Merge branch 'nvme-5.2-rc2' of git://git.infradead.org/nvme into for-linus
[linux-2.6-microblaze.git] / drivers / scsi / libsas / sas_init.c
1 /*
2  * Serial Attached SCSI (SAS) Transport Layer initialization
3  *
4  * Copyright (C) 2005 Adaptec, Inc.  All rights reserved.
5  * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
6  *
7  * This file is licensed under GPLv2.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation; either version 2 of the
12  * License, or (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
22  * USA
23  *
24  */
25
26 #include <linux/module.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/device.h>
30 #include <linux/spinlock.h>
31 #include <scsi/sas_ata.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_device.h>
34 #include <scsi/scsi_transport.h>
35 #include <scsi/scsi_transport_sas.h>
36
37 #include "sas_internal.h"
38
39 #include "../scsi_sas_internal.h"
40
41 static struct kmem_cache *sas_task_cache;
42 static struct kmem_cache *sas_event_cache;
43
44 struct sas_task *sas_alloc_task(gfp_t flags)
45 {
46         struct sas_task *task = kmem_cache_zalloc(sas_task_cache, flags);
47
48         if (task) {
49                 spin_lock_init(&task->task_state_lock);
50                 task->task_state_flags = SAS_TASK_STATE_PENDING;
51         }
52
53         return task;
54 }
55 EXPORT_SYMBOL_GPL(sas_alloc_task);
56
57 struct sas_task *sas_alloc_slow_task(gfp_t flags)
58 {
59         struct sas_task *task = sas_alloc_task(flags);
60         struct sas_task_slow *slow = kmalloc(sizeof(*slow), flags);
61
62         if (!task || !slow) {
63                 if (task)
64                         kmem_cache_free(sas_task_cache, task);
65                 kfree(slow);
66                 return NULL;
67         }
68
69         task->slow_task = slow;
70         slow->task = task;
71         timer_setup(&slow->timer, NULL, 0);
72         init_completion(&slow->completion);
73
74         return task;
75 }
76 EXPORT_SYMBOL_GPL(sas_alloc_slow_task);
77
78 void sas_free_task(struct sas_task *task)
79 {
80         if (task) {
81                 kfree(task->slow_task);
82                 kmem_cache_free(sas_task_cache, task);
83         }
84 }
85 EXPORT_SYMBOL_GPL(sas_free_task);
86
87 /*------------ SAS addr hash -----------*/
88 void sas_hash_addr(u8 *hashed, const u8 *sas_addr)
89 {
90         const u32 poly = 0x00DB2777;
91         u32 r = 0;
92         int i;
93
94         for (i = 0; i < SAS_ADDR_SIZE; i++) {
95                 int b;
96
97                 for (b = (SAS_ADDR_SIZE - 1); b >= 0; b--) {
98                         r <<= 1;
99                         if ((1 << b) & sas_addr[i]) {
100                                 if (!(r & 0x01000000))
101                                         r ^= poly;
102                         } else if (r & 0x01000000) {
103                                 r ^= poly;
104                         }
105                 }
106         }
107
108         hashed[0] = (r >> 16) & 0xFF;
109         hashed[1] = (r >> 8) & 0xFF;
110         hashed[2] = r & 0xFF;
111 }
112
113 int sas_register_ha(struct sas_ha_struct *sas_ha)
114 {
115         char name[64];
116         int error = 0;
117
118         mutex_init(&sas_ha->disco_mutex);
119         spin_lock_init(&sas_ha->phy_port_lock);
120         sas_hash_addr(sas_ha->hashed_sas_addr, sas_ha->sas_addr);
121
122         set_bit(SAS_HA_REGISTERED, &sas_ha->state);
123         spin_lock_init(&sas_ha->lock);
124         mutex_init(&sas_ha->drain_mutex);
125         init_waitqueue_head(&sas_ha->eh_wait_q);
126         INIT_LIST_HEAD(&sas_ha->defer_q);
127         INIT_LIST_HEAD(&sas_ha->eh_dev_q);
128
129         sas_ha->event_thres = SAS_PHY_SHUTDOWN_THRES;
130
131         error = sas_register_phys(sas_ha);
132         if (error) {
133                 pr_notice("couldn't register sas phys:%d\n", error);
134                 return error;
135         }
136
137         error = sas_register_ports(sas_ha);
138         if (error) {
139                 pr_notice("couldn't register sas ports:%d\n", error);
140                 goto Undo_phys;
141         }
142
143         error = sas_init_events(sas_ha);
144         if (error) {
145                 pr_notice("couldn't start event thread:%d\n", error);
146                 goto Undo_ports;
147         }
148
149         error = -ENOMEM;
150         snprintf(name, sizeof(name), "%s_event_q", dev_name(sas_ha->dev));
151         sas_ha->event_q = create_singlethread_workqueue(name);
152         if (!sas_ha->event_q)
153                 goto Undo_ports;
154
155         snprintf(name, sizeof(name), "%s_disco_q", dev_name(sas_ha->dev));
156         sas_ha->disco_q = create_singlethread_workqueue(name);
157         if (!sas_ha->disco_q)
158                 goto Undo_event_q;
159
160         INIT_LIST_HEAD(&sas_ha->eh_done_q);
161         INIT_LIST_HEAD(&sas_ha->eh_ata_q);
162
163         return 0;
164
165 Undo_event_q:
166         destroy_workqueue(sas_ha->event_q);
167 Undo_ports:
168         sas_unregister_ports(sas_ha);
169 Undo_phys:
170
171         return error;
172 }
173
174 static void sas_disable_events(struct sas_ha_struct *sas_ha)
175 {
176         /* Set the state to unregistered to avoid further unchained
177          * events to be queued, and flush any in-progress drainers
178          */
179         mutex_lock(&sas_ha->drain_mutex);
180         spin_lock_irq(&sas_ha->lock);
181         clear_bit(SAS_HA_REGISTERED, &sas_ha->state);
182         spin_unlock_irq(&sas_ha->lock);
183         __sas_drain_work(sas_ha);
184         mutex_unlock(&sas_ha->drain_mutex);
185 }
186
187 int sas_unregister_ha(struct sas_ha_struct *sas_ha)
188 {
189         sas_disable_events(sas_ha);
190         sas_unregister_ports(sas_ha);
191
192         /* flush unregistration work */
193         mutex_lock(&sas_ha->drain_mutex);
194         __sas_drain_work(sas_ha);
195         mutex_unlock(&sas_ha->drain_mutex);
196
197         destroy_workqueue(sas_ha->disco_q);
198         destroy_workqueue(sas_ha->event_q);
199
200         return 0;
201 }
202
203 static int sas_get_linkerrors(struct sas_phy *phy)
204 {
205         if (scsi_is_sas_phy_local(phy)) {
206                 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
207                 struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
208                 struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
209                 struct sas_internal *i =
210                         to_sas_internal(sas_ha->core.shost->transportt);
211
212                 return i->dft->lldd_control_phy(asd_phy, PHY_FUNC_GET_EVENTS, NULL);
213         }
214
215         return sas_smp_get_phy_events(phy);
216 }
217
218 int sas_try_ata_reset(struct asd_sas_phy *asd_phy)
219 {
220         struct domain_device *dev = NULL;
221
222         /* try to route user requested link resets through libata */
223         if (asd_phy->port)
224                 dev = asd_phy->port->port_dev;
225
226         /* validate that dev has been probed */
227         if (dev)
228                 dev = sas_find_dev_by_rphy(dev->rphy);
229
230         if (dev && dev_is_sata(dev)) {
231                 sas_ata_schedule_reset(dev);
232                 sas_ata_wait_eh(dev);
233                 return 0;
234         }
235
236         return -ENODEV;
237 }
238
239 /*
240  * transport_sas_phy_reset - reset a phy and permit libata to manage the link
241  *
242  * phy reset request via sysfs in host workqueue context so we know we
243  * can block on eh and safely traverse the domain_device topology
244  */
245 static int transport_sas_phy_reset(struct sas_phy *phy, int hard_reset)
246 {
247         enum phy_func reset_type;
248
249         if (hard_reset)
250                 reset_type = PHY_FUNC_HARD_RESET;
251         else
252                 reset_type = PHY_FUNC_LINK_RESET;
253
254         if (scsi_is_sas_phy_local(phy)) {
255                 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
256                 struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
257                 struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
258                 struct sas_internal *i =
259                         to_sas_internal(sas_ha->core.shost->transportt);
260
261                 if (!hard_reset && sas_try_ata_reset(asd_phy) == 0)
262                         return 0;
263                 return i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
264         } else {
265                 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
266                 struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
267                 struct domain_device *ata_dev = sas_ex_to_ata(ddev, phy->number);
268
269                 if (ata_dev && !hard_reset) {
270                         sas_ata_schedule_reset(ata_dev);
271                         sas_ata_wait_eh(ata_dev);
272                         return 0;
273                 } else
274                         return sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
275         }
276 }
277
278 static int sas_phy_enable(struct sas_phy *phy, int enable)
279 {
280         int ret;
281         enum phy_func cmd;
282
283         if (enable)
284                 cmd = PHY_FUNC_LINK_RESET;
285         else
286                 cmd = PHY_FUNC_DISABLE;
287
288         if (scsi_is_sas_phy_local(phy)) {
289                 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
290                 struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
291                 struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
292                 struct sas_internal *i =
293                         to_sas_internal(sas_ha->core.shost->transportt);
294
295                 if (enable)
296                         ret = transport_sas_phy_reset(phy, 0);
297                 else
298                         ret = i->dft->lldd_control_phy(asd_phy, cmd, NULL);
299         } else {
300                 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
301                 struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
302
303                 if (enable)
304                         ret = transport_sas_phy_reset(phy, 0);
305                 else
306                         ret = sas_smp_phy_control(ddev, phy->number, cmd, NULL);
307         }
308         return ret;
309 }
310
311 int sas_phy_reset(struct sas_phy *phy, int hard_reset)
312 {
313         int ret;
314         enum phy_func reset_type;
315
316         if (!phy->enabled)
317                 return -ENODEV;
318
319         if (hard_reset)
320                 reset_type = PHY_FUNC_HARD_RESET;
321         else
322                 reset_type = PHY_FUNC_LINK_RESET;
323
324         if (scsi_is_sas_phy_local(phy)) {
325                 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
326                 struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
327                 struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
328                 struct sas_internal *i =
329                         to_sas_internal(sas_ha->core.shost->transportt);
330
331                 ret = i->dft->lldd_control_phy(asd_phy, reset_type, NULL);
332         } else {
333                 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
334                 struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
335                 ret = sas_smp_phy_control(ddev, phy->number, reset_type, NULL);
336         }
337         return ret;
338 }
339
340 int sas_set_phy_speed(struct sas_phy *phy,
341                       struct sas_phy_linkrates *rates)
342 {
343         int ret;
344
345         if ((rates->minimum_linkrate &&
346              rates->minimum_linkrate > phy->maximum_linkrate) ||
347             (rates->maximum_linkrate &&
348              rates->maximum_linkrate < phy->minimum_linkrate))
349                 return -EINVAL;
350
351         if (rates->minimum_linkrate &&
352             rates->minimum_linkrate < phy->minimum_linkrate_hw)
353                 rates->minimum_linkrate = phy->minimum_linkrate_hw;
354
355         if (rates->maximum_linkrate &&
356             rates->maximum_linkrate > phy->maximum_linkrate_hw)
357                 rates->maximum_linkrate = phy->maximum_linkrate_hw;
358
359         if (scsi_is_sas_phy_local(phy)) {
360                 struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
361                 struct sas_ha_struct *sas_ha = SHOST_TO_SAS_HA(shost);
362                 struct asd_sas_phy *asd_phy = sas_ha->sas_phy[phy->number];
363                 struct sas_internal *i =
364                         to_sas_internal(sas_ha->core.shost->transportt);
365
366                 ret = i->dft->lldd_control_phy(asd_phy, PHY_FUNC_SET_LINK_RATE,
367                                                rates);
368         } else {
369                 struct sas_rphy *rphy = dev_to_rphy(phy->dev.parent);
370                 struct domain_device *ddev = sas_find_dev_by_rphy(rphy);
371                 ret = sas_smp_phy_control(ddev, phy->number,
372                                           PHY_FUNC_LINK_RESET, rates);
373
374         }
375
376         return ret;
377 }
378
379 void sas_prep_resume_ha(struct sas_ha_struct *ha)
380 {
381         int i;
382
383         set_bit(SAS_HA_REGISTERED, &ha->state);
384
385         /* clear out any stale link events/data from the suspension path */
386         for (i = 0; i < ha->num_phys; i++) {
387                 struct asd_sas_phy *phy = ha->sas_phy[i];
388
389                 memset(phy->attached_sas_addr, 0, SAS_ADDR_SIZE);
390                 phy->frame_rcvd_size = 0;
391         }
392 }
393 EXPORT_SYMBOL(sas_prep_resume_ha);
394
395 static int phys_suspended(struct sas_ha_struct *ha)
396 {
397         int i, rc = 0;
398
399         for (i = 0; i < ha->num_phys; i++) {
400                 struct asd_sas_phy *phy = ha->sas_phy[i];
401
402                 if (phy->suspended)
403                         rc++;
404         }
405
406         return rc;
407 }
408
409 void sas_resume_ha(struct sas_ha_struct *ha)
410 {
411         const unsigned long tmo = msecs_to_jiffies(25000);
412         int i;
413
414         /* deform ports on phys that did not resume
415          * at this point we may be racing the phy coming back (as posted
416          * by the lldd).  So we post the event and once we are in the
417          * libsas context check that the phy remains suspended before
418          * tearing it down.
419          */
420         i = phys_suspended(ha);
421         if (i)
422                 dev_info(ha->dev, "waiting up to 25 seconds for %d phy%s to resume\n",
423                          i, i > 1 ? "s" : "");
424         wait_event_timeout(ha->eh_wait_q, phys_suspended(ha) == 0, tmo);
425         for (i = 0; i < ha->num_phys; i++) {
426                 struct asd_sas_phy *phy = ha->sas_phy[i];
427
428                 if (phy->suspended) {
429                         dev_warn(&phy->phy->dev, "resume timeout\n");
430                         sas_notify_phy_event(phy, PHYE_RESUME_TIMEOUT);
431                 }
432         }
433
434         /* all phys are back up or timed out, turn on i/o so we can
435          * flush out disks that did not return
436          */
437         scsi_unblock_requests(ha->core.shost);
438         sas_drain_work(ha);
439 }
440 EXPORT_SYMBOL(sas_resume_ha);
441
442 void sas_suspend_ha(struct sas_ha_struct *ha)
443 {
444         int i;
445
446         sas_disable_events(ha);
447         scsi_block_requests(ha->core.shost);
448         for (i = 0; i < ha->num_phys; i++) {
449                 struct asd_sas_port *port = ha->sas_port[i];
450
451                 sas_discover_event(port, DISCE_SUSPEND);
452         }
453
454         /* flush suspend events while unregistered */
455         mutex_lock(&ha->drain_mutex);
456         __sas_drain_work(ha);
457         mutex_unlock(&ha->drain_mutex);
458 }
459 EXPORT_SYMBOL(sas_suspend_ha);
460
461 static void sas_phy_release(struct sas_phy *phy)
462 {
463         kfree(phy->hostdata);
464         phy->hostdata = NULL;
465 }
466
467 static void phy_reset_work(struct work_struct *work)
468 {
469         struct sas_phy_data *d = container_of(work, typeof(*d), reset_work.work);
470
471         d->reset_result = transport_sas_phy_reset(d->phy, d->hard_reset);
472 }
473
474 static void phy_enable_work(struct work_struct *work)
475 {
476         struct sas_phy_data *d = container_of(work, typeof(*d), enable_work.work);
477
478         d->enable_result = sas_phy_enable(d->phy, d->enable);
479 }
480
481 static int sas_phy_setup(struct sas_phy *phy)
482 {
483         struct sas_phy_data *d = kzalloc(sizeof(*d), GFP_KERNEL);
484
485         if (!d)
486                 return -ENOMEM;
487
488         mutex_init(&d->event_lock);
489         INIT_SAS_WORK(&d->reset_work, phy_reset_work);
490         INIT_SAS_WORK(&d->enable_work, phy_enable_work);
491         d->phy = phy;
492         phy->hostdata = d;
493
494         return 0;
495 }
496
497 static int queue_phy_reset(struct sas_phy *phy, int hard_reset)
498 {
499         struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
500         struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
501         struct sas_phy_data *d = phy->hostdata;
502         int rc;
503
504         if (!d)
505                 return -ENOMEM;
506
507         /* libsas workqueue coordinates ata-eh reset with discovery */
508         mutex_lock(&d->event_lock);
509         d->reset_result = 0;
510         d->hard_reset = hard_reset;
511
512         spin_lock_irq(&ha->lock);
513         sas_queue_work(ha, &d->reset_work);
514         spin_unlock_irq(&ha->lock);
515
516         rc = sas_drain_work(ha);
517         if (rc == 0)
518                 rc = d->reset_result;
519         mutex_unlock(&d->event_lock);
520
521         return rc;
522 }
523
524 static int queue_phy_enable(struct sas_phy *phy, int enable)
525 {
526         struct Scsi_Host *shost = dev_to_shost(phy->dev.parent);
527         struct sas_ha_struct *ha = SHOST_TO_SAS_HA(shost);
528         struct sas_phy_data *d = phy->hostdata;
529         int rc;
530
531         if (!d)
532                 return -ENOMEM;
533
534         /* libsas workqueue coordinates ata-eh reset with discovery */
535         mutex_lock(&d->event_lock);
536         d->enable_result = 0;
537         d->enable = enable;
538
539         spin_lock_irq(&ha->lock);
540         sas_queue_work(ha, &d->enable_work);
541         spin_unlock_irq(&ha->lock);
542
543         rc = sas_drain_work(ha);
544         if (rc == 0)
545                 rc = d->enable_result;
546         mutex_unlock(&d->event_lock);
547
548         return rc;
549 }
550
551 static struct sas_function_template sft = {
552         .phy_enable = queue_phy_enable,
553         .phy_reset = queue_phy_reset,
554         .phy_setup = sas_phy_setup,
555         .phy_release = sas_phy_release,
556         .set_phy_speed = sas_set_phy_speed,
557         .get_linkerrors = sas_get_linkerrors,
558         .smp_handler = sas_smp_handler,
559 };
560
561 static inline ssize_t phy_event_threshold_show(struct device *dev,
562                         struct device_attribute *attr, char *buf)
563 {
564         struct Scsi_Host *shost = class_to_shost(dev);
565         struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
566
567         return scnprintf(buf, PAGE_SIZE, "%u\n", sha->event_thres);
568 }
569
570 static inline ssize_t phy_event_threshold_store(struct device *dev,
571                         struct device_attribute *attr,
572                         const char *buf, size_t count)
573 {
574         struct Scsi_Host *shost = class_to_shost(dev);
575         struct sas_ha_struct *sha = SHOST_TO_SAS_HA(shost);
576
577         sha->event_thres = simple_strtol(buf, NULL, 10);
578
579         /* threshold cannot be set too small */
580         if (sha->event_thres < 32)
581                 sha->event_thres = 32;
582
583         return count;
584 }
585
586 DEVICE_ATTR(phy_event_threshold,
587         S_IRUGO|S_IWUSR,
588         phy_event_threshold_show,
589         phy_event_threshold_store);
590 EXPORT_SYMBOL_GPL(dev_attr_phy_event_threshold);
591
592 struct scsi_transport_template *
593 sas_domain_attach_transport(struct sas_domain_function_template *dft)
594 {
595         struct scsi_transport_template *stt = sas_attach_transport(&sft);
596         struct sas_internal *i;
597
598         if (!stt)
599                 return stt;
600
601         i = to_sas_internal(stt);
602         i->dft = dft;
603         stt->create_work_queue = 1;
604         stt->eh_strategy_handler = sas_scsi_recover_host;
605
606         return stt;
607 }
608 EXPORT_SYMBOL_GPL(sas_domain_attach_transport);
609
610
611 struct asd_sas_event *sas_alloc_event(struct asd_sas_phy *phy)
612 {
613         struct asd_sas_event *event;
614         gfp_t flags = in_interrupt() ? GFP_ATOMIC : GFP_KERNEL;
615         struct sas_ha_struct *sas_ha = phy->ha;
616         struct sas_internal *i =
617                 to_sas_internal(sas_ha->core.shost->transportt);
618
619         event = kmem_cache_zalloc(sas_event_cache, flags);
620         if (!event)
621                 return NULL;
622
623         atomic_inc(&phy->event_nr);
624
625         if (atomic_read(&phy->event_nr) > phy->ha->event_thres) {
626                 if (i->dft->lldd_control_phy) {
627                         if (cmpxchg(&phy->in_shutdown, 0, 1) == 0) {
628                                 pr_notice("The phy%d bursting events, shut it down.\n",
629                                           phy->id);
630                                 sas_notify_phy_event(phy, PHYE_SHUTDOWN);
631                         }
632                 } else {
633                         /* Do not support PHY control, stop allocating events */
634                         WARN_ONCE(1, "PHY control not supported.\n");
635                         kmem_cache_free(sas_event_cache, event);
636                         atomic_dec(&phy->event_nr);
637                         event = NULL;
638                 }
639         }
640
641         return event;
642 }
643
644 void sas_free_event(struct asd_sas_event *event)
645 {
646         struct asd_sas_phy *phy = event->phy;
647
648         kmem_cache_free(sas_event_cache, event);
649         atomic_dec(&phy->event_nr);
650 }
651
652 /* ---------- SAS Class register/unregister ---------- */
653
654 static int __init sas_class_init(void)
655 {
656         sas_task_cache = KMEM_CACHE(sas_task, SLAB_HWCACHE_ALIGN);
657         if (!sas_task_cache)
658                 goto out;
659
660         sas_event_cache = KMEM_CACHE(asd_sas_event, SLAB_HWCACHE_ALIGN);
661         if (!sas_event_cache)
662                 goto free_task_kmem;
663
664         return 0;
665 free_task_kmem:
666         kmem_cache_destroy(sas_task_cache);
667 out:
668         return -ENOMEM;
669 }
670
671 static void __exit sas_class_exit(void)
672 {
673         kmem_cache_destroy(sas_task_cache);
674         kmem_cache_destroy(sas_event_cache);
675 }
676
677 MODULE_AUTHOR("Luben Tuikov <luben_tuikov@adaptec.com>");
678 MODULE_DESCRIPTION("SAS Transport Layer");
679 MODULE_LICENSE("GPL v2");
680
681 module_init(sas_class_init);
682 module_exit(sas_class_exit);
683
684 EXPORT_SYMBOL_GPL(sas_register_ha);
685 EXPORT_SYMBOL_GPL(sas_unregister_ha);