perf tools: Update powerpc's syscall.tbl copy from the kernel sources
[linux-2.6-microblaze.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4  *    Copyright 2016 Microsemi Corporation
5  *    Copyright 2014-2015 PMC-Sierra, Inc.
6  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
7  *
8  *    This program is free software; you can redistribute it and/or modify
9  *    it under the terms of the GNU General Public License as published by
10  *    the Free Software Foundation; version 2 of the License.
11  *
12  *    This program is distributed in the hope that it will be useful,
13  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
16  *
17  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
18  *
19  */
20
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
78
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
82         HPSA_DRIVER_VERSION);
83 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
84 MODULE_VERSION(HPSA_DRIVER_VERSION);
85 MODULE_LICENSE("GPL");
86 MODULE_ALIAS("cciss");
87
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91         "Use 'simple mode' rather than 'performant mode'");
92
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1920},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103c, 0x1925},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
136         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
142         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
146         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
147         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
148         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
149                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
150         {PCI_VENDOR_ID_COMPAQ,     PCI_ANY_ID,  PCI_ANY_ID, PCI_ANY_ID,
151                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
152         {0,}
153 };
154
155 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
156
157 /*  board_id = Subsystem Device ID & Vendor ID
158  *  product = Marketing Name for the board
159  *  access = Address of the struct of function pointers
160  */
161 static struct board_type products[] = {
162         {0x40700E11, "Smart Array 5300", &SA5A_access},
163         {0x40800E11, "Smart Array 5i", &SA5B_access},
164         {0x40820E11, "Smart Array 532", &SA5B_access},
165         {0x40830E11, "Smart Array 5312", &SA5B_access},
166         {0x409A0E11, "Smart Array 641", &SA5A_access},
167         {0x409B0E11, "Smart Array 642", &SA5A_access},
168         {0x409C0E11, "Smart Array 6400", &SA5A_access},
169         {0x409D0E11, "Smart Array 6400 EM", &SA5A_access},
170         {0x40910E11, "Smart Array 6i", &SA5A_access},
171         {0x3225103C, "Smart Array P600", &SA5A_access},
172         {0x3223103C, "Smart Array P800", &SA5A_access},
173         {0x3234103C, "Smart Array P400", &SA5A_access},
174         {0x3235103C, "Smart Array P400i", &SA5A_access},
175         {0x3211103C, "Smart Array E200i", &SA5A_access},
176         {0x3212103C, "Smart Array E200", &SA5A_access},
177         {0x3213103C, "Smart Array E200i", &SA5A_access},
178         {0x3214103C, "Smart Array E200i", &SA5A_access},
179         {0x3215103C, "Smart Array E200i", &SA5A_access},
180         {0x3237103C, "Smart Array E500", &SA5A_access},
181         {0x323D103C, "Smart Array P700m", &SA5A_access},
182         {0x3241103C, "Smart Array P212", &SA5_access},
183         {0x3243103C, "Smart Array P410", &SA5_access},
184         {0x3245103C, "Smart Array P410i", &SA5_access},
185         {0x3247103C, "Smart Array P411", &SA5_access},
186         {0x3249103C, "Smart Array P812", &SA5_access},
187         {0x324A103C, "Smart Array P712m", &SA5_access},
188         {0x324B103C, "Smart Array P711m", &SA5_access},
189         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
190         {0x3350103C, "Smart Array P222", &SA5_access},
191         {0x3351103C, "Smart Array P420", &SA5_access},
192         {0x3352103C, "Smart Array P421", &SA5_access},
193         {0x3353103C, "Smart Array P822", &SA5_access},
194         {0x3354103C, "Smart Array P420i", &SA5_access},
195         {0x3355103C, "Smart Array P220i", &SA5_access},
196         {0x3356103C, "Smart Array P721m", &SA5_access},
197         {0x1920103C, "Smart Array P430i", &SA5_access},
198         {0x1921103C, "Smart Array P830i", &SA5_access},
199         {0x1922103C, "Smart Array P430", &SA5_access},
200         {0x1923103C, "Smart Array P431", &SA5_access},
201         {0x1924103C, "Smart Array P830", &SA5_access},
202         {0x1925103C, "Smart Array P831", &SA5_access},
203         {0x1926103C, "Smart Array P731m", &SA5_access},
204         {0x1928103C, "Smart Array P230i", &SA5_access},
205         {0x1929103C, "Smart Array P530", &SA5_access},
206         {0x21BD103C, "Smart Array P244br", &SA5_access},
207         {0x21BE103C, "Smart Array P741m", &SA5_access},
208         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
209         {0x21C0103C, "Smart Array P440ar", &SA5_access},
210         {0x21C1103C, "Smart Array P840ar", &SA5_access},
211         {0x21C2103C, "Smart Array P440", &SA5_access},
212         {0x21C3103C, "Smart Array P441", &SA5_access},
213         {0x21C4103C, "Smart Array", &SA5_access},
214         {0x21C5103C, "Smart Array P841", &SA5_access},
215         {0x21C6103C, "Smart HBA H244br", &SA5_access},
216         {0x21C7103C, "Smart HBA H240", &SA5_access},
217         {0x21C8103C, "Smart HBA H241", &SA5_access},
218         {0x21C9103C, "Smart Array", &SA5_access},
219         {0x21CA103C, "Smart Array P246br", &SA5_access},
220         {0x21CB103C, "Smart Array P840", &SA5_access},
221         {0x21CC103C, "Smart Array", &SA5_access},
222         {0x21CD103C, "Smart Array", &SA5_access},
223         {0x21CE103C, "Smart HBA", &SA5_access},
224         {0x05809005, "SmartHBA-SA", &SA5_access},
225         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
226         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
227         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
228         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
229         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
230         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
231         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
232         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
233         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
234         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
235         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
236 };
237
238 static struct scsi_transport_template *hpsa_sas_transport_template;
239 static int hpsa_add_sas_host(struct ctlr_info *h);
240 static void hpsa_delete_sas_host(struct ctlr_info *h);
241 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
242                         struct hpsa_scsi_dev_t *device);
243 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
244 static struct hpsa_scsi_dev_t
245         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
246                 struct sas_rphy *rphy);
247
248 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
249 static const struct scsi_cmnd hpsa_cmd_busy;
250 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
251 static const struct scsi_cmnd hpsa_cmd_idle;
252 static int number_of_controllers;
253
254 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
255 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
256 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
257                       void __user *arg);
258 static int hpsa_passthru_ioctl(struct ctlr_info *h,
259                                IOCTL_Command_struct *iocommand);
260 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
261                                    BIG_IOCTL_Command_struct *ioc);
262
263 #ifdef CONFIG_COMPAT
264 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
265         void __user *arg);
266 #endif
267
268 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
269 static struct CommandList *cmd_alloc(struct ctlr_info *h);
270 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
271 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
272                                             struct scsi_cmnd *scmd);
273 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
274         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
275         int cmd_type);
276 static void hpsa_free_cmd_pool(struct ctlr_info *h);
277 #define VPD_PAGE (1 << 8)
278 #define HPSA_SIMPLE_ERROR_BITS 0x03
279
280 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
281 static void hpsa_scan_start(struct Scsi_Host *);
282 static int hpsa_scan_finished(struct Scsi_Host *sh,
283         unsigned long elapsed_time);
284 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
285
286 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
287 static int hpsa_slave_alloc(struct scsi_device *sdev);
288 static int hpsa_slave_configure(struct scsi_device *sdev);
289 static void hpsa_slave_destroy(struct scsi_device *sdev);
290
291 static void hpsa_update_scsi_devices(struct ctlr_info *h);
292 static int check_for_unit_attention(struct ctlr_info *h,
293         struct CommandList *c);
294 static void check_ioctl_unit_attention(struct ctlr_info *h,
295         struct CommandList *c);
296 /* performant mode helper functions */
297 static void calc_bucket_map(int *bucket, int num_buckets,
298         int nsgs, int min_blocks, u32 *bucket_map);
299 static void hpsa_free_performant_mode(struct ctlr_info *h);
300 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
301 static inline u32 next_command(struct ctlr_info *h, u8 q);
302 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
303                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
304                                u64 *cfg_offset);
305 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
306                                     unsigned long *memory_bar);
307 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
308                                 bool *legacy_board);
309 static int wait_for_device_to_become_ready(struct ctlr_info *h,
310                                            unsigned char lunaddr[],
311                                            int reply_queue);
312 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
313                                      int wait_for_ready);
314 static inline void finish_cmd(struct CommandList *c);
315 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
316 #define BOARD_NOT_READY 0
317 #define BOARD_READY 1
318 static void hpsa_drain_accel_commands(struct ctlr_info *h);
319 static void hpsa_flush_cache(struct ctlr_info *h);
320 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
321         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
322         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
323 static void hpsa_command_resubmit_worker(struct work_struct *work);
324 static u32 lockup_detected(struct ctlr_info *h);
325 static int detect_controller_lockup(struct ctlr_info *h);
326 static void hpsa_disable_rld_caching(struct ctlr_info *h);
327 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
328         struct ReportExtendedLUNdata *buf, int bufsize);
329 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
330         unsigned char scsi3addr[], u8 page);
331 static int hpsa_luns_changed(struct ctlr_info *h);
332 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
333                                struct hpsa_scsi_dev_t *dev,
334                                unsigned char *scsi3addr);
335
336 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
337 {
338         unsigned long *priv = shost_priv(sdev->host);
339         return (struct ctlr_info *) *priv;
340 }
341
342 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
343 {
344         unsigned long *priv = shost_priv(sh);
345         return (struct ctlr_info *) *priv;
346 }
347
348 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
349 {
350         return c->scsi_cmd == SCSI_CMD_IDLE;
351 }
352
353 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
354 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
355                         u8 *sense_key, u8 *asc, u8 *ascq)
356 {
357         struct scsi_sense_hdr sshdr;
358         bool rc;
359
360         *sense_key = -1;
361         *asc = -1;
362         *ascq = -1;
363
364         if (sense_data_len < 1)
365                 return;
366
367         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
368         if (rc) {
369                 *sense_key = sshdr.sense_key;
370                 *asc = sshdr.asc;
371                 *ascq = sshdr.ascq;
372         }
373 }
374
375 static int check_for_unit_attention(struct ctlr_info *h,
376         struct CommandList *c)
377 {
378         u8 sense_key, asc, ascq;
379         int sense_len;
380
381         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
382                 sense_len = sizeof(c->err_info->SenseInfo);
383         else
384                 sense_len = c->err_info->SenseLen;
385
386         decode_sense_data(c->err_info->SenseInfo, sense_len,
387                                 &sense_key, &asc, &ascq);
388         if (sense_key != UNIT_ATTENTION || asc == 0xff)
389                 return 0;
390
391         switch (asc) {
392         case STATE_CHANGED:
393                 dev_warn(&h->pdev->dev,
394                         "%s: a state change detected, command retried\n",
395                         h->devname);
396                 break;
397         case LUN_FAILED:
398                 dev_warn(&h->pdev->dev,
399                         "%s: LUN failure detected\n", h->devname);
400                 break;
401         case REPORT_LUNS_CHANGED:
402                 dev_warn(&h->pdev->dev,
403                         "%s: report LUN data changed\n", h->devname);
404         /*
405          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
406          * target (array) devices.
407          */
408                 break;
409         case POWER_OR_RESET:
410                 dev_warn(&h->pdev->dev,
411                         "%s: a power on or device reset detected\n",
412                         h->devname);
413                 break;
414         case UNIT_ATTENTION_CLEARED:
415                 dev_warn(&h->pdev->dev,
416                         "%s: unit attention cleared by another initiator\n",
417                         h->devname);
418                 break;
419         default:
420                 dev_warn(&h->pdev->dev,
421                         "%s: unknown unit attention detected\n",
422                         h->devname);
423                 break;
424         }
425         return 1;
426 }
427
428 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
429 {
430         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
431                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
432                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
433                 return 0;
434         dev_warn(&h->pdev->dev, HPSA "device busy");
435         return 1;
436 }
437
438 static u32 lockup_detected(struct ctlr_info *h);
439 static ssize_t host_show_lockup_detected(struct device *dev,
440                 struct device_attribute *attr, char *buf)
441 {
442         int ld;
443         struct ctlr_info *h;
444         struct Scsi_Host *shost = class_to_shost(dev);
445
446         h = shost_to_hba(shost);
447         ld = lockup_detected(h);
448
449         return sprintf(buf, "ld=%d\n", ld);
450 }
451
452 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
453                                          struct device_attribute *attr,
454                                          const char *buf, size_t count)
455 {
456         int status, len;
457         struct ctlr_info *h;
458         struct Scsi_Host *shost = class_to_shost(dev);
459         char tmpbuf[10];
460
461         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
462                 return -EACCES;
463         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
464         strncpy(tmpbuf, buf, len);
465         tmpbuf[len] = '\0';
466         if (sscanf(tmpbuf, "%d", &status) != 1)
467                 return -EINVAL;
468         h = shost_to_hba(shost);
469         h->acciopath_status = !!status;
470         dev_warn(&h->pdev->dev,
471                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
472                 h->acciopath_status ? "enabled" : "disabled");
473         return count;
474 }
475
476 static ssize_t host_store_raid_offload_debug(struct device *dev,
477                                          struct device_attribute *attr,
478                                          const char *buf, size_t count)
479 {
480         int debug_level, len;
481         struct ctlr_info *h;
482         struct Scsi_Host *shost = class_to_shost(dev);
483         char tmpbuf[10];
484
485         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
486                 return -EACCES;
487         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
488         strncpy(tmpbuf, buf, len);
489         tmpbuf[len] = '\0';
490         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
491                 return -EINVAL;
492         if (debug_level < 0)
493                 debug_level = 0;
494         h = shost_to_hba(shost);
495         h->raid_offload_debug = debug_level;
496         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
497                 h->raid_offload_debug);
498         return count;
499 }
500
501 static ssize_t host_store_rescan(struct device *dev,
502                                  struct device_attribute *attr,
503                                  const char *buf, size_t count)
504 {
505         struct ctlr_info *h;
506         struct Scsi_Host *shost = class_to_shost(dev);
507         h = shost_to_hba(shost);
508         hpsa_scan_start(h->scsi_host);
509         return count;
510 }
511
512 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t *device)
513 {
514         device->offload_enabled = 0;
515         device->offload_to_be_enabled = 0;
516 }
517
518 static ssize_t host_show_firmware_revision(struct device *dev,
519              struct device_attribute *attr, char *buf)
520 {
521         struct ctlr_info *h;
522         struct Scsi_Host *shost = class_to_shost(dev);
523         unsigned char *fwrev;
524
525         h = shost_to_hba(shost);
526         if (!h->hba_inquiry_data)
527                 return 0;
528         fwrev = &h->hba_inquiry_data[32];
529         return snprintf(buf, 20, "%c%c%c%c\n",
530                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
531 }
532
533 static ssize_t host_show_commands_outstanding(struct device *dev,
534              struct device_attribute *attr, char *buf)
535 {
536         struct Scsi_Host *shost = class_to_shost(dev);
537         struct ctlr_info *h = shost_to_hba(shost);
538
539         return snprintf(buf, 20, "%d\n",
540                         atomic_read(&h->commands_outstanding));
541 }
542
543 static ssize_t host_show_transport_mode(struct device *dev,
544         struct device_attribute *attr, char *buf)
545 {
546         struct ctlr_info *h;
547         struct Scsi_Host *shost = class_to_shost(dev);
548
549         h = shost_to_hba(shost);
550         return snprintf(buf, 20, "%s\n",
551                 h->transMethod & CFGTBL_Trans_Performant ?
552                         "performant" : "simple");
553 }
554
555 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
556         struct device_attribute *attr, char *buf)
557 {
558         struct ctlr_info *h;
559         struct Scsi_Host *shost = class_to_shost(dev);
560
561         h = shost_to_hba(shost);
562         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
563                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
564 }
565
566 /* List of controllers which cannot be hard reset on kexec with reset_devices */
567 static u32 unresettable_controller[] = {
568         0x324a103C, /* Smart Array P712m */
569         0x324b103C, /* Smart Array P711m */
570         0x3223103C, /* Smart Array P800 */
571         0x3234103C, /* Smart Array P400 */
572         0x3235103C, /* Smart Array P400i */
573         0x3211103C, /* Smart Array E200i */
574         0x3212103C, /* Smart Array E200 */
575         0x3213103C, /* Smart Array E200i */
576         0x3214103C, /* Smart Array E200i */
577         0x3215103C, /* Smart Array E200i */
578         0x3237103C, /* Smart Array E500 */
579         0x323D103C, /* Smart Array P700m */
580         0x40800E11, /* Smart Array 5i */
581         0x409C0E11, /* Smart Array 6400 */
582         0x409D0E11, /* Smart Array 6400 EM */
583         0x40700E11, /* Smart Array 5300 */
584         0x40820E11, /* Smart Array 532 */
585         0x40830E11, /* Smart Array 5312 */
586         0x409A0E11, /* Smart Array 641 */
587         0x409B0E11, /* Smart Array 642 */
588         0x40910E11, /* Smart Array 6i */
589 };
590
591 /* List of controllers which cannot even be soft reset */
592 static u32 soft_unresettable_controller[] = {
593         0x40800E11, /* Smart Array 5i */
594         0x40700E11, /* Smart Array 5300 */
595         0x40820E11, /* Smart Array 532 */
596         0x40830E11, /* Smart Array 5312 */
597         0x409A0E11, /* Smart Array 641 */
598         0x409B0E11, /* Smart Array 642 */
599         0x40910E11, /* Smart Array 6i */
600         /* Exclude 640x boards.  These are two pci devices in one slot
601          * which share a battery backed cache module.  One controls the
602          * cache, the other accesses the cache through the one that controls
603          * it.  If we reset the one controlling the cache, the other will
604          * likely not be happy.  Just forbid resetting this conjoined mess.
605          * The 640x isn't really supported by hpsa anyway.
606          */
607         0x409C0E11, /* Smart Array 6400 */
608         0x409D0E11, /* Smart Array 6400 EM */
609 };
610
611 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
612 {
613         int i;
614
615         for (i = 0; i < nelems; i++)
616                 if (a[i] == board_id)
617                         return 1;
618         return 0;
619 }
620
621 static int ctlr_is_hard_resettable(u32 board_id)
622 {
623         return !board_id_in_array(unresettable_controller,
624                         ARRAY_SIZE(unresettable_controller), board_id);
625 }
626
627 static int ctlr_is_soft_resettable(u32 board_id)
628 {
629         return !board_id_in_array(soft_unresettable_controller,
630                         ARRAY_SIZE(soft_unresettable_controller), board_id);
631 }
632
633 static int ctlr_is_resettable(u32 board_id)
634 {
635         return ctlr_is_hard_resettable(board_id) ||
636                 ctlr_is_soft_resettable(board_id);
637 }
638
639 static ssize_t host_show_resettable(struct device *dev,
640         struct device_attribute *attr, char *buf)
641 {
642         struct ctlr_info *h;
643         struct Scsi_Host *shost = class_to_shost(dev);
644
645         h = shost_to_hba(shost);
646         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
647 }
648
649 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
650 {
651         return (scsi3addr[3] & 0xC0) == 0x40;
652 }
653
654 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
655         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
656 };
657 #define HPSA_RAID_0     0
658 #define HPSA_RAID_4     1
659 #define HPSA_RAID_1     2       /* also used for RAID 10 */
660 #define HPSA_RAID_5     3       /* also used for RAID 50 */
661 #define HPSA_RAID_51    4
662 #define HPSA_RAID_6     5       /* also used for RAID 60 */
663 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
664 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
665 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
666
667 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
668 {
669         return !device->physical_device;
670 }
671
672 static ssize_t raid_level_show(struct device *dev,
673              struct device_attribute *attr, char *buf)
674 {
675         ssize_t l = 0;
676         unsigned char rlevel;
677         struct ctlr_info *h;
678         struct scsi_device *sdev;
679         struct hpsa_scsi_dev_t *hdev;
680         unsigned long flags;
681
682         sdev = to_scsi_device(dev);
683         h = sdev_to_hba(sdev);
684         spin_lock_irqsave(&h->lock, flags);
685         hdev = sdev->hostdata;
686         if (!hdev) {
687                 spin_unlock_irqrestore(&h->lock, flags);
688                 return -ENODEV;
689         }
690
691         /* Is this even a logical drive? */
692         if (!is_logical_device(hdev)) {
693                 spin_unlock_irqrestore(&h->lock, flags);
694                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
695                 return l;
696         }
697
698         rlevel = hdev->raid_level;
699         spin_unlock_irqrestore(&h->lock, flags);
700         if (rlevel > RAID_UNKNOWN)
701                 rlevel = RAID_UNKNOWN;
702         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
703         return l;
704 }
705
706 static ssize_t lunid_show(struct device *dev,
707              struct device_attribute *attr, char *buf)
708 {
709         struct ctlr_info *h;
710         struct scsi_device *sdev;
711         struct hpsa_scsi_dev_t *hdev;
712         unsigned long flags;
713         unsigned char lunid[8];
714
715         sdev = to_scsi_device(dev);
716         h = sdev_to_hba(sdev);
717         spin_lock_irqsave(&h->lock, flags);
718         hdev = sdev->hostdata;
719         if (!hdev) {
720                 spin_unlock_irqrestore(&h->lock, flags);
721                 return -ENODEV;
722         }
723         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
724         spin_unlock_irqrestore(&h->lock, flags);
725         return snprintf(buf, 20, "0x%8phN\n", lunid);
726 }
727
728 static ssize_t unique_id_show(struct device *dev,
729              struct device_attribute *attr, char *buf)
730 {
731         struct ctlr_info *h;
732         struct scsi_device *sdev;
733         struct hpsa_scsi_dev_t *hdev;
734         unsigned long flags;
735         unsigned char sn[16];
736
737         sdev = to_scsi_device(dev);
738         h = sdev_to_hba(sdev);
739         spin_lock_irqsave(&h->lock, flags);
740         hdev = sdev->hostdata;
741         if (!hdev) {
742                 spin_unlock_irqrestore(&h->lock, flags);
743                 return -ENODEV;
744         }
745         memcpy(sn, hdev->device_id, sizeof(sn));
746         spin_unlock_irqrestore(&h->lock, flags);
747         return snprintf(buf, 16 * 2 + 2,
748                         "%02X%02X%02X%02X%02X%02X%02X%02X"
749                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
750                         sn[0], sn[1], sn[2], sn[3],
751                         sn[4], sn[5], sn[6], sn[7],
752                         sn[8], sn[9], sn[10], sn[11],
753                         sn[12], sn[13], sn[14], sn[15]);
754 }
755
756 static ssize_t sas_address_show(struct device *dev,
757               struct device_attribute *attr, char *buf)
758 {
759         struct ctlr_info *h;
760         struct scsi_device *sdev;
761         struct hpsa_scsi_dev_t *hdev;
762         unsigned long flags;
763         u64 sas_address;
764
765         sdev = to_scsi_device(dev);
766         h = sdev_to_hba(sdev);
767         spin_lock_irqsave(&h->lock, flags);
768         hdev = sdev->hostdata;
769         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
770                 spin_unlock_irqrestore(&h->lock, flags);
771                 return -ENODEV;
772         }
773         sas_address = hdev->sas_address;
774         spin_unlock_irqrestore(&h->lock, flags);
775
776         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
777 }
778
779 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
780              struct device_attribute *attr, char *buf)
781 {
782         struct ctlr_info *h;
783         struct scsi_device *sdev;
784         struct hpsa_scsi_dev_t *hdev;
785         unsigned long flags;
786         int offload_enabled;
787
788         sdev = to_scsi_device(dev);
789         h = sdev_to_hba(sdev);
790         spin_lock_irqsave(&h->lock, flags);
791         hdev = sdev->hostdata;
792         if (!hdev) {
793                 spin_unlock_irqrestore(&h->lock, flags);
794                 return -ENODEV;
795         }
796         offload_enabled = hdev->offload_enabled;
797         spin_unlock_irqrestore(&h->lock, flags);
798
799         if (hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC)
800                 return snprintf(buf, 20, "%d\n", offload_enabled);
801         else
802                 return snprintf(buf, 40, "%s\n",
803                                 "Not applicable for a controller");
804 }
805
806 #define MAX_PATHS 8
807 static ssize_t path_info_show(struct device *dev,
808              struct device_attribute *attr, char *buf)
809 {
810         struct ctlr_info *h;
811         struct scsi_device *sdev;
812         struct hpsa_scsi_dev_t *hdev;
813         unsigned long flags;
814         int i;
815         int output_len = 0;
816         u8 box;
817         u8 bay;
818         u8 path_map_index = 0;
819         char *active;
820         unsigned char phys_connector[2];
821
822         sdev = to_scsi_device(dev);
823         h = sdev_to_hba(sdev);
824         spin_lock_irqsave(&h->devlock, flags);
825         hdev = sdev->hostdata;
826         if (!hdev) {
827                 spin_unlock_irqrestore(&h->devlock, flags);
828                 return -ENODEV;
829         }
830
831         bay = hdev->bay;
832         for (i = 0; i < MAX_PATHS; i++) {
833                 path_map_index = 1<<i;
834                 if (i == hdev->active_path_index)
835                         active = "Active";
836                 else if (hdev->path_map & path_map_index)
837                         active = "Inactive";
838                 else
839                         continue;
840
841                 output_len += scnprintf(buf + output_len,
842                                 PAGE_SIZE - output_len,
843                                 "[%d:%d:%d:%d] %20.20s ",
844                                 h->scsi_host->host_no,
845                                 hdev->bus, hdev->target, hdev->lun,
846                                 scsi_device_type(hdev->devtype));
847
848                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
849                         output_len += scnprintf(buf + output_len,
850                                                 PAGE_SIZE - output_len,
851                                                 "%s\n", active);
852                         continue;
853                 }
854
855                 box = hdev->box[i];
856                 memcpy(&phys_connector, &hdev->phys_connector[i],
857                         sizeof(phys_connector));
858                 if (phys_connector[0] < '0')
859                         phys_connector[0] = '0';
860                 if (phys_connector[1] < '0')
861                         phys_connector[1] = '0';
862                 output_len += scnprintf(buf + output_len,
863                                 PAGE_SIZE - output_len,
864                                 "PORT: %.2s ",
865                                 phys_connector);
866                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
867                         hdev->expose_device) {
868                         if (box == 0 || box == 0xFF) {
869                                 output_len += scnprintf(buf + output_len,
870                                         PAGE_SIZE - output_len,
871                                         "BAY: %hhu %s\n",
872                                         bay, active);
873                         } else {
874                                 output_len += scnprintf(buf + output_len,
875                                         PAGE_SIZE - output_len,
876                                         "BOX: %hhu BAY: %hhu %s\n",
877                                         box, bay, active);
878                         }
879                 } else if (box != 0 && box != 0xFF) {
880                         output_len += scnprintf(buf + output_len,
881                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
882                                 box, active);
883                 } else
884                         output_len += scnprintf(buf + output_len,
885                                 PAGE_SIZE - output_len, "%s\n", active);
886         }
887
888         spin_unlock_irqrestore(&h->devlock, flags);
889         return output_len;
890 }
891
892 static ssize_t host_show_ctlr_num(struct device *dev,
893         struct device_attribute *attr, char *buf)
894 {
895         struct ctlr_info *h;
896         struct Scsi_Host *shost = class_to_shost(dev);
897
898         h = shost_to_hba(shost);
899         return snprintf(buf, 20, "%d\n", h->ctlr);
900 }
901
902 static ssize_t host_show_legacy_board(struct device *dev,
903         struct device_attribute *attr, char *buf)
904 {
905         struct ctlr_info *h;
906         struct Scsi_Host *shost = class_to_shost(dev);
907
908         h = shost_to_hba(shost);
909         return snprintf(buf, 20, "%d\n", h->legacy_board ? 1 : 0);
910 }
911
912 static DEVICE_ATTR_RO(raid_level);
913 static DEVICE_ATTR_RO(lunid);
914 static DEVICE_ATTR_RO(unique_id);
915 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
916 static DEVICE_ATTR_RO(sas_address);
917 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
918                         host_show_hp_ssd_smart_path_enabled, NULL);
919 static DEVICE_ATTR_RO(path_info);
920 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
921                 host_show_hp_ssd_smart_path_status,
922                 host_store_hp_ssd_smart_path_status);
923 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
924                         host_store_raid_offload_debug);
925 static DEVICE_ATTR(firmware_revision, S_IRUGO,
926         host_show_firmware_revision, NULL);
927 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
928         host_show_commands_outstanding, NULL);
929 static DEVICE_ATTR(transport_mode, S_IRUGO,
930         host_show_transport_mode, NULL);
931 static DEVICE_ATTR(resettable, S_IRUGO,
932         host_show_resettable, NULL);
933 static DEVICE_ATTR(lockup_detected, S_IRUGO,
934         host_show_lockup_detected, NULL);
935 static DEVICE_ATTR(ctlr_num, S_IRUGO,
936         host_show_ctlr_num, NULL);
937 static DEVICE_ATTR(legacy_board, S_IRUGO,
938         host_show_legacy_board, NULL);
939
940 static struct device_attribute *hpsa_sdev_attrs[] = {
941         &dev_attr_raid_level,
942         &dev_attr_lunid,
943         &dev_attr_unique_id,
944         &dev_attr_hp_ssd_smart_path_enabled,
945         &dev_attr_path_info,
946         &dev_attr_sas_address,
947         NULL,
948 };
949
950 static struct device_attribute *hpsa_shost_attrs[] = {
951         &dev_attr_rescan,
952         &dev_attr_firmware_revision,
953         &dev_attr_commands_outstanding,
954         &dev_attr_transport_mode,
955         &dev_attr_resettable,
956         &dev_attr_hp_ssd_smart_path_status,
957         &dev_attr_raid_offload_debug,
958         &dev_attr_lockup_detected,
959         &dev_attr_ctlr_num,
960         &dev_attr_legacy_board,
961         NULL,
962 };
963
964 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_DRIVER +\
965                                  HPSA_MAX_CONCURRENT_PASSTHRUS)
966
967 static struct scsi_host_template hpsa_driver_template = {
968         .module                 = THIS_MODULE,
969         .name                   = HPSA,
970         .proc_name              = HPSA,
971         .queuecommand           = hpsa_scsi_queue_command,
972         .scan_start             = hpsa_scan_start,
973         .scan_finished          = hpsa_scan_finished,
974         .change_queue_depth     = hpsa_change_queue_depth,
975         .this_id                = -1,
976         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
977         .ioctl                  = hpsa_ioctl,
978         .slave_alloc            = hpsa_slave_alloc,
979         .slave_configure        = hpsa_slave_configure,
980         .slave_destroy          = hpsa_slave_destroy,
981 #ifdef CONFIG_COMPAT
982         .compat_ioctl           = hpsa_compat_ioctl,
983 #endif
984         .sdev_attrs = hpsa_sdev_attrs,
985         .shost_attrs = hpsa_shost_attrs,
986         .max_sectors = 2048,
987         .no_write_same = 1,
988 };
989
990 static inline u32 next_command(struct ctlr_info *h, u8 q)
991 {
992         u32 a;
993         struct reply_queue_buffer *rq = &h->reply_queue[q];
994
995         if (h->transMethod & CFGTBL_Trans_io_accel1)
996                 return h->access.command_completed(h, q);
997
998         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
999                 return h->access.command_completed(h, q);
1000
1001         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
1002                 a = rq->head[rq->current_entry];
1003                 rq->current_entry++;
1004                 atomic_dec(&h->commands_outstanding);
1005         } else {
1006                 a = FIFO_EMPTY;
1007         }
1008         /* Check for wraparound */
1009         if (rq->current_entry == h->max_commands) {
1010                 rq->current_entry = 0;
1011                 rq->wraparound ^= 1;
1012         }
1013         return a;
1014 }
1015
1016 /*
1017  * There are some special bits in the bus address of the
1018  * command that we have to set for the controller to know
1019  * how to process the command:
1020  *
1021  * Normal performant mode:
1022  * bit 0: 1 means performant mode, 0 means simple mode.
1023  * bits 1-3 = block fetch table entry
1024  * bits 4-6 = command type (== 0)
1025  *
1026  * ioaccel1 mode:
1027  * bit 0 = "performant mode" bit.
1028  * bits 1-3 = block fetch table entry
1029  * bits 4-6 = command type (== 110)
1030  * (command type is needed because ioaccel1 mode
1031  * commands are submitted through the same register as normal
1032  * mode commands, so this is how the controller knows whether
1033  * the command is normal mode or ioaccel1 mode.)
1034  *
1035  * ioaccel2 mode:
1036  * bit 0 = "performant mode" bit.
1037  * bits 1-4 = block fetch table entry (note extra bit)
1038  * bits 4-6 = not needed, because ioaccel2 mode has
1039  * a separate special register for submitting commands.
1040  */
1041
1042 /*
1043  * set_performant_mode: Modify the tag for cciss performant
1044  * set bit 0 for pull model, bits 3-1 for block fetch
1045  * register number
1046  */
1047 #define DEFAULT_REPLY_QUEUE (-1)
1048 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1049                                         int reply_queue)
1050 {
1051         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1052                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1053                 if (unlikely(!h->msix_vectors))
1054                         return;
1055                 c->Header.ReplyQueue = reply_queue;
1056         }
1057 }
1058
1059 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1060                                                 struct CommandList *c,
1061                                                 int reply_queue)
1062 {
1063         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1064
1065         /*
1066          * Tell the controller to post the reply to the queue for this
1067          * processor.  This seems to give the best I/O throughput.
1068          */
1069         cp->ReplyQueue = reply_queue;
1070         /*
1071          * Set the bits in the address sent down to include:
1072          *  - performant mode bit (bit 0)
1073          *  - pull count (bits 1-3)
1074          *  - command type (bits 4-6)
1075          */
1076         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1077                                         IOACCEL1_BUSADDR_CMDTYPE;
1078 }
1079
1080 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1081                                                 struct CommandList *c,
1082                                                 int reply_queue)
1083 {
1084         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1085                 &h->ioaccel2_cmd_pool[c->cmdindex];
1086
1087         /* Tell the controller to post the reply to the queue for this
1088          * processor.  This seems to give the best I/O throughput.
1089          */
1090         cp->reply_queue = reply_queue;
1091         /* Set the bits in the address sent down to include:
1092          *  - performant mode bit not used in ioaccel mode 2
1093          *  - pull count (bits 0-3)
1094          *  - command type isn't needed for ioaccel2
1095          */
1096         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1097 }
1098
1099 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1100                                                 struct CommandList *c,
1101                                                 int reply_queue)
1102 {
1103         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1104
1105         /*
1106          * Tell the controller to post the reply to the queue for this
1107          * processor.  This seems to give the best I/O throughput.
1108          */
1109         cp->reply_queue = reply_queue;
1110         /*
1111          * Set the bits in the address sent down to include:
1112          *  - performant mode bit not used in ioaccel mode 2
1113          *  - pull count (bits 0-3)
1114          *  - command type isn't needed for ioaccel2
1115          */
1116         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1117 }
1118
1119 static int is_firmware_flash_cmd(u8 *cdb)
1120 {
1121         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1122 }
1123
1124 /*
1125  * During firmware flash, the heartbeat register may not update as frequently
1126  * as it should.  So we dial down lockup detection during firmware flash. and
1127  * dial it back up when firmware flash completes.
1128  */
1129 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1130 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1131 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1132 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1133                 struct CommandList *c)
1134 {
1135         if (!is_firmware_flash_cmd(c->Request.CDB))
1136                 return;
1137         atomic_inc(&h->firmware_flash_in_progress);
1138         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1139 }
1140
1141 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1142                 struct CommandList *c)
1143 {
1144         if (is_firmware_flash_cmd(c->Request.CDB) &&
1145                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1146                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1147 }
1148
1149 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1150         struct CommandList *c, int reply_queue)
1151 {
1152         dial_down_lockup_detection_during_fw_flash(h, c);
1153         atomic_inc(&h->commands_outstanding);
1154         if (c->device)
1155                 atomic_inc(&c->device->commands_outstanding);
1156
1157         reply_queue = h->reply_map[raw_smp_processor_id()];
1158         switch (c->cmd_type) {
1159         case CMD_IOACCEL1:
1160                 set_ioaccel1_performant_mode(h, c, reply_queue);
1161                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1162                 break;
1163         case CMD_IOACCEL2:
1164                 set_ioaccel2_performant_mode(h, c, reply_queue);
1165                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1166                 break;
1167         case IOACCEL2_TMF:
1168                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1169                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1170                 break;
1171         default:
1172                 set_performant_mode(h, c, reply_queue);
1173                 h->access.submit_command(h, c);
1174         }
1175 }
1176
1177 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1178 {
1179         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1180 }
1181
1182 static inline int is_hba_lunid(unsigned char scsi3addr[])
1183 {
1184         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1185 }
1186
1187 static inline int is_scsi_rev_5(struct ctlr_info *h)
1188 {
1189         if (!h->hba_inquiry_data)
1190                 return 0;
1191         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1192                 return 1;
1193         return 0;
1194 }
1195
1196 static int hpsa_find_target_lun(struct ctlr_info *h,
1197         unsigned char scsi3addr[], int bus, int *target, int *lun)
1198 {
1199         /* finds an unused bus, target, lun for a new physical device
1200          * assumes h->devlock is held
1201          */
1202         int i, found = 0;
1203         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1204
1205         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1206
1207         for (i = 0; i < h->ndevices; i++) {
1208                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1209                         __set_bit(h->dev[i]->target, lun_taken);
1210         }
1211
1212         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1213         if (i < HPSA_MAX_DEVICES) {
1214                 /* *bus = 1; */
1215                 *target = i;
1216                 *lun = 0;
1217                 found = 1;
1218         }
1219         return !found;
1220 }
1221
1222 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1223         struct hpsa_scsi_dev_t *dev, char *description)
1224 {
1225 #define LABEL_SIZE 25
1226         char label[LABEL_SIZE];
1227
1228         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1229                 return;
1230
1231         switch (dev->devtype) {
1232         case TYPE_RAID:
1233                 snprintf(label, LABEL_SIZE, "controller");
1234                 break;
1235         case TYPE_ENCLOSURE:
1236                 snprintf(label, LABEL_SIZE, "enclosure");
1237                 break;
1238         case TYPE_DISK:
1239         case TYPE_ZBC:
1240                 if (dev->external)
1241                         snprintf(label, LABEL_SIZE, "external");
1242                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1243                         snprintf(label, LABEL_SIZE, "%s",
1244                                 raid_label[PHYSICAL_DRIVE]);
1245                 else
1246                         snprintf(label, LABEL_SIZE, "RAID-%s",
1247                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1248                                 raid_label[dev->raid_level]);
1249                 break;
1250         case TYPE_ROM:
1251                 snprintf(label, LABEL_SIZE, "rom");
1252                 break;
1253         case TYPE_TAPE:
1254                 snprintf(label, LABEL_SIZE, "tape");
1255                 break;
1256         case TYPE_MEDIUM_CHANGER:
1257                 snprintf(label, LABEL_SIZE, "changer");
1258                 break;
1259         default:
1260                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1261                 break;
1262         }
1263
1264         dev_printk(level, &h->pdev->dev,
1265                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1266                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1267                         description,
1268                         scsi_device_type(dev->devtype),
1269                         dev->vendor,
1270                         dev->model,
1271                         label,
1272                         dev->offload_config ? '+' : '-',
1273                         dev->offload_to_be_enabled ? '+' : '-',
1274                         dev->expose_device);
1275 }
1276
1277 /* Add an entry into h->dev[] array. */
1278 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1279                 struct hpsa_scsi_dev_t *device,
1280                 struct hpsa_scsi_dev_t *added[], int *nadded)
1281 {
1282         /* assumes h->devlock is held */
1283         int n = h->ndevices;
1284         int i;
1285         unsigned char addr1[8], addr2[8];
1286         struct hpsa_scsi_dev_t *sd;
1287
1288         if (n >= HPSA_MAX_DEVICES) {
1289                 dev_err(&h->pdev->dev, "too many devices, some will be "
1290                         "inaccessible.\n");
1291                 return -1;
1292         }
1293
1294         /* physical devices do not have lun or target assigned until now. */
1295         if (device->lun != -1)
1296                 /* Logical device, lun is already assigned. */
1297                 goto lun_assigned;
1298
1299         /* If this device a non-zero lun of a multi-lun device
1300          * byte 4 of the 8-byte LUN addr will contain the logical
1301          * unit no, zero otherwise.
1302          */
1303         if (device->scsi3addr[4] == 0) {
1304                 /* This is not a non-zero lun of a multi-lun device */
1305                 if (hpsa_find_target_lun(h, device->scsi3addr,
1306                         device->bus, &device->target, &device->lun) != 0)
1307                         return -1;
1308                 goto lun_assigned;
1309         }
1310
1311         /* This is a non-zero lun of a multi-lun device.
1312          * Search through our list and find the device which
1313          * has the same 8 byte LUN address, excepting byte 4 and 5.
1314          * Assign the same bus and target for this new LUN.
1315          * Use the logical unit number from the firmware.
1316          */
1317         memcpy(addr1, device->scsi3addr, 8);
1318         addr1[4] = 0;
1319         addr1[5] = 0;
1320         for (i = 0; i < n; i++) {
1321                 sd = h->dev[i];
1322                 memcpy(addr2, sd->scsi3addr, 8);
1323                 addr2[4] = 0;
1324                 addr2[5] = 0;
1325                 /* differ only in byte 4 and 5? */
1326                 if (memcmp(addr1, addr2, 8) == 0) {
1327                         device->bus = sd->bus;
1328                         device->target = sd->target;
1329                         device->lun = device->scsi3addr[4];
1330                         break;
1331                 }
1332         }
1333         if (device->lun == -1) {
1334                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1335                         " suspect firmware bug or unsupported hardware "
1336                         "configuration.\n");
1337                 return -1;
1338         }
1339
1340 lun_assigned:
1341
1342         h->dev[n] = device;
1343         h->ndevices++;
1344         added[*nadded] = device;
1345         (*nadded)++;
1346         hpsa_show_dev_msg(KERN_INFO, h, device,
1347                 device->expose_device ? "added" : "masked");
1348         return 0;
1349 }
1350
1351 /*
1352  * Called during a scan operation.
1353  *
1354  * Update an entry in h->dev[] array.
1355  */
1356 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1357         int entry, struct hpsa_scsi_dev_t *new_entry)
1358 {
1359         /* assumes h->devlock is held */
1360         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1361
1362         /* Raid level changed. */
1363         h->dev[entry]->raid_level = new_entry->raid_level;
1364
1365         /*
1366          * ioacccel_handle may have changed for a dual domain disk
1367          */
1368         h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1369
1370         /* Raid offload parameters changed.  Careful about the ordering. */
1371         if (new_entry->offload_config && new_entry->offload_to_be_enabled) {
1372                 /*
1373                  * if drive is newly offload_enabled, we want to copy the
1374                  * raid map data first.  If previously offload_enabled and
1375                  * offload_config were set, raid map data had better be
1376                  * the same as it was before. If raid map data has changed
1377                  * then it had better be the case that
1378                  * h->dev[entry]->offload_enabled is currently 0.
1379                  */
1380                 h->dev[entry]->raid_map = new_entry->raid_map;
1381                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1382         }
1383         if (new_entry->offload_to_be_enabled) {
1384                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1385                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1386         }
1387         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1388         h->dev[entry]->offload_config = new_entry->offload_config;
1389         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1390         h->dev[entry]->queue_depth = new_entry->queue_depth;
1391
1392         /*
1393          * We can turn off ioaccel offload now, but need to delay turning
1394          * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1395          * can't do that until all the devices are updated.
1396          */
1397         h->dev[entry]->offload_to_be_enabled = new_entry->offload_to_be_enabled;
1398
1399         /*
1400          * turn ioaccel off immediately if told to do so.
1401          */
1402         if (!new_entry->offload_to_be_enabled)
1403                 h->dev[entry]->offload_enabled = 0;
1404
1405         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1406 }
1407
1408 /* Replace an entry from h->dev[] array. */
1409 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1410         int entry, struct hpsa_scsi_dev_t *new_entry,
1411         struct hpsa_scsi_dev_t *added[], int *nadded,
1412         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1413 {
1414         /* assumes h->devlock is held */
1415         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1416         removed[*nremoved] = h->dev[entry];
1417         (*nremoved)++;
1418
1419         /*
1420          * New physical devices won't have target/lun assigned yet
1421          * so we need to preserve the values in the slot we are replacing.
1422          */
1423         if (new_entry->target == -1) {
1424                 new_entry->target = h->dev[entry]->target;
1425                 new_entry->lun = h->dev[entry]->lun;
1426         }
1427
1428         h->dev[entry] = new_entry;
1429         added[*nadded] = new_entry;
1430         (*nadded)++;
1431
1432         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1433 }
1434
1435 /* Remove an entry from h->dev[] array. */
1436 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1437         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1438 {
1439         /* assumes h->devlock is held */
1440         int i;
1441         struct hpsa_scsi_dev_t *sd;
1442
1443         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1444
1445         sd = h->dev[entry];
1446         removed[*nremoved] = h->dev[entry];
1447         (*nremoved)++;
1448
1449         for (i = entry; i < h->ndevices-1; i++)
1450                 h->dev[i] = h->dev[i+1];
1451         h->ndevices--;
1452         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1453 }
1454
1455 #define SCSI3ADDR_EQ(a, b) ( \
1456         (a)[7] == (b)[7] && \
1457         (a)[6] == (b)[6] && \
1458         (a)[5] == (b)[5] && \
1459         (a)[4] == (b)[4] && \
1460         (a)[3] == (b)[3] && \
1461         (a)[2] == (b)[2] && \
1462         (a)[1] == (b)[1] && \
1463         (a)[0] == (b)[0])
1464
1465 static void fixup_botched_add(struct ctlr_info *h,
1466         struct hpsa_scsi_dev_t *added)
1467 {
1468         /* called when scsi_add_device fails in order to re-adjust
1469          * h->dev[] to match the mid layer's view.
1470          */
1471         unsigned long flags;
1472         int i, j;
1473
1474         spin_lock_irqsave(&h->lock, flags);
1475         for (i = 0; i < h->ndevices; i++) {
1476                 if (h->dev[i] == added) {
1477                         for (j = i; j < h->ndevices-1; j++)
1478                                 h->dev[j] = h->dev[j+1];
1479                         h->ndevices--;
1480                         break;
1481                 }
1482         }
1483         spin_unlock_irqrestore(&h->lock, flags);
1484         kfree(added);
1485 }
1486
1487 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1488         struct hpsa_scsi_dev_t *dev2)
1489 {
1490         /* we compare everything except lun and target as these
1491          * are not yet assigned.  Compare parts likely
1492          * to differ first
1493          */
1494         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1495                 sizeof(dev1->scsi3addr)) != 0)
1496                 return 0;
1497         if (memcmp(dev1->device_id, dev2->device_id,
1498                 sizeof(dev1->device_id)) != 0)
1499                 return 0;
1500         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1501                 return 0;
1502         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1503                 return 0;
1504         if (dev1->devtype != dev2->devtype)
1505                 return 0;
1506         if (dev1->bus != dev2->bus)
1507                 return 0;
1508         return 1;
1509 }
1510
1511 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1512         struct hpsa_scsi_dev_t *dev2)
1513 {
1514         /* Device attributes that can change, but don't mean
1515          * that the device is a different device, nor that the OS
1516          * needs to be told anything about the change.
1517          */
1518         if (dev1->raid_level != dev2->raid_level)
1519                 return 1;
1520         if (dev1->offload_config != dev2->offload_config)
1521                 return 1;
1522         if (dev1->offload_to_be_enabled != dev2->offload_to_be_enabled)
1523                 return 1;
1524         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1525                 if (dev1->queue_depth != dev2->queue_depth)
1526                         return 1;
1527         /*
1528          * This can happen for dual domain devices. An active
1529          * path change causes the ioaccel handle to change
1530          *
1531          * for example note the handle differences between p0 and p1
1532          * Device                    WWN               ,WWN hash,Handle
1533          * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1534          *      p1                   0x5000C5005FC4DAC9,0x6798C0,0x00040004
1535          */
1536         if (dev1->ioaccel_handle != dev2->ioaccel_handle)
1537                 return 1;
1538         return 0;
1539 }
1540
1541 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1542  * and return needle location in *index.  If scsi3addr matches, but not
1543  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1544  * location in *index.
1545  * In the case of a minor device attribute change, such as RAID level, just
1546  * return DEVICE_UPDATED, along with the updated device's location in index.
1547  * If needle not found, return DEVICE_NOT_FOUND.
1548  */
1549 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1550         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1551         int *index)
1552 {
1553         int i;
1554 #define DEVICE_NOT_FOUND 0
1555 #define DEVICE_CHANGED 1
1556 #define DEVICE_SAME 2
1557 #define DEVICE_UPDATED 3
1558         if (needle == NULL)
1559                 return DEVICE_NOT_FOUND;
1560
1561         for (i = 0; i < haystack_size; i++) {
1562                 if (haystack[i] == NULL) /* previously removed. */
1563                         continue;
1564                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1565                         *index = i;
1566                         if (device_is_the_same(needle, haystack[i])) {
1567                                 if (device_updated(needle, haystack[i]))
1568                                         return DEVICE_UPDATED;
1569                                 return DEVICE_SAME;
1570                         } else {
1571                                 /* Keep offline devices offline */
1572                                 if (needle->volume_offline)
1573                                         return DEVICE_NOT_FOUND;
1574                                 return DEVICE_CHANGED;
1575                         }
1576                 }
1577         }
1578         *index = -1;
1579         return DEVICE_NOT_FOUND;
1580 }
1581
1582 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1583                                         unsigned char scsi3addr[])
1584 {
1585         struct offline_device_entry *device;
1586         unsigned long flags;
1587
1588         /* Check to see if device is already on the list */
1589         spin_lock_irqsave(&h->offline_device_lock, flags);
1590         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1591                 if (memcmp(device->scsi3addr, scsi3addr,
1592                         sizeof(device->scsi3addr)) == 0) {
1593                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1594                         return;
1595                 }
1596         }
1597         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1598
1599         /* Device is not on the list, add it. */
1600         device = kmalloc(sizeof(*device), GFP_KERNEL);
1601         if (!device)
1602                 return;
1603
1604         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1605         spin_lock_irqsave(&h->offline_device_lock, flags);
1606         list_add_tail(&device->offline_list, &h->offline_device_list);
1607         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1608 }
1609
1610 /* Print a message explaining various offline volume states */
1611 static void hpsa_show_volume_status(struct ctlr_info *h,
1612         struct hpsa_scsi_dev_t *sd)
1613 {
1614         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1615                 dev_info(&h->pdev->dev,
1616                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1617                         h->scsi_host->host_no,
1618                         sd->bus, sd->target, sd->lun);
1619         switch (sd->volume_offline) {
1620         case HPSA_LV_OK:
1621                 break;
1622         case HPSA_LV_UNDERGOING_ERASE:
1623                 dev_info(&h->pdev->dev,
1624                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1625                         h->scsi_host->host_no,
1626                         sd->bus, sd->target, sd->lun);
1627                 break;
1628         case HPSA_LV_NOT_AVAILABLE:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         case HPSA_LV_UNDERGOING_RPI:
1635                 dev_info(&h->pdev->dev,
1636                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1637                         h->scsi_host->host_no,
1638                         sd->bus, sd->target, sd->lun);
1639                 break;
1640         case HPSA_LV_PENDING_RPI:
1641                 dev_info(&h->pdev->dev,
1642                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1643                         h->scsi_host->host_no,
1644                         sd->bus, sd->target, sd->lun);
1645                 break;
1646         case HPSA_LV_ENCRYPTED_NO_KEY:
1647                 dev_info(&h->pdev->dev,
1648                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1649                         h->scsi_host->host_no,
1650                         sd->bus, sd->target, sd->lun);
1651                 break;
1652         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1653                 dev_info(&h->pdev->dev,
1654                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1655                         h->scsi_host->host_no,
1656                         sd->bus, sd->target, sd->lun);
1657                 break;
1658         case HPSA_LV_UNDERGOING_ENCRYPTION:
1659                 dev_info(&h->pdev->dev,
1660                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1661                         h->scsi_host->host_no,
1662                         sd->bus, sd->target, sd->lun);
1663                 break;
1664         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1665                 dev_info(&h->pdev->dev,
1666                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1667                         h->scsi_host->host_no,
1668                         sd->bus, sd->target, sd->lun);
1669                 break;
1670         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1671                 dev_info(&h->pdev->dev,
1672                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1673                         h->scsi_host->host_no,
1674                         sd->bus, sd->target, sd->lun);
1675                 break;
1676         case HPSA_LV_PENDING_ENCRYPTION:
1677                 dev_info(&h->pdev->dev,
1678                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1679                         h->scsi_host->host_no,
1680                         sd->bus, sd->target, sd->lun);
1681                 break;
1682         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1683                 dev_info(&h->pdev->dev,
1684                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1685                         h->scsi_host->host_no,
1686                         sd->bus, sd->target, sd->lun);
1687                 break;
1688         }
1689 }
1690
1691 /*
1692  * Figure the list of physical drive pointers for a logical drive with
1693  * raid offload configured.
1694  */
1695 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1696                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1697                                 struct hpsa_scsi_dev_t *logical_drive)
1698 {
1699         struct raid_map_data *map = &logical_drive->raid_map;
1700         struct raid_map_disk_data *dd = &map->data[0];
1701         int i, j;
1702         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1703                                 le16_to_cpu(map->metadata_disks_per_row);
1704         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1705                                 le16_to_cpu(map->layout_map_count) *
1706                                 total_disks_per_row;
1707         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1708                                 total_disks_per_row;
1709         int qdepth;
1710
1711         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1712                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1713
1714         logical_drive->nphysical_disks = nraid_map_entries;
1715
1716         qdepth = 0;
1717         for (i = 0; i < nraid_map_entries; i++) {
1718                 logical_drive->phys_disk[i] = NULL;
1719                 if (!logical_drive->offload_config)
1720                         continue;
1721                 for (j = 0; j < ndevices; j++) {
1722                         if (dev[j] == NULL)
1723                                 continue;
1724                         if (dev[j]->devtype != TYPE_DISK &&
1725                             dev[j]->devtype != TYPE_ZBC)
1726                                 continue;
1727                         if (is_logical_device(dev[j]))
1728                                 continue;
1729                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1730                                 continue;
1731
1732                         logical_drive->phys_disk[i] = dev[j];
1733                         if (i < nphys_disk)
1734                                 qdepth = min(h->nr_cmds, qdepth +
1735                                     logical_drive->phys_disk[i]->queue_depth);
1736                         break;
1737                 }
1738
1739                 /*
1740                  * This can happen if a physical drive is removed and
1741                  * the logical drive is degraded.  In that case, the RAID
1742                  * map data will refer to a physical disk which isn't actually
1743                  * present.  And in that case offload_enabled should already
1744                  * be 0, but we'll turn it off here just in case
1745                  */
1746                 if (!logical_drive->phys_disk[i]) {
1747                         dev_warn(&h->pdev->dev,
1748                                 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1749                                 __func__,
1750                                 h->scsi_host->host_no, logical_drive->bus,
1751                                 logical_drive->target, logical_drive->lun);
1752                         hpsa_turn_off_ioaccel_for_device(logical_drive);
1753                         logical_drive->queue_depth = 8;
1754                 }
1755         }
1756         if (nraid_map_entries)
1757                 /*
1758                  * This is correct for reads, too high for full stripe writes,
1759                  * way too high for partial stripe writes
1760                  */
1761                 logical_drive->queue_depth = qdepth;
1762         else {
1763                 if (logical_drive->external)
1764                         logical_drive->queue_depth = EXTERNAL_QD;
1765                 else
1766                         logical_drive->queue_depth = h->nr_cmds;
1767         }
1768 }
1769
1770 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1771                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1772 {
1773         int i;
1774
1775         for (i = 0; i < ndevices; i++) {
1776                 if (dev[i] == NULL)
1777                         continue;
1778                 if (dev[i]->devtype != TYPE_DISK &&
1779                     dev[i]->devtype != TYPE_ZBC)
1780                         continue;
1781                 if (!is_logical_device(dev[i]))
1782                         continue;
1783
1784                 /*
1785                  * If offload is currently enabled, the RAID map and
1786                  * phys_disk[] assignment *better* not be changing
1787                  * because we would be changing ioaccel phsy_disk[] pointers
1788                  * on a ioaccel volume processing I/O requests.
1789                  *
1790                  * If an ioaccel volume status changed, initially because it was
1791                  * re-configured and thus underwent a transformation, or
1792                  * a drive failed, we would have received a state change
1793                  * request and ioaccel should have been turned off. When the
1794                  * transformation completes, we get another state change
1795                  * request to turn ioaccel back on. In this case, we need
1796                  * to update the ioaccel information.
1797                  *
1798                  * Thus: If it is not currently enabled, but will be after
1799                  * the scan completes, make sure the ioaccel pointers
1800                  * are up to date.
1801                  */
1802
1803                 if (!dev[i]->offload_enabled && dev[i]->offload_to_be_enabled)
1804                         hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1805         }
1806 }
1807
1808 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1809 {
1810         int rc = 0;
1811
1812         if (!h->scsi_host)
1813                 return 1;
1814
1815         if (is_logical_device(device)) /* RAID */
1816                 rc = scsi_add_device(h->scsi_host, device->bus,
1817                                         device->target, device->lun);
1818         else /* HBA */
1819                 rc = hpsa_add_sas_device(h->sas_host, device);
1820
1821         return rc;
1822 }
1823
1824 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1825                                                 struct hpsa_scsi_dev_t *dev)
1826 {
1827         int i;
1828         int count = 0;
1829
1830         for (i = 0; i < h->nr_cmds; i++) {
1831                 struct CommandList *c = h->cmd_pool + i;
1832                 int refcount = atomic_inc_return(&c->refcount);
1833
1834                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1835                                 dev->scsi3addr)) {
1836                         unsigned long flags;
1837
1838                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1839                         if (!hpsa_is_cmd_idle(c))
1840                                 ++count;
1841                         spin_unlock_irqrestore(&h->lock, flags);
1842                 }
1843
1844                 cmd_free(h, c);
1845         }
1846
1847         return count;
1848 }
1849
1850 #define NUM_WAIT 20
1851 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1852                                                 struct hpsa_scsi_dev_t *device)
1853 {
1854         int cmds = 0;
1855         int waits = 0;
1856         int num_wait = NUM_WAIT;
1857
1858         if (device->external)
1859                 num_wait = HPSA_EH_PTRAID_TIMEOUT;
1860
1861         while (1) {
1862                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1863                 if (cmds == 0)
1864                         break;
1865                 if (++waits > num_wait)
1866                         break;
1867                 msleep(1000);
1868         }
1869
1870         if (waits > num_wait) {
1871                 dev_warn(&h->pdev->dev,
1872                         "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1873                         __func__,
1874                         h->scsi_host->host_no,
1875                         device->bus, device->target, device->lun, cmds);
1876         }
1877 }
1878
1879 static void hpsa_remove_device(struct ctlr_info *h,
1880                         struct hpsa_scsi_dev_t *device)
1881 {
1882         struct scsi_device *sdev = NULL;
1883
1884         if (!h->scsi_host)
1885                 return;
1886
1887         /*
1888          * Allow for commands to drain
1889          */
1890         device->removed = 1;
1891         hpsa_wait_for_outstanding_commands_for_dev(h, device);
1892
1893         if (is_logical_device(device)) { /* RAID */
1894                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1895                                                 device->target, device->lun);
1896                 if (sdev) {
1897                         scsi_remove_device(sdev);
1898                         scsi_device_put(sdev);
1899                 } else {
1900                         /*
1901                          * We don't expect to get here.  Future commands
1902                          * to this device will get a selection timeout as
1903                          * if the device were gone.
1904                          */
1905                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1906                                         "didn't find device for removal.");
1907                 }
1908         } else { /* HBA */
1909
1910                 hpsa_remove_sas_device(device);
1911         }
1912 }
1913
1914 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1915         struct hpsa_scsi_dev_t *sd[], int nsds)
1916 {
1917         /* sd contains scsi3 addresses and devtypes, and inquiry
1918          * data.  This function takes what's in sd to be the current
1919          * reality and updates h->dev[] to reflect that reality.
1920          */
1921         int i, entry, device_change, changes = 0;
1922         struct hpsa_scsi_dev_t *csd;
1923         unsigned long flags;
1924         struct hpsa_scsi_dev_t **added, **removed;
1925         int nadded, nremoved;
1926
1927         /*
1928          * A reset can cause a device status to change
1929          * re-schedule the scan to see what happened.
1930          */
1931         spin_lock_irqsave(&h->reset_lock, flags);
1932         if (h->reset_in_progress) {
1933                 h->drv_req_rescan = 1;
1934                 spin_unlock_irqrestore(&h->reset_lock, flags);
1935                 return;
1936         }
1937         spin_unlock_irqrestore(&h->reset_lock, flags);
1938
1939         added = kcalloc(HPSA_MAX_DEVICES, sizeof(*added), GFP_KERNEL);
1940         removed = kcalloc(HPSA_MAX_DEVICES, sizeof(*removed), GFP_KERNEL);
1941
1942         if (!added || !removed) {
1943                 dev_warn(&h->pdev->dev, "out of memory in "
1944                         "adjust_hpsa_scsi_table\n");
1945                 goto free_and_out;
1946         }
1947
1948         spin_lock_irqsave(&h->devlock, flags);
1949
1950         /* find any devices in h->dev[] that are not in
1951          * sd[] and remove them from h->dev[], and for any
1952          * devices which have changed, remove the old device
1953          * info and add the new device info.
1954          * If minor device attributes change, just update
1955          * the existing device structure.
1956          */
1957         i = 0;
1958         nremoved = 0;
1959         nadded = 0;
1960         while (i < h->ndevices) {
1961                 csd = h->dev[i];
1962                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1963                 if (device_change == DEVICE_NOT_FOUND) {
1964                         changes++;
1965                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1966                         continue; /* remove ^^^, hence i not incremented */
1967                 } else if (device_change == DEVICE_CHANGED) {
1968                         changes++;
1969                         hpsa_scsi_replace_entry(h, i, sd[entry],
1970                                 added, &nadded, removed, &nremoved);
1971                         /* Set it to NULL to prevent it from being freed
1972                          * at the bottom of hpsa_update_scsi_devices()
1973                          */
1974                         sd[entry] = NULL;
1975                 } else if (device_change == DEVICE_UPDATED) {
1976                         hpsa_scsi_update_entry(h, i, sd[entry]);
1977                 }
1978                 i++;
1979         }
1980
1981         /* Now, make sure every device listed in sd[] is also
1982          * listed in h->dev[], adding them if they aren't found
1983          */
1984
1985         for (i = 0; i < nsds; i++) {
1986                 if (!sd[i]) /* if already added above. */
1987                         continue;
1988
1989                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1990                  * as the SCSI mid-layer does not handle such devices well.
1991                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1992                  * at 160Hz, and prevents the system from coming up.
1993                  */
1994                 if (sd[i]->volume_offline) {
1995                         hpsa_show_volume_status(h, sd[i]);
1996                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1997                         continue;
1998                 }
1999
2000                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
2001                                         h->ndevices, &entry);
2002                 if (device_change == DEVICE_NOT_FOUND) {
2003                         changes++;
2004                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
2005                                 break;
2006                         sd[i] = NULL; /* prevent from being freed later. */
2007                 } else if (device_change == DEVICE_CHANGED) {
2008                         /* should never happen... */
2009                         changes++;
2010                         dev_warn(&h->pdev->dev,
2011                                 "device unexpectedly changed.\n");
2012                         /* but if it does happen, we just ignore that device */
2013                 }
2014         }
2015         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
2016
2017         /*
2018          * Now that h->dev[]->phys_disk[] is coherent, we can enable
2019          * any logical drives that need it enabled.
2020          *
2021          * The raid map should be current by now.
2022          *
2023          * We are updating the device list used for I/O requests.
2024          */
2025         for (i = 0; i < h->ndevices; i++) {
2026                 if (h->dev[i] == NULL)
2027                         continue;
2028                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
2029         }
2030
2031         spin_unlock_irqrestore(&h->devlock, flags);
2032
2033         /* Monitor devices which are in one of several NOT READY states to be
2034          * brought online later. This must be done without holding h->devlock,
2035          * so don't touch h->dev[]
2036          */
2037         for (i = 0; i < nsds; i++) {
2038                 if (!sd[i]) /* if already added above. */
2039                         continue;
2040                 if (sd[i]->volume_offline)
2041                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
2042         }
2043
2044         /* Don't notify scsi mid layer of any changes the first time through
2045          * (or if there are no changes) scsi_scan_host will do it later the
2046          * first time through.
2047          */
2048         if (!changes)
2049                 goto free_and_out;
2050
2051         /* Notify scsi mid layer of any removed devices */
2052         for (i = 0; i < nremoved; i++) {
2053                 if (removed[i] == NULL)
2054                         continue;
2055                 if (removed[i]->expose_device)
2056                         hpsa_remove_device(h, removed[i]);
2057                 kfree(removed[i]);
2058                 removed[i] = NULL;
2059         }
2060
2061         /* Notify scsi mid layer of any added devices */
2062         for (i = 0; i < nadded; i++) {
2063                 int rc = 0;
2064
2065                 if (added[i] == NULL)
2066                         continue;
2067                 if (!(added[i]->expose_device))
2068                         continue;
2069                 rc = hpsa_add_device(h, added[i]);
2070                 if (!rc)
2071                         continue;
2072                 dev_warn(&h->pdev->dev,
2073                         "addition failed %d, device not added.", rc);
2074                 /* now we have to remove it from h->dev,
2075                  * since it didn't get added to scsi mid layer
2076                  */
2077                 fixup_botched_add(h, added[i]);
2078                 h->drv_req_rescan = 1;
2079         }
2080
2081 free_and_out:
2082         kfree(added);
2083         kfree(removed);
2084 }
2085
2086 /*
2087  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2088  * Assume's h->devlock is held.
2089  */
2090 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
2091         int bus, int target, int lun)
2092 {
2093         int i;
2094         struct hpsa_scsi_dev_t *sd;
2095
2096         for (i = 0; i < h->ndevices; i++) {
2097                 sd = h->dev[i];
2098                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2099                         return sd;
2100         }
2101         return NULL;
2102 }
2103
2104 static int hpsa_slave_alloc(struct scsi_device *sdev)
2105 {
2106         struct hpsa_scsi_dev_t *sd = NULL;
2107         unsigned long flags;
2108         struct ctlr_info *h;
2109
2110         h = sdev_to_hba(sdev);
2111         spin_lock_irqsave(&h->devlock, flags);
2112         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2113                 struct scsi_target *starget;
2114                 struct sas_rphy *rphy;
2115
2116                 starget = scsi_target(sdev);
2117                 rphy = target_to_rphy(starget);
2118                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2119                 if (sd) {
2120                         sd->target = sdev_id(sdev);
2121                         sd->lun = sdev->lun;
2122                 }
2123         }
2124         if (!sd)
2125                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2126                                         sdev_id(sdev), sdev->lun);
2127
2128         if (sd && sd->expose_device) {
2129                 atomic_set(&sd->ioaccel_cmds_out, 0);
2130                 sdev->hostdata = sd;
2131         } else
2132                 sdev->hostdata = NULL;
2133         spin_unlock_irqrestore(&h->devlock, flags);
2134         return 0;
2135 }
2136
2137 /* configure scsi device based on internal per-device structure */
2138 #define CTLR_TIMEOUT (120 * HZ)
2139 static int hpsa_slave_configure(struct scsi_device *sdev)
2140 {
2141         struct hpsa_scsi_dev_t *sd;
2142         int queue_depth;
2143
2144         sd = sdev->hostdata;
2145         sdev->no_uld_attach = !sd || !sd->expose_device;
2146
2147         if (sd) {
2148                 sd->was_removed = 0;
2149                 queue_depth = sd->queue_depth != 0 ?
2150                                 sd->queue_depth : sdev->host->can_queue;
2151                 if (sd->external) {
2152                         queue_depth = EXTERNAL_QD;
2153                         sdev->eh_timeout = HPSA_EH_PTRAID_TIMEOUT;
2154                         blk_queue_rq_timeout(sdev->request_queue,
2155                                                 HPSA_EH_PTRAID_TIMEOUT);
2156                 }
2157                 if (is_hba_lunid(sd->scsi3addr)) {
2158                         sdev->eh_timeout = CTLR_TIMEOUT;
2159                         blk_queue_rq_timeout(sdev->request_queue, CTLR_TIMEOUT);
2160                 }
2161         } else {
2162                 queue_depth = sdev->host->can_queue;
2163         }
2164
2165         scsi_change_queue_depth(sdev, queue_depth);
2166
2167         return 0;
2168 }
2169
2170 static void hpsa_slave_destroy(struct scsi_device *sdev)
2171 {
2172         struct hpsa_scsi_dev_t *hdev = NULL;
2173
2174         hdev = sdev->hostdata;
2175
2176         if (hdev)
2177                 hdev->was_removed = 1;
2178 }
2179
2180 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2181 {
2182         int i;
2183
2184         if (!h->ioaccel2_cmd_sg_list)
2185                 return;
2186         for (i = 0; i < h->nr_cmds; i++) {
2187                 kfree(h->ioaccel2_cmd_sg_list[i]);
2188                 h->ioaccel2_cmd_sg_list[i] = NULL;
2189         }
2190         kfree(h->ioaccel2_cmd_sg_list);
2191         h->ioaccel2_cmd_sg_list = NULL;
2192 }
2193
2194 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2195 {
2196         int i;
2197
2198         if (h->chainsize <= 0)
2199                 return 0;
2200
2201         h->ioaccel2_cmd_sg_list =
2202                 kcalloc(h->nr_cmds, sizeof(*h->ioaccel2_cmd_sg_list),
2203                                         GFP_KERNEL);
2204         if (!h->ioaccel2_cmd_sg_list)
2205                 return -ENOMEM;
2206         for (i = 0; i < h->nr_cmds; i++) {
2207                 h->ioaccel2_cmd_sg_list[i] =
2208                         kmalloc_array(h->maxsgentries,
2209                                       sizeof(*h->ioaccel2_cmd_sg_list[i]),
2210                                       GFP_KERNEL);
2211                 if (!h->ioaccel2_cmd_sg_list[i])
2212                         goto clean;
2213         }
2214         return 0;
2215
2216 clean:
2217         hpsa_free_ioaccel2_sg_chain_blocks(h);
2218         return -ENOMEM;
2219 }
2220
2221 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2222 {
2223         int i;
2224
2225         if (!h->cmd_sg_list)
2226                 return;
2227         for (i = 0; i < h->nr_cmds; i++) {
2228                 kfree(h->cmd_sg_list[i]);
2229                 h->cmd_sg_list[i] = NULL;
2230         }
2231         kfree(h->cmd_sg_list);
2232         h->cmd_sg_list = NULL;
2233 }
2234
2235 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2236 {
2237         int i;
2238
2239         if (h->chainsize <= 0)
2240                 return 0;
2241
2242         h->cmd_sg_list = kcalloc(h->nr_cmds, sizeof(*h->cmd_sg_list),
2243                                  GFP_KERNEL);
2244         if (!h->cmd_sg_list)
2245                 return -ENOMEM;
2246
2247         for (i = 0; i < h->nr_cmds; i++) {
2248                 h->cmd_sg_list[i] = kmalloc_array(h->chainsize,
2249                                                   sizeof(*h->cmd_sg_list[i]),
2250                                                   GFP_KERNEL);
2251                 if (!h->cmd_sg_list[i])
2252                         goto clean;
2253
2254         }
2255         return 0;
2256
2257 clean:
2258         hpsa_free_sg_chain_blocks(h);
2259         return -ENOMEM;
2260 }
2261
2262 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2263         struct io_accel2_cmd *cp, struct CommandList *c)
2264 {
2265         struct ioaccel2_sg_element *chain_block;
2266         u64 temp64;
2267         u32 chain_size;
2268
2269         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2270         chain_size = le32_to_cpu(cp->sg[0].length);
2271         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_size,
2272                                 DMA_TO_DEVICE);
2273         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2274                 /* prevent subsequent unmapping */
2275                 cp->sg->address = 0;
2276                 return -1;
2277         }
2278         cp->sg->address = cpu_to_le64(temp64);
2279         return 0;
2280 }
2281
2282 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2283         struct io_accel2_cmd *cp)
2284 {
2285         struct ioaccel2_sg_element *chain_sg;
2286         u64 temp64;
2287         u32 chain_size;
2288
2289         chain_sg = cp->sg;
2290         temp64 = le64_to_cpu(chain_sg->address);
2291         chain_size = le32_to_cpu(cp->sg[0].length);
2292         dma_unmap_single(&h->pdev->dev, temp64, chain_size, DMA_TO_DEVICE);
2293 }
2294
2295 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2296         struct CommandList *c)
2297 {
2298         struct SGDescriptor *chain_sg, *chain_block;
2299         u64 temp64;
2300         u32 chain_len;
2301
2302         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2303         chain_block = h->cmd_sg_list[c->cmdindex];
2304         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2305         chain_len = sizeof(*chain_sg) *
2306                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2307         chain_sg->Len = cpu_to_le32(chain_len);
2308         temp64 = dma_map_single(&h->pdev->dev, chain_block, chain_len,
2309                                 DMA_TO_DEVICE);
2310         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2311                 /* prevent subsequent unmapping */
2312                 chain_sg->Addr = cpu_to_le64(0);
2313                 return -1;
2314         }
2315         chain_sg->Addr = cpu_to_le64(temp64);
2316         return 0;
2317 }
2318
2319 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2320         struct CommandList *c)
2321 {
2322         struct SGDescriptor *chain_sg;
2323
2324         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2325                 return;
2326
2327         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2328         dma_unmap_single(&h->pdev->dev, le64_to_cpu(chain_sg->Addr),
2329                         le32_to_cpu(chain_sg->Len), DMA_TO_DEVICE);
2330 }
2331
2332
2333 /* Decode the various types of errors on ioaccel2 path.
2334  * Return 1 for any error that should generate a RAID path retry.
2335  * Return 0 for errors that don't require a RAID path retry.
2336  */
2337 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2338                                         struct CommandList *c,
2339                                         struct scsi_cmnd *cmd,
2340                                         struct io_accel2_cmd *c2,
2341                                         struct hpsa_scsi_dev_t *dev)
2342 {
2343         int data_len;
2344         int retry = 0;
2345         u32 ioaccel2_resid = 0;
2346
2347         switch (c2->error_data.serv_response) {
2348         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2349                 switch (c2->error_data.status) {
2350                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2351                         if (cmd)
2352                                 cmd->result = 0;
2353                         break;
2354                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2355                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2356                         if (c2->error_data.data_present !=
2357                                         IOACCEL2_SENSE_DATA_PRESENT) {
2358                                 memset(cmd->sense_buffer, 0,
2359                                         SCSI_SENSE_BUFFERSIZE);
2360                                 break;
2361                         }
2362                         /* copy the sense data */
2363                         data_len = c2->error_data.sense_data_len;
2364                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2365                                 data_len = SCSI_SENSE_BUFFERSIZE;
2366                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2367                                 data_len =
2368                                         sizeof(c2->error_data.sense_data_buff);
2369                         memcpy(cmd->sense_buffer,
2370                                 c2->error_data.sense_data_buff, data_len);
2371                         retry = 1;
2372                         break;
2373                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2374                         retry = 1;
2375                         break;
2376                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2377                         retry = 1;
2378                         break;
2379                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2380                         retry = 1;
2381                         break;
2382                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2383                         retry = 1;
2384                         break;
2385                 default:
2386                         retry = 1;
2387                         break;
2388                 }
2389                 break;
2390         case IOACCEL2_SERV_RESPONSE_FAILURE:
2391                 switch (c2->error_data.status) {
2392                 case IOACCEL2_STATUS_SR_IO_ERROR:
2393                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2394                 case IOACCEL2_STATUS_SR_OVERRUN:
2395                         retry = 1;
2396                         break;
2397                 case IOACCEL2_STATUS_SR_UNDERRUN:
2398                         cmd->result = (DID_OK << 16);           /* host byte */
2399                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2400                         ioaccel2_resid = get_unaligned_le32(
2401                                                 &c2->error_data.resid_cnt[0]);
2402                         scsi_set_resid(cmd, ioaccel2_resid);
2403                         break;
2404                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2405                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2406                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2407                         /*
2408                          * Did an HBA disk disappear? We will eventually
2409                          * get a state change event from the controller but
2410                          * in the meantime, we need to tell the OS that the
2411                          * HBA disk is no longer there and stop I/O
2412                          * from going down. This allows the potential re-insert
2413                          * of the disk to get the same device node.
2414                          */
2415                         if (dev->physical_device && dev->expose_device) {
2416                                 cmd->result = DID_NO_CONNECT << 16;
2417                                 dev->removed = 1;
2418                                 h->drv_req_rescan = 1;
2419                                 dev_warn(&h->pdev->dev,
2420                                         "%s: device is gone!\n", __func__);
2421                         } else
2422                                 /*
2423                                  * Retry by sending down the RAID path.
2424                                  * We will get an event from ctlr to
2425                                  * trigger rescan regardless.
2426                                  */
2427                                 retry = 1;
2428                         break;
2429                 default:
2430                         retry = 1;
2431                 }
2432                 break;
2433         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2434                 break;
2435         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2436                 break;
2437         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2438                 retry = 1;
2439                 break;
2440         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2441                 break;
2442         default:
2443                 retry = 1;
2444                 break;
2445         }
2446
2447         if (dev->in_reset)
2448                 retry = 0;
2449
2450         return retry;   /* retry on raid path? */
2451 }
2452
2453 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2454                 struct CommandList *c)
2455 {
2456         struct hpsa_scsi_dev_t *dev = c->device;
2457
2458         /*
2459          * Reset c->scsi_cmd here so that the reset handler will know
2460          * this command has completed.  Then, check to see if the handler is
2461          * waiting for this command, and, if so, wake it.
2462          */
2463         c->scsi_cmd = SCSI_CMD_IDLE;
2464         mb();   /* Declare command idle before checking for pending events. */
2465         if (dev) {
2466                 atomic_dec(&dev->commands_outstanding);
2467                 if (dev->in_reset &&
2468                         atomic_read(&dev->commands_outstanding) <= 0)
2469                         wake_up_all(&h->event_sync_wait_queue);
2470         }
2471 }
2472
2473 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2474                                       struct CommandList *c)
2475 {
2476         hpsa_cmd_resolve_events(h, c);
2477         cmd_tagged_free(h, c);
2478 }
2479
2480 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2481                 struct CommandList *c, struct scsi_cmnd *cmd)
2482 {
2483         hpsa_cmd_resolve_and_free(h, c);
2484         if (cmd && cmd->scsi_done)
2485                 cmd->scsi_done(cmd);
2486 }
2487
2488 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2489 {
2490         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2491         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2492 }
2493
2494 static void process_ioaccel2_completion(struct ctlr_info *h,
2495                 struct CommandList *c, struct scsi_cmnd *cmd,
2496                 struct hpsa_scsi_dev_t *dev)
2497 {
2498         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2499
2500         /* check for good status */
2501         if (likely(c2->error_data.serv_response == 0 &&
2502                         c2->error_data.status == 0)) {
2503                 cmd->result = 0;
2504                 return hpsa_cmd_free_and_done(h, c, cmd);
2505         }
2506
2507         /*
2508          * Any RAID offload error results in retry which will use
2509          * the normal I/O path so the controller can handle whatever is
2510          * wrong.
2511          */
2512         if (is_logical_device(dev) &&
2513                 c2->error_data.serv_response ==
2514                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2515                 if (c2->error_data.status ==
2516                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2517                         hpsa_turn_off_ioaccel_for_device(dev);
2518                 }
2519
2520                 if (dev->in_reset) {
2521                         cmd->result = DID_RESET << 16;
2522                         return hpsa_cmd_free_and_done(h, c, cmd);
2523                 }
2524
2525                 return hpsa_retry_cmd(h, c);
2526         }
2527
2528         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2529                 return hpsa_retry_cmd(h, c);
2530
2531         return hpsa_cmd_free_and_done(h, c, cmd);
2532 }
2533
2534 /* Returns 0 on success, < 0 otherwise. */
2535 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2536                                         struct CommandList *cp)
2537 {
2538         u8 tmf_status = cp->err_info->ScsiStatus;
2539
2540         switch (tmf_status) {
2541         case CISS_TMF_COMPLETE:
2542                 /*
2543                  * CISS_TMF_COMPLETE never happens, instead,
2544                  * ei->CommandStatus == 0 for this case.
2545                  */
2546         case CISS_TMF_SUCCESS:
2547                 return 0;
2548         case CISS_TMF_INVALID_FRAME:
2549         case CISS_TMF_NOT_SUPPORTED:
2550         case CISS_TMF_FAILED:
2551         case CISS_TMF_WRONG_LUN:
2552         case CISS_TMF_OVERLAPPED_TAG:
2553                 break;
2554         default:
2555                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2556                                 tmf_status);
2557                 break;
2558         }
2559         return -tmf_status;
2560 }
2561
2562 static void complete_scsi_command(struct CommandList *cp)
2563 {
2564         struct scsi_cmnd *cmd;
2565         struct ctlr_info *h;
2566         struct ErrorInfo *ei;
2567         struct hpsa_scsi_dev_t *dev;
2568         struct io_accel2_cmd *c2;
2569
2570         u8 sense_key;
2571         u8 asc;      /* additional sense code */
2572         u8 ascq;     /* additional sense code qualifier */
2573         unsigned long sense_data_size;
2574
2575         ei = cp->err_info;
2576         cmd = cp->scsi_cmd;
2577         h = cp->h;
2578
2579         if (!cmd->device) {
2580                 cmd->result = DID_NO_CONNECT << 16;
2581                 return hpsa_cmd_free_and_done(h, cp, cmd);
2582         }
2583
2584         dev = cmd->device->hostdata;
2585         if (!dev) {
2586                 cmd->result = DID_NO_CONNECT << 16;
2587                 return hpsa_cmd_free_and_done(h, cp, cmd);
2588         }
2589         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2590
2591         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2592         if ((cp->cmd_type == CMD_SCSI) &&
2593                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2594                 hpsa_unmap_sg_chain_block(h, cp);
2595
2596         if ((cp->cmd_type == CMD_IOACCEL2) &&
2597                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2598                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2599
2600         cmd->result = (DID_OK << 16);           /* host byte */
2601         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2602
2603         /* SCSI command has already been cleaned up in SML */
2604         if (dev->was_removed) {
2605                 hpsa_cmd_resolve_and_free(h, cp);
2606                 return;
2607         }
2608
2609         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2610                 if (dev->physical_device && dev->expose_device &&
2611                         dev->removed) {
2612                         cmd->result = DID_NO_CONNECT << 16;
2613                         return hpsa_cmd_free_and_done(h, cp, cmd);
2614                 }
2615                 if (likely(cp->phys_disk != NULL))
2616                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2617         }
2618
2619         /*
2620          * We check for lockup status here as it may be set for
2621          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2622          * fail_all_oustanding_cmds()
2623          */
2624         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2625                 /* DID_NO_CONNECT will prevent a retry */
2626                 cmd->result = DID_NO_CONNECT << 16;
2627                 return hpsa_cmd_free_and_done(h, cp, cmd);
2628         }
2629
2630         if (cp->cmd_type == CMD_IOACCEL2)
2631                 return process_ioaccel2_completion(h, cp, cmd, dev);
2632
2633         scsi_set_resid(cmd, ei->ResidualCnt);
2634         if (ei->CommandStatus == 0)
2635                 return hpsa_cmd_free_and_done(h, cp, cmd);
2636
2637         /* For I/O accelerator commands, copy over some fields to the normal
2638          * CISS header used below for error handling.
2639          */
2640         if (cp->cmd_type == CMD_IOACCEL1) {
2641                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2642                 cp->Header.SGList = scsi_sg_count(cmd);
2643                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2644                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2645                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2646                 cp->Header.tag = c->tag;
2647                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2648                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2649
2650                 /* Any RAID offload error results in retry which will use
2651                  * the normal I/O path so the controller can handle whatever's
2652                  * wrong.
2653                  */
2654                 if (is_logical_device(dev)) {
2655                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2656                                 dev->offload_enabled = 0;
2657                         return hpsa_retry_cmd(h, cp);
2658                 }
2659         }
2660
2661         /* an error has occurred */
2662         switch (ei->CommandStatus) {
2663
2664         case CMD_TARGET_STATUS:
2665                 cmd->result |= ei->ScsiStatus;
2666                 /* copy the sense data */
2667                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2668                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2669                 else
2670                         sense_data_size = sizeof(ei->SenseInfo);
2671                 if (ei->SenseLen < sense_data_size)
2672                         sense_data_size = ei->SenseLen;
2673                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2674                 if (ei->ScsiStatus)
2675                         decode_sense_data(ei->SenseInfo, sense_data_size,
2676                                 &sense_key, &asc, &ascq);
2677                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2678                         switch (sense_key) {
2679                         case ABORTED_COMMAND:
2680                                 cmd->result |= DID_SOFT_ERROR << 16;
2681                                 break;
2682                         case UNIT_ATTENTION:
2683                                 if (asc == 0x3F && ascq == 0x0E)
2684                                         h->drv_req_rescan = 1;
2685                                 break;
2686                         case ILLEGAL_REQUEST:
2687                                 if (asc == 0x25 && ascq == 0x00) {
2688                                         dev->removed = 1;
2689                                         cmd->result = DID_NO_CONNECT << 16;
2690                                 }
2691                                 break;
2692                         }
2693                         break;
2694                 }
2695                 /* Problem was not a check condition
2696                  * Pass it up to the upper layers...
2697                  */
2698                 if (ei->ScsiStatus) {
2699                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2700                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2701                                 "Returning result: 0x%x\n",
2702                                 cp, ei->ScsiStatus,
2703                                 sense_key, asc, ascq,
2704                                 cmd->result);
2705                 } else {  /* scsi status is zero??? How??? */
2706                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2707                                 "Returning no connection.\n", cp),
2708
2709                         /* Ordinarily, this case should never happen,
2710                          * but there is a bug in some released firmware
2711                          * revisions that allows it to happen if, for
2712                          * example, a 4100 backplane loses power and
2713                          * the tape drive is in it.  We assume that
2714                          * it's a fatal error of some kind because we
2715                          * can't show that it wasn't. We will make it
2716                          * look like selection timeout since that is
2717                          * the most common reason for this to occur,
2718                          * and it's severe enough.
2719                          */
2720
2721                         cmd->result = DID_NO_CONNECT << 16;
2722                 }
2723                 break;
2724
2725         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2726                 break;
2727         case CMD_DATA_OVERRUN:
2728                 dev_warn(&h->pdev->dev,
2729                         "CDB %16phN data overrun\n", cp->Request.CDB);
2730                 break;
2731         case CMD_INVALID: {
2732                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2733                 print_cmd(cp); */
2734                 /* We get CMD_INVALID if you address a non-existent device
2735                  * instead of a selection timeout (no response).  You will
2736                  * see this if you yank out a drive, then try to access it.
2737                  * This is kind of a shame because it means that any other
2738                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2739                  * missing target. */
2740                 cmd->result = DID_NO_CONNECT << 16;
2741         }
2742                 break;
2743         case CMD_PROTOCOL_ERR:
2744                 cmd->result = DID_ERROR << 16;
2745                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2746                                 cp->Request.CDB);
2747                 break;
2748         case CMD_HARDWARE_ERR:
2749                 cmd->result = DID_ERROR << 16;
2750                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2751                         cp->Request.CDB);
2752                 break;
2753         case CMD_CONNECTION_LOST:
2754                 cmd->result = DID_ERROR << 16;
2755                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2756                         cp->Request.CDB);
2757                 break;
2758         case CMD_ABORTED:
2759                 cmd->result = DID_ABORT << 16;
2760                 break;
2761         case CMD_ABORT_FAILED:
2762                 cmd->result = DID_ERROR << 16;
2763                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2764                         cp->Request.CDB);
2765                 break;
2766         case CMD_UNSOLICITED_ABORT:
2767                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2768                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2769                         cp->Request.CDB);
2770                 break;
2771         case CMD_TIMEOUT:
2772                 cmd->result = DID_TIME_OUT << 16;
2773                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2774                         cp->Request.CDB);
2775                 break;
2776         case CMD_UNABORTABLE:
2777                 cmd->result = DID_ERROR << 16;
2778                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2779                 break;
2780         case CMD_TMF_STATUS:
2781                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2782                         cmd->result = DID_ERROR << 16;
2783                 break;
2784         case CMD_IOACCEL_DISABLED:
2785                 /* This only handles the direct pass-through case since RAID
2786                  * offload is handled above.  Just attempt a retry.
2787                  */
2788                 cmd->result = DID_SOFT_ERROR << 16;
2789                 dev_warn(&h->pdev->dev,
2790                                 "cp %p had HP SSD Smart Path error\n", cp);
2791                 break;
2792         default:
2793                 cmd->result = DID_ERROR << 16;
2794                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2795                                 cp, ei->CommandStatus);
2796         }
2797
2798         return hpsa_cmd_free_and_done(h, cp, cmd);
2799 }
2800
2801 static void hpsa_pci_unmap(struct pci_dev *pdev, struct CommandList *c,
2802                 int sg_used, enum dma_data_direction data_direction)
2803 {
2804         int i;
2805
2806         for (i = 0; i < sg_used; i++)
2807                 dma_unmap_single(&pdev->dev, le64_to_cpu(c->SG[i].Addr),
2808                                 le32_to_cpu(c->SG[i].Len),
2809                                 data_direction);
2810 }
2811
2812 static int hpsa_map_one(struct pci_dev *pdev,
2813                 struct CommandList *cp,
2814                 unsigned char *buf,
2815                 size_t buflen,
2816                 enum dma_data_direction data_direction)
2817 {
2818         u64 addr64;
2819
2820         if (buflen == 0 || data_direction == DMA_NONE) {
2821                 cp->Header.SGList = 0;
2822                 cp->Header.SGTotal = cpu_to_le16(0);
2823                 return 0;
2824         }
2825
2826         addr64 = dma_map_single(&pdev->dev, buf, buflen, data_direction);
2827         if (dma_mapping_error(&pdev->dev, addr64)) {
2828                 /* Prevent subsequent unmap of something never mapped */
2829                 cp->Header.SGList = 0;
2830                 cp->Header.SGTotal = cpu_to_le16(0);
2831                 return -1;
2832         }
2833         cp->SG[0].Addr = cpu_to_le64(addr64);
2834         cp->SG[0].Len = cpu_to_le32(buflen);
2835         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2836         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2837         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2838         return 0;
2839 }
2840
2841 #define NO_TIMEOUT ((unsigned long) -1)
2842 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2843 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2844         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2845 {
2846         DECLARE_COMPLETION_ONSTACK(wait);
2847
2848         c->waiting = &wait;
2849         __enqueue_cmd_and_start_io(h, c, reply_queue);
2850         if (timeout_msecs == NO_TIMEOUT) {
2851                 /* TODO: get rid of this no-timeout thing */
2852                 wait_for_completion_io(&wait);
2853                 return IO_OK;
2854         }
2855         if (!wait_for_completion_io_timeout(&wait,
2856                                         msecs_to_jiffies(timeout_msecs))) {
2857                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2858                 return -ETIMEDOUT;
2859         }
2860         return IO_OK;
2861 }
2862
2863 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2864                                    int reply_queue, unsigned long timeout_msecs)
2865 {
2866         if (unlikely(lockup_detected(h))) {
2867                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2868                 return IO_OK;
2869         }
2870         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2871 }
2872
2873 static u32 lockup_detected(struct ctlr_info *h)
2874 {
2875         int cpu;
2876         u32 rc, *lockup_detected;
2877
2878         cpu = get_cpu();
2879         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2880         rc = *lockup_detected;
2881         put_cpu();
2882         return rc;
2883 }
2884
2885 #define MAX_DRIVER_CMD_RETRIES 25
2886 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2887                 struct CommandList *c, enum dma_data_direction data_direction,
2888                 unsigned long timeout_msecs)
2889 {
2890         int backoff_time = 10, retry_count = 0;
2891         int rc;
2892
2893         do {
2894                 memset(c->err_info, 0, sizeof(*c->err_info));
2895                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2896                                                   timeout_msecs);
2897                 if (rc)
2898                         break;
2899                 retry_count++;
2900                 if (retry_count > 3) {
2901                         msleep(backoff_time);
2902                         if (backoff_time < 1000)
2903                                 backoff_time *= 2;
2904                 }
2905         } while ((check_for_unit_attention(h, c) ||
2906                         check_for_busy(h, c)) &&
2907                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2908         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2909         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2910                 rc = -EIO;
2911         return rc;
2912 }
2913
2914 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2915                                 struct CommandList *c)
2916 {
2917         const u8 *cdb = c->Request.CDB;
2918         const u8 *lun = c->Header.LUN.LunAddrBytes;
2919
2920         dev_warn(&h->pdev->dev, "%s: LUN:%8phN CDB:%16phN\n",
2921                  txt, lun, cdb);
2922 }
2923
2924 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2925                         struct CommandList *cp)
2926 {
2927         const struct ErrorInfo *ei = cp->err_info;
2928         struct device *d = &cp->h->pdev->dev;
2929         u8 sense_key, asc, ascq;
2930         int sense_len;
2931
2932         switch (ei->CommandStatus) {
2933         case CMD_TARGET_STATUS:
2934                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2935                         sense_len = sizeof(ei->SenseInfo);
2936                 else
2937                         sense_len = ei->SenseLen;
2938                 decode_sense_data(ei->SenseInfo, sense_len,
2939                                         &sense_key, &asc, &ascq);
2940                 hpsa_print_cmd(h, "SCSI status", cp);
2941                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2942                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2943                                 sense_key, asc, ascq);
2944                 else
2945                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2946                 if (ei->ScsiStatus == 0)
2947                         dev_warn(d, "SCSI status is abnormally zero.  "
2948                         "(probably indicates selection timeout "
2949                         "reported incorrectly due to a known "
2950                         "firmware bug, circa July, 2001.)\n");
2951                 break;
2952         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2953                 break;
2954         case CMD_DATA_OVERRUN:
2955                 hpsa_print_cmd(h, "overrun condition", cp);
2956                 break;
2957         case CMD_INVALID: {
2958                 /* controller unfortunately reports SCSI passthru's
2959                  * to non-existent targets as invalid commands.
2960                  */
2961                 hpsa_print_cmd(h, "invalid command", cp);
2962                 dev_warn(d, "probably means device no longer present\n");
2963                 }
2964                 break;
2965         case CMD_PROTOCOL_ERR:
2966                 hpsa_print_cmd(h, "protocol error", cp);
2967                 break;
2968         case CMD_HARDWARE_ERR:
2969                 hpsa_print_cmd(h, "hardware error", cp);
2970                 break;
2971         case CMD_CONNECTION_LOST:
2972                 hpsa_print_cmd(h, "connection lost", cp);
2973                 break;
2974         case CMD_ABORTED:
2975                 hpsa_print_cmd(h, "aborted", cp);
2976                 break;
2977         case CMD_ABORT_FAILED:
2978                 hpsa_print_cmd(h, "abort failed", cp);
2979                 break;
2980         case CMD_UNSOLICITED_ABORT:
2981                 hpsa_print_cmd(h, "unsolicited abort", cp);
2982                 break;
2983         case CMD_TIMEOUT:
2984                 hpsa_print_cmd(h, "timed out", cp);
2985                 break;
2986         case CMD_UNABORTABLE:
2987                 hpsa_print_cmd(h, "unabortable", cp);
2988                 break;
2989         case CMD_CTLR_LOCKUP:
2990                 hpsa_print_cmd(h, "controller lockup detected", cp);
2991                 break;
2992         default:
2993                 hpsa_print_cmd(h, "unknown status", cp);
2994                 dev_warn(d, "Unknown command status %x\n",
2995                                 ei->CommandStatus);
2996         }
2997 }
2998
2999 static int hpsa_do_receive_diagnostic(struct ctlr_info *h, u8 *scsi3addr,
3000                                         u8 page, u8 *buf, size_t bufsize)
3001 {
3002         int rc = IO_OK;
3003         struct CommandList *c;
3004         struct ErrorInfo *ei;
3005
3006         c = cmd_alloc(h);
3007         if (fill_cmd(c, RECEIVE_DIAGNOSTIC, h, buf, bufsize,
3008                         page, scsi3addr, TYPE_CMD)) {
3009                 rc = -1;
3010                 goto out;
3011         }
3012         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3013                         NO_TIMEOUT);
3014         if (rc)
3015                 goto out;
3016         ei = c->err_info;
3017         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3018                 hpsa_scsi_interpret_error(h, c);
3019                 rc = -1;
3020         }
3021 out:
3022         cmd_free(h, c);
3023         return rc;
3024 }
3025
3026 static u64 hpsa_get_enclosure_logical_identifier(struct ctlr_info *h,
3027                                                 u8 *scsi3addr)
3028 {
3029         u8 *buf;
3030         u64 sa = 0;
3031         int rc = 0;
3032
3033         buf = kzalloc(1024, GFP_KERNEL);
3034         if (!buf)
3035                 return 0;
3036
3037         rc = hpsa_do_receive_diagnostic(h, scsi3addr, RECEIVE_DIAGNOSTIC,
3038                                         buf, 1024);
3039
3040         if (rc)
3041                 goto out;
3042
3043         sa = get_unaligned_be64(buf+12);
3044
3045 out:
3046         kfree(buf);
3047         return sa;
3048 }
3049
3050 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
3051                         u16 page, unsigned char *buf,
3052                         unsigned char bufsize)
3053 {
3054         int rc = IO_OK;
3055         struct CommandList *c;
3056         struct ErrorInfo *ei;
3057
3058         c = cmd_alloc(h);
3059
3060         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
3061                         page, scsi3addr, TYPE_CMD)) {
3062                 rc = -1;
3063                 goto out;
3064         }
3065         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3066                         NO_TIMEOUT);
3067         if (rc)
3068                 goto out;
3069         ei = c->err_info;
3070         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3071                 hpsa_scsi_interpret_error(h, c);
3072                 rc = -1;
3073         }
3074 out:
3075         cmd_free(h, c);
3076         return rc;
3077 }
3078
3079 static int hpsa_send_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3080         u8 reset_type, int reply_queue)
3081 {
3082         int rc = IO_OK;
3083         struct CommandList *c;
3084         struct ErrorInfo *ei;
3085
3086         c = cmd_alloc(h);
3087         c->device = dev;
3088
3089         /* fill_cmd can't fail here, no data buffer to map. */
3090         (void) fill_cmd(c, reset_type, h, NULL, 0, 0, dev->scsi3addr, TYPE_MSG);
3091         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
3092         if (rc) {
3093                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
3094                 goto out;
3095         }
3096         /* no unmap needed here because no data xfer. */
3097
3098         ei = c->err_info;
3099         if (ei->CommandStatus != 0) {
3100                 hpsa_scsi_interpret_error(h, c);
3101                 rc = -1;
3102         }
3103 out:
3104         cmd_free(h, c);
3105         return rc;
3106 }
3107
3108 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
3109                                struct hpsa_scsi_dev_t *dev,
3110                                unsigned char *scsi3addr)
3111 {
3112         int i;
3113         bool match = false;
3114         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
3115         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
3116
3117         if (hpsa_is_cmd_idle(c))
3118                 return false;
3119
3120         switch (c->cmd_type) {
3121         case CMD_SCSI:
3122         case CMD_IOCTL_PEND:
3123                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
3124                                 sizeof(c->Header.LUN.LunAddrBytes));
3125                 break;
3126
3127         case CMD_IOACCEL1:
3128         case CMD_IOACCEL2:
3129                 if (c->phys_disk == dev) {
3130                         /* HBA mode match */
3131                         match = true;
3132                 } else {
3133                         /* Possible RAID mode -- check each phys dev. */
3134                         /* FIXME:  Do we need to take out a lock here?  If
3135                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3136                          * instead. */
3137                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3138                                 /* FIXME: an alternate test might be
3139                                  *
3140                                  * match = dev->phys_disk[i]->ioaccel_handle
3141                                  *              == c2->scsi_nexus;      */
3142                                 match = dev->phys_disk[i] == c->phys_disk;
3143                         }
3144                 }
3145                 break;
3146
3147         case IOACCEL2_TMF:
3148                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3149                         match = dev->phys_disk[i]->ioaccel_handle ==
3150                                         le32_to_cpu(ac->it_nexus);
3151                 }
3152                 break;
3153
3154         case 0:         /* The command is in the middle of being initialized. */
3155                 match = false;
3156                 break;
3157
3158         default:
3159                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3160                         c->cmd_type);
3161                 BUG();
3162         }
3163
3164         return match;
3165 }
3166
3167 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3168         u8 reset_type, int reply_queue)
3169 {
3170         int rc = 0;
3171
3172         /* We can really only handle one reset at a time */
3173         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3174                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3175                 return -EINTR;
3176         }
3177
3178         rc = hpsa_send_reset(h, dev, reset_type, reply_queue);
3179         if (!rc) {
3180                 /* incremented by sending the reset request */
3181                 atomic_dec(&dev->commands_outstanding);
3182                 wait_event(h->event_sync_wait_queue,
3183                         atomic_read(&dev->commands_outstanding) <= 0 ||
3184                         lockup_detected(h));
3185         }
3186
3187         if (unlikely(lockup_detected(h))) {
3188                 dev_warn(&h->pdev->dev,
3189                          "Controller lockup detected during reset wait\n");
3190                 rc = -ENODEV;
3191         }
3192
3193         if (!rc)
3194                 rc = wait_for_device_to_become_ready(h, dev->scsi3addr, 0);
3195
3196         mutex_unlock(&h->reset_mutex);
3197         return rc;
3198 }
3199
3200 static void hpsa_get_raid_level(struct ctlr_info *h,
3201         unsigned char *scsi3addr, unsigned char *raid_level)
3202 {
3203         int rc;
3204         unsigned char *buf;
3205
3206         *raid_level = RAID_UNKNOWN;
3207         buf = kzalloc(64, GFP_KERNEL);
3208         if (!buf)
3209                 return;
3210
3211         if (!hpsa_vpd_page_supported(h, scsi3addr,
3212                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3213                 goto exit;
3214
3215         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3216                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3217
3218         if (rc == 0)
3219                 *raid_level = buf[8];
3220         if (*raid_level > RAID_UNKNOWN)
3221                 *raid_level = RAID_UNKNOWN;
3222 exit:
3223         kfree(buf);
3224         return;
3225 }
3226
3227 #define HPSA_MAP_DEBUG
3228 #ifdef HPSA_MAP_DEBUG
3229 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3230                                 struct raid_map_data *map_buff)
3231 {
3232         struct raid_map_disk_data *dd = &map_buff->data[0];
3233         int map, row, col;
3234         u16 map_cnt, row_cnt, disks_per_row;
3235
3236         if (rc != 0)
3237                 return;
3238
3239         /* Show details only if debugging has been activated. */
3240         if (h->raid_offload_debug < 2)
3241                 return;
3242
3243         dev_info(&h->pdev->dev, "structure_size = %u\n",
3244                                 le32_to_cpu(map_buff->structure_size));
3245         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3246                         le32_to_cpu(map_buff->volume_blk_size));
3247         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3248                         le64_to_cpu(map_buff->volume_blk_cnt));
3249         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3250                         map_buff->phys_blk_shift);
3251         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3252                         map_buff->parity_rotation_shift);
3253         dev_info(&h->pdev->dev, "strip_size = %u\n",
3254                         le16_to_cpu(map_buff->strip_size));
3255         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3256                         le64_to_cpu(map_buff->disk_starting_blk));
3257         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3258                         le64_to_cpu(map_buff->disk_blk_cnt));
3259         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3260                         le16_to_cpu(map_buff->data_disks_per_row));
3261         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3262                         le16_to_cpu(map_buff->metadata_disks_per_row));
3263         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3264                         le16_to_cpu(map_buff->row_cnt));
3265         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3266                         le16_to_cpu(map_buff->layout_map_count));
3267         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3268                         le16_to_cpu(map_buff->flags));
3269         dev_info(&h->pdev->dev, "encryption = %s\n",
3270                         le16_to_cpu(map_buff->flags) &
3271                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3272         dev_info(&h->pdev->dev, "dekindex = %u\n",
3273                         le16_to_cpu(map_buff->dekindex));
3274         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3275         for (map = 0; map < map_cnt; map++) {
3276                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3277                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3278                 for (row = 0; row < row_cnt; row++) {
3279                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3280                         disks_per_row =
3281                                 le16_to_cpu(map_buff->data_disks_per_row);
3282                         for (col = 0; col < disks_per_row; col++, dd++)
3283                                 dev_info(&h->pdev->dev,
3284                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3285                                         col, dd->ioaccel_handle,
3286                                         dd->xor_mult[0], dd->xor_mult[1]);
3287                         disks_per_row =
3288                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3289                         for (col = 0; col < disks_per_row; col++, dd++)
3290                                 dev_info(&h->pdev->dev,
3291                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3292                                         col, dd->ioaccel_handle,
3293                                         dd->xor_mult[0], dd->xor_mult[1]);
3294                 }
3295         }
3296 }
3297 #else
3298 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3299                         __attribute__((unused)) int rc,
3300                         __attribute__((unused)) struct raid_map_data *map_buff)
3301 {
3302 }
3303 #endif
3304
3305 static int hpsa_get_raid_map(struct ctlr_info *h,
3306         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3307 {
3308         int rc = 0;
3309         struct CommandList *c;
3310         struct ErrorInfo *ei;
3311
3312         c = cmd_alloc(h);
3313
3314         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3315                         sizeof(this_device->raid_map), 0,
3316                         scsi3addr, TYPE_CMD)) {
3317                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3318                 cmd_free(h, c);
3319                 return -1;
3320         }
3321         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3322                         NO_TIMEOUT);
3323         if (rc)
3324                 goto out;
3325         ei = c->err_info;
3326         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3327                 hpsa_scsi_interpret_error(h, c);
3328                 rc = -1;
3329                 goto out;
3330         }
3331         cmd_free(h, c);
3332
3333         /* @todo in the future, dynamically allocate RAID map memory */
3334         if (le32_to_cpu(this_device->raid_map.structure_size) >
3335                                 sizeof(this_device->raid_map)) {
3336                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3337                 rc = -1;
3338         }
3339         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3340         return rc;
3341 out:
3342         cmd_free(h, c);
3343         return rc;
3344 }
3345
3346 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3347                 unsigned char scsi3addr[], u16 bmic_device_index,
3348                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3349 {
3350         int rc = IO_OK;
3351         struct CommandList *c;
3352         struct ErrorInfo *ei;
3353
3354         c = cmd_alloc(h);
3355
3356         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3357                 0, RAID_CTLR_LUNID, TYPE_CMD);
3358         if (rc)
3359                 goto out;
3360
3361         c->Request.CDB[2] = bmic_device_index & 0xff;
3362         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3363
3364         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3365                         NO_TIMEOUT);
3366         if (rc)
3367                 goto out;
3368         ei = c->err_info;
3369         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3370                 hpsa_scsi_interpret_error(h, c);
3371                 rc = -1;
3372         }
3373 out:
3374         cmd_free(h, c);
3375         return rc;
3376 }
3377
3378 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3379         struct bmic_identify_controller *buf, size_t bufsize)
3380 {
3381         int rc = IO_OK;
3382         struct CommandList *c;
3383         struct ErrorInfo *ei;
3384
3385         c = cmd_alloc(h);
3386
3387         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3388                 0, RAID_CTLR_LUNID, TYPE_CMD);
3389         if (rc)
3390                 goto out;
3391
3392         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3393                         NO_TIMEOUT);
3394         if (rc)
3395                 goto out;
3396         ei = c->err_info;
3397         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3398                 hpsa_scsi_interpret_error(h, c);
3399                 rc = -1;
3400         }
3401 out:
3402         cmd_free(h, c);
3403         return rc;
3404 }
3405
3406 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3407                 unsigned char scsi3addr[], u16 bmic_device_index,
3408                 struct bmic_identify_physical_device *buf, size_t bufsize)
3409 {
3410         int rc = IO_OK;
3411         struct CommandList *c;
3412         struct ErrorInfo *ei;
3413
3414         c = cmd_alloc(h);
3415         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3416                 0, RAID_CTLR_LUNID, TYPE_CMD);
3417         if (rc)
3418                 goto out;
3419
3420         c->Request.CDB[2] = bmic_device_index & 0xff;
3421         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3422
3423         hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3424                                                 NO_TIMEOUT);
3425         ei = c->err_info;
3426         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3427                 hpsa_scsi_interpret_error(h, c);
3428                 rc = -1;
3429         }
3430 out:
3431         cmd_free(h, c);
3432
3433         return rc;
3434 }
3435
3436 /*
3437  * get enclosure information
3438  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3439  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3440  * Uses id_physical_device to determine the box_index.
3441  */
3442 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3443                         unsigned char *scsi3addr,
3444                         struct ReportExtendedLUNdata *rlep, int rle_index,
3445                         struct hpsa_scsi_dev_t *encl_dev)
3446 {
3447         int rc = -1;
3448         struct CommandList *c = NULL;
3449         struct ErrorInfo *ei = NULL;
3450         struct bmic_sense_storage_box_params *bssbp = NULL;
3451         struct bmic_identify_physical_device *id_phys = NULL;
3452         struct ext_report_lun_entry *rle;
3453         u16 bmic_device_index = 0;
3454
3455         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
3456                 return;
3457
3458         rle = &rlep->LUN[rle_index];
3459
3460         encl_dev->eli =
3461                 hpsa_get_enclosure_logical_identifier(h, scsi3addr);
3462
3463         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3464
3465         if (encl_dev->target == -1 || encl_dev->lun == -1) {
3466                 rc = IO_OK;
3467                 goto out;
3468         }
3469
3470         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3471                 rc = IO_OK;
3472                 goto out;
3473         }
3474
3475         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3476         if (!bssbp)
3477                 goto out;
3478
3479         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3480         if (!id_phys)
3481                 goto out;
3482
3483         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3484                                                 id_phys, sizeof(*id_phys));
3485         if (rc) {
3486                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3487                         __func__, encl_dev->external, bmic_device_index);
3488                 goto out;
3489         }
3490
3491         c = cmd_alloc(h);
3492
3493         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3494                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3495
3496         if (rc)
3497                 goto out;
3498
3499         if (id_phys->phys_connector[1] == 'E')
3500                 c->Request.CDB[5] = id_phys->box_index;
3501         else
3502                 c->Request.CDB[5] = 0;
3503
3504         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3505                                                 NO_TIMEOUT);
3506         if (rc)
3507                 goto out;
3508
3509         ei = c->err_info;
3510         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3511                 rc = -1;
3512                 goto out;
3513         }
3514
3515         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3516         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3517                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3518
3519         rc = IO_OK;
3520 out:
3521         kfree(bssbp);
3522         kfree(id_phys);
3523
3524         if (c)
3525                 cmd_free(h, c);
3526
3527         if (rc != IO_OK)
3528                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3529                         "Error, could not get enclosure information");
3530 }
3531
3532 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3533                                                 unsigned char *scsi3addr)
3534 {
3535         struct ReportExtendedLUNdata *physdev;
3536         u32 nphysicals;
3537         u64 sa = 0;
3538         int i;
3539
3540         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3541         if (!physdev)
3542                 return 0;
3543
3544         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3545                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3546                 kfree(physdev);
3547                 return 0;
3548         }
3549         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3550
3551         for (i = 0; i < nphysicals; i++)
3552                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3553                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3554                         break;
3555                 }
3556
3557         kfree(physdev);
3558
3559         return sa;
3560 }
3561
3562 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3563                                         struct hpsa_scsi_dev_t *dev)
3564 {
3565         int rc;
3566         u64 sa = 0;
3567
3568         if (is_hba_lunid(scsi3addr)) {
3569                 struct bmic_sense_subsystem_info *ssi;
3570
3571                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3572                 if (!ssi)
3573                         return;
3574
3575                 rc = hpsa_bmic_sense_subsystem_information(h,
3576                                         scsi3addr, 0, ssi, sizeof(*ssi));
3577                 if (rc == 0) {
3578                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3579                         h->sas_address = sa;
3580                 }
3581
3582                 kfree(ssi);
3583         } else
3584                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3585
3586         dev->sas_address = sa;
3587 }
3588
3589 static void hpsa_ext_ctrl_present(struct ctlr_info *h,
3590         struct ReportExtendedLUNdata *physdev)
3591 {
3592         u32 nphysicals;
3593         int i;
3594
3595         if (h->discovery_polling)
3596                 return;
3597
3598         nphysicals = (get_unaligned_be32(physdev->LUNListLength) / 24) + 1;
3599
3600         for (i = 0; i < nphysicals; i++) {
3601                 if (physdev->LUN[i].device_type ==
3602                         BMIC_DEVICE_TYPE_CONTROLLER
3603                         && !is_hba_lunid(physdev->LUN[i].lunid)) {
3604                         dev_info(&h->pdev->dev,
3605                                 "External controller present, activate discovery polling and disable rld caching\n");
3606                         hpsa_disable_rld_caching(h);
3607                         h->discovery_polling = 1;
3608                         break;
3609                 }
3610         }
3611 }
3612
3613 /* Get a device id from inquiry page 0x83 */
3614 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3615         unsigned char scsi3addr[], u8 page)
3616 {
3617         int rc;
3618         int i;
3619         int pages;
3620         unsigned char *buf, bufsize;
3621
3622         buf = kzalloc(256, GFP_KERNEL);
3623         if (!buf)
3624                 return false;
3625
3626         /* Get the size of the page list first */
3627         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3628                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3629                                 buf, HPSA_VPD_HEADER_SZ);
3630         if (rc != 0)
3631                 goto exit_unsupported;
3632         pages = buf[3];
3633         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3634                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3635         else
3636                 bufsize = 255;
3637
3638         /* Get the whole VPD page list */
3639         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3640                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3641                                 buf, bufsize);
3642         if (rc != 0)
3643                 goto exit_unsupported;
3644
3645         pages = buf[3];
3646         for (i = 1; i <= pages; i++)
3647                 if (buf[3 + i] == page)
3648                         goto exit_supported;
3649 exit_unsupported:
3650         kfree(buf);
3651         return false;
3652 exit_supported:
3653         kfree(buf);
3654         return true;
3655 }
3656
3657 /*
3658  * Called during a scan operation.
3659  * Sets ioaccel status on the new device list, not the existing device list
3660  *
3661  * The device list used during I/O will be updated later in
3662  * adjust_hpsa_scsi_table.
3663  */
3664 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3665         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3666 {
3667         int rc;
3668         unsigned char *buf;
3669         u8 ioaccel_status;
3670
3671         this_device->offload_config = 0;
3672         this_device->offload_enabled = 0;
3673         this_device->offload_to_be_enabled = 0;
3674
3675         buf = kzalloc(64, GFP_KERNEL);
3676         if (!buf)
3677                 return;
3678         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3679                 goto out;
3680         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3681                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3682         if (rc != 0)
3683                 goto out;
3684
3685 #define IOACCEL_STATUS_BYTE 4
3686 #define OFFLOAD_CONFIGURED_BIT 0x01
3687 #define OFFLOAD_ENABLED_BIT 0x02
3688         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3689         this_device->offload_config =
3690                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3691         if (this_device->offload_config) {
3692                 bool offload_enabled =
3693                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3694                 /*
3695                  * Check to see if offload can be enabled.
3696                  */
3697                 if (offload_enabled) {
3698                         rc = hpsa_get_raid_map(h, scsi3addr, this_device);
3699                         if (rc) /* could not load raid_map */
3700                                 goto out;
3701                         this_device->offload_to_be_enabled = 1;
3702                 }
3703         }
3704
3705 out:
3706         kfree(buf);
3707         return;
3708 }
3709
3710 /* Get the device id from inquiry page 0x83 */
3711 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3712         unsigned char *device_id, int index, int buflen)
3713 {
3714         int rc;
3715         unsigned char *buf;
3716
3717         /* Does controller have VPD for device id? */
3718         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3719                 return 1; /* not supported */
3720
3721         buf = kzalloc(64, GFP_KERNEL);
3722         if (!buf)
3723                 return -ENOMEM;
3724
3725         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3726                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3727         if (rc == 0) {
3728                 if (buflen > 16)
3729                         buflen = 16;
3730                 memcpy(device_id, &buf[8], buflen);
3731         }
3732
3733         kfree(buf);
3734
3735         return rc; /*0 - got id,  otherwise, didn't */
3736 }
3737
3738 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3739                 void *buf, int bufsize,
3740                 int extended_response)
3741 {
3742         int rc = IO_OK;
3743         struct CommandList *c;
3744         unsigned char scsi3addr[8];
3745         struct ErrorInfo *ei;
3746
3747         c = cmd_alloc(h);
3748
3749         /* address the controller */
3750         memset(scsi3addr, 0, sizeof(scsi3addr));
3751         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3752                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3753                 rc = -EAGAIN;
3754                 goto out;
3755         }
3756         if (extended_response)
3757                 c->Request.CDB[1] = extended_response;
3758         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
3759                         NO_TIMEOUT);
3760         if (rc)
3761                 goto out;
3762         ei = c->err_info;
3763         if (ei->CommandStatus != 0 &&
3764             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3765                 hpsa_scsi_interpret_error(h, c);
3766                 rc = -EIO;
3767         } else {
3768                 struct ReportLUNdata *rld = buf;
3769
3770                 if (rld->extended_response_flag != extended_response) {
3771                         if (!h->legacy_board) {
3772                                 dev_err(&h->pdev->dev,
3773                                         "report luns requested format %u, got %u\n",
3774                                         extended_response,
3775                                         rld->extended_response_flag);
3776                                 rc = -EINVAL;
3777                         } else
3778                                 rc = -EOPNOTSUPP;
3779                 }
3780         }
3781 out:
3782         cmd_free(h, c);
3783         return rc;
3784 }
3785
3786 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3787                 struct ReportExtendedLUNdata *buf, int bufsize)
3788 {
3789         int rc;
3790         struct ReportLUNdata *lbuf;
3791
3792         rc = hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3793                                       HPSA_REPORT_PHYS_EXTENDED);
3794         if (!rc || rc != -EOPNOTSUPP)
3795                 return rc;
3796
3797         /* REPORT PHYS EXTENDED is not supported */
3798         lbuf = kzalloc(sizeof(*lbuf), GFP_KERNEL);
3799         if (!lbuf)
3800                 return -ENOMEM;
3801
3802         rc = hpsa_scsi_do_report_luns(h, 0, lbuf, sizeof(*lbuf), 0);
3803         if (!rc) {
3804                 int i;
3805                 u32 nphys;
3806
3807                 /* Copy ReportLUNdata header */
3808                 memcpy(buf, lbuf, 8);
3809                 nphys = be32_to_cpu(*((__be32 *)lbuf->LUNListLength)) / 8;
3810                 for (i = 0; i < nphys; i++)
3811                         memcpy(buf->LUN[i].lunid, lbuf->LUN[i], 8);
3812         }
3813         kfree(lbuf);
3814         return rc;
3815 }
3816
3817 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3818                 struct ReportLUNdata *buf, int bufsize)
3819 {
3820         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3821 }
3822
3823 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3824         int bus, int target, int lun)
3825 {
3826         device->bus = bus;
3827         device->target = target;
3828         device->lun = lun;
3829 }
3830
3831 /* Use VPD inquiry to get details of volume status */
3832 static int hpsa_get_volume_status(struct ctlr_info *h,
3833                                         unsigned char scsi3addr[])
3834 {
3835         int rc;
3836         int status;
3837         int size;
3838         unsigned char *buf;
3839
3840         buf = kzalloc(64, GFP_KERNEL);
3841         if (!buf)
3842                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3843
3844         /* Does controller have VPD for logical volume status? */
3845         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3846                 goto exit_failed;
3847
3848         /* Get the size of the VPD return buffer */
3849         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3850                                         buf, HPSA_VPD_HEADER_SZ);
3851         if (rc != 0)
3852                 goto exit_failed;
3853         size = buf[3];
3854
3855         /* Now get the whole VPD buffer */
3856         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3857                                         buf, size + HPSA_VPD_HEADER_SZ);
3858         if (rc != 0)
3859                 goto exit_failed;
3860         status = buf[4]; /* status byte */
3861
3862         kfree(buf);
3863         return status;
3864 exit_failed:
3865         kfree(buf);
3866         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3867 }
3868
3869 /* Determine offline status of a volume.
3870  * Return either:
3871  *  0 (not offline)
3872  *  0xff (offline for unknown reasons)
3873  *  # (integer code indicating one of several NOT READY states
3874  *     describing why a volume is to be kept offline)
3875  */
3876 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3877                                         unsigned char scsi3addr[])
3878 {
3879         struct CommandList *c;
3880         unsigned char *sense;
3881         u8 sense_key, asc, ascq;
3882         int sense_len;
3883         int rc, ldstat = 0;
3884 #define ASC_LUN_NOT_READY 0x04
3885 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3886 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3887
3888         c = cmd_alloc(h);
3889
3890         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3891         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3892                                         NO_TIMEOUT);
3893         if (rc) {
3894                 cmd_free(h, c);
3895                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3896         }
3897         sense = c->err_info->SenseInfo;
3898         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3899                 sense_len = sizeof(c->err_info->SenseInfo);
3900         else
3901                 sense_len = c->err_info->SenseLen;
3902         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3903         cmd_free(h, c);
3904
3905         /* Determine the reason for not ready state */
3906         ldstat = hpsa_get_volume_status(h, scsi3addr);
3907
3908         /* Keep volume offline in certain cases: */
3909         switch (ldstat) {
3910         case HPSA_LV_FAILED:
3911         case HPSA_LV_UNDERGOING_ERASE:
3912         case HPSA_LV_NOT_AVAILABLE:
3913         case HPSA_LV_UNDERGOING_RPI:
3914         case HPSA_LV_PENDING_RPI:
3915         case HPSA_LV_ENCRYPTED_NO_KEY:
3916         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3917         case HPSA_LV_UNDERGOING_ENCRYPTION:
3918         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3919         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3920                 return ldstat;
3921         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3922                 /* If VPD status page isn't available,
3923                  * use ASC/ASCQ to determine state
3924                  */
3925                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3926                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3927                         return ldstat;
3928                 break;
3929         default:
3930                 break;
3931         }
3932         return HPSA_LV_OK;
3933 }
3934
3935 static int hpsa_update_device_info(struct ctlr_info *h,
3936         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3937         unsigned char *is_OBDR_device)
3938 {
3939
3940 #define OBDR_SIG_OFFSET 43
3941 #define OBDR_TAPE_SIG "$DR-10"
3942 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3943 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3944
3945         unsigned char *inq_buff;
3946         unsigned char *obdr_sig;
3947         int rc = 0;
3948
3949         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3950         if (!inq_buff) {
3951                 rc = -ENOMEM;
3952                 goto bail_out;
3953         }
3954
3955         /* Do an inquiry to the device to see what it is. */
3956         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3957                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3958                 dev_err(&h->pdev->dev,
3959                         "%s: inquiry failed, device will be skipped.\n",
3960                         __func__);
3961                 rc = HPSA_INQUIRY_FAILED;
3962                 goto bail_out;
3963         }
3964
3965         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3966         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3967
3968         this_device->devtype = (inq_buff[0] & 0x1f);
3969         memcpy(this_device->scsi3addr, scsi3addr, 8);
3970         memcpy(this_device->vendor, &inq_buff[8],
3971                 sizeof(this_device->vendor));
3972         memcpy(this_device->model, &inq_buff[16],
3973                 sizeof(this_device->model));
3974         this_device->rev = inq_buff[2];
3975         memset(this_device->device_id, 0,
3976                 sizeof(this_device->device_id));
3977         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3978                 sizeof(this_device->device_id)) < 0) {
3979                 dev_err(&h->pdev->dev,
3980                         "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3981                         h->ctlr, __func__,
3982                         h->scsi_host->host_no,
3983                         this_device->bus, this_device->target,
3984                         this_device->lun,
3985                         scsi_device_type(this_device->devtype),
3986                         this_device->model);
3987                 rc = HPSA_LV_FAILED;
3988                 goto bail_out;
3989         }
3990
3991         if ((this_device->devtype == TYPE_DISK ||
3992                 this_device->devtype == TYPE_ZBC) &&
3993                 is_logical_dev_addr_mode(scsi3addr)) {
3994                 unsigned char volume_offline;
3995
3996                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3997                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3998                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3999                 volume_offline = hpsa_volume_offline(h, scsi3addr);
4000                 if (volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED &&
4001                     h->legacy_board) {
4002                         /*
4003                          * Legacy boards might not support volume status
4004                          */
4005                         dev_info(&h->pdev->dev,
4006                                  "C0:T%d:L%d Volume status not available, assuming online.\n",
4007                                  this_device->target, this_device->lun);
4008                         volume_offline = 0;
4009                 }
4010                 this_device->volume_offline = volume_offline;
4011                 if (volume_offline == HPSA_LV_FAILED) {
4012                         rc = HPSA_LV_FAILED;
4013                         dev_err(&h->pdev->dev,
4014                                 "%s: LV failed, device will be skipped.\n",
4015                                 __func__);
4016                         goto bail_out;
4017                 }
4018         } else {
4019                 this_device->raid_level = RAID_UNKNOWN;
4020                 this_device->offload_config = 0;
4021                 hpsa_turn_off_ioaccel_for_device(this_device);
4022                 this_device->hba_ioaccel_enabled = 0;
4023                 this_device->volume_offline = 0;
4024                 this_device->queue_depth = h->nr_cmds;
4025         }
4026
4027         if (this_device->external)
4028                 this_device->queue_depth = EXTERNAL_QD;
4029
4030         if (is_OBDR_device) {
4031                 /* See if this is a One-Button-Disaster-Recovery device
4032                  * by looking for "$DR-10" at offset 43 in inquiry data.
4033                  */
4034                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
4035                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
4036                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
4037                                                 OBDR_SIG_LEN) == 0);
4038         }
4039         kfree(inq_buff);
4040         return 0;
4041
4042 bail_out:
4043         kfree(inq_buff);
4044         return rc;
4045 }
4046
4047 /*
4048  * Helper function to assign bus, target, lun mapping of devices.
4049  * Logical drive target and lun are assigned at this time, but
4050  * physical device lun and target assignment are deferred (assigned
4051  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4052 */
4053 static void figure_bus_target_lun(struct ctlr_info *h,
4054         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
4055 {
4056         u32 lunid = get_unaligned_le32(lunaddrbytes);
4057
4058         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
4059                 /* physical device, target and lun filled in later */
4060                 if (is_hba_lunid(lunaddrbytes)) {
4061                         int bus = HPSA_HBA_BUS;
4062
4063                         if (!device->rev)
4064                                 bus = HPSA_LEGACY_HBA_BUS;
4065                         hpsa_set_bus_target_lun(device,
4066                                         bus, 0, lunid & 0x3fff);
4067                 } else
4068                         /* defer target, lun assignment for physical devices */
4069                         hpsa_set_bus_target_lun(device,
4070                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
4071                 return;
4072         }
4073         /* It's a logical device */
4074         if (device->external) {
4075                 hpsa_set_bus_target_lun(device,
4076                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
4077                         lunid & 0x00ff);
4078                 return;
4079         }
4080         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
4081                                 0, lunid & 0x3fff);
4082 }
4083
4084 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
4085         int i, int nphysicals, int nlocal_logicals)
4086 {
4087         /* In report logicals, local logicals are listed first,
4088         * then any externals.
4089         */
4090         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4091
4092         if (i == raid_ctlr_position)
4093                 return 0;
4094
4095         if (i < logicals_start)
4096                 return 0;
4097
4098         /* i is in logicals range, but still within local logicals */
4099         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4100                 return 0;
4101
4102         return 1; /* it's an external lun */
4103 }
4104
4105 /*
4106  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4107  * logdev.  The number of luns in physdev and logdev are returned in
4108  * *nphysicals and *nlogicals, respectively.
4109  * Returns 0 on success, -1 otherwise.
4110  */
4111 static int hpsa_gather_lun_info(struct ctlr_info *h,
4112         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4113         struct ReportLUNdata *logdev, u32 *nlogicals)
4114 {
4115         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4116                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4117                 return -1;
4118         }
4119         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4120         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4121                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4122                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4123                 *nphysicals = HPSA_MAX_PHYS_LUN;
4124         }
4125         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4126                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4127                 return -1;
4128         }
4129         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4130         /* Reject Logicals in excess of our max capability. */
4131         if (*nlogicals > HPSA_MAX_LUN) {
4132                 dev_warn(&h->pdev->dev,
4133                         "maximum logical LUNs (%d) exceeded.  "
4134                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4135                         *nlogicals - HPSA_MAX_LUN);
4136                 *nlogicals = HPSA_MAX_LUN;
4137         }
4138         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4139                 dev_warn(&h->pdev->dev,
4140                         "maximum logical + physical LUNs (%d) exceeded. "
4141                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4142                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4143                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4144         }
4145         return 0;
4146 }
4147
4148 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4149         int i, int nphysicals, int nlogicals,
4150         struct ReportExtendedLUNdata *physdev_list,
4151         struct ReportLUNdata *logdev_list)
4152 {
4153         /* Helper function, figure out where the LUN ID info is coming from
4154          * given index i, lists of physical and logical devices, where in
4155          * the list the raid controller is supposed to appear (first or last)
4156          */
4157
4158         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4159         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4160
4161         if (i == raid_ctlr_position)
4162                 return RAID_CTLR_LUNID;
4163
4164         if (i < logicals_start)
4165                 return &physdev_list->LUN[i -
4166                                 (raid_ctlr_position == 0)].lunid[0];
4167
4168         if (i < last_device)
4169                 return &logdev_list->LUN[i - nphysicals -
4170                         (raid_ctlr_position == 0)][0];
4171         BUG();
4172         return NULL;
4173 }
4174
4175 /* get physical drive ioaccel handle and queue depth */
4176 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4177                 struct hpsa_scsi_dev_t *dev,
4178                 struct ReportExtendedLUNdata *rlep, int rle_index,
4179                 struct bmic_identify_physical_device *id_phys)
4180 {
4181         int rc;
4182         struct ext_report_lun_entry *rle;
4183
4184         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4185                 return;
4186
4187         rle = &rlep->LUN[rle_index];
4188
4189         dev->ioaccel_handle = rle->ioaccel_handle;
4190         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4191                 dev->hba_ioaccel_enabled = 1;
4192         memset(id_phys, 0, sizeof(*id_phys));
4193         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4194                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4195                         sizeof(*id_phys));
4196         if (!rc)
4197                 /* Reserve space for FW operations */
4198 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4199 #define DRIVE_QUEUE_DEPTH 7
4200                 dev->queue_depth =
4201                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4202                                 DRIVE_CMDS_RESERVED_FOR_FW;
4203         else
4204                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4205 }
4206
4207 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4208         struct ReportExtendedLUNdata *rlep, int rle_index,
4209         struct bmic_identify_physical_device *id_phys)
4210 {
4211         struct ext_report_lun_entry *rle;
4212
4213         if (rle_index < 0 || rle_index >= HPSA_MAX_PHYS_LUN)
4214                 return;
4215
4216         rle = &rlep->LUN[rle_index];
4217
4218         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4219                 this_device->hba_ioaccel_enabled = 1;
4220
4221         memcpy(&this_device->active_path_index,
4222                 &id_phys->active_path_number,
4223                 sizeof(this_device->active_path_index));
4224         memcpy(&this_device->path_map,
4225                 &id_phys->redundant_path_present_map,
4226                 sizeof(this_device->path_map));
4227         memcpy(&this_device->box,
4228                 &id_phys->alternate_paths_phys_box_on_port,
4229                 sizeof(this_device->box));
4230         memcpy(&this_device->phys_connector,
4231                 &id_phys->alternate_paths_phys_connector,
4232                 sizeof(this_device->phys_connector));
4233         memcpy(&this_device->bay,
4234                 &id_phys->phys_bay_in_box,
4235                 sizeof(this_device->bay));
4236 }
4237
4238 /* get number of local logical disks. */
4239 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4240         struct bmic_identify_controller *id_ctlr,
4241         u32 *nlocals)
4242 {
4243         int rc;
4244
4245         if (!id_ctlr) {
4246                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4247                         __func__);
4248                 return -ENOMEM;
4249         }
4250         memset(id_ctlr, 0, sizeof(*id_ctlr));
4251         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4252         if (!rc)
4253                 if (id_ctlr->configured_logical_drive_count < 255)
4254                         *nlocals = id_ctlr->configured_logical_drive_count;
4255                 else
4256                         *nlocals = le16_to_cpu(
4257                                         id_ctlr->extended_logical_unit_count);
4258         else
4259                 *nlocals = -1;
4260         return rc;
4261 }
4262
4263 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4264 {
4265         struct bmic_identify_physical_device *id_phys;
4266         bool is_spare = false;
4267         int rc;
4268
4269         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4270         if (!id_phys)
4271                 return false;
4272
4273         rc = hpsa_bmic_id_physical_device(h,
4274                                         lunaddrbytes,
4275                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4276                                         id_phys, sizeof(*id_phys));
4277         if (rc == 0)
4278                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4279
4280         kfree(id_phys);
4281         return is_spare;
4282 }
4283
4284 #define RPL_DEV_FLAG_NON_DISK                           0x1
4285 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4286 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4287
4288 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4289
4290 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4291                                 struct ext_report_lun_entry *rle)
4292 {
4293         u8 device_flags;
4294         u8 device_type;
4295
4296         if (!MASKED_DEVICE(lunaddrbytes))
4297                 return false;
4298
4299         device_flags = rle->device_flags;
4300         device_type = rle->device_type;
4301
4302         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4303                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4304                         return false;
4305                 return true;
4306         }
4307
4308         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4309                 return false;
4310
4311         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4312                 return false;
4313
4314         /*
4315          * Spares may be spun down, we do not want to
4316          * do an Inquiry to a RAID set spare drive as
4317          * that would have them spun up, that is a
4318          * performance hit because I/O to the RAID device
4319          * stops while the spin up occurs which can take
4320          * over 50 seconds.
4321          */
4322         if (hpsa_is_disk_spare(h, lunaddrbytes))
4323                 return true;
4324
4325         return false;
4326 }
4327
4328 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4329 {
4330         /* the idea here is we could get notified
4331          * that some devices have changed, so we do a report
4332          * physical luns and report logical luns cmd, and adjust
4333          * our list of devices accordingly.
4334          *
4335          * The scsi3addr's of devices won't change so long as the
4336          * adapter is not reset.  That means we can rescan and
4337          * tell which devices we already know about, vs. new
4338          * devices, vs.  disappearing devices.
4339          */
4340         struct ReportExtendedLUNdata *physdev_list = NULL;
4341         struct ReportLUNdata *logdev_list = NULL;
4342         struct bmic_identify_physical_device *id_phys = NULL;
4343         struct bmic_identify_controller *id_ctlr = NULL;
4344         u32 nphysicals = 0;
4345         u32 nlogicals = 0;
4346         u32 nlocal_logicals = 0;
4347         u32 ndev_allocated = 0;
4348         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4349         int ncurrent = 0;
4350         int i, ndevs_to_allocate;
4351         int raid_ctlr_position;
4352         bool physical_device;
4353         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4354
4355         currentsd = kcalloc(HPSA_MAX_DEVICES, sizeof(*currentsd), GFP_KERNEL);
4356         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4357         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4358         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4359         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4360         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4361
4362         if (!currentsd || !physdev_list || !logdev_list ||
4363                 !tmpdevice || !id_phys || !id_ctlr) {
4364                 dev_err(&h->pdev->dev, "out of memory\n");
4365                 goto out;
4366         }
4367         memset(lunzerobits, 0, sizeof(lunzerobits));
4368
4369         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4370
4371         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4372                         logdev_list, &nlogicals)) {
4373                 h->drv_req_rescan = 1;
4374                 goto out;
4375         }
4376
4377         /* Set number of local logicals (non PTRAID) */
4378         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4379                 dev_warn(&h->pdev->dev,
4380                         "%s: Can't determine number of local logical devices.\n",
4381                         __func__);
4382         }
4383
4384         /* We might see up to the maximum number of logical and physical disks
4385          * plus external target devices, and a device for the local RAID
4386          * controller.
4387          */
4388         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4389
4390         hpsa_ext_ctrl_present(h, physdev_list);
4391
4392         /* Allocate the per device structures */
4393         for (i = 0; i < ndevs_to_allocate; i++) {
4394                 if (i >= HPSA_MAX_DEVICES) {
4395                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4396                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4397                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4398                         break;
4399                 }
4400
4401                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4402                 if (!currentsd[i]) {
4403                         h->drv_req_rescan = 1;
4404                         goto out;
4405                 }
4406                 ndev_allocated++;
4407         }
4408
4409         if (is_scsi_rev_5(h))
4410                 raid_ctlr_position = 0;
4411         else
4412                 raid_ctlr_position = nphysicals + nlogicals;
4413
4414         /* adjust our table of devices */
4415         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4416                 u8 *lunaddrbytes, is_OBDR = 0;
4417                 int rc = 0;
4418                 int phys_dev_index = i - (raid_ctlr_position == 0);
4419                 bool skip_device = false;
4420
4421                 memset(tmpdevice, 0, sizeof(*tmpdevice));
4422
4423                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4424
4425                 /* Figure out where the LUN ID info is coming from */
4426                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4427                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4428
4429                 /* Determine if this is a lun from an external target array */
4430                 tmpdevice->external =
4431                         figure_external_status(h, raid_ctlr_position, i,
4432                                                 nphysicals, nlocal_logicals);
4433
4434                 /*
4435                  * Skip over some devices such as a spare.
4436                  */
4437                 if (phys_dev_index >= 0 && !tmpdevice->external &&
4438                         physical_device) {
4439                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4440                                         &physdev_list->LUN[phys_dev_index]);
4441                         if (skip_device)
4442                                 continue;
4443                 }
4444
4445                 /* Get device type, vendor, model, device id, raid_map */
4446                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4447                                                         &is_OBDR);
4448                 if (rc == -ENOMEM) {
4449                         dev_warn(&h->pdev->dev,
4450                                 "Out of memory, rescan deferred.\n");
4451                         h->drv_req_rescan = 1;
4452                         goto out;
4453                 }
4454                 if (rc) {
4455                         h->drv_req_rescan = 1;
4456                         continue;
4457                 }
4458
4459                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4460                 this_device = currentsd[ncurrent];
4461
4462                 *this_device = *tmpdevice;
4463                 this_device->physical_device = physical_device;
4464
4465                 /*
4466                  * Expose all devices except for physical devices that
4467                  * are masked.
4468                  */
4469                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4470                         this_device->expose_device = 0;
4471                 else
4472                         this_device->expose_device = 1;
4473
4474
4475                 /*
4476                  * Get the SAS address for physical devices that are exposed.
4477                  */
4478                 if (this_device->physical_device && this_device->expose_device)
4479                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4480
4481                 switch (this_device->devtype) {
4482                 case TYPE_ROM:
4483                         /* We don't *really* support actual CD-ROM devices,
4484                          * just "One Button Disaster Recovery" tape drive
4485                          * which temporarily pretends to be a CD-ROM drive.
4486                          * So we check that the device is really an OBDR tape
4487                          * device by checking for "$DR-10" in bytes 43-48 of
4488                          * the inquiry data.
4489                          */
4490                         if (is_OBDR)
4491                                 ncurrent++;
4492                         break;
4493                 case TYPE_DISK:
4494                 case TYPE_ZBC:
4495                         if (this_device->physical_device) {
4496                                 /* The disk is in HBA mode. */
4497                                 /* Never use RAID mapper in HBA mode. */
4498                                 this_device->offload_enabled = 0;
4499                                 hpsa_get_ioaccel_drive_info(h, this_device,
4500                                         physdev_list, phys_dev_index, id_phys);
4501                                 hpsa_get_path_info(this_device,
4502                                         physdev_list, phys_dev_index, id_phys);
4503                         }
4504                         ncurrent++;
4505                         break;
4506                 case TYPE_TAPE:
4507                 case TYPE_MEDIUM_CHANGER:
4508                         ncurrent++;
4509                         break;
4510                 case TYPE_ENCLOSURE:
4511                         if (!this_device->external)
4512                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4513                                                 physdev_list, phys_dev_index,
4514                                                 this_device);
4515                         ncurrent++;
4516                         break;
4517                 case TYPE_RAID:
4518                         /* Only present the Smartarray HBA as a RAID controller.
4519                          * If it's a RAID controller other than the HBA itself
4520                          * (an external RAID controller, MSA500 or similar)
4521                          * don't present it.
4522                          */
4523                         if (!is_hba_lunid(lunaddrbytes))
4524                                 break;
4525                         ncurrent++;
4526                         break;
4527                 default:
4528                         break;
4529                 }
4530                 if (ncurrent >= HPSA_MAX_DEVICES)
4531                         break;
4532         }
4533
4534         if (h->sas_host == NULL) {
4535                 int rc = 0;
4536
4537                 rc = hpsa_add_sas_host(h);
4538                 if (rc) {
4539                         dev_warn(&h->pdev->dev,
4540                                 "Could not add sas host %d\n", rc);
4541                         goto out;
4542                 }
4543         }
4544
4545         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4546 out:
4547         kfree(tmpdevice);
4548         for (i = 0; i < ndev_allocated; i++)
4549                 kfree(currentsd[i]);
4550         kfree(currentsd);
4551         kfree(physdev_list);
4552         kfree(logdev_list);
4553         kfree(id_ctlr);
4554         kfree(id_phys);
4555 }
4556
4557 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4558                                    struct scatterlist *sg)
4559 {
4560         u64 addr64 = (u64) sg_dma_address(sg);
4561         unsigned int len = sg_dma_len(sg);
4562
4563         desc->Addr = cpu_to_le64(addr64);
4564         desc->Len = cpu_to_le32(len);
4565         desc->Ext = 0;
4566 }
4567
4568 /*
4569  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4570  * dma mapping  and fills in the scatter gather entries of the
4571  * hpsa command, cp.
4572  */
4573 static int hpsa_scatter_gather(struct ctlr_info *h,
4574                 struct CommandList *cp,
4575                 struct scsi_cmnd *cmd)
4576 {
4577         struct scatterlist *sg;
4578         int use_sg, i, sg_limit, chained;
4579         struct SGDescriptor *curr_sg;
4580
4581         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4582
4583         use_sg = scsi_dma_map(cmd);
4584         if (use_sg < 0)
4585                 return use_sg;
4586
4587         if (!use_sg)
4588                 goto sglist_finished;
4589
4590         /*
4591          * If the number of entries is greater than the max for a single list,
4592          * then we have a chained list; we will set up all but one entry in the
4593          * first list (the last entry is saved for link information);
4594          * otherwise, we don't have a chained list and we'll set up at each of
4595          * the entries in the one list.
4596          */
4597         curr_sg = cp->SG;
4598         chained = use_sg > h->max_cmd_sg_entries;
4599         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4600         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4601                 hpsa_set_sg_descriptor(curr_sg, sg);
4602                 curr_sg++;
4603         }
4604
4605         if (chained) {
4606                 /*
4607                  * Continue with the chained list.  Set curr_sg to the chained
4608                  * list.  Modify the limit to the total count less the entries
4609                  * we've already set up.  Resume the scan at the list entry
4610                  * where the previous loop left off.
4611                  */
4612                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4613                 sg_limit = use_sg - sg_limit;
4614                 for_each_sg(sg, sg, sg_limit, i) {
4615                         hpsa_set_sg_descriptor(curr_sg, sg);
4616                         curr_sg++;
4617                 }
4618         }
4619
4620         /* Back the pointer up to the last entry and mark it as "last". */
4621         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4622
4623         if (use_sg + chained > h->maxSG)
4624                 h->maxSG = use_sg + chained;
4625
4626         if (chained) {
4627                 cp->Header.SGList = h->max_cmd_sg_entries;
4628                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4629                 if (hpsa_map_sg_chain_block(h, cp)) {
4630                         scsi_dma_unmap(cmd);
4631                         return -1;
4632                 }
4633                 return 0;
4634         }
4635
4636 sglist_finished:
4637
4638         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4639         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4640         return 0;
4641 }
4642
4643 static inline void warn_zero_length_transfer(struct ctlr_info *h,
4644                                                 u8 *cdb, int cdb_len,
4645                                                 const char *func)
4646 {
4647         dev_warn(&h->pdev->dev,
4648                  "%s: Blocking zero-length request: CDB:%*phN\n",
4649                  func, cdb_len, cdb);
4650 }
4651
4652 #define IO_ACCEL_INELIGIBLE 1
4653 /* zero-length transfers trigger hardware errors. */
4654 static bool is_zero_length_transfer(u8 *cdb)
4655 {
4656         u32 block_cnt;
4657
4658         /* Block zero-length transfer sizes on certain commands. */
4659         switch (cdb[0]) {
4660         case READ_10:
4661         case WRITE_10:
4662         case VERIFY:            /* 0x2F */
4663         case WRITE_VERIFY:      /* 0x2E */
4664                 block_cnt = get_unaligned_be16(&cdb[7]);
4665                 break;
4666         case READ_12:
4667         case WRITE_12:
4668         case VERIFY_12: /* 0xAF */
4669         case WRITE_VERIFY_12:   /* 0xAE */
4670                 block_cnt = get_unaligned_be32(&cdb[6]);
4671                 break;
4672         case READ_16:
4673         case WRITE_16:
4674         case VERIFY_16:         /* 0x8F */
4675                 block_cnt = get_unaligned_be32(&cdb[10]);
4676                 break;
4677         default:
4678                 return false;
4679         }
4680
4681         return block_cnt == 0;
4682 }
4683
4684 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4685 {
4686         int is_write = 0;
4687         u32 block;
4688         u32 block_cnt;
4689
4690         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4691         switch (cdb[0]) {
4692         case WRITE_6:
4693         case WRITE_12:
4694                 is_write = 1;
4695                 fallthrough;
4696         case READ_6:
4697         case READ_12:
4698                 if (*cdb_len == 6) {
4699                         block = (((cdb[1] & 0x1F) << 16) |
4700                                 (cdb[2] << 8) |
4701                                 cdb[3]);
4702                         block_cnt = cdb[4];
4703                         if (block_cnt == 0)
4704                                 block_cnt = 256;
4705                 } else {
4706                         BUG_ON(*cdb_len != 12);
4707                         block = get_unaligned_be32(&cdb[2]);
4708                         block_cnt = get_unaligned_be32(&cdb[6]);
4709                 }
4710                 if (block_cnt > 0xffff)
4711                         return IO_ACCEL_INELIGIBLE;
4712
4713                 cdb[0] = is_write ? WRITE_10 : READ_10;
4714                 cdb[1] = 0;
4715                 cdb[2] = (u8) (block >> 24);
4716                 cdb[3] = (u8) (block >> 16);
4717                 cdb[4] = (u8) (block >> 8);
4718                 cdb[5] = (u8) (block);
4719                 cdb[6] = 0;
4720                 cdb[7] = (u8) (block_cnt >> 8);
4721                 cdb[8] = (u8) (block_cnt);
4722                 cdb[9] = 0;
4723                 *cdb_len = 10;
4724                 break;
4725         }
4726         return 0;
4727 }
4728
4729 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4730         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4731         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4732 {
4733         struct scsi_cmnd *cmd = c->scsi_cmd;
4734         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4735         unsigned int len;
4736         unsigned int total_len = 0;
4737         struct scatterlist *sg;
4738         u64 addr64;
4739         int use_sg, i;
4740         struct SGDescriptor *curr_sg;
4741         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4742
4743         /* TODO: implement chaining support */
4744         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4745                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4746                 return IO_ACCEL_INELIGIBLE;
4747         }
4748
4749         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4750
4751         if (is_zero_length_transfer(cdb)) {
4752                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4753                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4754                 return IO_ACCEL_INELIGIBLE;
4755         }
4756
4757         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4758                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4759                 return IO_ACCEL_INELIGIBLE;
4760         }
4761
4762         c->cmd_type = CMD_IOACCEL1;
4763
4764         /* Adjust the DMA address to point to the accelerated command buffer */
4765         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4766                                 (c->cmdindex * sizeof(*cp));
4767         BUG_ON(c->busaddr & 0x0000007F);
4768
4769         use_sg = scsi_dma_map(cmd);
4770         if (use_sg < 0) {
4771                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4772                 return use_sg;
4773         }
4774
4775         if (use_sg) {
4776                 curr_sg = cp->SG;
4777                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4778                         addr64 = (u64) sg_dma_address(sg);
4779                         len  = sg_dma_len(sg);
4780                         total_len += len;
4781                         curr_sg->Addr = cpu_to_le64(addr64);
4782                         curr_sg->Len = cpu_to_le32(len);
4783                         curr_sg->Ext = cpu_to_le32(0);
4784                         curr_sg++;
4785                 }
4786                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4787
4788                 switch (cmd->sc_data_direction) {
4789                 case DMA_TO_DEVICE:
4790                         control |= IOACCEL1_CONTROL_DATA_OUT;
4791                         break;
4792                 case DMA_FROM_DEVICE:
4793                         control |= IOACCEL1_CONTROL_DATA_IN;
4794                         break;
4795                 case DMA_NONE:
4796                         control |= IOACCEL1_CONTROL_NODATAXFER;
4797                         break;
4798                 default:
4799                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4800                         cmd->sc_data_direction);
4801                         BUG();
4802                         break;
4803                 }
4804         } else {
4805                 control |= IOACCEL1_CONTROL_NODATAXFER;
4806         }
4807
4808         c->Header.SGList = use_sg;
4809         /* Fill out the command structure to submit */
4810         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4811         cp->transfer_len = cpu_to_le32(total_len);
4812         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4813                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4814         cp->control = cpu_to_le32(control);
4815         memcpy(cp->CDB, cdb, cdb_len);
4816         memcpy(cp->CISS_LUN, scsi3addr, 8);
4817         /* Tag was already set at init time. */
4818         enqueue_cmd_and_start_io(h, c);
4819         return 0;
4820 }
4821
4822 /*
4823  * Queue a command directly to a device behind the controller using the
4824  * I/O accelerator path.
4825  */
4826 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4827         struct CommandList *c)
4828 {
4829         struct scsi_cmnd *cmd = c->scsi_cmd;
4830         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4831
4832         if (!dev)
4833                 return -1;
4834
4835         c->phys_disk = dev;
4836
4837         if (dev->in_reset)
4838                 return -1;
4839
4840         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4841                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4842 }
4843
4844 /*
4845  * Set encryption parameters for the ioaccel2 request
4846  */
4847 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4848         struct CommandList *c, struct io_accel2_cmd *cp)
4849 {
4850         struct scsi_cmnd *cmd = c->scsi_cmd;
4851         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4852         struct raid_map_data *map = &dev->raid_map;
4853         u64 first_block;
4854
4855         /* Are we doing encryption on this device */
4856         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4857                 return;
4858         /* Set the data encryption key index. */
4859         cp->dekindex = map->dekindex;
4860
4861         /* Set the encryption enable flag, encoded into direction field. */
4862         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4863
4864         /* Set encryption tweak values based on logical block address
4865          * If block size is 512, tweak value is LBA.
4866          * For other block sizes, tweak is (LBA * block size)/ 512)
4867          */
4868         switch (cmd->cmnd[0]) {
4869         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4870         case READ_6:
4871         case WRITE_6:
4872                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4873                                 (cmd->cmnd[2] << 8) |
4874                                 cmd->cmnd[3]);
4875                 break;
4876         case WRITE_10:
4877         case READ_10:
4878         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4879         case WRITE_12:
4880         case READ_12:
4881                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4882                 break;
4883         case WRITE_16:
4884         case READ_16:
4885                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4886                 break;
4887         default:
4888                 dev_err(&h->pdev->dev,
4889                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4890                         __func__, cmd->cmnd[0]);
4891                 BUG();
4892                 break;
4893         }
4894
4895         if (le32_to_cpu(map->volume_blk_size) != 512)
4896                 first_block = first_block *
4897                                 le32_to_cpu(map->volume_blk_size)/512;
4898
4899         cp->tweak_lower = cpu_to_le32(first_block);
4900         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4901 }
4902
4903 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4904         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4905         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4906 {
4907         struct scsi_cmnd *cmd = c->scsi_cmd;
4908         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4909         struct ioaccel2_sg_element *curr_sg;
4910         int use_sg, i;
4911         struct scatterlist *sg;
4912         u64 addr64;
4913         u32 len;
4914         u32 total_len = 0;
4915
4916         if (!cmd->device)
4917                 return -1;
4918
4919         if (!cmd->device->hostdata)
4920                 return -1;
4921
4922         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4923
4924         if (is_zero_length_transfer(cdb)) {
4925                 warn_zero_length_transfer(h, cdb, cdb_len, __func__);
4926                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4927                 return IO_ACCEL_INELIGIBLE;
4928         }
4929
4930         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4931                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4932                 return IO_ACCEL_INELIGIBLE;
4933         }
4934
4935         c->cmd_type = CMD_IOACCEL2;
4936         /* Adjust the DMA address to point to the accelerated command buffer */
4937         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4938                                 (c->cmdindex * sizeof(*cp));
4939         BUG_ON(c->busaddr & 0x0000007F);
4940
4941         memset(cp, 0, sizeof(*cp));
4942         cp->IU_type = IOACCEL2_IU_TYPE;
4943
4944         use_sg = scsi_dma_map(cmd);
4945         if (use_sg < 0) {
4946                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4947                 return use_sg;
4948         }
4949
4950         if (use_sg) {
4951                 curr_sg = cp->sg;
4952                 if (use_sg > h->ioaccel_maxsg) {
4953                         addr64 = le64_to_cpu(
4954                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4955                         curr_sg->address = cpu_to_le64(addr64);
4956                         curr_sg->length = 0;
4957                         curr_sg->reserved[0] = 0;
4958                         curr_sg->reserved[1] = 0;
4959                         curr_sg->reserved[2] = 0;
4960                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4961
4962                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4963                 }
4964                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4965                         addr64 = (u64) sg_dma_address(sg);
4966                         len  = sg_dma_len(sg);
4967                         total_len += len;
4968                         curr_sg->address = cpu_to_le64(addr64);
4969                         curr_sg->length = cpu_to_le32(len);
4970                         curr_sg->reserved[0] = 0;
4971                         curr_sg->reserved[1] = 0;
4972                         curr_sg->reserved[2] = 0;
4973                         curr_sg->chain_indicator = 0;
4974                         curr_sg++;
4975                 }
4976
4977                 /*
4978                  * Set the last s/g element bit
4979                  */
4980                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4981
4982                 switch (cmd->sc_data_direction) {
4983                 case DMA_TO_DEVICE:
4984                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4985                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4986                         break;
4987                 case DMA_FROM_DEVICE:
4988                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4989                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4990                         break;
4991                 case DMA_NONE:
4992                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4993                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4994                         break;
4995                 default:
4996                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4997                                 cmd->sc_data_direction);
4998                         BUG();
4999                         break;
5000                 }
5001         } else {
5002                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
5003                 cp->direction |= IOACCEL2_DIR_NO_DATA;
5004         }
5005
5006         /* Set encryption parameters, if necessary */
5007         set_encrypt_ioaccel2(h, c, cp);
5008
5009         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
5010         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5011         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
5012
5013         cp->data_len = cpu_to_le32(total_len);
5014         cp->err_ptr = cpu_to_le64(c->busaddr +
5015                         offsetof(struct io_accel2_cmd, error_data));
5016         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
5017
5018         /* fill in sg elements */
5019         if (use_sg > h->ioaccel_maxsg) {
5020                 cp->sg_count = 1;
5021                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
5022                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
5023                         atomic_dec(&phys_disk->ioaccel_cmds_out);
5024                         scsi_dma_unmap(cmd);
5025                         return -1;
5026                 }
5027         } else
5028                 cp->sg_count = (u8) use_sg;
5029
5030         if (phys_disk->in_reset) {
5031                 cmd->result = DID_RESET << 16;
5032                 return -1;
5033         }
5034
5035         enqueue_cmd_and_start_io(h, c);
5036         return 0;
5037 }
5038
5039 /*
5040  * Queue a command to the correct I/O accelerator path.
5041  */
5042 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
5043         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
5044         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
5045 {
5046         if (!c->scsi_cmd->device)
5047                 return -1;
5048
5049         if (!c->scsi_cmd->device->hostdata)
5050                 return -1;
5051
5052         if (phys_disk->in_reset)
5053                 return -1;
5054
5055         /* Try to honor the device's queue depth */
5056         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
5057                                         phys_disk->queue_depth) {
5058                 atomic_dec(&phys_disk->ioaccel_cmds_out);
5059                 return IO_ACCEL_INELIGIBLE;
5060         }
5061         if (h->transMethod & CFGTBL_Trans_io_accel1)
5062                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
5063                                                 cdb, cdb_len, scsi3addr,
5064                                                 phys_disk);
5065         else
5066                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
5067                                                 cdb, cdb_len, scsi3addr,
5068                                                 phys_disk);
5069 }
5070
5071 static void raid_map_helper(struct raid_map_data *map,
5072                 int offload_to_mirror, u32 *map_index, u32 *current_group)
5073 {
5074         if (offload_to_mirror == 0)  {
5075                 /* use physical disk in the first mirrored group. */
5076                 *map_index %= le16_to_cpu(map->data_disks_per_row);
5077                 return;
5078         }
5079         do {
5080                 /* determine mirror group that *map_index indicates */
5081                 *current_group = *map_index /
5082                         le16_to_cpu(map->data_disks_per_row);
5083                 if (offload_to_mirror == *current_group)
5084                         continue;
5085                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
5086                         /* select map index from next group */
5087                         *map_index += le16_to_cpu(map->data_disks_per_row);
5088                         (*current_group)++;
5089                 } else {
5090                         /* select map index from first group */
5091                         *map_index %= le16_to_cpu(map->data_disks_per_row);
5092                         *current_group = 0;
5093                 }
5094         } while (offload_to_mirror != *current_group);
5095 }
5096
5097 /*
5098  * Attempt to perform offload RAID mapping for a logical volume I/O.
5099  */
5100 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
5101         struct CommandList *c)
5102 {
5103         struct scsi_cmnd *cmd = c->scsi_cmd;
5104         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5105         struct raid_map_data *map = &dev->raid_map;
5106         struct raid_map_disk_data *dd = &map->data[0];
5107         int is_write = 0;
5108         u32 map_index;
5109         u64 first_block, last_block;
5110         u32 block_cnt;
5111         u32 blocks_per_row;
5112         u64 first_row, last_row;
5113         u32 first_row_offset, last_row_offset;
5114         u32 first_column, last_column;
5115         u64 r0_first_row, r0_last_row;
5116         u32 r5or6_blocks_per_row;
5117         u64 r5or6_first_row, r5or6_last_row;
5118         u32 r5or6_first_row_offset, r5or6_last_row_offset;
5119         u32 r5or6_first_column, r5or6_last_column;
5120         u32 total_disks_per_row;
5121         u32 stripesize;
5122         u32 first_group, last_group, current_group;
5123         u32 map_row;
5124         u32 disk_handle;
5125         u64 disk_block;
5126         u32 disk_block_cnt;
5127         u8 cdb[16];
5128         u8 cdb_len;
5129         u16 strip_size;
5130 #if BITS_PER_LONG == 32
5131         u64 tmpdiv;
5132 #endif
5133         int offload_to_mirror;
5134
5135         if (!dev)
5136                 return -1;
5137
5138         if (dev->in_reset)
5139                 return -1;
5140
5141         /* check for valid opcode, get LBA and block count */
5142         switch (cmd->cmnd[0]) {
5143         case WRITE_6:
5144                 is_write = 1;
5145                 fallthrough;
5146         case READ_6:
5147                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
5148                                 (cmd->cmnd[2] << 8) |
5149                                 cmd->cmnd[3]);
5150                 block_cnt = cmd->cmnd[4];
5151                 if (block_cnt == 0)
5152                         block_cnt = 256;
5153                 break;
5154         case WRITE_10:
5155                 is_write = 1;
5156                 fallthrough;
5157         case READ_10:
5158                 first_block =
5159                         (((u64) cmd->cmnd[2]) << 24) |
5160                         (((u64) cmd->cmnd[3]) << 16) |
5161                         (((u64) cmd->cmnd[4]) << 8) |
5162                         cmd->cmnd[5];
5163                 block_cnt =
5164                         (((u32) cmd->cmnd[7]) << 8) |
5165                         cmd->cmnd[8];
5166                 break;
5167         case WRITE_12:
5168                 is_write = 1;
5169                 fallthrough;
5170         case READ_12:
5171                 first_block =
5172                         (((u64) cmd->cmnd[2]) << 24) |
5173                         (((u64) cmd->cmnd[3]) << 16) |
5174                         (((u64) cmd->cmnd[4]) << 8) |
5175                         cmd->cmnd[5];
5176                 block_cnt =
5177                         (((u32) cmd->cmnd[6]) << 24) |
5178                         (((u32) cmd->cmnd[7]) << 16) |
5179                         (((u32) cmd->cmnd[8]) << 8) |
5180                 cmd->cmnd[9];
5181                 break;
5182         case WRITE_16:
5183                 is_write = 1;
5184                 fallthrough;
5185         case READ_16:
5186                 first_block =
5187                         (((u64) cmd->cmnd[2]) << 56) |
5188                         (((u64) cmd->cmnd[3]) << 48) |
5189                         (((u64) cmd->cmnd[4]) << 40) |
5190                         (((u64) cmd->cmnd[5]) << 32) |
5191                         (((u64) cmd->cmnd[6]) << 24) |
5192                         (((u64) cmd->cmnd[7]) << 16) |
5193                         (((u64) cmd->cmnd[8]) << 8) |
5194                         cmd->cmnd[9];
5195                 block_cnt =
5196                         (((u32) cmd->cmnd[10]) << 24) |
5197                         (((u32) cmd->cmnd[11]) << 16) |
5198                         (((u32) cmd->cmnd[12]) << 8) |
5199                         cmd->cmnd[13];
5200                 break;
5201         default:
5202                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5203         }
5204         last_block = first_block + block_cnt - 1;
5205
5206         /* check for write to non-RAID-0 */
5207         if (is_write && dev->raid_level != 0)
5208                 return IO_ACCEL_INELIGIBLE;
5209
5210         /* check for invalid block or wraparound */
5211         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5212                 last_block < first_block)
5213                 return IO_ACCEL_INELIGIBLE;
5214
5215         /* calculate stripe information for the request */
5216         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5217                                 le16_to_cpu(map->strip_size);
5218         strip_size = le16_to_cpu(map->strip_size);
5219 #if BITS_PER_LONG == 32
5220         tmpdiv = first_block;
5221         (void) do_div(tmpdiv, blocks_per_row);
5222         first_row = tmpdiv;
5223         tmpdiv = last_block;
5224         (void) do_div(tmpdiv, blocks_per_row);
5225         last_row = tmpdiv;
5226         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5227         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5228         tmpdiv = first_row_offset;
5229         (void) do_div(tmpdiv, strip_size);
5230         first_column = tmpdiv;
5231         tmpdiv = last_row_offset;
5232         (void) do_div(tmpdiv, strip_size);
5233         last_column = tmpdiv;
5234 #else
5235         first_row = first_block / blocks_per_row;
5236         last_row = last_block / blocks_per_row;
5237         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5238         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5239         first_column = first_row_offset / strip_size;
5240         last_column = last_row_offset / strip_size;
5241 #endif
5242
5243         /* if this isn't a single row/column then give to the controller */
5244         if ((first_row != last_row) || (first_column != last_column))
5245                 return IO_ACCEL_INELIGIBLE;
5246
5247         /* proceeding with driver mapping */
5248         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5249                                 le16_to_cpu(map->metadata_disks_per_row);
5250         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5251                                 le16_to_cpu(map->row_cnt);
5252         map_index = (map_row * total_disks_per_row) + first_column;
5253
5254         switch (dev->raid_level) {
5255         case HPSA_RAID_0:
5256                 break; /* nothing special to do */
5257         case HPSA_RAID_1:
5258                 /* Handles load balance across RAID 1 members.
5259                  * (2-drive R1 and R10 with even # of drives.)
5260                  * Appropriate for SSDs, not optimal for HDDs
5261                  * Ensure we have the correct raid_map.
5262                  */
5263                 if (le16_to_cpu(map->layout_map_count) != 2) {
5264                         hpsa_turn_off_ioaccel_for_device(dev);
5265                         return IO_ACCEL_INELIGIBLE;
5266                 }
5267                 if (dev->offload_to_mirror)
5268                         map_index += le16_to_cpu(map->data_disks_per_row);
5269                 dev->offload_to_mirror = !dev->offload_to_mirror;
5270                 break;
5271         case HPSA_RAID_ADM:
5272                 /* Handles N-way mirrors  (R1-ADM)
5273                  * and R10 with # of drives divisible by 3.)
5274                  * Ensure we have the correct raid_map.
5275                  */
5276                 if (le16_to_cpu(map->layout_map_count) != 3) {
5277                         hpsa_turn_off_ioaccel_for_device(dev);
5278                         return IO_ACCEL_INELIGIBLE;
5279                 }
5280
5281                 offload_to_mirror = dev->offload_to_mirror;
5282                 raid_map_helper(map, offload_to_mirror,
5283                                 &map_index, &current_group);
5284                 /* set mirror group to use next time */
5285                 offload_to_mirror =
5286                         (offload_to_mirror >=
5287                         le16_to_cpu(map->layout_map_count) - 1)
5288                         ? 0 : offload_to_mirror + 1;
5289                 dev->offload_to_mirror = offload_to_mirror;
5290                 /* Avoid direct use of dev->offload_to_mirror within this
5291                  * function since multiple threads might simultaneously
5292                  * increment it beyond the range of dev->layout_map_count -1.
5293                  */
5294                 break;
5295         case HPSA_RAID_5:
5296         case HPSA_RAID_6:
5297                 if (le16_to_cpu(map->layout_map_count) <= 1)
5298                         break;
5299
5300                 /* Verify first and last block are in same RAID group */
5301                 r5or6_blocks_per_row =
5302                         le16_to_cpu(map->strip_size) *
5303                         le16_to_cpu(map->data_disks_per_row);
5304                 if (r5or6_blocks_per_row == 0) {
5305                         hpsa_turn_off_ioaccel_for_device(dev);
5306                         return IO_ACCEL_INELIGIBLE;
5307                 }
5308                 stripesize = r5or6_blocks_per_row *
5309                         le16_to_cpu(map->layout_map_count);
5310 #if BITS_PER_LONG == 32
5311                 tmpdiv = first_block;
5312                 first_group = do_div(tmpdiv, stripesize);
5313                 tmpdiv = first_group;
5314                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5315                 first_group = tmpdiv;
5316                 tmpdiv = last_block;
5317                 last_group = do_div(tmpdiv, stripesize);
5318                 tmpdiv = last_group;
5319                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5320                 last_group = tmpdiv;
5321 #else
5322                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5323                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5324 #endif
5325                 if (first_group != last_group)
5326                         return IO_ACCEL_INELIGIBLE;
5327
5328                 /* Verify request is in a single row of RAID 5/6 */
5329 #if BITS_PER_LONG == 32
5330                 tmpdiv = first_block;
5331                 (void) do_div(tmpdiv, stripesize);
5332                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5333                 tmpdiv = last_block;
5334                 (void) do_div(tmpdiv, stripesize);
5335                 r5or6_last_row = r0_last_row = tmpdiv;
5336 #else
5337                 first_row = r5or6_first_row = r0_first_row =
5338                                                 first_block / stripesize;
5339                 r5or6_last_row = r0_last_row = last_block / stripesize;
5340 #endif
5341                 if (r5or6_first_row != r5or6_last_row)
5342                         return IO_ACCEL_INELIGIBLE;
5343
5344
5345                 /* Verify request is in a single column */
5346 #if BITS_PER_LONG == 32
5347                 tmpdiv = first_block;
5348                 first_row_offset = do_div(tmpdiv, stripesize);
5349                 tmpdiv = first_row_offset;
5350                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5351                 r5or6_first_row_offset = first_row_offset;
5352                 tmpdiv = last_block;
5353                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5354                 tmpdiv = r5or6_last_row_offset;
5355                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5356                 tmpdiv = r5or6_first_row_offset;
5357                 (void) do_div(tmpdiv, map->strip_size);
5358                 first_column = r5or6_first_column = tmpdiv;
5359                 tmpdiv = r5or6_last_row_offset;
5360                 (void) do_div(tmpdiv, map->strip_size);
5361                 r5or6_last_column = tmpdiv;
5362 #else
5363                 first_row_offset = r5or6_first_row_offset =
5364                         (u32)((first_block % stripesize) %
5365                                                 r5or6_blocks_per_row);
5366
5367                 r5or6_last_row_offset =
5368                         (u32)((last_block % stripesize) %
5369                                                 r5or6_blocks_per_row);
5370
5371                 first_column = r5or6_first_column =
5372                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5373                 r5or6_last_column =
5374                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5375 #endif
5376                 if (r5or6_first_column != r5or6_last_column)
5377                         return IO_ACCEL_INELIGIBLE;
5378
5379                 /* Request is eligible */
5380                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5381                         le16_to_cpu(map->row_cnt);
5382
5383                 map_index = (first_group *
5384                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5385                         (map_row * total_disks_per_row) + first_column;
5386                 break;
5387         default:
5388                 return IO_ACCEL_INELIGIBLE;
5389         }
5390
5391         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5392                 return IO_ACCEL_INELIGIBLE;
5393
5394         c->phys_disk = dev->phys_disk[map_index];
5395         if (!c->phys_disk)
5396                 return IO_ACCEL_INELIGIBLE;
5397
5398         disk_handle = dd[map_index].ioaccel_handle;
5399         disk_block = le64_to_cpu(map->disk_starting_blk) +
5400                         first_row * le16_to_cpu(map->strip_size) +
5401                         (first_row_offset - first_column *
5402                         le16_to_cpu(map->strip_size));
5403         disk_block_cnt = block_cnt;
5404
5405         /* handle differing logical/physical block sizes */
5406         if (map->phys_blk_shift) {
5407                 disk_block <<= map->phys_blk_shift;
5408                 disk_block_cnt <<= map->phys_blk_shift;
5409         }
5410         BUG_ON(disk_block_cnt > 0xffff);
5411
5412         /* build the new CDB for the physical disk I/O */
5413         if (disk_block > 0xffffffff) {
5414                 cdb[0] = is_write ? WRITE_16 : READ_16;
5415                 cdb[1] = 0;
5416                 cdb[2] = (u8) (disk_block >> 56);
5417                 cdb[3] = (u8) (disk_block >> 48);
5418                 cdb[4] = (u8) (disk_block >> 40);
5419                 cdb[5] = (u8) (disk_block >> 32);
5420                 cdb[6] = (u8) (disk_block >> 24);
5421                 cdb[7] = (u8) (disk_block >> 16);
5422                 cdb[8] = (u8) (disk_block >> 8);
5423                 cdb[9] = (u8) (disk_block);
5424                 cdb[10] = (u8) (disk_block_cnt >> 24);
5425                 cdb[11] = (u8) (disk_block_cnt >> 16);
5426                 cdb[12] = (u8) (disk_block_cnt >> 8);
5427                 cdb[13] = (u8) (disk_block_cnt);
5428                 cdb[14] = 0;
5429                 cdb[15] = 0;
5430                 cdb_len = 16;
5431         } else {
5432                 cdb[0] = is_write ? WRITE_10 : READ_10;
5433                 cdb[1] = 0;
5434                 cdb[2] = (u8) (disk_block >> 24);
5435                 cdb[3] = (u8) (disk_block >> 16);
5436                 cdb[4] = (u8) (disk_block >> 8);
5437                 cdb[5] = (u8) (disk_block);
5438                 cdb[6] = 0;
5439                 cdb[7] = (u8) (disk_block_cnt >> 8);
5440                 cdb[8] = (u8) (disk_block_cnt);
5441                 cdb[9] = 0;
5442                 cdb_len = 10;
5443         }
5444         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5445                                                 dev->scsi3addr,
5446                                                 dev->phys_disk[map_index]);
5447 }
5448
5449 /*
5450  * Submit commands down the "normal" RAID stack path
5451  * All callers to hpsa_ciss_submit must check lockup_detected
5452  * beforehand, before (opt.) and after calling cmd_alloc
5453  */
5454 static int hpsa_ciss_submit(struct ctlr_info *h,
5455         struct CommandList *c, struct scsi_cmnd *cmd,
5456         struct hpsa_scsi_dev_t *dev)
5457 {
5458         cmd->host_scribble = (unsigned char *) c;
5459         c->cmd_type = CMD_SCSI;
5460         c->scsi_cmd = cmd;
5461         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5462         memcpy(&c->Header.LUN.LunAddrBytes[0], &dev->scsi3addr[0], 8);
5463         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5464
5465         /* Fill in the request block... */
5466
5467         c->Request.Timeout = 0;
5468         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5469         c->Request.CDBLen = cmd->cmd_len;
5470         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5471         switch (cmd->sc_data_direction) {
5472         case DMA_TO_DEVICE:
5473                 c->Request.type_attr_dir =
5474                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5475                 break;
5476         case DMA_FROM_DEVICE:
5477                 c->Request.type_attr_dir =
5478                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5479                 break;
5480         case DMA_NONE:
5481                 c->Request.type_attr_dir =
5482                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5483                 break;
5484         case DMA_BIDIRECTIONAL:
5485                 /* This can happen if a buggy application does a scsi passthru
5486                  * and sets both inlen and outlen to non-zero. ( see
5487                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5488                  */
5489
5490                 c->Request.type_attr_dir =
5491                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5492                 /* This is technically wrong, and hpsa controllers should
5493                  * reject it with CMD_INVALID, which is the most correct
5494                  * response, but non-fibre backends appear to let it
5495                  * slide by, and give the same results as if this field
5496                  * were set correctly.  Either way is acceptable for
5497                  * our purposes here.
5498                  */
5499
5500                 break;
5501
5502         default:
5503                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5504                         cmd->sc_data_direction);
5505                 BUG();
5506                 break;
5507         }
5508
5509         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5510                 hpsa_cmd_resolve_and_free(h, c);
5511                 return SCSI_MLQUEUE_HOST_BUSY;
5512         }
5513
5514         if (dev->in_reset) {
5515                 hpsa_cmd_resolve_and_free(h, c);
5516                 return SCSI_MLQUEUE_HOST_BUSY;
5517         }
5518
5519         c->device = dev;
5520
5521         enqueue_cmd_and_start_io(h, c);
5522         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5523         return 0;
5524 }
5525
5526 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5527                                 struct CommandList *c)
5528 {
5529         dma_addr_t cmd_dma_handle, err_dma_handle;
5530
5531         /* Zero out all of commandlist except the last field, refcount */
5532         memset(c, 0, offsetof(struct CommandList, refcount));
5533         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5534         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5535         c->err_info = h->errinfo_pool + index;
5536         memset(c->err_info, 0, sizeof(*c->err_info));
5537         err_dma_handle = h->errinfo_pool_dhandle
5538             + index * sizeof(*c->err_info);
5539         c->cmdindex = index;
5540         c->busaddr = (u32) cmd_dma_handle;
5541         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5542         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5543         c->h = h;
5544         c->scsi_cmd = SCSI_CMD_IDLE;
5545 }
5546
5547 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5548 {
5549         int i;
5550
5551         for (i = 0; i < h->nr_cmds; i++) {
5552                 struct CommandList *c = h->cmd_pool + i;
5553
5554                 hpsa_cmd_init(h, i, c);
5555                 atomic_set(&c->refcount, 0);
5556         }
5557 }
5558
5559 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5560                                 struct CommandList *c)
5561 {
5562         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5563
5564         BUG_ON(c->cmdindex != index);
5565
5566         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5567         memset(c->err_info, 0, sizeof(*c->err_info));
5568         c->busaddr = (u32) cmd_dma_handle;
5569 }
5570
5571 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5572                 struct CommandList *c, struct scsi_cmnd *cmd)
5573 {
5574         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5575         int rc = IO_ACCEL_INELIGIBLE;
5576
5577         if (!dev)
5578                 return SCSI_MLQUEUE_HOST_BUSY;
5579
5580         if (dev->in_reset)
5581                 return SCSI_MLQUEUE_HOST_BUSY;
5582
5583         if (hpsa_simple_mode)
5584                 return IO_ACCEL_INELIGIBLE;
5585
5586         cmd->host_scribble = (unsigned char *) c;
5587
5588         if (dev->offload_enabled) {
5589                 hpsa_cmd_init(h, c->cmdindex, c);
5590                 c->cmd_type = CMD_SCSI;
5591                 c->scsi_cmd = cmd;
5592                 c->device = dev;
5593                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5594                 if (rc < 0)     /* scsi_dma_map failed. */
5595                         rc = SCSI_MLQUEUE_HOST_BUSY;
5596         } else if (dev->hba_ioaccel_enabled) {
5597                 hpsa_cmd_init(h, c->cmdindex, c);
5598                 c->cmd_type = CMD_SCSI;
5599                 c->scsi_cmd = cmd;
5600                 c->device = dev;
5601                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5602                 if (rc < 0)     /* scsi_dma_map failed. */
5603                         rc = SCSI_MLQUEUE_HOST_BUSY;
5604         }
5605         return rc;
5606 }
5607
5608 static void hpsa_command_resubmit_worker(struct work_struct *work)
5609 {
5610         struct scsi_cmnd *cmd;
5611         struct hpsa_scsi_dev_t *dev;
5612         struct CommandList *c = container_of(work, struct CommandList, work);
5613
5614         cmd = c->scsi_cmd;
5615         dev = cmd->device->hostdata;
5616         if (!dev) {
5617                 cmd->result = DID_NO_CONNECT << 16;
5618                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5619         }
5620
5621         if (dev->in_reset) {
5622                 cmd->result = DID_RESET << 16;
5623                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5624         }
5625
5626         if (c->cmd_type == CMD_IOACCEL2) {
5627                 struct ctlr_info *h = c->h;
5628                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5629                 int rc;
5630
5631                 if (c2->error_data.serv_response ==
5632                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5633                         rc = hpsa_ioaccel_submit(h, c, cmd);
5634                         if (rc == 0)
5635                                 return;
5636                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5637                                 /*
5638                                  * If we get here, it means dma mapping failed.
5639                                  * Try again via scsi mid layer, which will
5640                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5641                                  */
5642                                 cmd->result = DID_IMM_RETRY << 16;
5643                                 return hpsa_cmd_free_and_done(h, c, cmd);
5644                         }
5645                         /* else, fall thru and resubmit down CISS path */
5646                 }
5647         }
5648         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5649         if (hpsa_ciss_submit(c->h, c, cmd, dev)) {
5650                 /*
5651                  * If we get here, it means dma mapping failed. Try
5652                  * again via scsi mid layer, which will then get
5653                  * SCSI_MLQUEUE_HOST_BUSY.
5654                  *
5655                  * hpsa_ciss_submit will have already freed c
5656                  * if it encountered a dma mapping failure.
5657                  */
5658                 cmd->result = DID_IMM_RETRY << 16;
5659                 cmd->scsi_done(cmd);
5660         }
5661 }
5662
5663 /* Running in struct Scsi_Host->host_lock less mode */
5664 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5665 {
5666         struct ctlr_info *h;
5667         struct hpsa_scsi_dev_t *dev;
5668         struct CommandList *c;
5669         int rc = 0;
5670
5671         /* Get the ptr to our adapter structure out of cmd->host. */
5672         h = sdev_to_hba(cmd->device);
5673
5674         BUG_ON(cmd->request->tag < 0);
5675
5676         dev = cmd->device->hostdata;
5677         if (!dev) {
5678                 cmd->result = DID_NO_CONNECT << 16;
5679                 cmd->scsi_done(cmd);
5680                 return 0;
5681         }
5682
5683         if (dev->removed) {
5684                 cmd->result = DID_NO_CONNECT << 16;
5685                 cmd->scsi_done(cmd);
5686                 return 0;
5687         }
5688
5689         if (unlikely(lockup_detected(h))) {
5690                 cmd->result = DID_NO_CONNECT << 16;
5691                 cmd->scsi_done(cmd);
5692                 return 0;
5693         }
5694
5695         if (dev->in_reset)
5696                 return SCSI_MLQUEUE_DEVICE_BUSY;
5697
5698         c = cmd_tagged_alloc(h, cmd);
5699         if (c == NULL)
5700                 return SCSI_MLQUEUE_DEVICE_BUSY;
5701
5702         /*
5703          * This is necessary because the SML doesn't zero out this field during
5704          * error recovery.
5705          */
5706         cmd->result = 0;
5707
5708         /*
5709          * Call alternate submit routine for I/O accelerated commands.
5710          * Retries always go down the normal I/O path.
5711          */
5712         if (likely(cmd->retries == 0 &&
5713                         !blk_rq_is_passthrough(cmd->request) &&
5714                         h->acciopath_status)) {
5715                 rc = hpsa_ioaccel_submit(h, c, cmd);
5716                 if (rc == 0)
5717                         return 0;
5718                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5719                         hpsa_cmd_resolve_and_free(h, c);
5720                         return SCSI_MLQUEUE_HOST_BUSY;
5721                 }
5722         }
5723         return hpsa_ciss_submit(h, c, cmd, dev);
5724 }
5725
5726 static void hpsa_scan_complete(struct ctlr_info *h)
5727 {
5728         unsigned long flags;
5729
5730         spin_lock_irqsave(&h->scan_lock, flags);
5731         h->scan_finished = 1;
5732         wake_up(&h->scan_wait_queue);
5733         spin_unlock_irqrestore(&h->scan_lock, flags);
5734 }
5735
5736 static void hpsa_scan_start(struct Scsi_Host *sh)
5737 {
5738         struct ctlr_info *h = shost_to_hba(sh);
5739         unsigned long flags;
5740
5741         /*
5742          * Don't let rescans be initiated on a controller known to be locked
5743          * up.  If the controller locks up *during* a rescan, that thread is
5744          * probably hosed, but at least we can prevent new rescan threads from
5745          * piling up on a locked up controller.
5746          */
5747         if (unlikely(lockup_detected(h)))
5748                 return hpsa_scan_complete(h);
5749
5750         /*
5751          * If a scan is already waiting to run, no need to add another
5752          */
5753         spin_lock_irqsave(&h->scan_lock, flags);
5754         if (h->scan_waiting) {
5755                 spin_unlock_irqrestore(&h->scan_lock, flags);
5756                 return;
5757         }
5758
5759         spin_unlock_irqrestore(&h->scan_lock, flags);
5760
5761         /* wait until any scan already in progress is finished. */
5762         while (1) {
5763                 spin_lock_irqsave(&h->scan_lock, flags);
5764                 if (h->scan_finished)
5765                         break;
5766                 h->scan_waiting = 1;
5767                 spin_unlock_irqrestore(&h->scan_lock, flags);
5768                 wait_event(h->scan_wait_queue, h->scan_finished);
5769                 /* Note: We don't need to worry about a race between this
5770                  * thread and driver unload because the midlayer will
5771                  * have incremented the reference count, so unload won't
5772                  * happen if we're in here.
5773                  */
5774         }
5775         h->scan_finished = 0; /* mark scan as in progress */
5776         h->scan_waiting = 0;
5777         spin_unlock_irqrestore(&h->scan_lock, flags);
5778
5779         if (unlikely(lockup_detected(h)))
5780                 return hpsa_scan_complete(h);
5781
5782         /*
5783          * Do the scan after a reset completion
5784          */
5785         spin_lock_irqsave(&h->reset_lock, flags);
5786         if (h->reset_in_progress) {
5787                 h->drv_req_rescan = 1;
5788                 spin_unlock_irqrestore(&h->reset_lock, flags);
5789                 hpsa_scan_complete(h);
5790                 return;
5791         }
5792         spin_unlock_irqrestore(&h->reset_lock, flags);
5793
5794         hpsa_update_scsi_devices(h);
5795
5796         hpsa_scan_complete(h);
5797 }
5798
5799 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5800 {
5801         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5802
5803         if (!logical_drive)
5804                 return -ENODEV;
5805
5806         if (qdepth < 1)
5807                 qdepth = 1;
5808         else if (qdepth > logical_drive->queue_depth)
5809                 qdepth = logical_drive->queue_depth;
5810
5811         return scsi_change_queue_depth(sdev, qdepth);
5812 }
5813
5814 static int hpsa_scan_finished(struct Scsi_Host *sh,
5815         unsigned long elapsed_time)
5816 {
5817         struct ctlr_info *h = shost_to_hba(sh);
5818         unsigned long flags;
5819         int finished;
5820
5821         spin_lock_irqsave(&h->scan_lock, flags);
5822         finished = h->scan_finished;
5823         spin_unlock_irqrestore(&h->scan_lock, flags);
5824         return finished;
5825 }
5826
5827 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5828 {
5829         struct Scsi_Host *sh;
5830
5831         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5832         if (sh == NULL) {
5833                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5834                 return -ENOMEM;
5835         }
5836
5837         sh->io_port = 0;
5838         sh->n_io_port = 0;
5839         sh->this_id = -1;
5840         sh->max_channel = 3;
5841         sh->max_cmd_len = MAX_COMMAND_SIZE;
5842         sh->max_lun = HPSA_MAX_LUN;
5843         sh->max_id = HPSA_MAX_LUN;
5844         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5845         sh->cmd_per_lun = sh->can_queue;
5846         sh->sg_tablesize = h->maxsgentries;
5847         sh->transportt = hpsa_sas_transport_template;
5848         sh->hostdata[0] = (unsigned long) h;
5849         sh->irq = pci_irq_vector(h->pdev, 0);
5850         sh->unique_id = sh->irq;
5851
5852         h->scsi_host = sh;
5853         return 0;
5854 }
5855
5856 static int hpsa_scsi_add_host(struct ctlr_info *h)
5857 {
5858         int rv;
5859
5860         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5861         if (rv) {
5862                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5863                 return rv;
5864         }
5865         scsi_scan_host(h->scsi_host);
5866         return 0;
5867 }
5868
5869 /*
5870  * The block layer has already gone to the trouble of picking out a unique,
5871  * small-integer tag for this request.  We use an offset from that value as
5872  * an index to select our command block.  (The offset allows us to reserve the
5873  * low-numbered entries for our own uses.)
5874  */
5875 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5876 {
5877         int idx = scmd->request->tag;
5878
5879         if (idx < 0)
5880                 return idx;
5881
5882         /* Offset to leave space for internal cmds. */
5883         return idx += HPSA_NRESERVED_CMDS;
5884 }
5885
5886 /*
5887  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5888  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5889  */
5890 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5891                                 struct CommandList *c, unsigned char lunaddr[],
5892                                 int reply_queue)
5893 {
5894         int rc;
5895
5896         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5897         (void) fill_cmd(c, TEST_UNIT_READY, h,
5898                         NULL, 0, 0, lunaddr, TYPE_CMD);
5899         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5900         if (rc)
5901                 return rc;
5902         /* no unmap needed here because no data xfer. */
5903
5904         /* Check if the unit is already ready. */
5905         if (c->err_info->CommandStatus == CMD_SUCCESS)
5906                 return 0;
5907
5908         /*
5909          * The first command sent after reset will receive "unit attention" to
5910          * indicate that the LUN has been reset...this is actually what we're
5911          * looking for (but, success is good too).
5912          */
5913         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5914                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5915                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5916                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5917                 return 0;
5918
5919         return 1;
5920 }
5921
5922 /*
5923  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5924  * returns zero when the unit is ready, and non-zero when giving up.
5925  */
5926 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5927                                 struct CommandList *c,
5928                                 unsigned char lunaddr[], int reply_queue)
5929 {
5930         int rc;
5931         int count = 0;
5932         int waittime = 1; /* seconds */
5933
5934         /* Send test unit ready until device ready, or give up. */
5935         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5936
5937                 /*
5938                  * Wait for a bit.  do this first, because if we send
5939                  * the TUR right away, the reset will just abort it.
5940                  */
5941                 msleep(1000 * waittime);
5942
5943                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5944                 if (!rc)
5945                         break;
5946
5947                 /* Increase wait time with each try, up to a point. */
5948                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5949                         waittime *= 2;
5950
5951                 dev_warn(&h->pdev->dev,
5952                          "waiting %d secs for device to become ready.\n",
5953                          waittime);
5954         }
5955
5956         return rc;
5957 }
5958
5959 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5960                                            unsigned char lunaddr[],
5961                                            int reply_queue)
5962 {
5963         int first_queue;
5964         int last_queue;
5965         int rq;
5966         int rc = 0;
5967         struct CommandList *c;
5968
5969         c = cmd_alloc(h);
5970
5971         /*
5972          * If no specific reply queue was requested, then send the TUR
5973          * repeatedly, requesting a reply on each reply queue; otherwise execute
5974          * the loop exactly once using only the specified queue.
5975          */
5976         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5977                 first_queue = 0;
5978                 last_queue = h->nreply_queues - 1;
5979         } else {
5980                 first_queue = reply_queue;
5981                 last_queue = reply_queue;
5982         }
5983
5984         for (rq = first_queue; rq <= last_queue; rq++) {
5985                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5986                 if (rc)
5987                         break;
5988         }
5989
5990         if (rc)
5991                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5992         else
5993                 dev_warn(&h->pdev->dev, "device is ready.\n");
5994
5995         cmd_free(h, c);
5996         return rc;
5997 }
5998
5999 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6000  * complaining.  Doing a host- or bus-reset can't do anything good here.
6001  */
6002 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
6003 {
6004         int rc = SUCCESS;
6005         int i;
6006         struct ctlr_info *h;
6007         struct hpsa_scsi_dev_t *dev = NULL;
6008         u8 reset_type;
6009         char msg[48];
6010         unsigned long flags;
6011
6012         /* find the controller to which the command to be aborted was sent */
6013         h = sdev_to_hba(scsicmd->device);
6014         if (h == NULL) /* paranoia */
6015                 return FAILED;
6016
6017         spin_lock_irqsave(&h->reset_lock, flags);
6018         h->reset_in_progress = 1;
6019         spin_unlock_irqrestore(&h->reset_lock, flags);
6020
6021         if (lockup_detected(h)) {
6022                 rc = FAILED;
6023                 goto return_reset_status;
6024         }
6025
6026         dev = scsicmd->device->hostdata;
6027         if (!dev) {
6028                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
6029                 rc = FAILED;
6030                 goto return_reset_status;
6031         }
6032
6033         if (dev->devtype == TYPE_ENCLOSURE) {
6034                 rc = SUCCESS;
6035                 goto return_reset_status;
6036         }
6037
6038         /* if controller locked up, we can guarantee command won't complete */
6039         if (lockup_detected(h)) {
6040                 snprintf(msg, sizeof(msg),
6041                          "cmd %d RESET FAILED, lockup detected",
6042                          hpsa_get_cmd_index(scsicmd));
6043                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6044                 rc = FAILED;
6045                 goto return_reset_status;
6046         }
6047
6048         /* this reset request might be the result of a lockup; check */
6049         if (detect_controller_lockup(h)) {
6050                 snprintf(msg, sizeof(msg),
6051                          "cmd %d RESET FAILED, new lockup detected",
6052                          hpsa_get_cmd_index(scsicmd));
6053                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6054                 rc = FAILED;
6055                 goto return_reset_status;
6056         }
6057
6058         /* Do not attempt on controller */
6059         if (is_hba_lunid(dev->scsi3addr)) {
6060                 rc = SUCCESS;
6061                 goto return_reset_status;
6062         }
6063
6064         if (is_logical_dev_addr_mode(dev->scsi3addr))
6065                 reset_type = HPSA_DEVICE_RESET_MSG;
6066         else
6067                 reset_type = HPSA_PHYS_TARGET_RESET;
6068
6069         sprintf(msg, "resetting %s",
6070                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
6071         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6072
6073         /*
6074          * wait to see if any commands will complete before sending reset
6075          */
6076         dev->in_reset = true; /* block any new cmds from OS for this device */
6077         for (i = 0; i < 10; i++) {
6078                 if (atomic_read(&dev->commands_outstanding) > 0)
6079                         msleep(1000);
6080                 else
6081                         break;
6082         }
6083
6084         /* send a reset to the SCSI LUN which the command was sent to */
6085         rc = hpsa_do_reset(h, dev, reset_type, DEFAULT_REPLY_QUEUE);
6086         if (rc == 0)
6087                 rc = SUCCESS;
6088         else
6089                 rc = FAILED;
6090
6091         sprintf(msg, "reset %s %s",
6092                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
6093                 rc == SUCCESS ? "completed successfully" : "failed");
6094         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
6095
6096 return_reset_status:
6097         spin_lock_irqsave(&h->reset_lock, flags);
6098         h->reset_in_progress = 0;
6099         if (dev)
6100                 dev->in_reset = false;
6101         spin_unlock_irqrestore(&h->reset_lock, flags);
6102         return rc;
6103 }
6104
6105 /*
6106  * For operations with an associated SCSI command, a command block is allocated
6107  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6108  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6109  * the complement, although cmd_free() may be called instead.
6110  */
6111 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6112                                             struct scsi_cmnd *scmd)
6113 {
6114         int idx = hpsa_get_cmd_index(scmd);
6115         struct CommandList *c = h->cmd_pool + idx;
6116
6117         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6118                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6119                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6120                 /* The index value comes from the block layer, so if it's out of
6121                  * bounds, it's probably not our bug.
6122                  */
6123                 BUG();
6124         }
6125
6126         if (unlikely(!hpsa_is_cmd_idle(c))) {
6127                 /*
6128                  * We expect that the SCSI layer will hand us a unique tag
6129                  * value.  Thus, there should never be a collision here between
6130                  * two requests...because if the selected command isn't idle
6131                  * then someone is going to be very disappointed.
6132                  */
6133                 if (idx != h->last_collision_tag) { /* Print once per tag */
6134                         dev_warn(&h->pdev->dev,
6135                                 "%s: tag collision (tag=%d)\n", __func__, idx);
6136                         if (scmd)
6137                                 scsi_print_command(scmd);
6138                         h->last_collision_tag = idx;
6139                 }
6140                 return NULL;
6141         }
6142
6143         atomic_inc(&c->refcount);
6144
6145         hpsa_cmd_partial_init(h, idx, c);
6146         return c;
6147 }
6148
6149 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6150 {
6151         /*
6152          * Release our reference to the block.  We don't need to do anything
6153          * else to free it, because it is accessed by index.
6154          */
6155         (void)atomic_dec(&c->refcount);
6156 }
6157
6158 /*
6159  * For operations that cannot sleep, a command block is allocated at init,
6160  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6161  * which ones are free or in use.  Lock must be held when calling this.
6162  * cmd_free() is the complement.
6163  * This function never gives up and returns NULL.  If it hangs,
6164  * another thread must call cmd_free() to free some tags.
6165  */
6166
6167 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6168 {
6169         struct CommandList *c;
6170         int refcount, i;
6171         int offset = 0;
6172
6173         /*
6174          * There is some *extremely* small but non-zero chance that that
6175          * multiple threads could get in here, and one thread could
6176          * be scanning through the list of bits looking for a free
6177          * one, but the free ones are always behind him, and other
6178          * threads sneak in behind him and eat them before he can
6179          * get to them, so that while there is always a free one, a
6180          * very unlucky thread might be starved anyway, never able to
6181          * beat the other threads.  In reality, this happens so
6182          * infrequently as to be indistinguishable from never.
6183          *
6184          * Note that we start allocating commands before the SCSI host structure
6185          * is initialized.  Since the search starts at bit zero, this
6186          * all works, since we have at least one command structure available;
6187          * however, it means that the structures with the low indexes have to be
6188          * reserved for driver-initiated requests, while requests from the block
6189          * layer will use the higher indexes.
6190          */
6191
6192         for (;;) {
6193                 i = find_next_zero_bit(h->cmd_pool_bits,
6194                                         HPSA_NRESERVED_CMDS,
6195                                         offset);
6196                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6197                         offset = 0;
6198                         continue;
6199                 }
6200                 c = h->cmd_pool + i;
6201                 refcount = atomic_inc_return(&c->refcount);
6202                 if (unlikely(refcount > 1)) {
6203                         cmd_free(h, c); /* already in use */
6204                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6205                         continue;
6206                 }
6207                 set_bit(i & (BITS_PER_LONG - 1),
6208                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6209                 break; /* it's ours now. */
6210         }
6211         hpsa_cmd_partial_init(h, i, c);
6212         c->device = NULL;
6213         return c;
6214 }
6215
6216 /*
6217  * This is the complementary operation to cmd_alloc().  Note, however, in some
6218  * corner cases it may also be used to free blocks allocated by
6219  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6220  * the clear-bit is harmless.
6221  */
6222 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6223 {
6224         if (atomic_dec_and_test(&c->refcount)) {
6225                 int i;
6226
6227                 i = c - h->cmd_pool;
6228                 clear_bit(i & (BITS_PER_LONG - 1),
6229                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6230         }
6231 }
6232
6233 #ifdef CONFIG_COMPAT
6234
6235 static int hpsa_ioctl32_passthru(struct scsi_device *dev, unsigned int cmd,
6236         void __user *arg)
6237 {
6238         struct ctlr_info *h = sdev_to_hba(dev);
6239         IOCTL32_Command_struct __user *arg32 = arg;
6240         IOCTL_Command_struct arg64;
6241         int err;
6242         u32 cp;
6243
6244         if (!arg)
6245                 return -EINVAL;
6246
6247         memset(&arg64, 0, sizeof(arg64));
6248         if (copy_from_user(&arg64, arg32, offsetof(IOCTL_Command_struct, buf)))
6249                 return -EFAULT;
6250         if (get_user(cp, &arg32->buf))
6251                 return -EFAULT;
6252         arg64.buf = compat_ptr(cp);
6253
6254         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6255                 return -EAGAIN;
6256         err = hpsa_passthru_ioctl(h, &arg64);
6257         atomic_inc(&h->passthru_cmds_avail);
6258         if (err)
6259                 return err;
6260         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6261                          sizeof(arg32->error_info)))
6262                 return -EFAULT;
6263         return 0;
6264 }
6265
6266 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6267         unsigned int cmd, void __user *arg)
6268 {
6269         struct ctlr_info *h = sdev_to_hba(dev);
6270         BIG_IOCTL32_Command_struct __user *arg32 = arg;
6271         BIG_IOCTL_Command_struct arg64;
6272         int err;
6273         u32 cp;
6274
6275         if (!arg)
6276                 return -EINVAL;
6277         memset(&arg64, 0, sizeof(arg64));
6278         if (copy_from_user(&arg64, arg32,
6279                            offsetof(BIG_IOCTL32_Command_struct, buf)))
6280                 return -EFAULT;
6281         if (get_user(cp, &arg32->buf))
6282                 return -EFAULT;
6283         arg64.buf = compat_ptr(cp);
6284
6285         if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6286                 return -EAGAIN;
6287         err = hpsa_big_passthru_ioctl(h, &arg64);
6288         atomic_inc(&h->passthru_cmds_avail);
6289         if (err)
6290                 return err;
6291         if (copy_to_user(&arg32->error_info, &arg64.error_info,
6292                          sizeof(arg32->error_info)))
6293                 return -EFAULT;
6294         return 0;
6295 }
6296
6297 static int hpsa_compat_ioctl(struct scsi_device *dev, unsigned int cmd,
6298                              void __user *arg)
6299 {
6300         switch (cmd) {
6301         case CCISS_GETPCIINFO:
6302         case CCISS_GETINTINFO:
6303         case CCISS_SETINTINFO:
6304         case CCISS_GETNODENAME:
6305         case CCISS_SETNODENAME:
6306         case CCISS_GETHEARTBEAT:
6307         case CCISS_GETBUSTYPES:
6308         case CCISS_GETFIRMVER:
6309         case CCISS_GETDRIVVER:
6310         case CCISS_REVALIDVOLS:
6311         case CCISS_DEREGDISK:
6312         case CCISS_REGNEWDISK:
6313         case CCISS_REGNEWD:
6314         case CCISS_RESCANDISK:
6315         case CCISS_GETLUNINFO:
6316                 return hpsa_ioctl(dev, cmd, arg);
6317
6318         case CCISS_PASSTHRU32:
6319                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6320         case CCISS_BIG_PASSTHRU32:
6321                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6322
6323         default:
6324                 return -ENOIOCTLCMD;
6325         }
6326 }
6327 #endif
6328
6329 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6330 {
6331         struct hpsa_pci_info pciinfo;
6332
6333         if (!argp)
6334                 return -EINVAL;
6335         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6336         pciinfo.bus = h->pdev->bus->number;
6337         pciinfo.dev_fn = h->pdev->devfn;
6338         pciinfo.board_id = h->board_id;
6339         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6340                 return -EFAULT;
6341         return 0;
6342 }
6343
6344 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6345 {
6346         DriverVer_type DriverVer;
6347         unsigned char vmaj, vmin, vsubmin;
6348         int rc;
6349
6350         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6351                 &vmaj, &vmin, &vsubmin);
6352         if (rc != 3) {
6353                 dev_info(&h->pdev->dev, "driver version string '%s' "
6354                         "unrecognized.", HPSA_DRIVER_VERSION);
6355                 vmaj = 0;
6356                 vmin = 0;
6357                 vsubmin = 0;
6358         }
6359         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6360         if (!argp)
6361                 return -EINVAL;
6362         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6363                 return -EFAULT;
6364         return 0;
6365 }
6366
6367 static int hpsa_passthru_ioctl(struct ctlr_info *h,
6368                                IOCTL_Command_struct *iocommand)
6369 {
6370         struct CommandList *c;
6371         char *buff = NULL;
6372         u64 temp64;
6373         int rc = 0;
6374
6375         if (!capable(CAP_SYS_RAWIO))
6376                 return -EPERM;
6377         if ((iocommand->buf_size < 1) &&
6378             (iocommand->Request.Type.Direction != XFER_NONE)) {
6379                 return -EINVAL;
6380         }
6381         if (iocommand->buf_size > 0) {
6382                 buff = kmalloc(iocommand->buf_size, GFP_KERNEL);
6383                 if (buff == NULL)
6384                         return -ENOMEM;
6385                 if (iocommand->Request.Type.Direction & XFER_WRITE) {
6386                         /* Copy the data into the buffer we created */
6387                         if (copy_from_user(buff, iocommand->buf,
6388                                 iocommand->buf_size)) {
6389                                 rc = -EFAULT;
6390                                 goto out_kfree;
6391                         }
6392                 } else {
6393                         memset(buff, 0, iocommand->buf_size);
6394                 }
6395         }
6396         c = cmd_alloc(h);
6397
6398         /* Fill in the command type */
6399         c->cmd_type = CMD_IOCTL_PEND;
6400         c->scsi_cmd = SCSI_CMD_BUSY;
6401         /* Fill in Command Header */
6402         c->Header.ReplyQueue = 0; /* unused in simple mode */
6403         if (iocommand->buf_size > 0) {  /* buffer to fill */
6404                 c->Header.SGList = 1;
6405                 c->Header.SGTotal = cpu_to_le16(1);
6406         } else  { /* no buffers to fill */
6407                 c->Header.SGList = 0;
6408                 c->Header.SGTotal = cpu_to_le16(0);
6409         }
6410         memcpy(&c->Header.LUN, &iocommand->LUN_info, sizeof(c->Header.LUN));
6411
6412         /* Fill in Request block */
6413         memcpy(&c->Request, &iocommand->Request,
6414                 sizeof(c->Request));
6415
6416         /* Fill in the scatter gather information */
6417         if (iocommand->buf_size > 0) {
6418                 temp64 = dma_map_single(&h->pdev->dev, buff,
6419                         iocommand->buf_size, DMA_BIDIRECTIONAL);
6420                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6421                         c->SG[0].Addr = cpu_to_le64(0);
6422                         c->SG[0].Len = cpu_to_le32(0);
6423                         rc = -ENOMEM;
6424                         goto out;
6425                 }
6426                 c->SG[0].Addr = cpu_to_le64(temp64);
6427                 c->SG[0].Len = cpu_to_le32(iocommand->buf_size);
6428                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6429         }
6430         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6431                                         NO_TIMEOUT);
6432         if (iocommand->buf_size > 0)
6433                 hpsa_pci_unmap(h->pdev, c, 1, DMA_BIDIRECTIONAL);
6434         check_ioctl_unit_attention(h, c);
6435         if (rc) {
6436                 rc = -EIO;
6437                 goto out;
6438         }
6439
6440         /* Copy the error information out */
6441         memcpy(&iocommand->error_info, c->err_info,
6442                 sizeof(iocommand->error_info));
6443         if ((iocommand->Request.Type.Direction & XFER_READ) &&
6444                 iocommand->buf_size > 0) {
6445                 /* Copy the data out of the buffer we created */
6446                 if (copy_to_user(iocommand->buf, buff, iocommand->buf_size)) {
6447                         rc = -EFAULT;
6448                         goto out;
6449                 }
6450         }
6451 out:
6452         cmd_free(h, c);
6453 out_kfree:
6454         kfree(buff);
6455         return rc;
6456 }
6457
6458 static int hpsa_big_passthru_ioctl(struct ctlr_info *h,
6459                                    BIG_IOCTL_Command_struct *ioc)
6460 {
6461         struct CommandList *c;
6462         unsigned char **buff = NULL;
6463         int *buff_size = NULL;
6464         u64 temp64;
6465         BYTE sg_used = 0;
6466         int status = 0;
6467         u32 left;
6468         u32 sz;
6469         BYTE __user *data_ptr;
6470
6471         if (!capable(CAP_SYS_RAWIO))
6472                 return -EPERM;
6473
6474         if ((ioc->buf_size < 1) &&
6475             (ioc->Request.Type.Direction != XFER_NONE))
6476                 return -EINVAL;
6477         /* Check kmalloc limits  using all SGs */
6478         if (ioc->malloc_size > MAX_KMALLOC_SIZE)
6479                 return -EINVAL;
6480         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD)
6481                 return -EINVAL;
6482         buff = kcalloc(SG_ENTRIES_IN_CMD, sizeof(char *), GFP_KERNEL);
6483         if (!buff) {
6484                 status = -ENOMEM;
6485                 goto cleanup1;
6486         }
6487         buff_size = kmalloc_array(SG_ENTRIES_IN_CMD, sizeof(int), GFP_KERNEL);
6488         if (!buff_size) {
6489                 status = -ENOMEM;
6490                 goto cleanup1;
6491         }
6492         left = ioc->buf_size;
6493         data_ptr = ioc->buf;
6494         while (left) {
6495                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6496                 buff_size[sg_used] = sz;
6497                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6498                 if (buff[sg_used] == NULL) {
6499                         status = -ENOMEM;
6500                         goto cleanup1;
6501                 }
6502                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6503                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6504                                 status = -EFAULT;
6505                                 goto cleanup1;
6506                         }
6507                 } else
6508                         memset(buff[sg_used], 0, sz);
6509                 left -= sz;
6510                 data_ptr += sz;
6511                 sg_used++;
6512         }
6513         c = cmd_alloc(h);
6514
6515         c->cmd_type = CMD_IOCTL_PEND;
6516         c->scsi_cmd = SCSI_CMD_BUSY;
6517         c->Header.ReplyQueue = 0;
6518         c->Header.SGList = (u8) sg_used;
6519         c->Header.SGTotal = cpu_to_le16(sg_used);
6520         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6521         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6522         if (ioc->buf_size > 0) {
6523                 int i;
6524                 for (i = 0; i < sg_used; i++) {
6525                         temp64 = dma_map_single(&h->pdev->dev, buff[i],
6526                                     buff_size[i], DMA_BIDIRECTIONAL);
6527                         if (dma_mapping_error(&h->pdev->dev,
6528                                                         (dma_addr_t) temp64)) {
6529                                 c->SG[i].Addr = cpu_to_le64(0);
6530                                 c->SG[i].Len = cpu_to_le32(0);
6531                                 hpsa_pci_unmap(h->pdev, c, i,
6532                                         DMA_BIDIRECTIONAL);
6533                                 status = -ENOMEM;
6534                                 goto cleanup0;
6535                         }
6536                         c->SG[i].Addr = cpu_to_le64(temp64);
6537                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6538                         c->SG[i].Ext = cpu_to_le32(0);
6539                 }
6540                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6541         }
6542         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6543                                                 NO_TIMEOUT);
6544         if (sg_used)
6545                 hpsa_pci_unmap(h->pdev, c, sg_used, DMA_BIDIRECTIONAL);
6546         check_ioctl_unit_attention(h, c);
6547         if (status) {
6548                 status = -EIO;
6549                 goto cleanup0;
6550         }
6551
6552         /* Copy the error information out */
6553         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6554         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6555                 int i;
6556
6557                 /* Copy the data out of the buffer we created */
6558                 BYTE __user *ptr = ioc->buf;
6559                 for (i = 0; i < sg_used; i++) {
6560                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6561                                 status = -EFAULT;
6562                                 goto cleanup0;
6563                         }
6564                         ptr += buff_size[i];
6565                 }
6566         }
6567         status = 0;
6568 cleanup0:
6569         cmd_free(h, c);
6570 cleanup1:
6571         if (buff) {
6572                 int i;
6573
6574                 for (i = 0; i < sg_used; i++)
6575                         kfree(buff[i]);
6576                 kfree(buff);
6577         }
6578         kfree(buff_size);
6579         return status;
6580 }
6581
6582 static void check_ioctl_unit_attention(struct ctlr_info *h,
6583         struct CommandList *c)
6584 {
6585         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6586                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6587                 (void) check_for_unit_attention(h, c);
6588 }
6589
6590 /*
6591  * ioctl
6592  */
6593 static int hpsa_ioctl(struct scsi_device *dev, unsigned int cmd,
6594                       void __user *argp)
6595 {
6596         struct ctlr_info *h = sdev_to_hba(dev);
6597         int rc;
6598
6599         switch (cmd) {
6600         case CCISS_DEREGDISK:
6601         case CCISS_REGNEWDISK:
6602         case CCISS_REGNEWD:
6603                 hpsa_scan_start(h->scsi_host);
6604                 return 0;
6605         case CCISS_GETPCIINFO:
6606                 return hpsa_getpciinfo_ioctl(h, argp);
6607         case CCISS_GETDRIVVER:
6608                 return hpsa_getdrivver_ioctl(h, argp);
6609         case CCISS_PASSTHRU: {
6610                 IOCTL_Command_struct iocommand;
6611
6612                 if (!argp)
6613                         return -EINVAL;
6614                 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6615                         return -EFAULT;
6616                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6617                         return -EAGAIN;
6618                 rc = hpsa_passthru_ioctl(h, &iocommand);
6619                 atomic_inc(&h->passthru_cmds_avail);
6620                 if (!rc && copy_to_user(argp, &iocommand, sizeof(iocommand)))
6621                         rc = -EFAULT;
6622                 return rc;
6623         }
6624         case CCISS_BIG_PASSTHRU: {
6625                 BIG_IOCTL_Command_struct ioc;
6626                 if (!argp)
6627                         return -EINVAL;
6628                 if (copy_from_user(&ioc, argp, sizeof(ioc)))
6629                         return -EFAULT;
6630                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6631                         return -EAGAIN;
6632                 rc = hpsa_big_passthru_ioctl(h, &ioc);
6633                 atomic_inc(&h->passthru_cmds_avail);
6634                 if (!rc && copy_to_user(argp, &ioc, sizeof(ioc)))
6635                         rc = -EFAULT;
6636                 return rc;
6637         }
6638         default:
6639                 return -ENOTTY;
6640         }
6641 }
6642
6643 static void hpsa_send_host_reset(struct ctlr_info *h, u8 reset_type)
6644 {
6645         struct CommandList *c;
6646
6647         c = cmd_alloc(h);
6648
6649         /* fill_cmd can't fail here, no data buffer to map */
6650         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6651                 RAID_CTLR_LUNID, TYPE_MSG);
6652         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6653         c->waiting = NULL;
6654         enqueue_cmd_and_start_io(h, c);
6655         /* Don't wait for completion, the reset won't complete.  Don't free
6656          * the command either.  This is the last command we will send before
6657          * re-initializing everything, so it doesn't matter and won't leak.
6658          */
6659         return;
6660 }
6661
6662 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6663         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6664         int cmd_type)
6665 {
6666         enum dma_data_direction dir = DMA_NONE;
6667
6668         c->cmd_type = CMD_IOCTL_PEND;
6669         c->scsi_cmd = SCSI_CMD_BUSY;
6670         c->Header.ReplyQueue = 0;
6671         if (buff != NULL && size > 0) {
6672                 c->Header.SGList = 1;
6673                 c->Header.SGTotal = cpu_to_le16(1);
6674         } else {
6675                 c->Header.SGList = 0;
6676                 c->Header.SGTotal = cpu_to_le16(0);
6677         }
6678         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6679
6680         if (cmd_type == TYPE_CMD) {
6681                 switch (cmd) {
6682                 case HPSA_INQUIRY:
6683                         /* are we trying to read a vital product page */
6684                         if (page_code & VPD_PAGE) {
6685                                 c->Request.CDB[1] = 0x01;
6686                                 c->Request.CDB[2] = (page_code & 0xff);
6687                         }
6688                         c->Request.CDBLen = 6;
6689                         c->Request.type_attr_dir =
6690                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6691                         c->Request.Timeout = 0;
6692                         c->Request.CDB[0] = HPSA_INQUIRY;
6693                         c->Request.CDB[4] = size & 0xFF;
6694                         break;
6695                 case RECEIVE_DIAGNOSTIC:
6696                         c->Request.CDBLen = 6;
6697                         c->Request.type_attr_dir =
6698                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6699                         c->Request.Timeout = 0;
6700                         c->Request.CDB[0] = cmd;
6701                         c->Request.CDB[1] = 1;
6702                         c->Request.CDB[2] = 1;
6703                         c->Request.CDB[3] = (size >> 8) & 0xFF;
6704                         c->Request.CDB[4] = size & 0xFF;
6705                         break;
6706                 case HPSA_REPORT_LOG:
6707                 case HPSA_REPORT_PHYS:
6708                         /* Talking to controller so It's a physical command
6709                            mode = 00 target = 0.  Nothing to write.
6710                          */
6711                         c->Request.CDBLen = 12;
6712                         c->Request.type_attr_dir =
6713                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6714                         c->Request.Timeout = 0;
6715                         c->Request.CDB[0] = cmd;
6716                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6717                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6718                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6719                         c->Request.CDB[9] = size & 0xFF;
6720                         break;
6721                 case BMIC_SENSE_DIAG_OPTIONS:
6722                         c->Request.CDBLen = 16;
6723                         c->Request.type_attr_dir =
6724                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6725                         c->Request.Timeout = 0;
6726                         /* Spec says this should be BMIC_WRITE */
6727                         c->Request.CDB[0] = BMIC_READ;
6728                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6729                         break;
6730                 case BMIC_SET_DIAG_OPTIONS:
6731                         c->Request.CDBLen = 16;
6732                         c->Request.type_attr_dir =
6733                                         TYPE_ATTR_DIR(cmd_type,
6734                                                 ATTR_SIMPLE, XFER_WRITE);
6735                         c->Request.Timeout = 0;
6736                         c->Request.CDB[0] = BMIC_WRITE;
6737                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6738                         break;
6739                 case HPSA_CACHE_FLUSH:
6740                         c->Request.CDBLen = 12;
6741                         c->Request.type_attr_dir =
6742                                         TYPE_ATTR_DIR(cmd_type,
6743                                                 ATTR_SIMPLE, XFER_WRITE);
6744                         c->Request.Timeout = 0;
6745                         c->Request.CDB[0] = BMIC_WRITE;
6746                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6747                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6748                         c->Request.CDB[8] = size & 0xFF;
6749                         break;
6750                 case TEST_UNIT_READY:
6751                         c->Request.CDBLen = 6;
6752                         c->Request.type_attr_dir =
6753                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6754                         c->Request.Timeout = 0;
6755                         break;
6756                 case HPSA_GET_RAID_MAP:
6757                         c->Request.CDBLen = 12;
6758                         c->Request.type_attr_dir =
6759                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6760                         c->Request.Timeout = 0;
6761                         c->Request.CDB[0] = HPSA_CISS_READ;
6762                         c->Request.CDB[1] = cmd;
6763                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6764                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6765                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6766                         c->Request.CDB[9] = size & 0xFF;
6767                         break;
6768                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6769                         c->Request.CDBLen = 10;
6770                         c->Request.type_attr_dir =
6771                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6772                         c->Request.Timeout = 0;
6773                         c->Request.CDB[0] = BMIC_READ;
6774                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6775                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6776                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6777                         break;
6778                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6779                         c->Request.CDBLen = 10;
6780                         c->Request.type_attr_dir =
6781                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6782                         c->Request.Timeout = 0;
6783                         c->Request.CDB[0] = BMIC_READ;
6784                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6785                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6786                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6787                         break;
6788                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6789                         c->Request.CDBLen = 10;
6790                         c->Request.type_attr_dir =
6791                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6792                         c->Request.Timeout = 0;
6793                         c->Request.CDB[0] = BMIC_READ;
6794                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6795                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6796                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6797                         break;
6798                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6799                         c->Request.CDBLen = 10;
6800                         c->Request.type_attr_dir =
6801                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6802                         c->Request.Timeout = 0;
6803                         c->Request.CDB[0] = BMIC_READ;
6804                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6805                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6806                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6807                         break;
6808                 case BMIC_IDENTIFY_CONTROLLER:
6809                         c->Request.CDBLen = 10;
6810                         c->Request.type_attr_dir =
6811                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6812                         c->Request.Timeout = 0;
6813                         c->Request.CDB[0] = BMIC_READ;
6814                         c->Request.CDB[1] = 0;
6815                         c->Request.CDB[2] = 0;
6816                         c->Request.CDB[3] = 0;
6817                         c->Request.CDB[4] = 0;
6818                         c->Request.CDB[5] = 0;
6819                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6820                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6821                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6822                         c->Request.CDB[9] = 0;
6823                         break;
6824                 default:
6825                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6826                         BUG();
6827                 }
6828         } else if (cmd_type == TYPE_MSG) {
6829                 switch (cmd) {
6830
6831                 case  HPSA_PHYS_TARGET_RESET:
6832                         c->Request.CDBLen = 16;
6833                         c->Request.type_attr_dir =
6834                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6835                         c->Request.Timeout = 0; /* Don't time out */
6836                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6837                         c->Request.CDB[0] = HPSA_RESET;
6838                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6839                         /* Physical target reset needs no control bytes 4-7*/
6840                         c->Request.CDB[4] = 0x00;
6841                         c->Request.CDB[5] = 0x00;
6842                         c->Request.CDB[6] = 0x00;
6843                         c->Request.CDB[7] = 0x00;
6844                         break;
6845                 case  HPSA_DEVICE_RESET_MSG:
6846                         c->Request.CDBLen = 16;
6847                         c->Request.type_attr_dir =
6848                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6849                         c->Request.Timeout = 0; /* Don't time out */
6850                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6851                         c->Request.CDB[0] =  cmd;
6852                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6853                         /* If bytes 4-7 are zero, it means reset the */
6854                         /* LunID device */
6855                         c->Request.CDB[4] = 0x00;
6856                         c->Request.CDB[5] = 0x00;
6857                         c->Request.CDB[6] = 0x00;
6858                         c->Request.CDB[7] = 0x00;
6859                         break;
6860                 default:
6861                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6862                                 cmd);
6863                         BUG();
6864                 }
6865         } else {
6866                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6867                 BUG();
6868         }
6869
6870         switch (GET_DIR(c->Request.type_attr_dir)) {
6871         case XFER_READ:
6872                 dir = DMA_FROM_DEVICE;
6873                 break;
6874         case XFER_WRITE:
6875                 dir = DMA_TO_DEVICE;
6876                 break;
6877         case XFER_NONE:
6878                 dir = DMA_NONE;
6879                 break;
6880         default:
6881                 dir = DMA_BIDIRECTIONAL;
6882         }
6883         if (hpsa_map_one(h->pdev, c, buff, size, dir))
6884                 return -1;
6885         return 0;
6886 }
6887
6888 /*
6889  * Map (physical) PCI mem into (virtual) kernel space
6890  */
6891 static void __iomem *remap_pci_mem(ulong base, ulong size)
6892 {
6893         ulong page_base = ((ulong) base) & PAGE_MASK;
6894         ulong page_offs = ((ulong) base) - page_base;
6895         void __iomem *page_remapped = ioremap(page_base,
6896                 page_offs + size);
6897
6898         return page_remapped ? (page_remapped + page_offs) : NULL;
6899 }
6900
6901 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6902 {
6903         return h->access.command_completed(h, q);
6904 }
6905
6906 static inline bool interrupt_pending(struct ctlr_info *h)
6907 {
6908         return h->access.intr_pending(h);
6909 }
6910
6911 static inline long interrupt_not_for_us(struct ctlr_info *h)
6912 {
6913         return (h->access.intr_pending(h) == 0) ||
6914                 (h->interrupts_enabled == 0);
6915 }
6916
6917 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6918         u32 raw_tag)
6919 {
6920         if (unlikely(tag_index >= h->nr_cmds)) {
6921                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6922                 return 1;
6923         }
6924         return 0;
6925 }
6926
6927 static inline void finish_cmd(struct CommandList *c)
6928 {
6929         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6930         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6931                         || c->cmd_type == CMD_IOACCEL2))
6932                 complete_scsi_command(c);
6933         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6934                 complete(c->waiting);
6935 }
6936
6937 /* process completion of an indexed ("direct lookup") command */
6938 static inline void process_indexed_cmd(struct ctlr_info *h,
6939         u32 raw_tag)
6940 {
6941         u32 tag_index;
6942         struct CommandList *c;
6943
6944         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6945         if (!bad_tag(h, tag_index, raw_tag)) {
6946                 c = h->cmd_pool + tag_index;
6947                 finish_cmd(c);
6948         }
6949 }
6950
6951 /* Some controllers, like p400, will give us one interrupt
6952  * after a soft reset, even if we turned interrupts off.
6953  * Only need to check for this in the hpsa_xxx_discard_completions
6954  * functions.
6955  */
6956 static int ignore_bogus_interrupt(struct ctlr_info *h)
6957 {
6958         if (likely(!reset_devices))
6959                 return 0;
6960
6961         if (likely(h->interrupts_enabled))
6962                 return 0;
6963
6964         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6965                 "(known firmware bug.)  Ignoring.\n");
6966
6967         return 1;
6968 }
6969
6970 /*
6971  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6972  * Relies on (h-q[x] == x) being true for x such that
6973  * 0 <= x < MAX_REPLY_QUEUES.
6974  */
6975 static struct ctlr_info *queue_to_hba(u8 *queue)
6976 {
6977         return container_of((queue - *queue), struct ctlr_info, q[0]);
6978 }
6979
6980 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6981 {
6982         struct ctlr_info *h = queue_to_hba(queue);
6983         u8 q = *(u8 *) queue;
6984         u32 raw_tag;
6985
6986         if (ignore_bogus_interrupt(h))
6987                 return IRQ_NONE;
6988
6989         if (interrupt_not_for_us(h))
6990                 return IRQ_NONE;
6991         h->last_intr_timestamp = get_jiffies_64();
6992         while (interrupt_pending(h)) {
6993                 raw_tag = get_next_completion(h, q);
6994                 while (raw_tag != FIFO_EMPTY)
6995                         raw_tag = next_command(h, q);
6996         }
6997         return IRQ_HANDLED;
6998 }
6999
7000 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7001 {
7002         struct ctlr_info *h = queue_to_hba(queue);
7003         u32 raw_tag;
7004         u8 q = *(u8 *) queue;
7005
7006         if (ignore_bogus_interrupt(h))
7007                 return IRQ_NONE;
7008
7009         h->last_intr_timestamp = get_jiffies_64();
7010         raw_tag = get_next_completion(h, q);
7011         while (raw_tag != FIFO_EMPTY)
7012                 raw_tag = next_command(h, q);
7013         return IRQ_HANDLED;
7014 }
7015
7016 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7017 {
7018         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7019         u32 raw_tag;
7020         u8 q = *(u8 *) queue;
7021
7022         if (interrupt_not_for_us(h))
7023                 return IRQ_NONE;
7024         h->last_intr_timestamp = get_jiffies_64();
7025         while (interrupt_pending(h)) {
7026                 raw_tag = get_next_completion(h, q);
7027                 while (raw_tag != FIFO_EMPTY) {
7028                         process_indexed_cmd(h, raw_tag);
7029                         raw_tag = next_command(h, q);
7030                 }
7031         }
7032         return IRQ_HANDLED;
7033 }
7034
7035 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7036 {
7037         struct ctlr_info *h = queue_to_hba(queue);
7038         u32 raw_tag;
7039         u8 q = *(u8 *) queue;
7040
7041         h->last_intr_timestamp = get_jiffies_64();
7042         raw_tag = get_next_completion(h, q);
7043         while (raw_tag != FIFO_EMPTY) {
7044                 process_indexed_cmd(h, raw_tag);
7045                 raw_tag = next_command(h, q);
7046         }
7047         return IRQ_HANDLED;
7048 }
7049
7050 /* Send a message CDB to the firmware. Careful, this only works
7051  * in simple mode, not performant mode due to the tag lookup.
7052  * We only ever use this immediately after a controller reset.
7053  */
7054 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7055                         unsigned char type)
7056 {
7057         struct Command {
7058                 struct CommandListHeader CommandHeader;
7059                 struct RequestBlock Request;
7060                 struct ErrDescriptor ErrorDescriptor;
7061         };
7062         struct Command *cmd;
7063         static const size_t cmd_sz = sizeof(*cmd) +
7064                                         sizeof(cmd->ErrorDescriptor);
7065         dma_addr_t paddr64;
7066         __le32 paddr32;
7067         u32 tag;
7068         void __iomem *vaddr;
7069         int i, err;
7070
7071         vaddr = pci_ioremap_bar(pdev, 0);
7072         if (vaddr == NULL)
7073                 return -ENOMEM;
7074
7075         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7076          * CCISS commands, so they must be allocated from the lower 4GiB of
7077          * memory.
7078          */
7079         err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
7080         if (err) {
7081                 iounmap(vaddr);
7082                 return err;
7083         }
7084
7085         cmd = dma_alloc_coherent(&pdev->dev, cmd_sz, &paddr64, GFP_KERNEL);
7086         if (cmd == NULL) {
7087                 iounmap(vaddr);
7088                 return -ENOMEM;
7089         }
7090
7091         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7092          * although there's no guarantee, we assume that the address is at
7093          * least 4-byte aligned (most likely, it's page-aligned).
7094          */
7095         paddr32 = cpu_to_le32(paddr64);
7096
7097         cmd->CommandHeader.ReplyQueue = 0;
7098         cmd->CommandHeader.SGList = 0;
7099         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7100         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7101         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7102
7103         cmd->Request.CDBLen = 16;
7104         cmd->Request.type_attr_dir =
7105                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7106         cmd->Request.Timeout = 0; /* Don't time out */
7107         cmd->Request.CDB[0] = opcode;
7108         cmd->Request.CDB[1] = type;
7109         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7110         cmd->ErrorDescriptor.Addr =
7111                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7112         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7113
7114         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7115
7116         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7117                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7118                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7119                         break;
7120                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7121         }
7122
7123         iounmap(vaddr);
7124
7125         /* we leak the DMA buffer here ... no choice since the controller could
7126          *  still complete the command.
7127          */
7128         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7129                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7130                         opcode, type);
7131                 return -ETIMEDOUT;
7132         }
7133
7134         dma_free_coherent(&pdev->dev, cmd_sz, cmd, paddr64);
7135
7136         if (tag & HPSA_ERROR_BIT) {
7137                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7138                         opcode, type);
7139                 return -EIO;
7140         }
7141
7142         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7143                 opcode, type);
7144         return 0;
7145 }
7146
7147 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7148
7149 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7150         void __iomem *vaddr, u32 use_doorbell)
7151 {
7152
7153         if (use_doorbell) {
7154                 /* For everything after the P600, the PCI power state method
7155                  * of resetting the controller doesn't work, so we have this
7156                  * other way using the doorbell register.
7157                  */
7158                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7159                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7160
7161                 /* PMC hardware guys tell us we need a 10 second delay after
7162                  * doorbell reset and before any attempt to talk to the board
7163                  * at all to ensure that this actually works and doesn't fall
7164                  * over in some weird corner cases.
7165                  */
7166                 msleep(10000);
7167         } else { /* Try to do it the PCI power state way */
7168
7169                 /* Quoting from the Open CISS Specification: "The Power
7170                  * Management Control/Status Register (CSR) controls the power
7171                  * state of the device.  The normal operating state is D0,
7172                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7173                  * the controller, place the interface device in D3 then to D0,
7174                  * this causes a secondary PCI reset which will reset the
7175                  * controller." */
7176
7177                 int rc = 0;
7178
7179                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7180
7181                 /* enter the D3hot power management state */
7182                 rc = pci_set_power_state(pdev, PCI_D3hot);
7183                 if (rc)
7184                         return rc;
7185
7186                 msleep(500);
7187
7188                 /* enter the D0 power management state */
7189                 rc = pci_set_power_state(pdev, PCI_D0);
7190                 if (rc)
7191                         return rc;
7192
7193                 /*
7194                  * The P600 requires a small delay when changing states.
7195                  * Otherwise we may think the board did not reset and we bail.
7196                  * This for kdump only and is particular to the P600.
7197                  */
7198                 msleep(500);
7199         }
7200         return 0;
7201 }
7202
7203 static void init_driver_version(char *driver_version, int len)
7204 {
7205         memset(driver_version, 0, len);
7206         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7207 }
7208
7209 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7210 {
7211         char *driver_version;
7212         int i, size = sizeof(cfgtable->driver_version);
7213
7214         driver_version = kmalloc(size, GFP_KERNEL);
7215         if (!driver_version)
7216                 return -ENOMEM;
7217
7218         init_driver_version(driver_version, size);
7219         for (i = 0; i < size; i++)
7220                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7221         kfree(driver_version);
7222         return 0;
7223 }
7224
7225 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7226                                           unsigned char *driver_ver)
7227 {
7228         int i;
7229
7230         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7231                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7232 }
7233
7234 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7235 {
7236
7237         char *driver_ver, *old_driver_ver;
7238         int rc, size = sizeof(cfgtable->driver_version);
7239
7240         old_driver_ver = kmalloc_array(2, size, GFP_KERNEL);
7241         if (!old_driver_ver)
7242                 return -ENOMEM;
7243         driver_ver = old_driver_ver + size;
7244
7245         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7246          * should have been changed, otherwise we know the reset failed.
7247          */
7248         init_driver_version(old_driver_ver, size);
7249         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7250         rc = !memcmp(driver_ver, old_driver_ver, size);
7251         kfree(old_driver_ver);
7252         return rc;
7253 }
7254 /* This does a hard reset of the controller using PCI power management
7255  * states or the using the doorbell register.
7256  */
7257 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7258 {
7259         u64 cfg_offset;
7260         u32 cfg_base_addr;
7261         u64 cfg_base_addr_index;
7262         void __iomem *vaddr;
7263         unsigned long paddr;
7264         u32 misc_fw_support;
7265         int rc;
7266         struct CfgTable __iomem *cfgtable;
7267         u32 use_doorbell;
7268         u16 command_register;
7269
7270         /* For controllers as old as the P600, this is very nearly
7271          * the same thing as
7272          *
7273          * pci_save_state(pci_dev);
7274          * pci_set_power_state(pci_dev, PCI_D3hot);
7275          * pci_set_power_state(pci_dev, PCI_D0);
7276          * pci_restore_state(pci_dev);
7277          *
7278          * For controllers newer than the P600, the pci power state
7279          * method of resetting doesn't work so we have another way
7280          * using the doorbell register.
7281          */
7282
7283         if (!ctlr_is_resettable(board_id)) {
7284                 dev_warn(&pdev->dev, "Controller not resettable\n");
7285                 return -ENODEV;
7286         }
7287
7288         /* if controller is soft- but not hard resettable... */
7289         if (!ctlr_is_hard_resettable(board_id))
7290                 return -ENOTSUPP; /* try soft reset later. */
7291
7292         /* Save the PCI command register */
7293         pci_read_config_word(pdev, 4, &command_register);
7294         pci_save_state(pdev);
7295
7296         /* find the first memory BAR, so we can find the cfg table */
7297         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7298         if (rc)
7299                 return rc;
7300         vaddr = remap_pci_mem(paddr, 0x250);
7301         if (!vaddr)
7302                 return -ENOMEM;
7303
7304         /* find cfgtable in order to check if reset via doorbell is supported */
7305         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7306                                         &cfg_base_addr_index, &cfg_offset);
7307         if (rc)
7308                 goto unmap_vaddr;
7309         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7310                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7311         if (!cfgtable) {
7312                 rc = -ENOMEM;
7313                 goto unmap_vaddr;
7314         }
7315         rc = write_driver_ver_to_cfgtable(cfgtable);
7316         if (rc)
7317                 goto unmap_cfgtable;
7318
7319         /* If reset via doorbell register is supported, use that.
7320          * There are two such methods.  Favor the newest method.
7321          */
7322         misc_fw_support = readl(&cfgtable->misc_fw_support);
7323         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7324         if (use_doorbell) {
7325                 use_doorbell = DOORBELL_CTLR_RESET2;
7326         } else {
7327                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7328                 if (use_doorbell) {
7329                         dev_warn(&pdev->dev,
7330                                 "Soft reset not supported. Firmware update is required.\n");
7331                         rc = -ENOTSUPP; /* try soft reset */
7332                         goto unmap_cfgtable;
7333                 }
7334         }
7335
7336         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7337         if (rc)
7338                 goto unmap_cfgtable;
7339
7340         pci_restore_state(pdev);
7341         pci_write_config_word(pdev, 4, command_register);
7342
7343         /* Some devices (notably the HP Smart Array 5i Controller)
7344            need a little pause here */
7345         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7346
7347         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7348         if (rc) {
7349                 dev_warn(&pdev->dev,
7350                         "Failed waiting for board to become ready after hard reset\n");
7351                 goto unmap_cfgtable;
7352         }
7353
7354         rc = controller_reset_failed(vaddr);
7355         if (rc < 0)
7356                 goto unmap_cfgtable;
7357         if (rc) {
7358                 dev_warn(&pdev->dev, "Unable to successfully reset "
7359                         "controller. Will try soft reset.\n");
7360                 rc = -ENOTSUPP;
7361         } else {
7362                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7363         }
7364
7365 unmap_cfgtable:
7366         iounmap(cfgtable);
7367
7368 unmap_vaddr:
7369         iounmap(vaddr);
7370         return rc;
7371 }
7372
7373 /*
7374  *  We cannot read the structure directly, for portability we must use
7375  *   the io functions.
7376  *   This is for debug only.
7377  */
7378 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7379 {
7380 #ifdef HPSA_DEBUG
7381         int i;
7382         char temp_name[17];
7383
7384         dev_info(dev, "Controller Configuration information\n");
7385         dev_info(dev, "------------------------------------\n");
7386         for (i = 0; i < 4; i++)
7387                 temp_name[i] = readb(&(tb->Signature[i]));
7388         temp_name[4] = '\0';
7389         dev_info(dev, "   Signature = %s\n", temp_name);
7390         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7391         dev_info(dev, "   Transport methods supported = 0x%x\n",
7392                readl(&(tb->TransportSupport)));
7393         dev_info(dev, "   Transport methods active = 0x%x\n",
7394                readl(&(tb->TransportActive)));
7395         dev_info(dev, "   Requested transport Method = 0x%x\n",
7396                readl(&(tb->HostWrite.TransportRequest)));
7397         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7398                readl(&(tb->HostWrite.CoalIntDelay)));
7399         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7400                readl(&(tb->HostWrite.CoalIntCount)));
7401         dev_info(dev, "   Max outstanding commands = %d\n",
7402                readl(&(tb->CmdsOutMax)));
7403         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7404         for (i = 0; i < 16; i++)
7405                 temp_name[i] = readb(&(tb->ServerName[i]));
7406         temp_name[16] = '\0';
7407         dev_info(dev, "   Server Name = %s\n", temp_name);
7408         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7409                 readl(&(tb->HeartBeat)));
7410 #endif                          /* HPSA_DEBUG */
7411 }
7412
7413 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7414 {
7415         int i, offset, mem_type, bar_type;
7416
7417         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7418                 return 0;
7419         offset = 0;
7420         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7421                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7422                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7423                         offset += 4;
7424                 else {
7425                         mem_type = pci_resource_flags(pdev, i) &
7426                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7427                         switch (mem_type) {
7428                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7429                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7430                                 offset += 4;    /* 32 bit */
7431                                 break;
7432                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7433                                 offset += 8;
7434                                 break;
7435                         default:        /* reserved in PCI 2.2 */
7436                                 dev_warn(&pdev->dev,
7437                                        "base address is invalid\n");
7438                                 return -1;
7439                         }
7440                 }
7441                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7442                         return i + 1;
7443         }
7444         return -1;
7445 }
7446
7447 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7448 {
7449         pci_free_irq_vectors(h->pdev);
7450         h->msix_vectors = 0;
7451 }
7452
7453 static void hpsa_setup_reply_map(struct ctlr_info *h)
7454 {
7455         const struct cpumask *mask;
7456         unsigned int queue, cpu;
7457
7458         for (queue = 0; queue < h->msix_vectors; queue++) {
7459                 mask = pci_irq_get_affinity(h->pdev, queue);
7460                 if (!mask)
7461                         goto fallback;
7462
7463                 for_each_cpu(cpu, mask)
7464                         h->reply_map[cpu] = queue;
7465         }
7466         return;
7467
7468 fallback:
7469         for_each_possible_cpu(cpu)
7470                 h->reply_map[cpu] = 0;
7471 }
7472
7473 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7474  * controllers that are capable. If not, we use legacy INTx mode.
7475  */
7476 static int hpsa_interrupt_mode(struct ctlr_info *h)
7477 {
7478         unsigned int flags = PCI_IRQ_LEGACY;
7479         int ret;
7480
7481         /* Some boards advertise MSI but don't really support it */
7482         switch (h->board_id) {
7483         case 0x40700E11:
7484         case 0x40800E11:
7485         case 0x40820E11:
7486         case 0x40830E11:
7487                 break;
7488         default:
7489                 ret = pci_alloc_irq_vectors(h->pdev, 1, MAX_REPLY_QUEUES,
7490                                 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY);
7491                 if (ret > 0) {
7492                         h->msix_vectors = ret;
7493                         return 0;
7494                 }
7495
7496                 flags |= PCI_IRQ_MSI;
7497                 break;
7498         }
7499
7500         ret = pci_alloc_irq_vectors(h->pdev, 1, 1, flags);
7501         if (ret < 0)
7502                 return ret;
7503         return 0;
7504 }
7505
7506 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id,
7507                                 bool *legacy_board)
7508 {
7509         int i;
7510         u32 subsystem_vendor_id, subsystem_device_id;
7511
7512         subsystem_vendor_id = pdev->subsystem_vendor;
7513         subsystem_device_id = pdev->subsystem_device;
7514         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7515                     subsystem_vendor_id;
7516
7517         if (legacy_board)
7518                 *legacy_board = false;
7519         for (i = 0; i < ARRAY_SIZE(products); i++)
7520                 if (*board_id == products[i].board_id) {
7521                         if (products[i].access != &SA5A_access &&
7522                             products[i].access != &SA5B_access)
7523                                 return i;
7524                         dev_warn(&pdev->dev,
7525                                  "legacy board ID: 0x%08x\n",
7526                                  *board_id);
7527                         if (legacy_board)
7528                             *legacy_board = true;
7529                         return i;
7530                 }
7531
7532         dev_warn(&pdev->dev, "unrecognized board ID: 0x%08x\n", *board_id);
7533         if (legacy_board)
7534                 *legacy_board = true;
7535         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7536 }
7537
7538 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7539                                     unsigned long *memory_bar)
7540 {
7541         int i;
7542
7543         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7544                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7545                         /* addressing mode bits already removed */
7546                         *memory_bar = pci_resource_start(pdev, i);
7547                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7548                                 *memory_bar);
7549                         return 0;
7550                 }
7551         dev_warn(&pdev->dev, "no memory BAR found\n");
7552         return -ENODEV;
7553 }
7554
7555 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7556                                      int wait_for_ready)
7557 {
7558         int i, iterations;
7559         u32 scratchpad;
7560         if (wait_for_ready)
7561                 iterations = HPSA_BOARD_READY_ITERATIONS;
7562         else
7563                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7564
7565         for (i = 0; i < iterations; i++) {
7566                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7567                 if (wait_for_ready) {
7568                         if (scratchpad == HPSA_FIRMWARE_READY)
7569                                 return 0;
7570                 } else {
7571                         if (scratchpad != HPSA_FIRMWARE_READY)
7572                                 return 0;
7573                 }
7574                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7575         }
7576         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7577         return -ENODEV;
7578 }
7579
7580 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7581                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7582                                u64 *cfg_offset)
7583 {
7584         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7585         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7586         *cfg_base_addr &= (u32) 0x0000ffff;
7587         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7588         if (*cfg_base_addr_index == -1) {
7589                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7590                 return -ENODEV;
7591         }
7592         return 0;
7593 }
7594
7595 static void hpsa_free_cfgtables(struct ctlr_info *h)
7596 {
7597         if (h->transtable) {
7598                 iounmap(h->transtable);
7599                 h->transtable = NULL;
7600         }
7601         if (h->cfgtable) {
7602                 iounmap(h->cfgtable);
7603                 h->cfgtable = NULL;
7604         }
7605 }
7606
7607 /* Find and map CISS config table and transfer table
7608 + * several items must be unmapped (freed) later
7609 + * */
7610 static int hpsa_find_cfgtables(struct ctlr_info *h)
7611 {
7612         u64 cfg_offset;
7613         u32 cfg_base_addr;
7614         u64 cfg_base_addr_index;
7615         u32 trans_offset;
7616         int rc;
7617
7618         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7619                 &cfg_base_addr_index, &cfg_offset);
7620         if (rc)
7621                 return rc;
7622         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7623                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7624         if (!h->cfgtable) {
7625                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7626                 return -ENOMEM;
7627         }
7628         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7629         if (rc)
7630                 return rc;
7631         /* Find performant mode table. */
7632         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7633         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7634                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7635                                 sizeof(*h->transtable));
7636         if (!h->transtable) {
7637                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7638                 hpsa_free_cfgtables(h);
7639                 return -ENOMEM;
7640         }
7641         return 0;
7642 }
7643
7644 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7645 {
7646 #define MIN_MAX_COMMANDS 16
7647         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7648
7649         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7650
7651         /* Limit commands in memory limited kdump scenario. */
7652         if (reset_devices && h->max_commands > 32)
7653                 h->max_commands = 32;
7654
7655         if (h->max_commands < MIN_MAX_COMMANDS) {
7656                 dev_warn(&h->pdev->dev,
7657                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7658                         h->max_commands,
7659                         MIN_MAX_COMMANDS);
7660                 h->max_commands = MIN_MAX_COMMANDS;
7661         }
7662 }
7663
7664 /* If the controller reports that the total max sg entries is greater than 512,
7665  * then we know that chained SG blocks work.  (Original smart arrays did not
7666  * support chained SG blocks and would return zero for max sg entries.)
7667  */
7668 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7669 {
7670         return h->maxsgentries > 512;
7671 }
7672
7673 /* Interrogate the hardware for some limits:
7674  * max commands, max SG elements without chaining, and with chaining,
7675  * SG chain block size, etc.
7676  */
7677 static void hpsa_find_board_params(struct ctlr_info *h)
7678 {
7679         hpsa_get_max_perf_mode_cmds(h);
7680         h->nr_cmds = h->max_commands;
7681         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7682         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7683         if (hpsa_supports_chained_sg_blocks(h)) {
7684                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7685                 h->max_cmd_sg_entries = 32;
7686                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7687                 h->maxsgentries--; /* save one for chain pointer */
7688         } else {
7689                 /*
7690                  * Original smart arrays supported at most 31 s/g entries
7691                  * embedded inline in the command (trying to use more
7692                  * would lock up the controller)
7693                  */
7694                 h->max_cmd_sg_entries = 31;
7695                 h->maxsgentries = 31; /* default to traditional values */
7696                 h->chainsize = 0;
7697         }
7698
7699         /* Find out what task management functions are supported and cache */
7700         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7701         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7702                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7703         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7704                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7705         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7706                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7707 }
7708
7709 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7710 {
7711         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7712                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7713                 return false;
7714         }
7715         return true;
7716 }
7717
7718 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7719 {
7720         u32 driver_support;
7721
7722         driver_support = readl(&(h->cfgtable->driver_support));
7723         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7724 #ifdef CONFIG_X86
7725         driver_support |= ENABLE_SCSI_PREFETCH;
7726 #endif
7727         driver_support |= ENABLE_UNIT_ATTN;
7728         writel(driver_support, &(h->cfgtable->driver_support));
7729 }
7730
7731 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7732  * in a prefetch beyond physical memory.
7733  */
7734 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7735 {
7736         u32 dma_prefetch;
7737
7738         if (h->board_id != 0x3225103C)
7739                 return;
7740         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7741         dma_prefetch |= 0x8000;
7742         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7743 }
7744
7745 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7746 {
7747         int i;
7748         u32 doorbell_value;
7749         unsigned long flags;
7750         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7751         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7752                 spin_lock_irqsave(&h->lock, flags);
7753                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7754                 spin_unlock_irqrestore(&h->lock, flags);
7755                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7756                         goto done;
7757                 /* delay and try again */
7758                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7759         }
7760         return -ENODEV;
7761 done:
7762         return 0;
7763 }
7764
7765 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7766 {
7767         int i;
7768         u32 doorbell_value;
7769         unsigned long flags;
7770
7771         /* under certain very rare conditions, this can take awhile.
7772          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7773          * as we enter this code.)
7774          */
7775         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7776                 if (h->remove_in_progress)
7777                         goto done;
7778                 spin_lock_irqsave(&h->lock, flags);
7779                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7780                 spin_unlock_irqrestore(&h->lock, flags);
7781                 if (!(doorbell_value & CFGTBL_ChangeReq))
7782                         goto done;
7783                 /* delay and try again */
7784                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7785         }
7786         return -ENODEV;
7787 done:
7788         return 0;
7789 }
7790
7791 /* return -ENODEV or other reason on error, 0 on success */
7792 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7793 {
7794         u32 trans_support;
7795
7796         trans_support = readl(&(h->cfgtable->TransportSupport));
7797         if (!(trans_support & SIMPLE_MODE))
7798                 return -ENOTSUPP;
7799
7800         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7801
7802         /* Update the field, and then ring the doorbell */
7803         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7804         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7805         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7806         if (hpsa_wait_for_mode_change_ack(h))
7807                 goto error;
7808         print_cfg_table(&h->pdev->dev, h->cfgtable);
7809         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7810                 goto error;
7811         h->transMethod = CFGTBL_Trans_Simple;
7812         return 0;
7813 error:
7814         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7815         return -ENODEV;
7816 }
7817
7818 /* free items allocated or mapped by hpsa_pci_init */
7819 static void hpsa_free_pci_init(struct ctlr_info *h)
7820 {
7821         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7822         iounmap(h->vaddr);                      /* pci_init 3 */
7823         h->vaddr = NULL;
7824         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7825         /*
7826          * call pci_disable_device before pci_release_regions per
7827          * Documentation/driver-api/pci/pci.rst
7828          */
7829         pci_disable_device(h->pdev);            /* pci_init 1 */
7830         pci_release_regions(h->pdev);           /* pci_init 2 */
7831 }
7832
7833 /* several items must be freed later */
7834 static int hpsa_pci_init(struct ctlr_info *h)
7835 {
7836         int prod_index, err;
7837         bool legacy_board;
7838
7839         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id, &legacy_board);
7840         if (prod_index < 0)
7841                 return prod_index;
7842         h->product_name = products[prod_index].product_name;
7843         h->access = *(products[prod_index].access);
7844         h->legacy_board = legacy_board;
7845         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7846                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7847
7848         err = pci_enable_device(h->pdev);
7849         if (err) {
7850                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7851                 pci_disable_device(h->pdev);
7852                 return err;
7853         }
7854
7855         err = pci_request_regions(h->pdev, HPSA);
7856         if (err) {
7857                 dev_err(&h->pdev->dev,
7858                         "failed to obtain PCI resources\n");
7859                 pci_disable_device(h->pdev);
7860                 return err;
7861         }
7862
7863         pci_set_master(h->pdev);
7864
7865         err = hpsa_interrupt_mode(h);
7866         if (err)
7867                 goto clean1;
7868
7869         /* setup mapping between CPU and reply queue */
7870         hpsa_setup_reply_map(h);
7871
7872         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7873         if (err)
7874                 goto clean2;    /* intmode+region, pci */
7875         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7876         if (!h->vaddr) {
7877                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7878                 err = -ENOMEM;
7879                 goto clean2;    /* intmode+region, pci */
7880         }
7881         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7882         if (err)
7883                 goto clean3;    /* vaddr, intmode+region, pci */
7884         err = hpsa_find_cfgtables(h);
7885         if (err)
7886                 goto clean3;    /* vaddr, intmode+region, pci */
7887         hpsa_find_board_params(h);
7888
7889         if (!hpsa_CISS_signature_present(h)) {
7890                 err = -ENODEV;
7891                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7892         }
7893         hpsa_set_driver_support_bits(h);
7894         hpsa_p600_dma_prefetch_quirk(h);
7895         err = hpsa_enter_simple_mode(h);
7896         if (err)
7897                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7898         return 0;
7899
7900 clean4: /* cfgtables, vaddr, intmode+region, pci */
7901         hpsa_free_cfgtables(h);
7902 clean3: /* vaddr, intmode+region, pci */
7903         iounmap(h->vaddr);
7904         h->vaddr = NULL;
7905 clean2: /* intmode+region, pci */
7906         hpsa_disable_interrupt_mode(h);
7907 clean1:
7908         /*
7909          * call pci_disable_device before pci_release_regions per
7910          * Documentation/driver-api/pci/pci.rst
7911          */
7912         pci_disable_device(h->pdev);
7913         pci_release_regions(h->pdev);
7914         return err;
7915 }
7916
7917 static void hpsa_hba_inquiry(struct ctlr_info *h)
7918 {
7919         int rc;
7920
7921 #define HBA_INQUIRY_BYTE_COUNT 64
7922         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7923         if (!h->hba_inquiry_data)
7924                 return;
7925         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7926                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7927         if (rc != 0) {
7928                 kfree(h->hba_inquiry_data);
7929                 h->hba_inquiry_data = NULL;
7930         }
7931 }
7932
7933 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7934 {
7935         int rc, i;
7936         void __iomem *vaddr;
7937
7938         if (!reset_devices)
7939                 return 0;
7940
7941         /* kdump kernel is loading, we don't know in which state is
7942          * the pci interface. The dev->enable_cnt is equal zero
7943          * so we call enable+disable, wait a while and switch it on.
7944          */
7945         rc = pci_enable_device(pdev);
7946         if (rc) {
7947                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7948                 return -ENODEV;
7949         }
7950         pci_disable_device(pdev);
7951         msleep(260);                    /* a randomly chosen number */
7952         rc = pci_enable_device(pdev);
7953         if (rc) {
7954                 dev_warn(&pdev->dev, "failed to enable device.\n");
7955                 return -ENODEV;
7956         }
7957
7958         pci_set_master(pdev);
7959
7960         vaddr = pci_ioremap_bar(pdev, 0);
7961         if (vaddr == NULL) {
7962                 rc = -ENOMEM;
7963                 goto out_disable;
7964         }
7965         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7966         iounmap(vaddr);
7967
7968         /* Reset the controller with a PCI power-cycle or via doorbell */
7969         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7970
7971         /* -ENOTSUPP here means we cannot reset the controller
7972          * but it's already (and still) up and running in
7973          * "performant mode".  Or, it might be 640x, which can't reset
7974          * due to concerns about shared bbwc between 6402/6404 pair.
7975          */
7976         if (rc)
7977                 goto out_disable;
7978
7979         /* Now try to get the controller to respond to a no-op */
7980         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7981         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7982                 if (hpsa_noop(pdev) == 0)
7983                         break;
7984                 else
7985                         dev_warn(&pdev->dev, "no-op failed%s\n",
7986                                         (i < 11 ? "; re-trying" : ""));
7987         }
7988
7989 out_disable:
7990
7991         pci_disable_device(pdev);
7992         return rc;
7993 }
7994
7995 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7996 {
7997         kfree(h->cmd_pool_bits);
7998         h->cmd_pool_bits = NULL;
7999         if (h->cmd_pool) {
8000                 dma_free_coherent(&h->pdev->dev,
8001                                 h->nr_cmds * sizeof(struct CommandList),
8002                                 h->cmd_pool,
8003                                 h->cmd_pool_dhandle);
8004                 h->cmd_pool = NULL;
8005                 h->cmd_pool_dhandle = 0;
8006         }
8007         if (h->errinfo_pool) {
8008                 dma_free_coherent(&h->pdev->dev,
8009                                 h->nr_cmds * sizeof(struct ErrorInfo),
8010                                 h->errinfo_pool,
8011                                 h->errinfo_pool_dhandle);
8012                 h->errinfo_pool = NULL;
8013                 h->errinfo_pool_dhandle = 0;
8014         }
8015 }
8016
8017 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8018 {
8019         h->cmd_pool_bits = kcalloc(DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG),
8020                                    sizeof(unsigned long),
8021                                    GFP_KERNEL);
8022         h->cmd_pool = dma_alloc_coherent(&h->pdev->dev,
8023                     h->nr_cmds * sizeof(*h->cmd_pool),
8024                     &h->cmd_pool_dhandle, GFP_KERNEL);
8025         h->errinfo_pool = dma_alloc_coherent(&h->pdev->dev,
8026                     h->nr_cmds * sizeof(*h->errinfo_pool),
8027                     &h->errinfo_pool_dhandle, GFP_KERNEL);
8028         if ((h->cmd_pool_bits == NULL)
8029             || (h->cmd_pool == NULL)
8030             || (h->errinfo_pool == NULL)) {
8031                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8032                 goto clean_up;
8033         }
8034         hpsa_preinitialize_commands(h);
8035         return 0;
8036 clean_up:
8037         hpsa_free_cmd_pool(h);
8038         return -ENOMEM;
8039 }
8040
8041 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8042 static void hpsa_free_irqs(struct ctlr_info *h)
8043 {
8044         int i;
8045         int irq_vector = 0;
8046
8047         if (hpsa_simple_mode)
8048                 irq_vector = h->intr_mode;
8049
8050         if (!h->msix_vectors || h->intr_mode != PERF_MODE_INT) {
8051                 /* Single reply queue, only one irq to free */
8052                 free_irq(pci_irq_vector(h->pdev, irq_vector),
8053                                 &h->q[h->intr_mode]);
8054                 h->q[h->intr_mode] = 0;
8055                 return;
8056         }
8057
8058         for (i = 0; i < h->msix_vectors; i++) {
8059                 free_irq(pci_irq_vector(h->pdev, i), &h->q[i]);
8060                 h->q[i] = 0;
8061         }
8062         for (; i < MAX_REPLY_QUEUES; i++)
8063                 h->q[i] = 0;
8064 }
8065
8066 /* returns 0 on success; cleans up and returns -Enn on error */
8067 static int hpsa_request_irqs(struct ctlr_info *h,
8068         irqreturn_t (*msixhandler)(int, void *),
8069         irqreturn_t (*intxhandler)(int, void *))
8070 {
8071         int rc, i;
8072         int irq_vector = 0;
8073
8074         if (hpsa_simple_mode)
8075                 irq_vector = h->intr_mode;
8076
8077         /*
8078          * initialize h->q[x] = x so that interrupt handlers know which
8079          * queue to process.
8080          */
8081         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8082                 h->q[i] = (u8) i;
8083
8084         if (h->intr_mode == PERF_MODE_INT && h->msix_vectors > 0) {
8085                 /* If performant mode and MSI-X, use multiple reply queues */
8086                 for (i = 0; i < h->msix_vectors; i++) {
8087                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8088                         rc = request_irq(pci_irq_vector(h->pdev, i), msixhandler,
8089                                         0, h->intrname[i],
8090                                         &h->q[i]);
8091                         if (rc) {
8092                                 int j;
8093
8094                                 dev_err(&h->pdev->dev,
8095                                         "failed to get irq %d for %s\n",
8096                                        pci_irq_vector(h->pdev, i), h->devname);
8097                                 for (j = 0; j < i; j++) {
8098                                         free_irq(pci_irq_vector(h->pdev, j), &h->q[j]);
8099                                         h->q[j] = 0;
8100                                 }
8101                                 for (; j < MAX_REPLY_QUEUES; j++)
8102                                         h->q[j] = 0;
8103                                 return rc;
8104                         }
8105                 }
8106         } else {
8107                 /* Use single reply pool */
8108                 if (h->msix_vectors > 0 || h->pdev->msi_enabled) {
8109                         sprintf(h->intrname[0], "%s-msi%s", h->devname,
8110                                 h->msix_vectors ? "x" : "");
8111                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8112                                 msixhandler, 0,
8113                                 h->intrname[0],
8114                                 &h->q[h->intr_mode]);
8115                 } else {
8116                         sprintf(h->intrname[h->intr_mode],
8117                                 "%s-intx", h->devname);
8118                         rc = request_irq(pci_irq_vector(h->pdev, irq_vector),
8119                                 intxhandler, IRQF_SHARED,
8120                                 h->intrname[0],
8121                                 &h->q[h->intr_mode]);
8122                 }
8123         }
8124         if (rc) {
8125                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8126                        pci_irq_vector(h->pdev, irq_vector), h->devname);
8127                 hpsa_free_irqs(h);
8128                 return -ENODEV;
8129         }
8130         return 0;
8131 }
8132
8133 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8134 {
8135         int rc;
8136         hpsa_send_host_reset(h, HPSA_RESET_TYPE_CONTROLLER);
8137
8138         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8139         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8140         if (rc) {
8141                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8142                 return rc;
8143         }
8144
8145         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8146         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8147         if (rc) {
8148                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8149                         "after soft reset.\n");
8150                 return rc;
8151         }
8152
8153         return 0;
8154 }
8155
8156 static void hpsa_free_reply_queues(struct ctlr_info *h)
8157 {
8158         int i;
8159
8160         for (i = 0; i < h->nreply_queues; i++) {
8161                 if (!h->reply_queue[i].head)
8162                         continue;
8163                 dma_free_coherent(&h->pdev->dev,
8164                                         h->reply_queue_size,
8165                                         h->reply_queue[i].head,
8166                                         h->reply_queue[i].busaddr);
8167                 h->reply_queue[i].head = NULL;
8168                 h->reply_queue[i].busaddr = 0;
8169         }
8170         h->reply_queue_size = 0;
8171 }
8172
8173 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8174 {
8175         hpsa_free_performant_mode(h);           /* init_one 7 */
8176         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8177         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8178         hpsa_free_irqs(h);                      /* init_one 4 */
8179         scsi_host_put(h->scsi_host);            /* init_one 3 */
8180         h->scsi_host = NULL;                    /* init_one 3 */
8181         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8182         free_percpu(h->lockup_detected);        /* init_one 2 */
8183         h->lockup_detected = NULL;              /* init_one 2 */
8184         if (h->resubmit_wq) {
8185                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8186                 h->resubmit_wq = NULL;
8187         }
8188         if (h->rescan_ctlr_wq) {
8189                 destroy_workqueue(h->rescan_ctlr_wq);
8190                 h->rescan_ctlr_wq = NULL;
8191         }
8192         if (h->monitor_ctlr_wq) {
8193                 destroy_workqueue(h->monitor_ctlr_wq);
8194                 h->monitor_ctlr_wq = NULL;
8195         }
8196
8197         kfree(h);                               /* init_one 1 */
8198 }
8199
8200 /* Called when controller lockup detected. */
8201 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8202 {
8203         int i, refcount;
8204         struct CommandList *c;
8205         int failcount = 0;
8206
8207         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8208         for (i = 0; i < h->nr_cmds; i++) {
8209                 c = h->cmd_pool + i;
8210                 refcount = atomic_inc_return(&c->refcount);
8211                 if (refcount > 1) {
8212                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8213                         finish_cmd(c);
8214                         atomic_dec(&h->commands_outstanding);
8215                         failcount++;
8216                 }
8217                 cmd_free(h, c);
8218         }
8219         dev_warn(&h->pdev->dev,
8220                 "failed %d commands in fail_all\n", failcount);
8221 }
8222
8223 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8224 {
8225         int cpu;
8226
8227         for_each_online_cpu(cpu) {
8228                 u32 *lockup_detected;
8229                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8230                 *lockup_detected = value;
8231         }
8232         wmb(); /* be sure the per-cpu variables are out to memory */
8233 }
8234
8235 static void controller_lockup_detected(struct ctlr_info *h)
8236 {
8237         unsigned long flags;
8238         u32 lockup_detected;
8239
8240         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8241         spin_lock_irqsave(&h->lock, flags);
8242         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8243         if (!lockup_detected) {
8244                 /* no heartbeat, but controller gave us a zero. */
8245                 dev_warn(&h->pdev->dev,
8246                         "lockup detected after %d but scratchpad register is zero\n",
8247                         h->heartbeat_sample_interval / HZ);
8248                 lockup_detected = 0xffffffff;
8249         }
8250         set_lockup_detected_for_all_cpus(h, lockup_detected);
8251         spin_unlock_irqrestore(&h->lock, flags);
8252         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8253                         lockup_detected, h->heartbeat_sample_interval / HZ);
8254         if (lockup_detected == 0xffff0000) {
8255                 dev_warn(&h->pdev->dev, "Telling controller to do a CHKPT\n");
8256                 writel(DOORBELL_GENERATE_CHKPT, h->vaddr + SA5_DOORBELL);
8257         }
8258         pci_disable_device(h->pdev);
8259         fail_all_outstanding_cmds(h);
8260 }
8261
8262 static int detect_controller_lockup(struct ctlr_info *h)
8263 {
8264         u64 now;
8265         u32 heartbeat;
8266         unsigned long flags;
8267
8268         now = get_jiffies_64();
8269         /* If we've received an interrupt recently, we're ok. */
8270         if (time_after64(h->last_intr_timestamp +
8271                                 (h->heartbeat_sample_interval), now))
8272                 return false;
8273
8274         /*
8275          * If we've already checked the heartbeat recently, we're ok.
8276          * This could happen if someone sends us a signal. We
8277          * otherwise don't care about signals in this thread.
8278          */
8279         if (time_after64(h->last_heartbeat_timestamp +
8280                                 (h->heartbeat_sample_interval), now))
8281                 return false;
8282
8283         /* If heartbeat has not changed since we last looked, we're not ok. */
8284         spin_lock_irqsave(&h->lock, flags);
8285         heartbeat = readl(&h->cfgtable->HeartBeat);
8286         spin_unlock_irqrestore(&h->lock, flags);
8287         if (h->last_heartbeat == heartbeat) {
8288                 controller_lockup_detected(h);
8289                 return true;
8290         }
8291
8292         /* We're ok. */
8293         h->last_heartbeat = heartbeat;
8294         h->last_heartbeat_timestamp = now;
8295         return false;
8296 }
8297
8298 /*
8299  * Set ioaccel status for all ioaccel volumes.
8300  *
8301  * Called from monitor controller worker (hpsa_event_monitor_worker)
8302  *
8303  * A Volume (or Volumes that comprise an Array set) may be undergoing a
8304  * transformation, so we will be turning off ioaccel for all volumes that
8305  * make up the Array.
8306  */
8307 static void hpsa_set_ioaccel_status(struct ctlr_info *h)
8308 {
8309         int rc;
8310         int i;
8311         u8 ioaccel_status;
8312         unsigned char *buf;
8313         struct hpsa_scsi_dev_t *device;
8314
8315         if (!h)
8316                 return;
8317
8318         buf = kmalloc(64, GFP_KERNEL);
8319         if (!buf)
8320                 return;
8321
8322         /*
8323          * Run through current device list used during I/O requests.
8324          */
8325         for (i = 0; i < h->ndevices; i++) {
8326                 int offload_to_be_enabled = 0;
8327                 int offload_config = 0;
8328
8329                 device = h->dev[i];
8330
8331                 if (!device)
8332                         continue;
8333                 if (!hpsa_vpd_page_supported(h, device->scsi3addr,
8334                                                 HPSA_VPD_LV_IOACCEL_STATUS))
8335                         continue;
8336
8337                 memset(buf, 0, 64);
8338
8339                 rc = hpsa_scsi_do_inquiry(h, device->scsi3addr,
8340                                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS,
8341                                         buf, 64);
8342                 if (rc != 0)
8343                         continue;
8344
8345                 ioaccel_status = buf[IOACCEL_STATUS_BYTE];
8346
8347                 /*
8348                  * Check if offload is still configured on
8349                  */
8350                 offload_config =
8351                                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
8352                 /*
8353                  * If offload is configured on, check to see if ioaccel
8354                  * needs to be enabled.
8355                  */
8356                 if (offload_config)
8357                         offload_to_be_enabled =
8358                                 !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
8359
8360                 /*
8361                  * If ioaccel is to be re-enabled, re-enable later during the
8362                  * scan operation so the driver can get a fresh raidmap
8363                  * before turning ioaccel back on.
8364                  */
8365                 if (offload_to_be_enabled)
8366                         continue;
8367
8368                 /*
8369                  * Immediately turn off ioaccel for any volume the
8370                  * controller tells us to. Some of the reasons could be:
8371                  *    transformation - change to the LVs of an Array.
8372                  *    degraded volume - component failure
8373                  */
8374                 hpsa_turn_off_ioaccel_for_device(device);
8375         }
8376
8377         kfree(buf);
8378 }
8379
8380 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8381 {
8382         char *event_type;
8383
8384         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8385                 return;
8386
8387         /* Ask the controller to clear the events we're handling. */
8388         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8389                         | CFGTBL_Trans_io_accel2)) &&
8390                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8391                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8392
8393                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8394                         event_type = "state change";
8395                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8396                         event_type = "configuration change";
8397                 /* Stop sending new RAID offload reqs via the IO accelerator */
8398                 scsi_block_requests(h->scsi_host);
8399                 hpsa_set_ioaccel_status(h);
8400                 hpsa_drain_accel_commands(h);
8401                 /* Set 'accelerator path config change' bit */
8402                 dev_warn(&h->pdev->dev,
8403                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8404                         h->events, event_type);
8405                 writel(h->events, &(h->cfgtable->clear_event_notify));
8406                 /* Set the "clear event notify field update" bit 6 */
8407                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8408                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8409                 hpsa_wait_for_clear_event_notify_ack(h);
8410                 scsi_unblock_requests(h->scsi_host);
8411         } else {
8412                 /* Acknowledge controller notification events. */
8413                 writel(h->events, &(h->cfgtable->clear_event_notify));
8414                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8415                 hpsa_wait_for_clear_event_notify_ack(h);
8416         }
8417         return;
8418 }
8419
8420 /* Check a register on the controller to see if there are configuration
8421  * changes (added/changed/removed logical drives, etc.) which mean that
8422  * we should rescan the controller for devices.
8423  * Also check flag for driver-initiated rescan.
8424  */
8425 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8426 {
8427         if (h->drv_req_rescan) {
8428                 h->drv_req_rescan = 0;
8429                 return 1;
8430         }
8431
8432         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8433                 return 0;
8434
8435         h->events = readl(&(h->cfgtable->event_notify));
8436         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8437 }
8438
8439 /*
8440  * Check if any of the offline devices have become ready
8441  */
8442 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8443 {
8444         unsigned long flags;
8445         struct offline_device_entry *d;
8446         struct list_head *this, *tmp;
8447
8448         spin_lock_irqsave(&h->offline_device_lock, flags);
8449         list_for_each_safe(this, tmp, &h->offline_device_list) {
8450                 d = list_entry(this, struct offline_device_entry,
8451                                 offline_list);
8452                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8453                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8454                         spin_lock_irqsave(&h->offline_device_lock, flags);
8455                         list_del(&d->offline_list);
8456                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8457                         return 1;
8458                 }
8459                 spin_lock_irqsave(&h->offline_device_lock, flags);
8460         }
8461         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8462         return 0;
8463 }
8464
8465 static int hpsa_luns_changed(struct ctlr_info *h)
8466 {
8467         int rc = 1; /* assume there are changes */
8468         struct ReportLUNdata *logdev = NULL;
8469
8470         /* if we can't find out if lun data has changed,
8471          * assume that it has.
8472          */
8473
8474         if (!h->lastlogicals)
8475                 return rc;
8476
8477         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8478         if (!logdev)
8479                 return rc;
8480
8481         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8482                 dev_warn(&h->pdev->dev,
8483                         "report luns failed, can't track lun changes.\n");
8484                 goto out;
8485         }
8486         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8487                 dev_info(&h->pdev->dev,
8488                         "Lun changes detected.\n");
8489                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8490                 goto out;
8491         } else
8492                 rc = 0; /* no changes detected. */
8493 out:
8494         kfree(logdev);
8495         return rc;
8496 }
8497
8498 static void hpsa_perform_rescan(struct ctlr_info *h)
8499 {
8500         struct Scsi_Host *sh = NULL;
8501         unsigned long flags;
8502
8503         /*
8504          * Do the scan after the reset
8505          */
8506         spin_lock_irqsave(&h->reset_lock, flags);
8507         if (h->reset_in_progress) {
8508                 h->drv_req_rescan = 1;
8509                 spin_unlock_irqrestore(&h->reset_lock, flags);
8510                 return;
8511         }
8512         spin_unlock_irqrestore(&h->reset_lock, flags);
8513
8514         sh = scsi_host_get(h->scsi_host);
8515         if (sh != NULL) {
8516                 hpsa_scan_start(sh);
8517                 scsi_host_put(sh);
8518                 h->drv_req_rescan = 0;
8519         }
8520 }
8521
8522 /*
8523  * watch for controller events
8524  */
8525 static void hpsa_event_monitor_worker(struct work_struct *work)
8526 {
8527         struct ctlr_info *h = container_of(to_delayed_work(work),
8528                                         struct ctlr_info, event_monitor_work);
8529         unsigned long flags;
8530
8531         spin_lock_irqsave(&h->lock, flags);
8532         if (h->remove_in_progress) {
8533                 spin_unlock_irqrestore(&h->lock, flags);
8534                 return;
8535         }
8536         spin_unlock_irqrestore(&h->lock, flags);
8537
8538         if (hpsa_ctlr_needs_rescan(h)) {
8539                 hpsa_ack_ctlr_events(h);
8540                 hpsa_perform_rescan(h);
8541         }
8542
8543         spin_lock_irqsave(&h->lock, flags);
8544         if (!h->remove_in_progress)
8545                 queue_delayed_work(h->monitor_ctlr_wq, &h->event_monitor_work,
8546                                 HPSA_EVENT_MONITOR_INTERVAL);
8547         spin_unlock_irqrestore(&h->lock, flags);
8548 }
8549
8550 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8551 {
8552         unsigned long flags;
8553         struct ctlr_info *h = container_of(to_delayed_work(work),
8554                                         struct ctlr_info, rescan_ctlr_work);
8555
8556         spin_lock_irqsave(&h->lock, flags);
8557         if (h->remove_in_progress) {
8558                 spin_unlock_irqrestore(&h->lock, flags);
8559                 return;
8560         }
8561         spin_unlock_irqrestore(&h->lock, flags);
8562
8563         if (h->drv_req_rescan || hpsa_offline_devices_ready(h)) {
8564                 hpsa_perform_rescan(h);
8565         } else if (h->discovery_polling) {
8566                 if (hpsa_luns_changed(h)) {
8567                         dev_info(&h->pdev->dev,
8568                                 "driver discovery polling rescan.\n");
8569                         hpsa_perform_rescan(h);
8570                 }
8571         }
8572         spin_lock_irqsave(&h->lock, flags);
8573         if (!h->remove_in_progress)
8574                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8575                                 h->heartbeat_sample_interval);
8576         spin_unlock_irqrestore(&h->lock, flags);
8577 }
8578
8579 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8580 {
8581         unsigned long flags;
8582         struct ctlr_info *h = container_of(to_delayed_work(work),
8583                                         struct ctlr_info, monitor_ctlr_work);
8584
8585         detect_controller_lockup(h);
8586         if (lockup_detected(h))
8587                 return;
8588
8589         spin_lock_irqsave(&h->lock, flags);
8590         if (!h->remove_in_progress)
8591                 queue_delayed_work(h->monitor_ctlr_wq, &h->monitor_ctlr_work,
8592                                 h->heartbeat_sample_interval);
8593         spin_unlock_irqrestore(&h->lock, flags);
8594 }
8595
8596 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8597                                                 char *name)
8598 {
8599         struct workqueue_struct *wq = NULL;
8600
8601         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8602         if (!wq)
8603                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8604
8605         return wq;
8606 }
8607
8608 static void hpda_free_ctlr_info(struct ctlr_info *h)
8609 {
8610         kfree(h->reply_map);
8611         kfree(h);
8612 }
8613
8614 static struct ctlr_info *hpda_alloc_ctlr_info(void)
8615 {
8616         struct ctlr_info *h;
8617
8618         h = kzalloc(sizeof(*h), GFP_KERNEL);
8619         if (!h)
8620                 return NULL;
8621
8622         h->reply_map = kcalloc(nr_cpu_ids, sizeof(*h->reply_map), GFP_KERNEL);
8623         if (!h->reply_map) {
8624                 kfree(h);
8625                 return NULL;
8626         }
8627         return h;
8628 }
8629
8630 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8631 {
8632         int rc;
8633         struct ctlr_info *h;
8634         int try_soft_reset = 0;
8635         unsigned long flags;
8636         u32 board_id;
8637
8638         if (number_of_controllers == 0)
8639                 printk(KERN_INFO DRIVER_NAME "\n");
8640
8641         rc = hpsa_lookup_board_id(pdev, &board_id, NULL);
8642         if (rc < 0) {
8643                 dev_warn(&pdev->dev, "Board ID not found\n");
8644                 return rc;
8645         }
8646
8647         rc = hpsa_init_reset_devices(pdev, board_id);
8648         if (rc) {
8649                 if (rc != -ENOTSUPP)
8650                         return rc;
8651                 /* If the reset fails in a particular way (it has no way to do
8652                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8653                  * a soft reset once we get the controller configured up to the
8654                  * point that it can accept a command.
8655                  */
8656                 try_soft_reset = 1;
8657                 rc = 0;
8658         }
8659
8660 reinit_after_soft_reset:
8661
8662         /* Command structures must be aligned on a 32-byte boundary because
8663          * the 5 lower bits of the address are used by the hardware. and by
8664          * the driver.  See comments in hpsa.h for more info.
8665          */
8666         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8667         h = hpda_alloc_ctlr_info();
8668         if (!h) {
8669                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8670                 return -ENOMEM;
8671         }
8672
8673         h->pdev = pdev;
8674
8675         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8676         INIT_LIST_HEAD(&h->offline_device_list);
8677         spin_lock_init(&h->lock);
8678         spin_lock_init(&h->offline_device_lock);
8679         spin_lock_init(&h->scan_lock);
8680         spin_lock_init(&h->reset_lock);
8681         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8682
8683         /* Allocate and clear per-cpu variable lockup_detected */
8684         h->lockup_detected = alloc_percpu(u32);
8685         if (!h->lockup_detected) {
8686                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8687                 rc = -ENOMEM;
8688                 goto clean1;    /* aer/h */
8689         }
8690         set_lockup_detected_for_all_cpus(h, 0);
8691
8692         rc = hpsa_pci_init(h);
8693         if (rc)
8694                 goto clean2;    /* lu, aer/h */
8695
8696         /* relies on h-> settings made by hpsa_pci_init, including
8697          * interrupt_mode h->intr */
8698         rc = hpsa_scsi_host_alloc(h);
8699         if (rc)
8700                 goto clean2_5;  /* pci, lu, aer/h */
8701
8702         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8703         h->ctlr = number_of_controllers;
8704         number_of_controllers++;
8705
8706         /* configure PCI DMA stuff */
8707         rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
8708         if (rc != 0) {
8709                 rc = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
8710                 if (rc != 0) {
8711                         dev_err(&pdev->dev, "no suitable DMA available\n");
8712                         goto clean3;    /* shost, pci, lu, aer/h */
8713                 }
8714         }
8715
8716         /* make sure the board interrupts are off */
8717         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8718
8719         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8720         if (rc)
8721                 goto clean3;    /* shost, pci, lu, aer/h */
8722         rc = hpsa_alloc_cmd_pool(h);
8723         if (rc)
8724                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8725         rc = hpsa_alloc_sg_chain_blocks(h);
8726         if (rc)
8727                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8728         init_waitqueue_head(&h->scan_wait_queue);
8729         init_waitqueue_head(&h->event_sync_wait_queue);
8730         mutex_init(&h->reset_mutex);
8731         h->scan_finished = 1; /* no scan currently in progress */
8732         h->scan_waiting = 0;
8733
8734         pci_set_drvdata(pdev, h);
8735         h->ndevices = 0;
8736
8737         spin_lock_init(&h->devlock);
8738         rc = hpsa_put_ctlr_into_performant_mode(h);
8739         if (rc)
8740                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8741
8742         /* create the resubmit workqueue */
8743         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8744         if (!h->rescan_ctlr_wq) {
8745                 rc = -ENOMEM;
8746                 goto clean7;
8747         }
8748
8749         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8750         if (!h->resubmit_wq) {
8751                 rc = -ENOMEM;
8752                 goto clean7;    /* aer/h */
8753         }
8754
8755         h->monitor_ctlr_wq = hpsa_create_controller_wq(h, "monitor");
8756         if (!h->monitor_ctlr_wq) {
8757                 rc = -ENOMEM;
8758                 goto clean7;
8759         }
8760
8761         /*
8762          * At this point, the controller is ready to take commands.
8763          * Now, if reset_devices and the hard reset didn't work, try
8764          * the soft reset and see if that works.
8765          */
8766         if (try_soft_reset) {
8767
8768                 /* This is kind of gross.  We may or may not get a completion
8769                  * from the soft reset command, and if we do, then the value
8770                  * from the fifo may or may not be valid.  So, we wait 10 secs
8771                  * after the reset throwing away any completions we get during
8772                  * that time.  Unregister the interrupt handler and register
8773                  * fake ones to scoop up any residual completions.
8774                  */
8775                 spin_lock_irqsave(&h->lock, flags);
8776                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8777                 spin_unlock_irqrestore(&h->lock, flags);
8778                 hpsa_free_irqs(h);
8779                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8780                                         hpsa_intx_discard_completions);
8781                 if (rc) {
8782                         dev_warn(&h->pdev->dev,
8783                                 "Failed to request_irq after soft reset.\n");
8784                         /*
8785                          * cannot goto clean7 or free_irqs will be called
8786                          * again. Instead, do its work
8787                          */
8788                         hpsa_free_performant_mode(h);   /* clean7 */
8789                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8790                         hpsa_free_cmd_pool(h);          /* clean5 */
8791                         /*
8792                          * skip hpsa_free_irqs(h) clean4 since that
8793                          * was just called before request_irqs failed
8794                          */
8795                         goto clean3;
8796                 }
8797
8798                 rc = hpsa_kdump_soft_reset(h);
8799                 if (rc)
8800                         /* Neither hard nor soft reset worked, we're hosed. */
8801                         goto clean7;
8802
8803                 dev_info(&h->pdev->dev, "Board READY.\n");
8804                 dev_info(&h->pdev->dev,
8805                         "Waiting for stale completions to drain.\n");
8806                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8807                 msleep(10000);
8808                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8809
8810                 rc = controller_reset_failed(h->cfgtable);
8811                 if (rc)
8812                         dev_info(&h->pdev->dev,
8813                                 "Soft reset appears to have failed.\n");
8814
8815                 /* since the controller's reset, we have to go back and re-init
8816                  * everything.  Easiest to just forget what we've done and do it
8817                  * all over again.
8818                  */
8819                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8820                 try_soft_reset = 0;
8821                 if (rc)
8822                         /* don't goto clean, we already unallocated */
8823                         return -ENODEV;
8824
8825                 goto reinit_after_soft_reset;
8826         }
8827
8828         /* Enable Accelerated IO path at driver layer */
8829         h->acciopath_status = 1;
8830         /* Disable discovery polling.*/
8831         h->discovery_polling = 0;
8832
8833
8834         /* Turn the interrupts on so we can service requests */
8835         h->access.set_intr_mask(h, HPSA_INTR_ON);
8836
8837         hpsa_hba_inquiry(h);
8838
8839         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8840         if (!h->lastlogicals)
8841                 dev_info(&h->pdev->dev,
8842                         "Can't track change to report lun data\n");
8843
8844         /* hook into SCSI subsystem */
8845         rc = hpsa_scsi_add_host(h);
8846         if (rc)
8847                 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8848
8849         /* Monitor the controller for firmware lockups */
8850         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8851         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8852         schedule_delayed_work(&h->monitor_ctlr_work,
8853                                 h->heartbeat_sample_interval);
8854         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8855         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8856                                 h->heartbeat_sample_interval);
8857         INIT_DELAYED_WORK(&h->event_monitor_work, hpsa_event_monitor_worker);
8858         schedule_delayed_work(&h->event_monitor_work,
8859                                 HPSA_EVENT_MONITOR_INTERVAL);
8860         return 0;
8861
8862 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8863         kfree(h->lastlogicals);
8864 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8865         hpsa_free_performant_mode(h);
8866         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8867 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8868         hpsa_free_sg_chain_blocks(h);
8869 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8870         hpsa_free_cmd_pool(h);
8871 clean4: /* irq, shost, pci, lu, aer/h */
8872         hpsa_free_irqs(h);
8873 clean3: /* shost, pci, lu, aer/h */
8874         scsi_host_put(h->scsi_host);
8875         h->scsi_host = NULL;
8876 clean2_5: /* pci, lu, aer/h */
8877         hpsa_free_pci_init(h);
8878 clean2: /* lu, aer/h */
8879         if (h->lockup_detected) {
8880                 free_percpu(h->lockup_detected);
8881                 h->lockup_detected = NULL;
8882         }
8883 clean1: /* wq/aer/h */
8884         if (h->resubmit_wq) {
8885                 destroy_workqueue(h->resubmit_wq);
8886                 h->resubmit_wq = NULL;
8887         }
8888         if (h->rescan_ctlr_wq) {
8889                 destroy_workqueue(h->rescan_ctlr_wq);
8890                 h->rescan_ctlr_wq = NULL;
8891         }
8892         if (h->monitor_ctlr_wq) {
8893                 destroy_workqueue(h->monitor_ctlr_wq);
8894                 h->monitor_ctlr_wq = NULL;
8895         }
8896         kfree(h);
8897         return rc;
8898 }
8899
8900 static void hpsa_flush_cache(struct ctlr_info *h)
8901 {
8902         char *flush_buf;
8903         struct CommandList *c;
8904         int rc;
8905
8906         if (unlikely(lockup_detected(h)))
8907                 return;
8908         flush_buf = kzalloc(4, GFP_KERNEL);
8909         if (!flush_buf)
8910                 return;
8911
8912         c = cmd_alloc(h);
8913
8914         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8915                 RAID_CTLR_LUNID, TYPE_CMD)) {
8916                 goto out;
8917         }
8918         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8919                         DEFAULT_TIMEOUT);
8920         if (rc)
8921                 goto out;
8922         if (c->err_info->CommandStatus != 0)
8923 out:
8924                 dev_warn(&h->pdev->dev,
8925                         "error flushing cache on controller\n");
8926         cmd_free(h, c);
8927         kfree(flush_buf);
8928 }
8929
8930 /* Make controller gather fresh report lun data each time we
8931  * send down a report luns request
8932  */
8933 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8934 {
8935         u32 *options;
8936         struct CommandList *c;
8937         int rc;
8938
8939         /* Don't bother trying to set diag options if locked up */
8940         if (unlikely(h->lockup_detected))
8941                 return;
8942
8943         options = kzalloc(sizeof(*options), GFP_KERNEL);
8944         if (!options)
8945                 return;
8946
8947         c = cmd_alloc(h);
8948
8949         /* first, get the current diag options settings */
8950         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8951                 RAID_CTLR_LUNID, TYPE_CMD))
8952                 goto errout;
8953
8954         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8955                         NO_TIMEOUT);
8956         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8957                 goto errout;
8958
8959         /* Now, set the bit for disabling the RLD caching */
8960         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8961
8962         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8963                 RAID_CTLR_LUNID, TYPE_CMD))
8964                 goto errout;
8965
8966         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_TO_DEVICE,
8967                         NO_TIMEOUT);
8968         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8969                 goto errout;
8970
8971         /* Now verify that it got set: */
8972         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8973                 RAID_CTLR_LUNID, TYPE_CMD))
8974                 goto errout;
8975
8976         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, DMA_FROM_DEVICE,
8977                         NO_TIMEOUT);
8978         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8979                 goto errout;
8980
8981         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8982                 goto out;
8983
8984 errout:
8985         dev_err(&h->pdev->dev,
8986                         "Error: failed to disable report lun data caching.\n");
8987 out:
8988         cmd_free(h, c);
8989         kfree(options);
8990 }
8991
8992 static void __hpsa_shutdown(struct pci_dev *pdev)
8993 {
8994         struct ctlr_info *h;
8995
8996         h = pci_get_drvdata(pdev);
8997         /* Turn board interrupts off  and send the flush cache command
8998          * sendcmd will turn off interrupt, and send the flush...
8999          * To write all data in the battery backed cache to disks
9000          */
9001         hpsa_flush_cache(h);
9002         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9003         hpsa_free_irqs(h);                      /* init_one 4 */
9004         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9005 }
9006
9007 static void hpsa_shutdown(struct pci_dev *pdev)
9008 {
9009         __hpsa_shutdown(pdev);
9010         pci_disable_device(pdev);
9011 }
9012
9013 static void hpsa_free_device_info(struct ctlr_info *h)
9014 {
9015         int i;
9016
9017         for (i = 0; i < h->ndevices; i++) {
9018                 kfree(h->dev[i]);
9019                 h->dev[i] = NULL;
9020         }
9021 }
9022
9023 static void hpsa_remove_one(struct pci_dev *pdev)
9024 {
9025         struct ctlr_info *h;
9026         unsigned long flags;
9027
9028         if (pci_get_drvdata(pdev) == NULL) {
9029                 dev_err(&pdev->dev, "unable to remove device\n");
9030                 return;
9031         }
9032         h = pci_get_drvdata(pdev);
9033
9034         /* Get rid of any controller monitoring work items */
9035         spin_lock_irqsave(&h->lock, flags);
9036         h->remove_in_progress = 1;
9037         spin_unlock_irqrestore(&h->lock, flags);
9038         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9039         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9040         cancel_delayed_work_sync(&h->event_monitor_work);
9041         destroy_workqueue(h->rescan_ctlr_wq);
9042         destroy_workqueue(h->resubmit_wq);
9043         destroy_workqueue(h->monitor_ctlr_wq);
9044
9045         hpsa_delete_sas_host(h);
9046
9047         /*
9048          * Call before disabling interrupts.
9049          * scsi_remove_host can trigger I/O operations especially
9050          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9051          * operations which cannot complete and will hang the system.
9052          */
9053         if (h->scsi_host)
9054                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9055         /* includes hpsa_free_irqs - init_one 4 */
9056         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9057         __hpsa_shutdown(pdev);
9058
9059         hpsa_free_device_info(h);               /* scan */
9060
9061         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9062         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9063         hpsa_free_ioaccel2_sg_chain_blocks(h);
9064         hpsa_free_performant_mode(h);                   /* init_one 7 */
9065         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9066         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9067         kfree(h->lastlogicals);
9068
9069         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9070
9071         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9072         h->scsi_host = NULL;                            /* init_one 3 */
9073
9074         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9075         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9076
9077         free_percpu(h->lockup_detected);                /* init_one 2 */
9078         h->lockup_detected = NULL;                      /* init_one 2 */
9079         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9080
9081         hpda_free_ctlr_info(h);                         /* init_one 1 */
9082 }
9083
9084 static int __maybe_unused hpsa_suspend(
9085         __attribute__((unused)) struct device *dev)
9086 {
9087         return -ENOSYS;
9088 }
9089
9090 static int __maybe_unused hpsa_resume
9091         (__attribute__((unused)) struct device *dev)
9092 {
9093         return -ENOSYS;
9094 }
9095
9096 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops, hpsa_suspend, hpsa_resume);
9097
9098 static struct pci_driver hpsa_pci_driver = {
9099         .name = HPSA,
9100         .probe = hpsa_init_one,
9101         .remove = hpsa_remove_one,
9102         .id_table = hpsa_pci_device_id, /* id_table */
9103         .shutdown = hpsa_shutdown,
9104         .driver.pm = &hpsa_pm_ops,
9105 };
9106
9107 /* Fill in bucket_map[], given nsgs (the max number of
9108  * scatter gather elements supported) and bucket[],
9109  * which is an array of 8 integers.  The bucket[] array
9110  * contains 8 different DMA transfer sizes (in 16
9111  * byte increments) which the controller uses to fetch
9112  * commands.  This function fills in bucket_map[], which
9113  * maps a given number of scatter gather elements to one of
9114  * the 8 DMA transfer sizes.  The point of it is to allow the
9115  * controller to only do as much DMA as needed to fetch the
9116  * command, with the DMA transfer size encoded in the lower
9117  * bits of the command address.
9118  */
9119 static void  calc_bucket_map(int bucket[], int num_buckets,
9120         int nsgs, int min_blocks, u32 *bucket_map)
9121 {
9122         int i, j, b, size;
9123
9124         /* Note, bucket_map must have nsgs+1 entries. */
9125         for (i = 0; i <= nsgs; i++) {
9126                 /* Compute size of a command with i SG entries */
9127                 size = i + min_blocks;
9128                 b = num_buckets; /* Assume the biggest bucket */
9129                 /* Find the bucket that is just big enough */
9130                 for (j = 0; j < num_buckets; j++) {
9131                         if (bucket[j] >= size) {
9132                                 b = j;
9133                                 break;
9134                         }
9135                 }
9136                 /* for a command with i SG entries, use bucket b. */
9137                 bucket_map[i] = b;
9138         }
9139 }
9140
9141 /*
9142  * return -ENODEV on err, 0 on success (or no action)
9143  * allocates numerous items that must be freed later
9144  */
9145 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9146 {
9147         int i;
9148         unsigned long register_value;
9149         unsigned long transMethod = CFGTBL_Trans_Performant |
9150                         (trans_support & CFGTBL_Trans_use_short_tags) |
9151                                 CFGTBL_Trans_enable_directed_msix |
9152                         (trans_support & (CFGTBL_Trans_io_accel1 |
9153                                 CFGTBL_Trans_io_accel2));
9154         struct access_method access = SA5_performant_access;
9155
9156         /* This is a bit complicated.  There are 8 registers on
9157          * the controller which we write to to tell it 8 different
9158          * sizes of commands which there may be.  It's a way of
9159          * reducing the DMA done to fetch each command.  Encoded into
9160          * each command's tag are 3 bits which communicate to the controller
9161          * which of the eight sizes that command fits within.  The size of
9162          * each command depends on how many scatter gather entries there are.
9163          * Each SG entry requires 16 bytes.  The eight registers are programmed
9164          * with the number of 16-byte blocks a command of that size requires.
9165          * The smallest command possible requires 5 such 16 byte blocks.
9166          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9167          * blocks.  Note, this only extends to the SG entries contained
9168          * within the command block, and does not extend to chained blocks
9169          * of SG elements.   bft[] contains the eight values we write to
9170          * the registers.  They are not evenly distributed, but have more
9171          * sizes for small commands, and fewer sizes for larger commands.
9172          */
9173         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9174 #define MIN_IOACCEL2_BFT_ENTRY 5
9175 #define HPSA_IOACCEL2_HEADER_SZ 4
9176         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9177                         13, 14, 15, 16, 17, 18, 19,
9178                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9179         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9180         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9181         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9182                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9183         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9184         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9185         /*  5 = 1 s/g entry or 4k
9186          *  6 = 2 s/g entry or 8k
9187          *  8 = 4 s/g entry or 16k
9188          * 10 = 6 s/g entry or 24k
9189          */
9190
9191         /* If the controller supports either ioaccel method then
9192          * we can also use the RAID stack submit path that does not
9193          * perform the superfluous readl() after each command submission.
9194          */
9195         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9196                 access = SA5_performant_access_no_read;
9197
9198         /* Controller spec: zero out this buffer. */
9199         for (i = 0; i < h->nreply_queues; i++)
9200                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9201
9202         bft[7] = SG_ENTRIES_IN_CMD + 4;
9203         calc_bucket_map(bft, ARRAY_SIZE(bft),
9204                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9205         for (i = 0; i < 8; i++)
9206                 writel(bft[i], &h->transtable->BlockFetch[i]);
9207
9208         /* size of controller ring buffer */
9209         writel(h->max_commands, &h->transtable->RepQSize);
9210         writel(h->nreply_queues, &h->transtable->RepQCount);
9211         writel(0, &h->transtable->RepQCtrAddrLow32);
9212         writel(0, &h->transtable->RepQCtrAddrHigh32);
9213
9214         for (i = 0; i < h->nreply_queues; i++) {
9215                 writel(0, &h->transtable->RepQAddr[i].upper);
9216                 writel(h->reply_queue[i].busaddr,
9217                         &h->transtable->RepQAddr[i].lower);
9218         }
9219
9220         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9221         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9222         /*
9223          * enable outbound interrupt coalescing in accelerator mode;
9224          */
9225         if (trans_support & CFGTBL_Trans_io_accel1) {
9226                 access = SA5_ioaccel_mode1_access;
9227                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9228                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9229         } else
9230                 if (trans_support & CFGTBL_Trans_io_accel2)
9231                         access = SA5_ioaccel_mode2_access;
9232         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9233         if (hpsa_wait_for_mode_change_ack(h)) {
9234                 dev_err(&h->pdev->dev,
9235                         "performant mode problem - doorbell timeout\n");
9236                 return -ENODEV;
9237         }
9238         register_value = readl(&(h->cfgtable->TransportActive));
9239         if (!(register_value & CFGTBL_Trans_Performant)) {
9240                 dev_err(&h->pdev->dev,
9241                         "performant mode problem - transport not active\n");
9242                 return -ENODEV;
9243         }
9244         /* Change the access methods to the performant access methods */
9245         h->access = access;
9246         h->transMethod = transMethod;
9247
9248         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9249                 (trans_support & CFGTBL_Trans_io_accel2)))
9250                 return 0;
9251
9252         if (trans_support & CFGTBL_Trans_io_accel1) {
9253                 /* Set up I/O accelerator mode */
9254                 for (i = 0; i < h->nreply_queues; i++) {
9255                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9256                         h->reply_queue[i].current_entry =
9257                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9258                 }
9259                 bft[7] = h->ioaccel_maxsg + 8;
9260                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9261                                 h->ioaccel1_blockFetchTable);
9262
9263                 /* initialize all reply queue entries to unused */
9264                 for (i = 0; i < h->nreply_queues; i++)
9265                         memset(h->reply_queue[i].head,
9266                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9267                                 h->reply_queue_size);
9268
9269                 /* set all the constant fields in the accelerator command
9270                  * frames once at init time to save CPU cycles later.
9271                  */
9272                 for (i = 0; i < h->nr_cmds; i++) {
9273                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9274
9275                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9276                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9277                                         (i * sizeof(struct ErrorInfo)));
9278                         cp->err_info_len = sizeof(struct ErrorInfo);
9279                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9280                         cp->host_context_flags =
9281                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9282                         cp->timeout_sec = 0;
9283                         cp->ReplyQueue = 0;
9284                         cp->tag =
9285                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9286                         cp->host_addr =
9287                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9288                                         (i * sizeof(struct io_accel1_cmd)));
9289                 }
9290         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9291                 u64 cfg_offset, cfg_base_addr_index;
9292                 u32 bft2_offset, cfg_base_addr;
9293
9294                 hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9295                                     &cfg_base_addr_index, &cfg_offset);
9296                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9297                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9298                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9299                                 4, h->ioaccel2_blockFetchTable);
9300                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9301                 BUILD_BUG_ON(offsetof(struct CfgTable,
9302                                 io_accel_request_size_offset) != 0xb8);
9303                 h->ioaccel2_bft2_regs =
9304                         remap_pci_mem(pci_resource_start(h->pdev,
9305                                         cfg_base_addr_index) +
9306                                         cfg_offset + bft2_offset,
9307                                         ARRAY_SIZE(bft2) *
9308                                         sizeof(*h->ioaccel2_bft2_regs));
9309                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9310                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9311         }
9312         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9313         if (hpsa_wait_for_mode_change_ack(h)) {
9314                 dev_err(&h->pdev->dev,
9315                         "performant mode problem - enabling ioaccel mode\n");
9316                 return -ENODEV;
9317         }
9318         return 0;
9319 }
9320
9321 /* Free ioaccel1 mode command blocks and block fetch table */
9322 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9323 {
9324         if (h->ioaccel_cmd_pool) {
9325                 dma_free_coherent(&h->pdev->dev,
9326                                   h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9327                                   h->ioaccel_cmd_pool,
9328                                   h->ioaccel_cmd_pool_dhandle);
9329                 h->ioaccel_cmd_pool = NULL;
9330                 h->ioaccel_cmd_pool_dhandle = 0;
9331         }
9332         kfree(h->ioaccel1_blockFetchTable);
9333         h->ioaccel1_blockFetchTable = NULL;
9334 }
9335
9336 /* Allocate ioaccel1 mode command blocks and block fetch table */
9337 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9338 {
9339         h->ioaccel_maxsg =
9340                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9341         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9342                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9343
9344         /* Command structures must be aligned on a 128-byte boundary
9345          * because the 7 lower bits of the address are used by the
9346          * hardware.
9347          */
9348         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9349                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9350         h->ioaccel_cmd_pool =
9351                 dma_alloc_coherent(&h->pdev->dev,
9352                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9353                         &h->ioaccel_cmd_pool_dhandle, GFP_KERNEL);
9354
9355         h->ioaccel1_blockFetchTable =
9356                 kmalloc(((h->ioaccel_maxsg + 1) *
9357                                 sizeof(u32)), GFP_KERNEL);
9358
9359         if ((h->ioaccel_cmd_pool == NULL) ||
9360                 (h->ioaccel1_blockFetchTable == NULL))
9361                 goto clean_up;
9362
9363         memset(h->ioaccel_cmd_pool, 0,
9364                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9365         return 0;
9366
9367 clean_up:
9368         hpsa_free_ioaccel1_cmd_and_bft(h);
9369         return -ENOMEM;
9370 }
9371
9372 /* Free ioaccel2 mode command blocks and block fetch table */
9373 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9374 {
9375         hpsa_free_ioaccel2_sg_chain_blocks(h);
9376
9377         if (h->ioaccel2_cmd_pool) {
9378                 dma_free_coherent(&h->pdev->dev,
9379                                   h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9380                                   h->ioaccel2_cmd_pool,
9381                                   h->ioaccel2_cmd_pool_dhandle);
9382                 h->ioaccel2_cmd_pool = NULL;
9383                 h->ioaccel2_cmd_pool_dhandle = 0;
9384         }
9385         kfree(h->ioaccel2_blockFetchTable);
9386         h->ioaccel2_blockFetchTable = NULL;
9387 }
9388
9389 /* Allocate ioaccel2 mode command blocks and block fetch table */
9390 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9391 {
9392         int rc;
9393
9394         /* Allocate ioaccel2 mode command blocks and block fetch table */
9395
9396         h->ioaccel_maxsg =
9397                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9398         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9399                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9400
9401         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9402                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9403         h->ioaccel2_cmd_pool =
9404                 dma_alloc_coherent(&h->pdev->dev,
9405                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9406                         &h->ioaccel2_cmd_pool_dhandle, GFP_KERNEL);
9407
9408         h->ioaccel2_blockFetchTable =
9409                 kmalloc(((h->ioaccel_maxsg + 1) *
9410                                 sizeof(u32)), GFP_KERNEL);
9411
9412         if ((h->ioaccel2_cmd_pool == NULL) ||
9413                 (h->ioaccel2_blockFetchTable == NULL)) {
9414                 rc = -ENOMEM;
9415                 goto clean_up;
9416         }
9417
9418         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9419         if (rc)
9420                 goto clean_up;
9421
9422         memset(h->ioaccel2_cmd_pool, 0,
9423                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9424         return 0;
9425
9426 clean_up:
9427         hpsa_free_ioaccel2_cmd_and_bft(h);
9428         return rc;
9429 }
9430
9431 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9432 static void hpsa_free_performant_mode(struct ctlr_info *h)
9433 {
9434         kfree(h->blockFetchTable);
9435         h->blockFetchTable = NULL;
9436         hpsa_free_reply_queues(h);
9437         hpsa_free_ioaccel1_cmd_and_bft(h);
9438         hpsa_free_ioaccel2_cmd_and_bft(h);
9439 }
9440
9441 /* return -ENODEV on error, 0 on success (or no action)
9442  * allocates numerous items that must be freed later
9443  */
9444 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9445 {
9446         u32 trans_support;
9447         unsigned long transMethod = CFGTBL_Trans_Performant |
9448                                         CFGTBL_Trans_use_short_tags;
9449         int i, rc;
9450
9451         if (hpsa_simple_mode)
9452                 return 0;
9453
9454         trans_support = readl(&(h->cfgtable->TransportSupport));
9455         if (!(trans_support & PERFORMANT_MODE))
9456                 return 0;
9457
9458         /* Check for I/O accelerator mode support */
9459         if (trans_support & CFGTBL_Trans_io_accel1) {
9460                 transMethod |= CFGTBL_Trans_io_accel1 |
9461                                 CFGTBL_Trans_enable_directed_msix;
9462                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9463                 if (rc)
9464                         return rc;
9465         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9466                 transMethod |= CFGTBL_Trans_io_accel2 |
9467                                 CFGTBL_Trans_enable_directed_msix;
9468                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9469                 if (rc)
9470                         return rc;
9471         }
9472
9473         h->nreply_queues = h->msix_vectors > 0 ? h->msix_vectors : 1;
9474         hpsa_get_max_perf_mode_cmds(h);
9475         /* Performant mode ring buffer and supporting data structures */
9476         h->reply_queue_size = h->max_commands * sizeof(u64);
9477
9478         for (i = 0; i < h->nreply_queues; i++) {
9479                 h->reply_queue[i].head = dma_alloc_coherent(&h->pdev->dev,
9480                                                 h->reply_queue_size,
9481                                                 &h->reply_queue[i].busaddr,
9482                                                 GFP_KERNEL);
9483                 if (!h->reply_queue[i].head) {
9484                         rc = -ENOMEM;
9485                         goto clean1;    /* rq, ioaccel */
9486                 }
9487                 h->reply_queue[i].size = h->max_commands;
9488                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9489                 h->reply_queue[i].current_entry = 0;
9490         }
9491
9492         /* Need a block fetch table for performant mode */
9493         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9494                                 sizeof(u32)), GFP_KERNEL);
9495         if (!h->blockFetchTable) {
9496                 rc = -ENOMEM;
9497                 goto clean1;    /* rq, ioaccel */
9498         }
9499
9500         rc = hpsa_enter_performant_mode(h, trans_support);
9501         if (rc)
9502                 goto clean2;    /* bft, rq, ioaccel */
9503         return 0;
9504
9505 clean2: /* bft, rq, ioaccel */
9506         kfree(h->blockFetchTable);
9507         h->blockFetchTable = NULL;
9508 clean1: /* rq, ioaccel */
9509         hpsa_free_reply_queues(h);
9510         hpsa_free_ioaccel1_cmd_and_bft(h);
9511         hpsa_free_ioaccel2_cmd_and_bft(h);
9512         return rc;
9513 }
9514
9515 static int is_accelerated_cmd(struct CommandList *c)
9516 {
9517         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9518 }
9519
9520 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9521 {
9522         struct CommandList *c = NULL;
9523         int i, accel_cmds_out;
9524         int refcount;
9525
9526         do { /* wait for all outstanding ioaccel commands to drain out */
9527                 accel_cmds_out = 0;
9528                 for (i = 0; i < h->nr_cmds; i++) {
9529                         c = h->cmd_pool + i;
9530                         refcount = atomic_inc_return(&c->refcount);
9531                         if (refcount > 1) /* Command is allocated */
9532                                 accel_cmds_out += is_accelerated_cmd(c);
9533                         cmd_free(h, c);
9534                 }
9535                 if (accel_cmds_out <= 0)
9536                         break;
9537                 msleep(100);
9538         } while (1);
9539 }
9540
9541 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9542                                 struct hpsa_sas_port *hpsa_sas_port)
9543 {
9544         struct hpsa_sas_phy *hpsa_sas_phy;
9545         struct sas_phy *phy;
9546
9547         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9548         if (!hpsa_sas_phy)
9549                 return NULL;
9550
9551         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9552                 hpsa_sas_port->next_phy_index);
9553         if (!phy) {
9554                 kfree(hpsa_sas_phy);
9555                 return NULL;
9556         }
9557
9558         hpsa_sas_port->next_phy_index++;
9559         hpsa_sas_phy->phy = phy;
9560         hpsa_sas_phy->parent_port = hpsa_sas_port;
9561
9562         return hpsa_sas_phy;
9563 }
9564
9565 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9566 {
9567         struct sas_phy *phy = hpsa_sas_phy->phy;
9568
9569         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9570         if (hpsa_sas_phy->added_to_port)
9571                 list_del(&hpsa_sas_phy->phy_list_entry);
9572         sas_phy_delete(phy);
9573         kfree(hpsa_sas_phy);
9574 }
9575
9576 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9577 {
9578         int rc;
9579         struct hpsa_sas_port *hpsa_sas_port;
9580         struct sas_phy *phy;
9581         struct sas_identify *identify;
9582
9583         hpsa_sas_port = hpsa_sas_phy->parent_port;
9584         phy = hpsa_sas_phy->phy;
9585
9586         identify = &phy->identify;
9587         memset(identify, 0, sizeof(*identify));
9588         identify->sas_address = hpsa_sas_port->sas_address;
9589         identify->device_type = SAS_END_DEVICE;
9590         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9591         identify->target_port_protocols = SAS_PROTOCOL_STP;
9592         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9593         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9594         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9595         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9596         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9597
9598         rc = sas_phy_add(hpsa_sas_phy->phy);
9599         if (rc)
9600                 return rc;
9601
9602         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9603         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9604                         &hpsa_sas_port->phy_list_head);
9605         hpsa_sas_phy->added_to_port = true;
9606
9607         return 0;
9608 }
9609
9610 static int
9611         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9612                                 struct sas_rphy *rphy)
9613 {
9614         struct sas_identify *identify;
9615
9616         identify = &rphy->identify;
9617         identify->sas_address = hpsa_sas_port->sas_address;
9618         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9619         identify->target_port_protocols = SAS_PROTOCOL_STP;
9620
9621         return sas_rphy_add(rphy);
9622 }
9623
9624 static struct hpsa_sas_port
9625         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9626                                 u64 sas_address)
9627 {
9628         int rc;
9629         struct hpsa_sas_port *hpsa_sas_port;
9630         struct sas_port *port;
9631
9632         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9633         if (!hpsa_sas_port)
9634                 return NULL;
9635
9636         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9637         hpsa_sas_port->parent_node = hpsa_sas_node;
9638
9639         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9640         if (!port)
9641                 goto free_hpsa_port;
9642
9643         rc = sas_port_add(port);
9644         if (rc)
9645                 goto free_sas_port;
9646
9647         hpsa_sas_port->port = port;
9648         hpsa_sas_port->sas_address = sas_address;
9649         list_add_tail(&hpsa_sas_port->port_list_entry,
9650                         &hpsa_sas_node->port_list_head);
9651
9652         return hpsa_sas_port;
9653
9654 free_sas_port:
9655         sas_port_free(port);
9656 free_hpsa_port:
9657         kfree(hpsa_sas_port);
9658
9659         return NULL;
9660 }
9661
9662 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9663 {
9664         struct hpsa_sas_phy *hpsa_sas_phy;
9665         struct hpsa_sas_phy *next;
9666
9667         list_for_each_entry_safe(hpsa_sas_phy, next,
9668                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9669                 hpsa_free_sas_phy(hpsa_sas_phy);
9670
9671         sas_port_delete(hpsa_sas_port->port);
9672         list_del(&hpsa_sas_port->port_list_entry);
9673         kfree(hpsa_sas_port);
9674 }
9675
9676 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9677 {
9678         struct hpsa_sas_node *hpsa_sas_node;
9679
9680         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9681         if (hpsa_sas_node) {
9682                 hpsa_sas_node->parent_dev = parent_dev;
9683                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9684         }
9685
9686         return hpsa_sas_node;
9687 }
9688
9689 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9690 {
9691         struct hpsa_sas_port *hpsa_sas_port;
9692         struct hpsa_sas_port *next;
9693
9694         if (!hpsa_sas_node)
9695                 return;
9696
9697         list_for_each_entry_safe(hpsa_sas_port, next,
9698                         &hpsa_sas_node->port_list_head, port_list_entry)
9699                 hpsa_free_sas_port(hpsa_sas_port);
9700
9701         kfree(hpsa_sas_node);
9702 }
9703
9704 static struct hpsa_scsi_dev_t
9705         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9706                                         struct sas_rphy *rphy)
9707 {
9708         int i;
9709         struct hpsa_scsi_dev_t *device;
9710
9711         for (i = 0; i < h->ndevices; i++) {
9712                 device = h->dev[i];
9713                 if (!device->sas_port)
9714                         continue;
9715                 if (device->sas_port->rphy == rphy)
9716                         return device;
9717         }
9718
9719         return NULL;
9720 }
9721
9722 static int hpsa_add_sas_host(struct ctlr_info *h)
9723 {
9724         int rc;
9725         struct device *parent_dev;
9726         struct hpsa_sas_node *hpsa_sas_node;
9727         struct hpsa_sas_port *hpsa_sas_port;
9728         struct hpsa_sas_phy *hpsa_sas_phy;
9729
9730         parent_dev = &h->scsi_host->shost_dev;
9731
9732         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9733         if (!hpsa_sas_node)
9734                 return -ENOMEM;
9735
9736         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9737         if (!hpsa_sas_port) {
9738                 rc = -ENODEV;
9739                 goto free_sas_node;
9740         }
9741
9742         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9743         if (!hpsa_sas_phy) {
9744                 rc = -ENODEV;
9745                 goto free_sas_port;
9746         }
9747
9748         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9749         if (rc)
9750                 goto free_sas_phy;
9751
9752         h->sas_host = hpsa_sas_node;
9753
9754         return 0;
9755
9756 free_sas_phy:
9757         hpsa_free_sas_phy(hpsa_sas_phy);
9758 free_sas_port:
9759         hpsa_free_sas_port(hpsa_sas_port);
9760 free_sas_node:
9761         hpsa_free_sas_node(hpsa_sas_node);
9762
9763         return rc;
9764 }
9765
9766 static void hpsa_delete_sas_host(struct ctlr_info *h)
9767 {
9768         hpsa_free_sas_node(h->sas_host);
9769 }
9770
9771 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9772                                 struct hpsa_scsi_dev_t *device)
9773 {
9774         int rc;
9775         struct hpsa_sas_port *hpsa_sas_port;
9776         struct sas_rphy *rphy;
9777
9778         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9779         if (!hpsa_sas_port)
9780                 return -ENOMEM;
9781
9782         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9783         if (!rphy) {
9784                 rc = -ENODEV;
9785                 goto free_sas_port;
9786         }
9787
9788         hpsa_sas_port->rphy = rphy;
9789         device->sas_port = hpsa_sas_port;
9790
9791         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9792         if (rc)
9793                 goto free_sas_port;
9794
9795         return 0;
9796
9797 free_sas_port:
9798         hpsa_free_sas_port(hpsa_sas_port);
9799         device->sas_port = NULL;
9800
9801         return rc;
9802 }
9803
9804 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9805 {
9806         if (device->sas_port) {
9807                 hpsa_free_sas_port(device->sas_port);
9808                 device->sas_port = NULL;
9809         }
9810 }
9811
9812 static int
9813 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9814 {
9815         return 0;
9816 }
9817
9818 static int
9819 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9820 {
9821         struct Scsi_Host *shost = phy_to_shost(rphy);
9822         struct ctlr_info *h;
9823         struct hpsa_scsi_dev_t *sd;
9824
9825         if (!shost)
9826                 return -ENXIO;
9827
9828         h = shost_to_hba(shost);
9829
9830         if (!h)
9831                 return -ENXIO;
9832
9833         sd = hpsa_find_device_by_sas_rphy(h, rphy);
9834         if (!sd)
9835                 return -ENXIO;
9836
9837         *identifier = sd->eli;
9838
9839         return 0;
9840 }
9841
9842 static int
9843 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9844 {
9845         return -ENXIO;
9846 }
9847
9848 static int
9849 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9850 {
9851         return 0;
9852 }
9853
9854 static int
9855 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9856 {
9857         return 0;
9858 }
9859
9860 static int
9861 hpsa_sas_phy_setup(struct sas_phy *phy)
9862 {
9863         return 0;
9864 }
9865
9866 static void
9867 hpsa_sas_phy_release(struct sas_phy *phy)
9868 {
9869 }
9870
9871 static int
9872 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9873 {
9874         return -EINVAL;
9875 }
9876
9877 static struct sas_function_template hpsa_sas_transport_functions = {
9878         .get_linkerrors = hpsa_sas_get_linkerrors,
9879         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9880         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9881         .phy_reset = hpsa_sas_phy_reset,
9882         .phy_enable = hpsa_sas_phy_enable,
9883         .phy_setup = hpsa_sas_phy_setup,
9884         .phy_release = hpsa_sas_phy_release,
9885         .set_phy_speed = hpsa_sas_phy_speed,
9886 };
9887
9888 /*
9889  *  This is it.  Register the PCI driver information for the cards we control
9890  *  the OS will call our registered routines when it finds one of our cards.
9891  */
9892 static int __init hpsa_init(void)
9893 {
9894         int rc;
9895
9896         hpsa_sas_transport_template =
9897                 sas_attach_transport(&hpsa_sas_transport_functions);
9898         if (!hpsa_sas_transport_template)
9899                 return -ENODEV;
9900
9901         rc = pci_register_driver(&hpsa_pci_driver);
9902
9903         if (rc)
9904                 sas_release_transport(hpsa_sas_transport_template);
9905
9906         return rc;
9907 }
9908
9909 static void __exit hpsa_cleanup(void)
9910 {
9911         pci_unregister_driver(&hpsa_pci_driver);
9912         sas_release_transport(hpsa_sas_transport_template);
9913 }
9914
9915 static void __attribute__((unused)) verify_offsets(void)
9916 {
9917 #define VERIFY_OFFSET(member, offset) \
9918         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9919
9920         VERIFY_OFFSET(structure_size, 0);
9921         VERIFY_OFFSET(volume_blk_size, 4);
9922         VERIFY_OFFSET(volume_blk_cnt, 8);
9923         VERIFY_OFFSET(phys_blk_shift, 16);
9924         VERIFY_OFFSET(parity_rotation_shift, 17);
9925         VERIFY_OFFSET(strip_size, 18);
9926         VERIFY_OFFSET(disk_starting_blk, 20);
9927         VERIFY_OFFSET(disk_blk_cnt, 28);
9928         VERIFY_OFFSET(data_disks_per_row, 36);
9929         VERIFY_OFFSET(metadata_disks_per_row, 38);
9930         VERIFY_OFFSET(row_cnt, 40);
9931         VERIFY_OFFSET(layout_map_count, 42);
9932         VERIFY_OFFSET(flags, 44);
9933         VERIFY_OFFSET(dekindex, 46);
9934         /* VERIFY_OFFSET(reserved, 48 */
9935         VERIFY_OFFSET(data, 64);
9936
9937 #undef VERIFY_OFFSET
9938
9939 #define VERIFY_OFFSET(member, offset) \
9940         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9941
9942         VERIFY_OFFSET(IU_type, 0);
9943         VERIFY_OFFSET(direction, 1);
9944         VERIFY_OFFSET(reply_queue, 2);
9945         /* VERIFY_OFFSET(reserved1, 3);  */
9946         VERIFY_OFFSET(scsi_nexus, 4);
9947         VERIFY_OFFSET(Tag, 8);
9948         VERIFY_OFFSET(cdb, 16);
9949         VERIFY_OFFSET(cciss_lun, 32);
9950         VERIFY_OFFSET(data_len, 40);
9951         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9952         VERIFY_OFFSET(sg_count, 45);
9953         /* VERIFY_OFFSET(reserved3 */
9954         VERIFY_OFFSET(err_ptr, 48);
9955         VERIFY_OFFSET(err_len, 56);
9956         /* VERIFY_OFFSET(reserved4  */
9957         VERIFY_OFFSET(sg, 64);
9958
9959 #undef VERIFY_OFFSET
9960
9961 #define VERIFY_OFFSET(member, offset) \
9962         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9963
9964         VERIFY_OFFSET(dev_handle, 0x00);
9965         VERIFY_OFFSET(reserved1, 0x02);
9966         VERIFY_OFFSET(function, 0x03);
9967         VERIFY_OFFSET(reserved2, 0x04);
9968         VERIFY_OFFSET(err_info, 0x0C);
9969         VERIFY_OFFSET(reserved3, 0x10);
9970         VERIFY_OFFSET(err_info_len, 0x12);
9971         VERIFY_OFFSET(reserved4, 0x13);
9972         VERIFY_OFFSET(sgl_offset, 0x14);
9973         VERIFY_OFFSET(reserved5, 0x15);
9974         VERIFY_OFFSET(transfer_len, 0x1C);
9975         VERIFY_OFFSET(reserved6, 0x20);
9976         VERIFY_OFFSET(io_flags, 0x24);
9977         VERIFY_OFFSET(reserved7, 0x26);
9978         VERIFY_OFFSET(LUN, 0x34);
9979         VERIFY_OFFSET(control, 0x3C);
9980         VERIFY_OFFSET(CDB, 0x40);
9981         VERIFY_OFFSET(reserved8, 0x50);
9982         VERIFY_OFFSET(host_context_flags, 0x60);
9983         VERIFY_OFFSET(timeout_sec, 0x62);
9984         VERIFY_OFFSET(ReplyQueue, 0x64);
9985         VERIFY_OFFSET(reserved9, 0x65);
9986         VERIFY_OFFSET(tag, 0x68);
9987         VERIFY_OFFSET(host_addr, 0x70);
9988         VERIFY_OFFSET(CISS_LUN, 0x78);
9989         VERIFY_OFFSET(SG, 0x78 + 8);
9990 #undef VERIFY_OFFSET
9991 }
9992
9993 module_init(hpsa_init);
9994 module_exit(hpsa_cleanup);