * sizeof(struct chain_tracker);
5313         for (i = 0; i < ioc->scsiio_depth; i++) {
5314                 ioc->chain_lookup[i].chains_per_smid = kzalloc(sz, GFP_KERNEL);
5315                 if (!ioc->chain_lookup[i].chains_per_smid) {
5316                         ioc_err(ioc, "chain_lookup: kzalloc failed\n");
5317                         goto out;
5318                 }
5319         }
5320
5321         /* initialize hi-priority queue smid's */
5322         ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
5323             sizeof(struct request_tracker), GFP_KERNEL);
5324         if (!ioc->hpr_lookup) {
5325                 ioc_err(ioc, "hpr_lookup: kcalloc failed\n");
5326                 goto out;
5327         }
5328         ioc->hi_priority_smid = ioc->scsiio_depth + 1;
5329         dinitprintk(ioc,
5330                     ioc_info(ioc, "hi_priority(0x%p): depth(%d), start smid(%d)\n",
5331                              ioc->hi_priority,
5332                              ioc->hi_priority_depth, ioc->hi_priority_smid));
5333
5334         /* initialize internal queue smid's */
5335         ioc->internal_lookup = kcalloc(ioc->internal_depth,
5336             sizeof(struct request_tracker), GFP_KERNEL);
5337         if (!ioc->internal_lookup) {
5338                 ioc_err(ioc, "internal_lookup: kcalloc failed\n");
5339                 goto out;
5340         }
5341         ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
5342         dinitprintk(ioc,
5343                     ioc_info(ioc, "internal(0x%p): depth(%d), start smid(%d)\n",
5344                              ioc->internal,
5345                              ioc->internal_depth, ioc->internal_smid));
5346         /*
5347          * The number of NVMe page sized blocks needed is:
5348          *     (((sg_tablesize * 8) - 1) / (page_size - 8)) + 1
5349          * ((sg_tablesize * 8) - 1) is the max PRP's minus the first PRP entry
5350          * that is placed in the main message frame.  8 is the size of each PRP
5351          * entry or PRP list pointer entry.  8 is subtracted from page_size
5352          * because of the PRP list pointer entry at the end of a page, so this
5353          * is not counted as a PRP entry.  The 1 added page is a round up.
5354          *
5355          * To avoid allocation failures due to the amount of memory that could
5356          * be required for NVMe PRP's, only each set of NVMe blocks will be
5357          * contiguous, so a new set is allocated for each possible I/O.
5358          */
5359         ioc->chains_per_prp_buffer = 0;
5360         if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_NVME_DEVICES) {
5361                 nvme_blocks_needed =
5362                         (ioc->shost->sg_tablesize * NVME_PRP_SIZE) - 1;
5363                 nvme_blocks_needed /= (ioc->page_size - NVME_PRP_SIZE);
5364                 nvme_blocks_needed++;
5365
5366                 sz = sizeof(struct pcie_sg_list) * ioc->scsiio_depth;
5367                 ioc->pcie_sg_lookup = kzalloc(sz, GFP_KERNEL);
5368                 if (!ioc->pcie_sg_lookup) {
5369                         ioc_info(ioc, "PCIe SGL lookup: kzalloc failed\n");
5370                         goto out;
5371                 }
5372                 sz = nvme_blocks_needed * ioc->page_size;
5373                 ioc->pcie_sgl_dma_pool =
5374                         dma_pool_create("PCIe SGL pool", &ioc->pdev->dev, sz, 16, 0);
5375                 if (!ioc->pcie_sgl_dma_pool) {
5376                         ioc_info(ioc, "PCIe SGL pool: dma_pool_create failed\n");
5377                         goto out;
5378                 }
5379
5380                 ioc->chains_per_prp_buffer = sz/ioc->chain_segment_sz;
5381                 ioc->chains_per_prp_buffer = min(ioc->chains_per_prp_buffer,
5382                                                 ioc->chains_needed_per_io);
5383
5384                 for (i = 0; i < ioc->scsiio_depth; i++) {
5385                         ioc->pcie_sg_lookup[i].pcie_sgl = dma_pool_alloc(
5386                                 ioc->pcie_sgl_dma_pool, GFP_KERNEL,
5387                                 &ioc->pcie_sg_lookup[i].pcie_sgl_dma);
5388                         if (!ioc->pcie_sg_lookup[i].pcie_sgl) {
5389                                 ioc_info(ioc, "PCIe SGL pool: dma_pool_alloc failed\n");
5390                                 goto out;
5391                         }
5392                         for (j = 0; j < ioc->chains_per_prp_buffer; j++) {
5393                                 ct = &ioc->chain_lookup[i].chains_per_smid[j];
5394                                 ct->chain_buffer =
5395                                     ioc->pcie_sg_lookup[i].pcie_sgl +
5396                                     (j * ioc->chain_segment_sz);
5397                                 ct->chain_buffer_dma =
5398                                     ioc->pcie_sg_lookup[i].pcie_sgl_dma +
5399                                     (j * ioc->chain_segment_sz);
5400                         }
5401                 }
5402
5403                 dinitprintk(ioc,
5404                             ioc_info(ioc, "PCIe sgl pool depth(%d), element_size(%d), pool_size(%d kB)\n",
5405                                      ioc->scsiio_depth, sz,
5406                                      (sz * ioc->scsiio_depth) / 1024));
5407                 dinitprintk(ioc,
5408                             ioc_info(ioc, "Number of chains can fit in a PRP page(%d)\n",
5409                                      ioc->chains_per_prp_buffer));
5410                 total_sz += sz * ioc->scsiio_depth;
5411         }
5412
5413         ioc->chain_dma_pool = dma_pool_create("chain pool", &ioc->pdev->dev,
5414             ioc->chain_segment_sz, 16, 0);
5415         if (!ioc->chain_dma_pool) {
5416                 ioc_err(ioc, "chain_dma_pool: dma_pool_create failed\n");
5417                 goto out;
5418         }
5419         for (i = 0; i < ioc->scsiio_depth; i++) {
5420                 for (j = ioc->chains_per_prp_buffer;
5421                                 j < ioc->chains_needed_per_io; j++) {
5422                         ct = &ioc->chain_lookup[i].chains_per_smid[j];
5423                         ct->chain_buffer = dma_pool_alloc(
5424                                         ioc->chain_dma_pool, GFP_KERNEL,
5425                                         &ct->chain_buffer_dma);
5426                         if (!ct->chain_buffer) {
5427                                 ioc_err(ioc, "chain_lookup: pci_pool_alloc failed\n");
5428                                 goto out;
5429                         }
5430                 }
5431                 total_sz += ioc->chain_segment_sz;
5432         }
5433
5434         dinitprintk(ioc,
5435                     ioc_info(ioc, "chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
5436                              ioc->chain_depth, ioc->chain_segment_sz,
5437                              (ioc->chain_depth * ioc->chain_segment_sz) / 1024));
5438
5439         /* sense buffers, 4 byte align */
5440         sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
5441         ioc->sense_dma_pool = dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5442                                               4, 0);
5443         if (!ioc->sense_dma_pool) {
5444                 ioc_err(ioc, "sense pool: dma_pool_create failed\n");
5445                 goto out;
5446         }
5447         ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5448             &ioc->sense_dma);
5449         if (!ioc->sense) {
5450                 ioc_err(ioc, "sense pool: dma_pool_alloc failed\n");
5451                 goto out;
5452         }
5453         /* sense buffer requires to be in same 4 gb region.
5454          * Below function will check the same.
5455          * In case of failure, new pci pool will be created with updated
5456          * alignment. Older allocation and pool will be destroyed.
5457          * Alignment will be used such a way that next allocation if
5458          * success, will always meet same 4gb region requirement.
5459          * Actual requirement is not alignment, but we need start and end of
5460          * DMA address must have same upper 32 bit address.
5461          */
5462         if (!mpt3sas_check_same_4gb_region((long)ioc->sense, sz)) {
5463                 //Release Sense pool & Reallocate
5464                 dma_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
5465                 dma_pool_destroy(ioc->sense_dma_pool);
5466                 ioc->sense = NULL;
5467
5468                 ioc->sense_dma_pool =
5469                         dma_pool_create("sense pool", &ioc->pdev->dev, sz,
5470                                                 roundup_pow_of_two(sz), 0);
5471                 if (!ioc->sense_dma_pool) {
5472                         ioc_err(ioc, "sense pool: pci_pool_create failed\n");
5473                         goto out;
5474                 }
5475                 ioc->sense = dma_pool_alloc(ioc->sense_dma_pool, GFP_KERNEL,
5476                                 &ioc->sense_dma);
5477                 if (!ioc->sense) {
5478                         ioc_err(ioc, "sense pool: pci_pool_alloc failed\n");
5479                         goto out;
5480                 }
5481         }
5482         ioc_info(ioc,
5483             "sense pool(0x%p)- dma(0x%llx): depth(%d),"
5484             "element_size(%d), pool_size(%d kB)\n",
5485             ioc->sense, (unsigned long long)ioc->sense_dma, ioc->scsiio_depth,
5486             SCSI_SENSE_BUFFERSIZE, sz / 1024);
5487
5488         total_sz += sz;
5489
5490         /* reply pool, 4 byte align */
5491         sz = ioc->reply_free_queue_depth * ioc->reply_sz;
5492         ioc->reply_dma_pool = dma_pool_create("reply pool", &ioc->pdev->dev, sz,
5493                                               4, 0);
5494         if (!ioc->reply_dma_pool) {
5495                 ioc_err(ioc, "reply pool: dma_pool_create failed\n");
5496                 goto out;
5497         }
5498         ioc->reply = dma_pool_alloc(ioc->reply_dma_pool, GFP_KERNEL,
5499             &ioc->reply_dma);
5500         if (!ioc->reply) {
5501                 ioc_err(ioc, "reply pool: dma_pool_alloc failed\n");
5502                 goto out;
5503         }
5504         ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
5505         ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
5506         dinitprintk(ioc,
5507                     ioc_info(ioc, "reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
5508                              ioc->reply, ioc->reply_free_queue_depth,
5509                              ioc->reply_sz, sz / 1024));
5510         dinitprintk(ioc,
5511                     ioc_info(ioc, "reply_dma(0x%llx)\n",
5512                              (unsigned long long)ioc->reply_dma));
5513         total_sz += sz;
5514
5515         /* reply free queue, 16 byte align */
5516         sz = ioc->reply_free_queue_depth * 4;
5517         ioc->reply_free_dma_pool = dma_pool_create("reply_free pool",
5518             &ioc->pdev->dev, sz, 16, 0);
5519         if (!ioc->reply_free_dma_pool) {
5520                 ioc_err(ioc, "reply_free pool: dma_pool_create failed\n");
5521                 goto out;
5522         }
5523         ioc->reply_free = dma_pool_zalloc(ioc->reply_free_dma_pool, GFP_KERNEL,
5524             &ioc->reply_free_dma);
5525         if (!ioc->reply_free) {
5526                 ioc_err(ioc, "reply_free pool: dma_pool_alloc failed\n");
5527                 goto out;
5528         }
5529         dinitprintk(ioc,
5530                     ioc_info(ioc, "reply_free pool(0x%p): depth(%d), element_size(%d), pool_size(%d kB)\n",
5531                              ioc->reply_free, ioc->reply_free_queue_depth,
5532                              4, sz / 1024));
5533         dinitprintk(ioc,
5534                     ioc_info(ioc, "reply_free_dma (0x%llx)\n",
5535                              (unsigned long long)ioc->reply_free_dma));
5536         total_sz += sz;
5537
5538         if (ioc->rdpq_array_enable) {
5539                 reply_post_free_array_sz = ioc->reply_queue_count *
5540                     sizeof(Mpi2IOCInitRDPQArrayEntry);
5541                 ioc->reply_post_free_array_dma_pool =
5542                     dma_pool_create("reply_post_free_array pool",
5543                     &ioc->pdev->dev, reply_post_free_array_sz, 16, 0);
5544                 if (!ioc->reply_post_free_array_dma_pool) {
5545                         dinitprintk(ioc,
5546                                     ioc_info(ioc, "reply_post_free_array pool: dma_pool_create failed\n"));
5547                         goto out;
5548                 }
5549                 ioc->reply_post_free_array =
5550                     dma_pool_alloc(ioc->reply_post_free_array_dma_pool,
5551                     GFP_KERNEL, &ioc->reply_post_free_array_dma);
5552                 if (!ioc->reply_post_free_array) {
5553                         dinitprintk(ioc,
5554                                     ioc_info(ioc, "reply_post_free_array pool: dma_pool_alloc failed\n"));
5555                         goto out;
5556                 }
5557         }
5558         ioc->config_page_sz = 512;
5559         ioc->config_page = dma_alloc_coherent(&ioc->pdev->dev,
5560                         ioc->config_page_sz, &ioc->config_page_dma, GFP_KERNEL);
5561         if (!ioc->config_page) {
5562                 ioc_err(ioc, "config page: dma_pool_alloc failed\n");
5563                 goto out;
5564         }
5565
5566         ioc_info(ioc, "config page(0x%p) - dma(0x%llx): size(%d)\n",
5567             ioc->config_page, (unsigned long long)ioc->config_page_dma,
5568             ioc->config_page_sz);
5569         total_sz += ioc->config_page_sz;
5570
5571         ioc_info(ioc, "Allocated physical memory: size(%d kB)\n",
5572                  total_sz / 1024);
5573         ioc_info(ioc, "Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
5574                  ioc->shost->can_queue, facts->RequestCredit);
5575         ioc_info(ioc, "Scatter Gather Elements per IO(%d)\n",
5576                  ioc->shost->sg_tablesize);
5577         return 0;
5578
5579  out:
5580         return -ENOMEM;
5581 }
5582
5583 /**
5584  * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
5585  * @ioc: Pointer to MPT_ADAPTER structure
5586  * @cooked: Request raw or cooked IOC state
5587  *
5588  * Return: all IOC Doorbell register bits if cooked==0, else just the
5589  * Doorbell bits in MPI_IOC_STATE_MASK.
5590  */
5591 u32
5592 mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
5593 {
5594         u32 s, sc;
5595
5596         s = ioc->base_readl(&ioc->chip->Doorbell);
5597         sc = s & MPI2_IOC_STATE_MASK;
5598         return cooked ? sc : s;
5599 }
5600
5601 /**
5602  * _base_wait_on_iocstate - waiting on a particular ioc state
5603  * @ioc: ?
5604  * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
5605  * @timeout: timeout in second
5606  *
5607  * Return: 0 for success, non-zero for failure.
5608  */
5609 static int
5610 _base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout)
5611 {
5612         u32 count, cntdn;
5613         u32 current_state;
5614
5615         count = 0;
5616         cntdn = 1000 * timeout;
5617         do {
5618                 current_state = mpt3sas_base_get_iocstate(ioc, 1);
5619                 if (current_state == ioc_state)
5620                         return 0;
5621                 if (count && current_state == MPI2_IOC_STATE_FAULT)
5622                         break;
5623                 if (count && current_state == MPI2_IOC_STATE_COREDUMP)
5624                         break;
5625
5626                 usleep_range(1000, 1500);
5627                 count++;
5628         } while (--cntdn);
5629
5630         return current_state;
5631 }
5632
5633 /**
5634  * _base_dump_reg_set - This function will print hexdump of register set.
5635  * @ioc: per adapter object
5636  *
5637  * Returns nothing.
5638  */
5639 static inline void
5640 _base_dump_reg_set(struct MPT3SAS_ADAPTER *ioc)
5641 {
5642         unsigned int i, sz = 256;
5643         u32 __iomem *reg = (u32 __iomem *)ioc->chip;
5644
5645         ioc_info(ioc, "System Register set:\n");
5646         for (i = 0; i < (sz / sizeof(u32)); i++)
5647                 pr_info("%08x: %08x\n", (i * 4), readl(&reg[i]));
5648 }
5649
5650 /**
5651  * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
5652  * a write to the doorbell)
5653  * @ioc: per adapter object
5654  * @timeout: timeout in seconds
5655  *
5656  * Return: 0 for success, non-zero for failure.
5657  *
5658  * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
5659  */
5660
5661 static int
5662 _base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5663 {
5664         u32 cntdn, count;
5665         u32 int_status;
5666
5667         count = 0;
5668         cntdn = 1000 * timeout;
5669         do {
5670                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5671                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5672                         dhsprintk(ioc,
5673                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5674                                            __func__, count, timeout));
5675                         return 0;
5676                 }
5677
5678                 usleep_range(1000, 1500);
5679                 count++;
5680         } while (--cntdn);
5681
5682         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5683                 __func__, count, int_status);
5684         return -EFAULT;
5685 }
5686
5687 static int
5688 _base_spin_on_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout)
5689 {
5690         u32 cntdn, count;
5691         u32 int_status;
5692
5693         count = 0;
5694         cntdn = 2000 * timeout;
5695         do {
5696                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5697                 if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5698                         dhsprintk(ioc,
5699                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5700                                            __func__, count, timeout));
5701                         return 0;
5702                 }
5703
5704                 udelay(500);
5705                 count++;
5706         } while (--cntdn);
5707
5708         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5709                 __func__, count, int_status);
5710         return -EFAULT;
5711
5712 }
5713
5714 /**
5715  * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
5716  * @ioc: per adapter object
5717  * @timeout: timeout in second
5718  *
5719  * Return: 0 for success, non-zero for failure.
5720  *
5721  * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
5722  * doorbell.
5723  */
5724 static int
5725 _base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout)
5726 {
5727         u32 cntdn, count;
5728         u32 int_status;
5729         u32 doorbell;
5730
5731         count = 0;
5732         cntdn = 1000 * timeout;
5733         do {
5734                 int_status = ioc->base_readl(&ioc->chip->HostInterruptStatus);
5735                 if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
5736                         dhsprintk(ioc,
5737                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5738                                            __func__, count, timeout));
5739                         return 0;
5740                 } else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
5741                         doorbell = ioc->base_readl(&ioc->chip->Doorbell);
5742                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
5743                             MPI2_IOC_STATE_FAULT) {
5744                                 mpt3sas_print_fault_code(ioc, doorbell);
5745                                 return -EFAULT;
5746                         }
5747                         if ((doorbell & MPI2_IOC_STATE_MASK) ==
5748                             MPI2_IOC_STATE_COREDUMP) {
5749                                 mpt3sas_print_coredump_info(ioc, doorbell);
5750                                 return -EFAULT;
5751                         }
5752                 } else if (int_status == 0xFFFFFFFF)
5753                         goto out;
5754
5755                 usleep_range(1000, 1500);
5756                 count++;
5757         } while (--cntdn);
5758
5759  out:
5760         ioc_err(ioc, "%s: failed due to timeout count(%d), int_status(%x)!\n",
5761                 __func__, count, int_status);
5762         return -EFAULT;
5763 }
5764
5765 /**
5766  * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
5767  * @ioc: per adapter object
5768  * @timeout: timeout in second
5769  *
5770  * Return: 0 for success, non-zero for failure.
5771  */
5772 static int
5773 _base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout)
5774 {
5775         u32 cntdn, count;
5776         u32 doorbell_reg;
5777
5778         count = 0;
5779         cntdn = 1000 * timeout;
5780         do {
5781                 doorbell_reg = ioc->base_readl(&ioc->chip->Doorbell);
5782                 if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
5783                         dhsprintk(ioc,
5784                                   ioc_info(ioc, "%s: successful count(%d), timeout(%d)\n",
5785                                            __func__, count, timeout));
5786                         return 0;
5787                 }
5788
5789                 usleep_range(1000, 1500);
5790                 count++;
5791         } while (--cntdn);
5792
5793         ioc_err(ioc, "%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
5794                 __func__, count, doorbell_reg);
5795         return -EFAULT;
5796 }
5797
5798 /**
5799  * _base_send_ioc_reset - send doorbell reset
5800  * @ioc: per adapter object
5801  * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
5802  * @timeout: timeout in second
5803  *
5804  * Return: 0 for success, non-zero for failure.
5805  */
5806 static int
5807 _base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout)
5808 {
5809         u32 ioc_state;
5810         int r = 0;
5811         unsigned long flags;
5812
5813         if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
5814                 ioc_err(ioc, "%s: unknown reset_type\n", __func__);
5815                 return -EFAULT;
5816         }
5817
5818         if (!(ioc->facts.IOCCapabilities &
5819            MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
5820                 return -EFAULT;
5821
5822         ioc_info(ioc, "sending message unit reset !!\n");
5823
5824         writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
5825             &ioc->chip->Doorbell);
5826         if ((_base_wait_for_doorbell_ack(ioc, 15))) {
5827                 r = -EFAULT;
5828                 goto out;
5829         }
5830
5831         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
5832         if (ioc_state) {
5833                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
5834                         __func__, ioc_state);
5835                 r = -EFAULT;
5836                 goto out;
5837         }
5838  out:
5839         if (r != 0) {
5840                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
5841                 spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5842                 /*
5843                  * Wait for IOC state CoreDump to clear only during
5844                  * HBA initialization & release time.
5845                  */
5846                 if ((ioc_state & MPI2_IOC_STATE_MASK) ==
5847                     MPI2_IOC_STATE_COREDUMP && (ioc->is_driver_loading == 1 ||
5848                     ioc->fault_reset_work_q == NULL)) {
5849                         spin_unlock_irqrestore(
5850                             &ioc->ioc_reset_in_progress_lock, flags);
5851                         mpt3sas_print_coredump_info(ioc, ioc_state);
5852                         mpt3sas_base_wait_for_coredump_completion(ioc,
5853                             __func__);
5854                         spin_lock_irqsave(
5855                             &ioc->ioc_reset_in_progress_lock, flags);
5856                 }
5857                 spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5858         }
5859         ioc_info(ioc, "message unit reset: %s\n",
5860                  r == 0 ? "SUCCESS" : "FAILED");
5861         return r;
5862 }
5863
5864 /**
5865  * mpt3sas_wait_for_ioc - IOC's operational state is checked here.
5866  * @ioc: per adapter object
5867  * @timeout: timeout in seconds
5868  *
5869  * Return: Waits up to timeout seconds for the IOC to
5870  * become operational. Returns 0 if IOC is present
5871  * and operational; otherwise returns -EFAULT.
5872  */
5873
5874 int
5875 mpt3sas_wait_for_ioc(struct MPT3SAS_ADAPTER *ioc, int timeout)
5876 {
5877         int wait_state_count = 0;
5878         u32 ioc_state;
5879
5880         do {
5881                 ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
5882                 if (ioc_state == MPI2_IOC_STATE_OPERATIONAL)
5883                         break;
5884                 ssleep(1);
5885                 ioc_info(ioc, "%s: waiting for operational state(count=%d)\n",
5886                                 __func__, ++wait_state_count);
5887         } while (--timeout);
5888         if (!timeout) {
5889                 ioc_err(ioc, "%s: failed due to ioc not operational\n", __func__);
5890                 return -EFAULT;
5891         }
5892         if (wait_state_count)
5893                 ioc_info(ioc, "ioc is operational\n");
5894         return 0;
5895 }
5896
5897 /**
5898  * _base_handshake_req_reply_wait - send request thru doorbell interface
5899  * @ioc: per adapter object
5900  * @request_bytes: request length
5901  * @request: pointer having request payload
5902  * @reply_bytes: reply length
5903  * @reply: pointer to reply payload
5904  * @timeout: timeout in second
5905  *
5906  * Return: 0 for success, non-zero for failure.
5907  */
5908 static int
5909 _base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
5910         u32 *request, int reply_bytes, u16 *reply, int timeout)
5911 {
5912         MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
5913         int i;
5914         u8 failed;
5915         __le32 *mfp;
5916
5917         /* make sure doorbell is not in use */
5918         if ((ioc->base_readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
5919                 ioc_err(ioc, "doorbell is in use (line=%d)\n", __LINE__);
5920                 return -EFAULT;
5921         }
5922
5923         /* clear pending doorbell interrupts from previous state changes */
5924         if (ioc->base_readl(&ioc->chip->HostInterruptStatus) &
5925             MPI2_HIS_IOC2SYS_DB_STATUS)
5926                 writel(0, &ioc->chip->HostInterruptStatus);
5927
5928         /* send message to ioc */
5929         writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
5930             ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
5931             &ioc->chip->Doorbell);
5932
5933         if ((_base_spin_on_doorbell_int(ioc, 5))) {
5934                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5935                         __LINE__);
5936                 return -EFAULT;
5937         }
5938         writel(0, &ioc->chip->HostInterruptStatus);
5939
5940         if ((_base_wait_for_doorbell_ack(ioc, 5))) {
5941                 ioc_err(ioc, "doorbell handshake ack failed (line=%d)\n",
5942                         __LINE__);
5943                 return -EFAULT;
5944         }
5945
5946         /* send message 32-bits at a time */
5947         for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
5948                 writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
5949                 if ((_base_wait_for_doorbell_ack(ioc, 5)))
5950                         failed = 1;
5951         }
5952
5953         if (failed) {
5954                 ioc_err(ioc, "doorbell handshake sending request failed (line=%d)\n",
5955                         __LINE__);
5956                 return -EFAULT;
5957         }
5958
5959         /* now wait for the reply */
5960         if ((_base_wait_for_doorbell_int(ioc, timeout))) {
5961                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5962                         __LINE__);
5963                 return -EFAULT;
5964         }
5965
5966         /* read the first two 16-bits, it gives the total length of the reply */
5967         reply[0] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5968             & MPI2_DOORBELL_DATA_MASK);
5969         writel(0, &ioc->chip->HostInterruptStatus);
5970         if ((_base_wait_for_doorbell_int(ioc, 5))) {
5971                 ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5972                         __LINE__);
5973                 return -EFAULT;
5974         }
5975         reply[1] = le16_to_cpu(ioc->base_readl(&ioc->chip->Doorbell)
5976             & MPI2_DOORBELL_DATA_MASK);
5977         writel(0, &ioc->chip->HostInterruptStatus);
5978
5979         for (i = 2; i < default_reply->MsgLength * 2; i++)  {
5980                 if ((_base_wait_for_doorbell_int(ioc, 5))) {
5981                         ioc_err(ioc, "doorbell handshake int failed (line=%d)\n",
5982                                 __LINE__);
5983                         return -EFAULT;
5984                 }
5985                 if (i >=  reply_bytes/2) /* overflow case */
5986                         ioc->base_readl(&ioc->chip->Doorbell);
5987                 else
5988                         reply[i] = le16_to_cpu(
5989                             ioc->base_readl(&ioc->chip->Doorbell)
5990                             & MPI2_DOORBELL_DATA_MASK);
5991                 writel(0, &ioc->chip->HostInterruptStatus);
5992         }
5993
5994         _base_wait_for_doorbell_int(ioc, 5);
5995         if (_base_wait_for_doorbell_not_used(ioc, 5) != 0) {
5996                 dhsprintk(ioc,
5997                           ioc_info(ioc, "doorbell is in use (line=%d)\n",
5998                                    __LINE__));
5999         }
6000         writel(0, &ioc->chip->HostInterruptStatus);
6001
6002         if (ioc->logging_level & MPT_DEBUG_INIT) {
6003                 mfp = (__le32 *)reply;
6004                 pr_info("\toffset:data\n");
6005                 for (i = 0; i < reply_bytes/4; i++)
6006                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6007                             le32_to_cpu(mfp[i]));
6008         }
6009         return 0;
6010 }
6011
6012 /**
6013  * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
6014  * @ioc: per adapter object
6015  * @mpi_reply: the reply payload from FW
6016  * @mpi_request: the request payload sent to FW
6017  *
6018  * The SAS IO Unit Control Request message allows the host to perform low-level
6019  * operations, such as resets on the PHYs of the IO Unit, also allows the host
6020  * to obtain the IOC assigned device handles for a device if it has other
6021  * identifying information about the device, in addition allows the host to
6022  * remove IOC resources associated with the device.
6023  *
6024  * Return: 0 for success, non-zero for failure.
6025  */
6026 int
6027 mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
6028         Mpi2SasIoUnitControlReply_t *mpi_reply,
6029         Mpi2SasIoUnitControlRequest_t *mpi_request)
6030 {
6031         u16 smid;
6032         u8 issue_reset = 0;
6033         int rc;
6034         void *request;
6035
6036         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6037
6038         mutex_lock(&ioc->base_cmds.mutex);
6039
6040         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6041                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6042                 rc = -EAGAIN;
6043                 goto out;
6044         }
6045
6046         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6047         if (rc)
6048                 goto out;
6049
6050         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6051         if (!smid) {
6052                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6053                 rc = -EAGAIN;
6054                 goto out;
6055         }
6056
6057         rc = 0;
6058         ioc->base_cmds.status = MPT3_CMD_PENDING;
6059         request = mpt3sas_base_get_msg_frame(ioc, smid);
6060         ioc->base_cmds.smid = smid;
6061         memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
6062         if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6063             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
6064                 ioc->ioc_link_reset_in_progress = 1;
6065         init_completion(&ioc->base_cmds.done);
6066         ioc->put_smid_default(ioc, smid);
6067         wait_for_completion_timeout(&ioc->base_cmds.done,
6068             msecs_to_jiffies(10000));
6069         if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
6070             mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
6071             ioc->ioc_link_reset_in_progress)
6072                 ioc->ioc_link_reset_in_progress = 0;
6073         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6074                 mpt3sas_check_cmd_timeout(ioc, ioc->base_cmds.status,
6075                     mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t)/4,
6076                     issue_reset);
6077                 goto issue_host_reset;
6078         }
6079         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6080                 memcpy(mpi_reply, ioc->base_cmds.reply,
6081                     sizeof(Mpi2SasIoUnitControlReply_t));
6082         else
6083                 memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
6084         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6085         goto out;
6086
6087  issue_host_reset:
6088         if (issue_reset)
6089                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6090         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6091         rc = -EFAULT;
6092  out:
6093         mutex_unlock(&ioc->base_cmds.mutex);
6094         return rc;
6095 }
6096
6097 /**
6098  * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
6099  * @ioc: per adapter object
6100  * @mpi_reply: the reply payload from FW
6101  * @mpi_request: the request payload sent to FW
6102  *
6103  * The SCSI Enclosure Processor request message causes the IOC to
6104  * communicate with SES devices to control LED status signals.
6105  *
6106  * Return: 0 for success, non-zero for failure.
6107  */
6108 int
6109 mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
6110         Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
6111 {
6112         u16 smid;
6113         u8 issue_reset = 0;
6114         int rc;
6115         void *request;
6116
6117         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6118
6119         mutex_lock(&ioc->base_cmds.mutex);
6120
6121         if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
6122                 ioc_err(ioc, "%s: base_cmd in use\n", __func__);
6123                 rc = -EAGAIN;
6124                 goto out;
6125         }
6126
6127         rc = mpt3sas_wait_for_ioc(ioc, IOC_OPERATIONAL_WAIT_COUNT);
6128         if (rc)
6129                 goto out;
6130
6131         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6132         if (!smid) {
6133                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6134                 rc = -EAGAIN;
6135                 goto out;
6136         }
6137
6138         rc = 0;
6139         ioc->base_cmds.status = MPT3_CMD_PENDING;
6140         request = mpt3sas_base_get_msg_frame(ioc, smid);
6141         ioc->base_cmds.smid = smid;
6142         memset(request, 0, ioc->request_sz);
6143         memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
6144         init_completion(&ioc->base_cmds.done);
6145         ioc->put_smid_default(ioc, smid);
6146         wait_for_completion_timeout(&ioc->base_cmds.done,
6147             msecs_to_jiffies(10000));
6148         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6149                 mpt3sas_check_cmd_timeout(ioc,
6150                     ioc->base_cmds.status, mpi_request,
6151                     sizeof(Mpi2SepRequest_t)/4, issue_reset);
6152                 goto issue_host_reset;
6153         }
6154         if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
6155                 memcpy(mpi_reply, ioc->base_cmds.reply,
6156                     sizeof(Mpi2SepReply_t));
6157         else
6158                 memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
6159         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6160         goto out;
6161
6162  issue_host_reset:
6163         if (issue_reset)
6164                 mpt3sas_base_hard_reset_handler(ioc, FORCE_BIG_HAMMER);
6165         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6166         rc = -EFAULT;
6167  out:
6168         mutex_unlock(&ioc->base_cmds.mutex);
6169         return rc;
6170 }
6171
6172 /**
6173  * _base_get_port_facts - obtain port facts reply and save in ioc
6174  * @ioc: per adapter object
6175  * @port: ?
6176  *
6177  * Return: 0 for success, non-zero for failure.
6178  */
6179 static int
6180 _base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port)
6181 {
6182         Mpi2PortFactsRequest_t mpi_request;
6183         Mpi2PortFactsReply_t mpi_reply;
6184         struct mpt3sas_port_facts *pfacts;
6185         int mpi_reply_sz, mpi_request_sz, r;
6186
6187         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6188
6189         mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
6190         mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
6191         memset(&mpi_request, 0, mpi_request_sz);
6192         mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
6193         mpi_request.PortNumber = port;
6194         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6195             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6196
6197         if (r != 0) {
6198                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6199                 return r;
6200         }
6201
6202         pfacts = &ioc->pfacts[port];
6203         memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
6204         pfacts->PortNumber = mpi_reply.PortNumber;
6205         pfacts->VP_ID = mpi_reply.VP_ID;
6206         pfacts->VF_ID = mpi_reply.VF_ID;
6207         pfacts->MaxPostedCmdBuffers =
6208             le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
6209
6210         return 0;
6211 }
6212
6213 /**
6214  * _base_wait_for_iocstate - Wait until the card is in READY or OPERATIONAL
6215  * @ioc: per adapter object
6216  * @timeout:
6217  *
6218  * Return: 0 for success, non-zero for failure.
6219  */
6220 static int
6221 _base_wait_for_iocstate(struct MPT3SAS_ADAPTER *ioc, int timeout)
6222 {
6223         u32 ioc_state;
6224         int rc;
6225
6226         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6227
6228         if (ioc->pci_error_recovery) {
6229                 dfailprintk(ioc,
6230                             ioc_info(ioc, "%s: host in pci error recovery\n",
6231                                      __func__));
6232                 return -EFAULT;
6233         }
6234
6235         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6236         dhsprintk(ioc,
6237                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6238                            __func__, ioc_state));
6239
6240         if (((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY) ||
6241             (ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6242                 return 0;
6243
6244         if (ioc_state & MPI2_DOORBELL_USED) {
6245                 dhsprintk(ioc, ioc_info(ioc, "unexpected doorbell active!\n"));
6246                 goto issue_diag_reset;
6247         }
6248
6249         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6250                 mpt3sas_print_fault_code(ioc, ioc_state &
6251                     MPI2_DOORBELL_DATA_MASK);
6252                 goto issue_diag_reset;
6253         } else if ((ioc_state & MPI2_IOC_STATE_MASK) ==
6254             MPI2_IOC_STATE_COREDUMP) {
6255                 ioc_info(ioc,
6256                     "%s: Skipping the diag reset here. (ioc_state=0x%x)\n",
6257                     __func__, ioc_state);
6258                 return -EFAULT;
6259         }
6260
6261         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, timeout);
6262         if (ioc_state) {
6263                 dfailprintk(ioc,
6264                             ioc_info(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6265                                      __func__, ioc_state));
6266                 return -EFAULT;
6267         }
6268
6269  issue_diag_reset:
6270         rc = _base_diag_reset(ioc);
6271         return rc;
6272 }
6273
6274 /**
6275  * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
6276  * @ioc: per adapter object
6277  *
6278  * Return: 0 for success, non-zero for failure.
6279  */
6280 static int
6281 _base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc)
6282 {
6283         Mpi2IOCFactsRequest_t mpi_request;
6284         Mpi2IOCFactsReply_t mpi_reply;
6285         struct mpt3sas_facts *facts;
6286         int mpi_reply_sz, mpi_request_sz, r;
6287
6288         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6289
6290         r = _base_wait_for_iocstate(ioc, 10);
6291         if (r) {
6292                 dfailprintk(ioc,
6293                             ioc_info(ioc, "%s: failed getting to correct state\n",
6294                                      __func__));
6295                 return r;
6296         }
6297         mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
6298         mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
6299         memset(&mpi_request, 0, mpi_request_sz);
6300         mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
6301         r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
6302             (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5);
6303
6304         if (r != 0) {
6305                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6306                 return r;
6307         }
6308
6309         facts = &ioc->facts;
6310         memset(facts, 0, sizeof(struct mpt3sas_facts));
6311         facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
6312         facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
6313         facts->VP_ID = mpi_reply.VP_ID;
6314         facts->VF_ID = mpi_reply.VF_ID;
6315         facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
6316         facts->MaxChainDepth = mpi_reply.MaxChainDepth;
6317         facts->WhoInit = mpi_reply.WhoInit;
6318         facts->NumberOfPorts = mpi_reply.NumberOfPorts;
6319         facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
6320         if (ioc->msix_enable && (facts->MaxMSIxVectors <=
6321             MAX_COMBINED_MSIX_VECTORS(ioc->is_gen35_ioc)))
6322                 ioc->combined_reply_queue = 0;
6323         facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
6324         facts->MaxReplyDescriptorPostQueueDepth =
6325             le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
6326         facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
6327         facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
6328         if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
6329                 ioc->ir_firmware = 1;
6330         if ((facts->IOCCapabilities &
6331               MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE) && (!reset_devices))
6332                 ioc->rdpq_array_capable = 1;
6333         if ((facts->IOCCapabilities & MPI26_IOCFACTS_CAPABILITY_ATOMIC_REQ)
6334             && ioc->is_aero_ioc)
6335                 ioc->atomic_desc_capable = 1;
6336         facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
6337         facts->IOCRequestFrameSize =
6338             le16_to_cpu(mpi_reply.IOCRequestFrameSize);
6339         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
6340                 facts->IOCMaxChainSegmentSize =
6341                         le16_to_cpu(mpi_reply.IOCMaxChainSegmentSize);
6342         }
6343         facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
6344         facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
6345         ioc->shost->max_id = -1;
6346         facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
6347         facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
6348         facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
6349         facts->HighPriorityCredit =
6350             le16_to_cpu(mpi_reply.HighPriorityCredit);
6351         facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
6352         facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
6353         facts->CurrentHostPageSize = mpi_reply.CurrentHostPageSize;
6354
6355         /*
6356          * Get the Page Size from IOC Facts. If it's 0, default to 4k.
6357          */
6358         ioc->page_size = 1 << facts->CurrentHostPageSize;
6359         if (ioc->page_size == 1) {
6360                 ioc_info(ioc, "CurrentHostPageSize is 0: Setting default host page size to 4k\n");
6361                 ioc->page_size = 1 << MPT3SAS_HOST_PAGE_SIZE_4K;
6362         }
6363         dinitprintk(ioc,
6364                     ioc_info(ioc, "CurrentHostPageSize(%d)\n",
6365                              facts->CurrentHostPageSize));
6366
6367         dinitprintk(ioc,
6368                     ioc_info(ioc, "hba queue depth(%d), max chains per io(%d)\n",
6369                              facts->RequestCredit, facts->MaxChainDepth));
6370         dinitprintk(ioc,
6371                     ioc_info(ioc, "request frame size(%d), reply frame size(%d)\n",
6372                              facts->IOCRequestFrameSize * 4,
6373                              facts->ReplyFrameSize * 4));
6374         return 0;
6375 }
6376
6377 /**
6378  * _base_send_ioc_init - send ioc_init to firmware
6379  * @ioc: per adapter object
6380  *
6381  * Return: 0 for success, non-zero for failure.
6382  */
6383 static int
6384 _base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc)
6385 {
6386         Mpi2IOCInitRequest_t mpi_request;
6387         Mpi2IOCInitReply_t mpi_reply;
6388         int i, r = 0;
6389         ktime_t current_time;
6390         u16 ioc_status;
6391         u32 reply_post_free_array_sz = 0;
6392
6393         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6394
6395         memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
6396         mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
6397         mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
6398         mpi_request.VF_ID = 0; /* TODO */
6399         mpi_request.VP_ID = 0;
6400         mpi_request.MsgVersion = cpu_to_le16(ioc->hba_mpi_version_belonged);
6401         mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
6402         mpi_request.HostPageSize = MPT3SAS_HOST_PAGE_SIZE_4K;
6403
6404         if (_base_is_controller_msix_enabled(ioc))
6405                 mpi_request.HostMSIxVectors = ioc->reply_queue_count;
6406         mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
6407         mpi_request.ReplyDescriptorPostQueueDepth =
6408             cpu_to_le16(ioc->reply_post_queue_depth);
6409         mpi_request.ReplyFreeQueueDepth =
6410             cpu_to_le16(ioc->reply_free_queue_depth);
6411
6412         mpi_request.SenseBufferAddressHigh =
6413             cpu_to_le32((u64)ioc->sense_dma >> 32);
6414         mpi_request.SystemReplyAddressHigh =
6415             cpu_to_le32((u64)ioc->reply_dma >> 32);
6416         mpi_request.SystemRequestFrameBaseAddress =
6417             cpu_to_le64((u64)ioc->request_dma);
6418         mpi_request.ReplyFreeQueueAddress =
6419             cpu_to_le64((u64)ioc->reply_free_dma);
6420
6421         if (ioc->rdpq_array_enable) {
6422                 reply_post_free_array_sz = ioc->reply_queue_count *
6423                     sizeof(Mpi2IOCInitRDPQArrayEntry);
6424                 memset(ioc->reply_post_free_array, 0, reply_post_free_array_sz);
6425                 for (i = 0; i < ioc->reply_queue_count; i++)
6426                         ioc->reply_post_free_array[i].RDPQBaseAddress =
6427                             cpu_to_le64(
6428                                 (u64)ioc->reply_post[i].reply_post_free_dma);
6429                 mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
6430                 mpi_request.ReplyDescriptorPostQueueAddress =
6431                     cpu_to_le64((u64)ioc->reply_post_free_array_dma);
6432         } else {
6433                 mpi_request.ReplyDescriptorPostQueueAddress =
6434                     cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
6435         }
6436
6437         /*
6438          * Set the flag to enable CoreDump state feature in IOC firmware.
6439          */
6440         mpi_request.ConfigurationFlags |=
6441             cpu_to_le16(MPI26_IOCINIT_CFGFLAGS_COREDUMP_ENABLE);
6442
6443         /* This time stamp specifies number of milliseconds
6444          * since epoch ~ midnight January 1, 1970.
6445          */
6446         current_time = ktime_get_real();
6447         mpi_request.TimeStamp = cpu_to_le64(ktime_to_ms(current_time));
6448
6449         if (ioc->logging_level & MPT_DEBUG_INIT) {
6450                 __le32 *mfp;
6451                 int i;
6452
6453                 mfp = (__le32 *)&mpi_request;
6454                 ioc_info(ioc, "\toffset:data\n");
6455                 for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
6456                         ioc_info(ioc, "\t[0x%02x]:%08x\n", i*4,
6457                             le32_to_cpu(mfp[i]));
6458         }
6459
6460         r = _base_handshake_req_reply_wait(ioc,
6461             sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
6462             sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 30);
6463
6464         if (r != 0) {
6465                 ioc_err(ioc, "%s: handshake failed (r=%d)\n", __func__, r);
6466                 return r;
6467         }
6468
6469         ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
6470         if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
6471             mpi_reply.IOCLogInfo) {
6472                 ioc_err(ioc, "%s: failed\n", __func__);
6473                 r = -EIO;
6474         }
6475
6476         return r;
6477 }
6478
6479 /**
6480  * mpt3sas_port_enable_done - command completion routine for port enable
6481  * @ioc: per adapter object
6482  * @smid: system request message index
6483  * @msix_index: MSIX table index supplied by the OS
6484  * @reply: reply message frame(lower 32bit addr)
6485  *
6486  * Return: 1 meaning mf should be freed from _base_interrupt
6487  *          0 means the mf is freed from this function.
6488  */
6489 u8
6490 mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
6491         u32 reply)
6492 {
6493         MPI2DefaultReply_t *mpi_reply;
6494         u16 ioc_status;
6495
6496         if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
6497                 return 1;
6498
6499         mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
6500         if (!mpi_reply)
6501                 return 1;
6502
6503         if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
6504                 return 1;
6505
6506         ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
6507         ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
6508         ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
6509         memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
6510         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6511         if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
6512                 ioc->port_enable_failed = 1;
6513
6514         if (ioc->is_driver_loading) {
6515                 if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
6516                         mpt3sas_port_enable_complete(ioc);
6517                         return 1;
6518                 } else {
6519                         ioc->start_scan_failed = ioc_status;
6520                         ioc->start_scan = 0;
6521                         return 1;
6522                 }
6523         }
6524         complete(&ioc->port_enable_cmds.done);
6525         return 1;
6526 }
6527
6528 /**
6529  * _base_send_port_enable - send port_enable(discovery stuff) to firmware
6530  * @ioc: per adapter object
6531  *
6532  * Return: 0 for success, non-zero for failure.
6533  */
6534 static int
6535 _base_send_port_enable(struct MPT3SAS_ADAPTER *ioc)
6536 {
6537         Mpi2PortEnableRequest_t *mpi_request;
6538         Mpi2PortEnableReply_t *mpi_reply;
6539         int r = 0;
6540         u16 smid;
6541         u16 ioc_status;
6542
6543         ioc_info(ioc, "sending port enable !!\n");
6544
6545         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6546                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6547                 return -EAGAIN;
6548         }
6549
6550         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6551         if (!smid) {
6552                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6553                 return -EAGAIN;
6554         }
6555
6556         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6557         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6558         ioc->port_enable_cmds.smid = smid;
6559         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6560         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6561
6562         init_completion(&ioc->port_enable_cmds.done);
6563         ioc->put_smid_default(ioc, smid);
6564         wait_for_completion_timeout(&ioc->port_enable_cmds.done, 300*HZ);
6565         if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
6566                 ioc_err(ioc, "%s: timeout\n", __func__);
6567                 _debug_dump_mf(mpi_request,
6568                     sizeof(Mpi2PortEnableRequest_t)/4);
6569                 if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
6570                         r = -EFAULT;
6571                 else
6572                         r = -ETIME;
6573                 goto out;
6574         }
6575
6576         mpi_reply = ioc->port_enable_cmds.reply;
6577         ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
6578         if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
6579                 ioc_err(ioc, "%s: failed with (ioc_status=0x%08x)\n",
6580                         __func__, ioc_status);
6581                 r = -EFAULT;
6582                 goto out;
6583         }
6584
6585  out:
6586         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
6587         ioc_info(ioc, "port enable: %s\n", r == 0 ? "SUCCESS" : "FAILED");
6588         return r;
6589 }
6590
6591 /**
6592  * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
6593  * @ioc: per adapter object
6594  *
6595  * Return: 0 for success, non-zero for failure.
6596  */
6597 int
6598 mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
6599 {
6600         Mpi2PortEnableRequest_t *mpi_request;
6601         u16 smid;
6602
6603         ioc_info(ioc, "sending port enable !!\n");
6604
6605         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
6606                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6607                 return -EAGAIN;
6608         }
6609
6610         smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
6611         if (!smid) {
6612                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6613                 return -EAGAIN;
6614         }
6615
6616         ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
6617         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6618         ioc->port_enable_cmds.smid = smid;
6619         memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
6620         mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
6621
6622         ioc->put_smid_default(ioc, smid);
6623         return 0;
6624 }
6625
6626 /**
6627  * _base_determine_wait_on_discovery - desposition
6628  * @ioc: per adapter object
6629  *
6630  * Decide whether to wait on discovery to complete. Used to either
6631  * locate boot device, or report volumes ahead of physical devices.
6632  *
6633  * Return: 1 for wait, 0 for don't wait.
6634  */
6635 static int
6636 _base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
6637 {
6638         /* We wait for discovery to complete if IR firmware is loaded.
6639          * The sas topology events arrive before PD events, so we need time to
6640          * turn on the bit in ioc->pd_handles to indicate PD
6641          * Also, it maybe required to report Volumes ahead of physical
6642          * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
6643          */
6644         if (ioc->ir_firmware)
6645                 return 1;
6646
6647         /* if no Bios, then we don't need to wait */
6648         if (!ioc->bios_pg3.BiosVersion)
6649                 return 0;
6650
6651         /* Bios is present, then we drop down here.
6652          *
6653          * If there any entries in the Bios Page 2, then we wait
6654          * for discovery to complete.
6655          */
6656
6657         /* Current Boot Device */
6658         if ((ioc->bios_pg2.CurrentBootDeviceForm &
6659             MPI2_BIOSPAGE2_FORM_MASK) ==
6660             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6661         /* Request Boot Device */
6662            (ioc->bios_pg2.ReqBootDeviceForm &
6663             MPI2_BIOSPAGE2_FORM_MASK) ==
6664             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
6665         /* Alternate Request Boot Device */
6666            (ioc->bios_pg2.ReqAltBootDeviceForm &
6667             MPI2_BIOSPAGE2_FORM_MASK) ==
6668             MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
6669                 return 0;
6670
6671         return 1;
6672 }
6673
6674 /**
6675  * _base_unmask_events - turn on notification for this event
6676  * @ioc: per adapter object
6677  * @event: firmware event
6678  *
6679  * The mask is stored in ioc->event_masks.
6680  */
6681 static void
6682 _base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
6683 {
6684         u32 desired_event;
6685
6686         if (event >= 128)
6687                 return;
6688
6689         desired_event = (1 << (event % 32));
6690
6691         if (event < 32)
6692                 ioc->event_masks[0] &= ~desired_event;
6693         else if (event < 64)
6694                 ioc->event_masks[1] &= ~desired_event;
6695         else if (event < 96)
6696                 ioc->event_masks[2] &= ~desired_event;
6697         else if (event < 128)
6698                 ioc->event_masks[3] &= ~desired_event;
6699 }
6700
6701 /**
6702  * _base_event_notification - send event notification
6703  * @ioc: per adapter object
6704  *
6705  * Return: 0 for success, non-zero for failure.
6706  */
6707 static int
6708 _base_event_notification(struct MPT3SAS_ADAPTER *ioc)
6709 {
6710         Mpi2EventNotificationRequest_t *mpi_request;
6711         u16 smid;
6712         int r = 0;
6713         int i;
6714
6715         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6716
6717         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
6718                 ioc_err(ioc, "%s: internal command already in use\n", __func__);
6719                 return -EAGAIN;
6720         }
6721
6722         smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
6723         if (!smid) {
6724                 ioc_err(ioc, "%s: failed obtaining a smid\n", __func__);
6725                 return -EAGAIN;
6726         }
6727         ioc->base_cmds.status = MPT3_CMD_PENDING;
6728         mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
6729         ioc->base_cmds.smid = smid;
6730         memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
6731         mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
6732         mpi_request->VF_ID = 0; /* TODO */
6733         mpi_request->VP_ID = 0;
6734         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
6735                 mpi_request->EventMasks[i] =
6736                     cpu_to_le32(ioc->event_masks[i]);
6737         init_completion(&ioc->base_cmds.done);
6738         ioc->put_smid_default(ioc, smid);
6739         wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
6740         if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
6741                 ioc_err(ioc, "%s: timeout\n", __func__);
6742                 _debug_dump_mf(mpi_request,
6743                     sizeof(Mpi2EventNotificationRequest_t)/4);
6744                 if (ioc->base_cmds.status & MPT3_CMD_RESET)
6745                         r = -EFAULT;
6746                 else
6747                         r = -ETIME;
6748         } else
6749                 dinitprintk(ioc, ioc_info(ioc, "%s: complete\n", __func__));
6750         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
6751         return r;
6752 }
6753
6754 /**
6755  * mpt3sas_base_validate_event_type - validating event types
6756  * @ioc: per adapter object
6757  * @event_type: firmware event
6758  *
6759  * This will turn on firmware event notification when application
6760  * ask for that event. We don't mask events that are already enabled.
6761  */
6762 void
6763 mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
6764 {
6765         int i, j;
6766         u32 event_mask, desired_event;
6767         u8 send_update_to_fw;
6768
6769         for (i = 0, send_update_to_fw = 0; i <
6770             MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
6771                 event_mask = ~event_type[i];
6772                 desired_event = 1;
6773                 for (j = 0; j < 32; j++) {
6774                         if (!(event_mask & desired_event) &&
6775                             (ioc->event_masks[i] & desired_event)) {
6776                                 ioc->event_masks[i] &= ~desired_event;
6777                                 send_update_to_fw = 1;
6778                         }
6779                         desired_event = (desired_event << 1);
6780                 }
6781         }
6782
6783         if (!send_update_to_fw)
6784                 return;
6785
6786         mutex_lock(&ioc->base_cmds.mutex);
6787         _base_event_notification(ioc);
6788         mutex_unlock(&ioc->base_cmds.mutex);
6789 }
6790
6791 /**
6792  * _base_diag_reset - the "big hammer" start of day reset
6793  * @ioc: per adapter object
6794  *
6795  * Return: 0 for success, non-zero for failure.
6796  */
6797 static int
6798 _base_diag_reset(struct MPT3SAS_ADAPTER *ioc)
6799 {
6800         u32 host_diagnostic;
6801         u32 ioc_state;
6802         u32 count;
6803         u32 hcb_size;
6804
6805         ioc_info(ioc, "sending diag reset !!\n");
6806
6807         drsprintk(ioc, ioc_info(ioc, "clear interrupts\n"));
6808
6809         count = 0;
6810         do {
6811                 /* Write magic sequence to WriteSequence register
6812                  * Loop until in diagnostic mode
6813                  */
6814                 drsprintk(ioc, ioc_info(ioc, "write magic sequence\n"));
6815                 writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6816                 writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
6817                 writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
6818                 writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
6819                 writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
6820                 writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
6821                 writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
6822
6823                 /* wait 100 msec */
6824                 msleep(100);
6825
6826                 if (count++ > 20) {
6827                         ioc_info(ioc,
6828                             "Stop writing magic sequence after 20 retries\n");
6829                         _base_dump_reg_set(ioc);
6830                         goto out;
6831                 }
6832
6833                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6834                 drsprintk(ioc,
6835                           ioc_info(ioc, "wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
6836                                    count, host_diagnostic));
6837
6838         } while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
6839
6840         hcb_size = ioc->base_readl(&ioc->chip->HCBSize);
6841
6842         drsprintk(ioc, ioc_info(ioc, "diag reset: issued\n"));
6843         writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
6844              &ioc->chip->HostDiagnostic);
6845
6846         /*This delay allows the chip PCIe hardware time to finish reset tasks*/
6847         msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
6848
6849         /* Approximately 300 second max wait */
6850         for (count = 0; count < (300000000 /
6851                 MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
6852
6853                 host_diagnostic = ioc->base_readl(&ioc->chip->HostDiagnostic);
6854
6855                 if (host_diagnostic == 0xFFFFFFFF) {
6856                         ioc_info(ioc,
6857                             "Invalid host diagnostic register value\n");
6858                         _base_dump_reg_set(ioc);
6859                         goto out;
6860                 }
6861                 if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
6862                         break;
6863
6864                 msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC / 1000);
6865         }
6866
6867         if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
6868
6869                 drsprintk(ioc,
6870                           ioc_info(ioc, "restart the adapter assuming the HCB Address points to good F/W\n"));
6871                 host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
6872                 host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
6873                 writel(host_diagnostic, &ioc->chip->HostDiagnostic);
6874
6875                 drsprintk(ioc, ioc_info(ioc, "re-enable the HCDW\n"));
6876                 writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
6877                     &ioc->chip->HCBSize);
6878         }
6879
6880         drsprintk(ioc, ioc_info(ioc, "restart the adapter\n"));
6881         writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
6882             &ioc->chip->HostDiagnostic);
6883
6884         drsprintk(ioc,
6885                   ioc_info(ioc, "disable writes to the diagnostic register\n"));
6886         writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
6887
6888         drsprintk(ioc, ioc_info(ioc, "Wait for FW to go to the READY state\n"));
6889         ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20);
6890         if (ioc_state) {
6891                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6892                         __func__, ioc_state);
6893                 _base_dump_reg_set(ioc);
6894                 goto out;
6895         }
6896
6897         ioc_info(ioc, "diag reset: SUCCESS\n");
6898         return 0;
6899
6900  out:
6901         ioc_err(ioc, "diag reset: FAILED\n");
6902         return -EFAULT;
6903 }
6904
6905 /**
6906  * _base_make_ioc_ready - put controller in READY state
6907  * @ioc: per adapter object
6908  * @type: FORCE_BIG_HAMMER or SOFT_RESET
6909  *
6910  * Return: 0 for success, non-zero for failure.
6911  */
6912 static int
6913 _base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, enum reset_type type)
6914 {
6915         u32 ioc_state;
6916         int rc;
6917         int count;
6918
6919         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
6920
6921         if (ioc->pci_error_recovery)
6922                 return 0;
6923
6924         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6925         dhsprintk(ioc,
6926                   ioc_info(ioc, "%s: ioc_state(0x%08x)\n",
6927                            __func__, ioc_state));
6928
6929         /* if in RESET state, it should move to READY state shortly */
6930         count = 0;
6931         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
6932                 while ((ioc_state & MPI2_IOC_STATE_MASK) !=
6933                     MPI2_IOC_STATE_READY) {
6934                         if (count++ == 10) {
6935                                 ioc_err(ioc, "%s: failed going to ready state (ioc_state=0x%x)\n",
6936                                         __func__, ioc_state);
6937                                 return -EFAULT;
6938                         }
6939                         ssleep(1);
6940                         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
6941                 }
6942         }
6943
6944         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
6945                 return 0;
6946
6947         if (ioc_state & MPI2_DOORBELL_USED) {
6948                 ioc_info(ioc, "unexpected doorbell active!\n");
6949                 goto issue_diag_reset;
6950         }
6951
6952         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
6953                 mpt3sas_print_fault_code(ioc, ioc_state &
6954                     MPI2_DOORBELL_DATA_MASK);
6955                 goto issue_diag_reset;
6956         }
6957
6958         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_COREDUMP) {
6959                 /*
6960                  * if host reset is invoked while watch dog thread is waiting
6961                  * for IOC state to be changed to Fault state then driver has
6962                  * to wait here for CoreDump state to clear otherwise reset
6963                  * will be issued to the FW and FW move the IOC state to
6964                  * reset state without copying the FW logs to coredump region.
6965                  */
6966                 if (ioc->ioc_coredump_loop != MPT3SAS_COREDUMP_LOOP_DONE) {
6967                         mpt3sas_print_coredump_info(ioc, ioc_state &
6968                             MPI2_DOORBELL_DATA_MASK);
6969                         mpt3sas_base_wait_for_coredump_completion(ioc,
6970                             __func__);
6971                 }
6972                 goto issue_diag_reset;
6973         }
6974
6975         if (type == FORCE_BIG_HAMMER)
6976                 goto issue_diag_reset;
6977
6978         if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
6979                 if (!(_base_send_ioc_reset(ioc,
6980                     MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15))) {
6981                         return 0;
6982         }
6983
6984  issue_diag_reset:
6985         rc = _base_diag_reset(ioc);
6986         return rc;
6987 }
6988
6989 /**
6990  * _base_make_ioc_operational - put controller in OPERATIONAL state
6991  * @ioc: per adapter object
6992  *
6993  * Return: 0 for success, non-zero for failure.
6994  */
6995 static int
6996 _base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc)
6997 {
6998         int r, i, index, rc;
6999         unsigned long   flags;
7000         u32 reply_address;
7001         u16 smid;
7002         struct _tr_list *delayed_tr, *delayed_tr_next;
7003         struct _sc_list *delayed_sc, *delayed_sc_next;
7004         struct _event_ack_list *delayed_event_ack, *delayed_event_ack_next;
7005         u8 hide_flag;
7006         struct adapter_reply_queue *reply_q;
7007         Mpi2ReplyDescriptorsUnion_t *reply_post_free_contig;
7008
7009         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7010
7011         /* clean the delayed target reset list */
7012         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7013             &ioc->delayed_tr_list, list) {
7014                 list_del(&delayed_tr->list);
7015                 kfree(delayed_tr);
7016         }
7017
7018
7019         list_for_each_entry_safe(delayed_tr, delayed_tr_next,
7020             &ioc->delayed_tr_volume_list, list) {
7021                 list_del(&delayed_tr->list);
7022                 kfree(delayed_tr);
7023         }
7024
7025         list_for_each_entry_safe(delayed_sc, delayed_sc_next,
7026             &ioc->delayed_sc_list, list) {
7027                 list_del(&delayed_sc->list);
7028                 kfree(delayed_sc);
7029         }
7030
7031         list_for_each_entry_safe(delayed_event_ack, delayed_event_ack_next,
7032             &ioc->delayed_event_ack_list, list) {
7033                 list_del(&delayed_event_ack->list);
7034                 kfree(delayed_event_ack);
7035         }
7036
7037         spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
7038
7039         /* hi-priority queue */
7040         INIT_LIST_HEAD(&ioc->hpr_free_list);
7041         smid = ioc->hi_priority_smid;
7042         for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
7043                 ioc->hpr_lookup[i].cb_idx = 0xFF;
7044                 ioc->hpr_lookup[i].smid = smid;
7045                 list_add_tail(&ioc->hpr_lookup[i].tracker_list,
7046                     &ioc->hpr_free_list);
7047         }
7048
7049         /* internal queue */
7050         INIT_LIST_HEAD(&ioc->internal_free_list);
7051         smid = ioc->internal_smid;
7052         for (i = 0; i < ioc->internal_depth; i++, smid++) {
7053                 ioc->internal_lookup[i].cb_idx = 0xFF;
7054                 ioc->internal_lookup[i].smid = smid;
7055                 list_add_tail(&ioc->internal_lookup[i].tracker_list,
7056                     &ioc->internal_free_list);
7057         }
7058
7059         spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
7060
7061         /* initialize Reply Free Queue */
7062         for (i = 0, reply_address = (u32)ioc->reply_dma ;
7063             i < ioc->reply_free_queue_depth ; i++, reply_address +=
7064             ioc->reply_sz) {
7065                 ioc->reply_free[i] = cpu_to_le32(reply_address);
7066                 if (ioc->is_mcpu_endpoint)
7067                         _base_clone_reply_to_sys_mem(ioc,
7068                                         reply_address, i);
7069         }
7070
7071         /* initialize reply queues */
7072         if (ioc->is_driver_loading)
7073                 _base_assign_reply_queues(ioc);
7074
7075         /* initialize Reply Post Free Queue */
7076         index = 0;
7077         reply_post_free_contig = ioc->reply_post[0].reply_post_free;
7078         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7079                 /*
7080                  * If RDPQ is enabled, switch to the next allocation.
7081                  * Otherwise advance within the contiguous region.
7082                  */
7083                 if (ioc->rdpq_array_enable) {
7084                         reply_q->reply_post_free =
7085                                 ioc->reply_post[index++].reply_post_free;
7086                 } else {
7087                         reply_q->reply_post_free = reply_post_free_contig;
7088                         reply_post_free_contig += ioc->reply_post_queue_depth;
7089                 }
7090
7091                 reply_q->reply_post_host_index = 0;
7092                 for (i = 0; i < ioc->reply_post_queue_depth; i++)
7093                         reply_q->reply_post_free[i].Words =
7094                             cpu_to_le64(ULLONG_MAX);
7095                 if (!_base_is_controller_msix_enabled(ioc))
7096                         goto skip_init_reply_post_free_queue;
7097         }
7098  skip_init_reply_post_free_queue:
7099
7100         r = _base_send_ioc_init(ioc);
7101         if (r) {
7102                 /*
7103                  * No need to check IOC state for fault state & issue
7104                  * diag reset during host reset. This check is need
7105                  * only during driver load time.
7106                  */
7107                 if (!ioc->is_driver_loading)
7108                         return r;
7109
7110                 rc = _base_check_for_fault_and_issue_reset(ioc);
7111                 if (rc || (_base_send_ioc_init(ioc)))
7112                         return r;
7113         }
7114
7115         /* initialize reply free host index */
7116         ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
7117         writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
7118
7119         /* initialize reply post host index */
7120         list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
7121                 if (ioc->combined_reply_queue)
7122                         writel((reply_q->msix_index & 7)<<
7123                            MPI2_RPHI_MSIX_INDEX_SHIFT,
7124                            ioc->replyPostRegisterIndex[reply_q->msix_index/8]);
7125                 else
7126                         writel(reply_q->msix_index <<
7127                                 MPI2_RPHI_MSIX_INDEX_SHIFT,
7128                                 &ioc->chip->ReplyPostHostIndex);
7129
7130                 if (!_base_is_controller_msix_enabled(ioc))
7131                         goto skip_init_reply_post_host_index;
7132         }
7133
7134  skip_init_reply_post_host_index:
7135
7136         mpt3sas_base_unmask_interrupts(ioc);
7137
7138         if (ioc->hba_mpi_version_belonged != MPI2_VERSION) {
7139                 r = _base_display_fwpkg_version(ioc);
7140                 if (r)
7141                         return r;
7142         }
7143
7144         _base_static_config_pages(ioc);
7145         r = _base_event_notification(ioc);
7146         if (r)
7147                 return r;
7148
7149         if (ioc->is_driver_loading) {
7150
7151                 if (ioc->is_warpdrive && ioc->manu_pg10.OEMIdentifier
7152                     == 0x80) {
7153                         hide_flag = (u8) (
7154                             le32_to_cpu(ioc->manu_pg10.OEMSpecificFlags0) &
7155                             MFG_PAGE10_HIDE_SSDS_MASK);
7156                         if (hide_flag != MFG_PAGE10_HIDE_SSDS_MASK)
7157                                 ioc->mfg_pg10_hide_flag = hide_flag;
7158                 }
7159
7160                 ioc->wait_for_discovery_to_complete =
7161                     _base_determine_wait_on_discovery(ioc);
7162
7163                 return r; /* scan_start and scan_finished support */
7164         }
7165
7166         r = _base_send_port_enable(ioc);
7167         if (r)
7168                 return r;
7169
7170         return r;
7171 }
7172
7173 /**
7174  * mpt3sas_base_free_resources - free resources controller resources
7175  * @ioc: per adapter object
7176  */
7177 void
7178 mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
7179 {
7180         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7181
7182         /* synchronizing freeing resource with pci_access_mutex lock */
7183         mutex_lock(&ioc->pci_access_mutex);
7184         if (ioc->chip_phys && ioc->chip) {
7185                 mpt3sas_base_mask_interrupts(ioc);
7186                 ioc->shost_recovery = 1;
7187                 _base_make_ioc_ready(ioc, SOFT_RESET);
7188                 ioc->shost_recovery = 0;
7189         }
7190
7191         mpt3sas_base_unmap_resources(ioc);
7192         mutex_unlock(&ioc->pci_access_mutex);
7193         return;
7194 }
7195
7196 /**
7197  * mpt3sas_base_attach - attach controller instance
7198  * @ioc: per adapter object
7199  *
7200  * Return: 0 for success, non-zero for failure.
7201  */
7202 int
7203 mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
7204 {
7205         int r, i, rc;
7206         int cpu_id, last_cpu_id = 0;
7207
7208         dinitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7209
7210         /* setup cpu_msix_table */
7211         ioc->cpu_count = num_online_cpus();
7212         for_each_online_cpu(cpu_id)
7213                 last_cpu_id = cpu_id;
7214         ioc->cpu_msix_table_sz = last_cpu_id + 1;
7215         ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
7216         ioc->reply_queue_count = 1;
7217         if (!ioc->cpu_msix_table) {
7218                 ioc_info(ioc, "Allocation for cpu_msix_table failed!!!\n");
7219                 r = -ENOMEM;
7220                 goto out_free_resources;
7221         }
7222
7223         if (ioc->is_warpdrive) {
7224                 ioc->reply_post_host_index = kcalloc(ioc->cpu_msix_table_sz,
7225                     sizeof(resource_size_t *), GFP_KERNEL);
7226                 if (!ioc->reply_post_host_index) {
7227                         ioc_info(ioc, "Allocation for reply_post_host_index failed!!!\n");
7228                         r = -ENOMEM;
7229                         goto out_free_resources;
7230                 }
7231         }
7232
7233         ioc->smp_affinity_enable = smp_affinity_enable;
7234
7235         ioc->rdpq_array_enable_assigned = 0;
7236         ioc->use_32bit_dma = false;
7237         if (ioc->is_aero_ioc)
7238                 ioc->base_readl = &_base_readl_aero;
7239         else
7240                 ioc->base_readl = &_base_readl;
7241         r = mpt3sas_base_map_resources(ioc);
7242         if (r)
7243                 goto out_free_resources;
7244
7245         pci_set_drvdata(ioc->pdev, ioc->shost);
7246         r = _base_get_ioc_facts(ioc);
7247         if (r) {
7248                 rc = _base_check_for_fault_and_issue_reset(ioc);
7249                 if (rc || (_base_get_ioc_facts(ioc)))
7250                         goto out_free_resources;
7251         }
7252
7253         switch (ioc->hba_mpi_version_belonged) {
7254         case MPI2_VERSION:
7255                 ioc->build_sg_scmd = &_base_build_sg_scmd;
7256                 ioc->build_sg = &_base_build_sg;
7257                 ioc->build_zero_len_sge = &_base_build_zero_len_sge;
7258                 ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7259                 break;
7260         case MPI25_VERSION:
7261         case MPI26_VERSION:
7262                 /*
7263                  * In SAS3.0,
7264                  * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
7265                  * Target Status - all require the IEEE formated scatter gather
7266                  * elements.
7267                  */
7268                 ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
7269                 ioc->build_sg = &_base_build_sg_ieee;
7270                 ioc->build_nvme_prp = &_base_build_nvme_prp;
7271                 ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
7272                 ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
7273                 if (ioc->high_iops_queues)
7274                         ioc->get_msix_index_for_smlio =
7275                                         &_base_get_high_iops_msix_index;
7276                 else
7277                         ioc->get_msix_index_for_smlio = &_base_get_msix_index;
7278                 break;
7279         }
7280         if (ioc->atomic_desc_capable) {
7281                 ioc->put_smid_default = &_base_put_smid_default_atomic;
7282                 ioc->put_smid_scsi_io = &_base_put_smid_scsi_io_atomic;
7283                 ioc->put_smid_fast_path =
7284                                 &_base_put_smid_fast_path_atomic;
7285                 ioc->put_smid_hi_priority =
7286                                 &_base_put_smid_hi_priority_atomic;
7287         } else {
7288                 ioc->put_smid_default = &_base_put_smid_default;
7289                 ioc->put_smid_fast_path = &_base_put_smid_fast_path;
7290                 ioc->put_smid_hi_priority = &_base_put_smid_hi_priority;
7291                 if (ioc->is_mcpu_endpoint)
7292                         ioc->put_smid_scsi_io =
7293                                 &_base_put_smid_mpi_ep_scsi_io;
7294                 else
7295                         ioc->put_smid_scsi_io = &_base_put_smid_scsi_io;
7296         }
7297         /*
7298          * These function pointers for other requests that don't
7299          * the require IEEE scatter gather elements.
7300          *
7301          * For example Configuration Pages and SAS IOUNIT Control don't.
7302          */
7303         ioc->build_sg_mpi = &_base_build_sg;
7304         ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
7305
7306         r = _base_make_ioc_ready(ioc, SOFT_RESET);
7307         if (r)
7308                 goto out_free_resources;
7309
7310         ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
7311             sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
7312         if (!ioc->pfacts) {
7313                 r = -ENOMEM;
7314                 goto out_free_resources;
7315         }
7316
7317         for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
7318                 r = _base_get_port_facts(ioc, i);
7319                 if (r) {
7320                         rc = _base_check_for_fault_and_issue_reset(ioc);
7321                         if (rc || (_base_get_port_facts(ioc, i)))
7322                                 goto out_free_resources;
7323                 }
7324         }
7325
7326         r = _base_allocate_memory_pools(ioc);
7327         if (r)
7328                 goto out_free_resources;
7329
7330         if (irqpoll_weight > 0)
7331                 ioc->thresh_hold = irqpoll_weight;
7332         else
7333                 ioc->thresh_hold = ioc->hba_queue_depth/4;
7334
7335         _base_init_irqpolls(ioc);
7336         init_waitqueue_head(&ioc->reset_wq);
7337
7338         /* allocate memory pd handle bitmask list */
7339         ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7340         if (ioc->facts.MaxDevHandle % 8)
7341                 ioc->pd_handles_sz++;
7342         ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
7343             GFP_KERNEL);
7344         if (!ioc->pd_handles) {
7345                 r = -ENOMEM;
7346                 goto out_free_resources;
7347         }
7348         ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
7349             GFP_KERNEL);
7350         if (!ioc->blocking_handles) {
7351                 r = -ENOMEM;
7352                 goto out_free_resources;
7353         }
7354
7355         /* allocate memory for pending OS device add list */
7356         ioc->pend_os_device_add_sz = (ioc->facts.MaxDevHandle / 8);
7357         if (ioc->facts.MaxDevHandle % 8)
7358                 ioc->pend_os_device_add_sz++;
7359         ioc->pend_os_device_add = kzalloc(ioc->pend_os_device_add_sz,
7360             GFP_KERNEL);
7361         if (!ioc->pend_os_device_add)
7362                 goto out_free_resources;
7363
7364         ioc->device_remove_in_progress_sz = ioc->pend_os_device_add_sz;
7365         ioc->device_remove_in_progress =
7366                 kzalloc(ioc->device_remove_in_progress_sz, GFP_KERNEL);
7367         if (!ioc->device_remove_in_progress)
7368                 goto out_free_resources;
7369
7370         ioc->fwfault_debug = mpt3sas_fwfault_debug;
7371
7372         /* base internal command bits */
7373         mutex_init(&ioc->base_cmds.mutex);
7374         ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7375         ioc->base_cmds.status = MPT3_CMD_NOT_USED;
7376
7377         /* port_enable command bits */
7378         ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7379         ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
7380
7381         /* transport internal command bits */
7382         ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7383         ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
7384         mutex_init(&ioc->transport_cmds.mutex);
7385
7386         /* scsih internal command bits */
7387         ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7388         ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
7389         mutex_init(&ioc->scsih_cmds.mutex);
7390
7391         /* task management internal command bits */
7392         ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7393         ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
7394         mutex_init(&ioc->tm_cmds.mutex);
7395
7396         /* config page internal command bits */
7397         ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7398         ioc->config_cmds.status = MPT3_CMD_NOT_USED;
7399         mutex_init(&ioc->config_cmds.mutex);
7400
7401         /* ctl module internal command bits */
7402         ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
7403         ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
7404         ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
7405         mutex_init(&ioc->ctl_cmds.mutex);
7406
7407         if (!ioc->base_cmds.reply || !ioc->port_enable_cmds.reply ||
7408             !ioc->transport_cmds.reply || !ioc->scsih_cmds.reply ||
7409             !ioc->tm_cmds.reply || !ioc->config_cmds.reply ||
7410             !ioc->ctl_cmds.reply || !ioc->ctl_cmds.sense) {
7411                 r = -ENOMEM;
7412                 goto out_free_resources;
7413         }
7414
7415         for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
7416                 ioc->event_masks[i] = -1;
7417
7418         /* here we enable the events we care about */
7419         _base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
7420         _base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
7421         _base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
7422         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
7423         _base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
7424         _base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
7425         _base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
7426         _base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
7427         _base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
7428         _base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
7429         _base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
7430         _base_unmask_events(ioc, MPI2_EVENT_ACTIVE_CABLE_EXCEPTION);
7431         _base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_DISCOVERY_ERROR);
7432         if (ioc->hba_mpi_version_belonged == MPI26_VERSION) {
7433                 if (ioc->is_gen35_ioc) {
7434                         _base_unmask_events(ioc,
7435                                 MPI2_EVENT_PCIE_DEVICE_STATUS_CHANGE);
7436                         _base_unmask_events(ioc, MPI2_EVENT_PCIE_ENUMERATION);
7437                         _base_unmask_events(ioc,
7438                                 MPI2_EVENT_PCIE_TOPOLOGY_CHANGE_LIST);
7439                 }
7440         }
7441         r = _base_make_ioc_operational(ioc);
7442         if (r)
7443                 goto out_free_resources;
7444
7445         /*
7446          * Copy current copy of IOCFacts in prev_fw_facts
7447          * and it will be used during online firmware upgrade.
7448          */
7449         memcpy(&ioc->prev_fw_facts, &ioc->facts,
7450             sizeof(struct mpt3sas_facts));
7451
7452         ioc->non_operational_loop = 0;
7453         ioc->ioc_coredump_loop = 0;
7454         ioc->got_task_abort_from_ioctl = 0;
7455         return 0;
7456
7457  out_free_resources:
7458
7459         ioc->remove_host = 1;
7460
7461         mpt3sas_base_free_resources(ioc);
7462         _base_release_memory_pools(ioc);
7463         pci_set_drvdata(ioc->pdev, NULL);
7464         kfree(ioc->cpu_msix_table);
7465         if (ioc->is_warpdrive)
7466                 kfree(ioc->reply_post_host_index);
7467         kfree(ioc->pd_handles);
7468         kfree(ioc->blocking_handles);
7469         kfree(ioc->device_remove_in_progress);
7470         kfree(ioc->pend_os_device_add);
7471         kfree(ioc->tm_cmds.reply);
7472         kfree(ioc->transport_cmds.reply);
7473         kfree(ioc->scsih_cmds.reply);
7474         kfree(ioc->config_cmds.reply);
7475         kfree(ioc->base_cmds.reply);
7476         kfree(ioc->port_enable_cmds.reply);
7477         kfree(ioc->ctl_cmds.reply);
7478         kfree(ioc->ctl_cmds.sense);
7479         kfree(ioc->pfacts);
7480         ioc->ctl_cmds.reply = NULL;
7481         ioc->base_cmds.reply = NULL;
7482         ioc->tm_cmds.reply = NULL;
7483         ioc->scsih_cmds.reply = NULL;
7484         ioc->transport_cmds.reply = NULL;
7485         ioc->config_cmds.reply = NULL;
7486         ioc->pfacts = NULL;
7487         return r;
7488 }
7489
7490
7491 /**
7492  * mpt3sas_base_detach - remove controller instance
7493  * @ioc: per adapter object
7494  */
7495 void
7496 mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
7497 {
7498         dexitprintk(ioc, ioc_info(ioc, "%s\n", __func__));
7499
7500         mpt3sas_base_stop_watchdog(ioc);
7501         mpt3sas_base_free_resources(ioc);
7502         _base_release_memory_pools(ioc);
7503         mpt3sas_free_enclosure_list(ioc);
7504         pci_set_drvdata(ioc->pdev, NULL);
7505         kfree(ioc->cpu_msix_table);
7506         if (ioc->is_warpdrive)
7507                 kfree(ioc->reply_post_host_index);
7508         kfree(ioc->pd_handles);
7509         kfree(ioc->blocking_handles);
7510         kfree(ioc->device_remove_in_progress);
7511         kfree(ioc->pend_os_device_add);
7512         kfree(ioc->pfacts);
7513         kfree(ioc->ctl_cmds.reply);
7514         kfree(ioc->ctl_cmds.sense);
7515         kfree(ioc->base_cmds.reply);
7516         kfree(ioc->port_enable_cmds.reply);
7517         kfree(ioc->tm_cmds.reply);
7518         kfree(ioc->transport_cmds.reply);
7519         kfree(ioc->scsih_cmds.reply);
7520         kfree(ioc->config_cmds.reply);
7521 }
7522
7523 /**
7524  * _base_pre_reset_handler - pre reset handler
7525  * @ioc: per adapter object
7526  */
7527 static void _base_pre_reset_handler(struct MPT3SAS_ADAPTER *ioc)
7528 {
7529         mpt3sas_scsih_pre_reset_handler(ioc);
7530         mpt3sas_ctl_pre_reset_handler(ioc);
7531         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_PRE_RESET\n", __func__));
7532 }
7533
7534 /**
7535  * _base_clear_outstanding_mpt_commands - clears outstanding mpt commands
7536  * @ioc: per adapter object
7537  */
7538 static void
7539 _base_clear_outstanding_mpt_commands(struct MPT3SAS_ADAPTER *ioc)
7540 {
7541         dtmprintk(ioc,
7542             ioc_info(ioc, "%s: clear outstanding mpt cmds\n", __func__));
7543         if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
7544                 ioc->transport_cmds.status |= MPT3_CMD_RESET;
7545                 mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
7546                 complete(&ioc->transport_cmds.done);
7547         }
7548         if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
7549                 ioc->base_cmds.status |= MPT3_CMD_RESET;
7550                 mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
7551                 complete(&ioc->base_cmds.done);
7552         }
7553         if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
7554                 ioc->port_enable_failed = 1;
7555                 ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
7556                 mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
7557                 if (ioc->is_driver_loading) {
7558                         ioc->start_scan_failed =
7559                                 MPI2_IOCSTATUS_INTERNAL_ERROR;
7560                         ioc->start_scan = 0;
7561                         ioc->port_enable_cmds.status =
7562                                 MPT3_CMD_NOT_USED;
7563                 } else {
7564                         complete(&ioc->port_enable_cmds.done);
7565                 }
7566         }
7567         if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
7568                 ioc->config_cmds.status |= MPT3_CMD_RESET;
7569                 mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
7570                 ioc->config_cmds.smid = USHRT_MAX;
7571                 complete(&ioc->config_cmds.done);
7572         }
7573 }
7574
7575 /**
7576  * _base_clear_outstanding_commands - clear all outstanding commands
7577  * @ioc: per adapter object
7578  */
7579 static void _base_clear_outstanding_commands(struct MPT3SAS_ADAPTER *ioc)
7580 {
7581         mpt3sas_scsih_clear_outstanding_scsi_tm_commands(ioc);
7582         mpt3sas_ctl_clear_outstanding_ioctls(ioc);
7583         _base_clear_outstanding_mpt_commands(ioc);
7584 }
7585
7586 /**
7587  * _base_reset_done_handler - reset done handler
7588  * @ioc: per adapter object
7589  */
7590 static void _base_reset_done_handler(struct MPT3SAS_ADAPTER *ioc)
7591 {
7592         mpt3sas_scsih_reset_done_handler(ioc);
7593         mpt3sas_ctl_reset_done_handler(ioc);
7594         dtmprintk(ioc, ioc_info(ioc, "%s: MPT3_IOC_DONE_RESET\n", __func__));
7595 }
7596
7597 /**
7598  * mpt3sas_wait_for_commands_to_complete - reset controller
7599  * @ioc: Pointer to MPT_ADAPTER structure
7600  *
7601  * This function is waiting 10s for all pending commands to complete
7602  * prior to putting controller in reset.
7603  */
7604 void
7605 mpt3sas_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc)
7606 {
7607         u32 ioc_state;
7608
7609         ioc->pending_io_count = 0;
7610
7611         ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7612         if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
7613                 return;
7614
7615         /* pending command count */
7616         ioc->pending_io_count = scsi_host_busy(ioc->shost);
7617
7618         if (!ioc->pending_io_count)
7619                 return;
7620
7621         /* wait for pending commands to complete */
7622         wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
7623 }
7624
7625 /**
7626  * _base_check_ioc_facts_changes - Look for increase/decrease of IOCFacts
7627  *     attributes during online firmware upgrade and update the corresponding
7628  *     IOC variables accordingly.
7629  *
7630  * @ioc: Pointer to MPT_ADAPTER structure
7631  */
7632 static int
7633 _base_check_ioc_facts_changes(struct MPT3SAS_ADAPTER *ioc)
7634 {
7635         u16 pd_handles_sz;
7636         void *pd_handles = NULL, *blocking_handles = NULL;
7637         void *pend_os_device_add = NULL, *device_remove_in_progress = NULL;
7638         struct mpt3sas_facts *old_facts = &ioc->prev_fw_facts;
7639
7640         if (ioc->facts.MaxDevHandle > old_facts->MaxDevHandle) {
7641                 pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
7642                 if (ioc->facts.MaxDevHandle % 8)
7643                         pd_handles_sz++;
7644
7645                 pd_handles = krealloc(ioc->pd_handles, pd_handles_sz,
7646                     GFP_KERNEL);
7647                 if (!pd_handles) {
7648                         ioc_info(ioc,
7649                             "Unable to allocate the memory for pd_handles of sz: %d\n",
7650                             pd_handles_sz);
7651                         return -ENOMEM;
7652                 }
7653                 memset(pd_handles + ioc->pd_handles_sz, 0,
7654                     (pd_handles_sz - ioc->pd_handles_sz));
7655                 ioc->pd_handles = pd_handles;
7656
7657                 blocking_handles = krealloc(ioc->blocking_handles,
7658                     pd_handles_sz, GFP_KERNEL);
7659                 if (!blocking_handles) {
7660                         ioc_info(ioc,
7661                             "Unable to allocate the memory for "
7662                             "blocking_handles of sz: %d\n",
7663                             pd_handles_sz);
7664                         return -ENOMEM;
7665                 }
7666                 memset(blocking_handles + ioc->pd_handles_sz, 0,
7667                     (pd_handles_sz - ioc->pd_handles_sz));
7668                 ioc->blocking_handles = blocking_handles;
7669                 ioc->pd_handles_sz = pd_handles_sz;
7670
7671                 pend_os_device_add = krealloc(ioc->pend_os_device_add,
7672                     pd_handles_sz, GFP_KERNEL);
7673                 if (!pend_os_device_add) {
7674                         ioc_info(ioc,
7675                             "Unable to allocate the memory for pend_os_device_add of sz: %d\n",
7676                             pd_handles_sz);
7677                         return -ENOMEM;
7678                 }
7679                 memset(pend_os_device_add + ioc->pend_os_device_add_sz, 0,
7680                     (pd_handles_sz - ioc->pend_os_device_add_sz));
7681                 ioc->pend_os_device_add = pend_os_device_add;
7682                 ioc->pend_os_device_add_sz = pd_handles_sz;
7683
7684                 device_remove_in_progress = krealloc(
7685                     ioc->device_remove_in_progress, pd_handles_sz, GFP_KERNEL);
7686                 if (!device_remove_in_progress) {
7687                         ioc_info(ioc,
7688                             "Unable to allocate the memory for "
7689                             "device_remove_in_progress of sz: %d\n "
7690                             , pd_handles_sz);
7691                         return -ENOMEM;
7692                 }
7693                 memset(device_remove_in_progress +
7694                     ioc->device_remove_in_progress_sz, 0,
7695                     (pd_handles_sz - ioc->device_remove_in_progress_sz));
7696                 ioc->device_remove_in_progress = device_remove_in_progress;
7697                 ioc->device_remove_in_progress_sz = pd_handles_sz;
7698         }
7699
7700         memcpy(&ioc->prev_fw_facts, &ioc->facts, sizeof(struct mpt3sas_facts));
7701         return 0;
7702 }
7703
7704 /**
7705  * mpt3sas_base_hard_reset_handler - reset controller
7706  * @ioc: Pointer to MPT_ADAPTER structure
7707  * @type: FORCE_BIG_HAMMER or SOFT_RESET
7708  *
7709  * Return: 0 for success, non-zero for failure.
7710  */
7711 int
7712 mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc,
7713         enum reset_type type)
7714 {
7715         int r;
7716         unsigned long flags;
7717         u32 ioc_state;
7718         u8 is_fault = 0, is_trigger = 0;
7719
7720         dtmprintk(ioc, ioc_info(ioc, "%s: enter\n", __func__));
7721
7722         if (ioc->pci_error_recovery) {
7723                 ioc_err(ioc, "%s: pci error recovery reset\n", __func__);
7724                 r = 0;
7725                 goto out_unlocked;
7726         }
7727
7728         if (mpt3sas_fwfault_debug)
7729                 mpt3sas_halt_firmware(ioc);
7730
7731         /* wait for an active reset in progress to complete */
7732         mutex_lock(&ioc->reset_in_progress_mutex);
7733
7734         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7735         ioc->shost_recovery = 1;
7736         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7737
7738         if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7739             MPT3_DIAG_BUFFER_IS_REGISTERED) &&
7740             (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
7741             MPT3_DIAG_BUFFER_IS_RELEASED))) {
7742                 is_trigger = 1;
7743                 ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
7744                 if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT ||
7745                     (ioc_state & MPI2_IOC_STATE_MASK) ==
7746                     MPI2_IOC_STATE_COREDUMP)
7747                         is_fault = 1;
7748         }
7749         _base_pre_reset_handler(ioc);
7750         mpt3sas_wait_for_commands_to_complete(ioc);
7751         mpt3sas_base_mask_interrupts(ioc);
7752         r = _base_make_ioc_ready(ioc, type);
7753         if (r)
7754                 goto out;
7755         _base_clear_outstanding_commands(ioc);
7756
7757         /* If this hard reset is called while port enable is active, then
7758          * there is no reason to call make_ioc_operational
7759          */
7760         if (ioc->is_driver_loading && ioc->port_enable_failed) {
7761                 ioc->remove_host = 1;
7762                 r = -EFAULT;
7763                 goto out;
7764         }
7765         r = _base_get_ioc_facts(ioc);
7766         if (r)
7767                 goto out;
7768
7769         r = _base_check_ioc_facts_changes(ioc);
7770         if (r) {
7771                 ioc_info(ioc,
7772                     "Some of the parameters got changed in this new firmware"
7773                     " image and it requires system reboot\n");
7774                 goto out;
7775         }
7776         if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
7777                 panic("%s: Issue occurred with flashing controller firmware."
7778                       "Please reboot the system and ensure that the correct"
7779                       " firmware version is running\n", ioc->name);
7780
7781         r = _base_make_ioc_operational(ioc);
7782         if (!r)
7783                 _base_reset_done_handler(ioc);
7784
7785  out:
7786         ioc_info(ioc, "%s: %s\n", __func__, r == 0 ? "SUCCESS" : "FAILED");
7787
7788         spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
7789         ioc->shost_recovery = 0;
7790         spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
7791         ioc->ioc_reset_count++;
7792         mutex_unlock(&ioc->reset_in_progress_mutex);
7793
7794  out_unlocked:
7795         if ((r == 0) && is_trigger) {
7796                 if (is_fault)
7797                         mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
7798                 else
7799                         mpt3sas_trigger_master(ioc,
7800                             MASTER_TRIGGER_ADAPTER_RESET);
7801         }
7802         dtmprintk(ioc, ioc_info(ioc, "%s: exit\n", __func__));
7803         return r;
7804 }