Merge drm/drm-next into drm-intel-next
[linux-2.6-microblaze.git] / drivers / rtc / rtc-sun6i.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * An RTC driver for Allwinner A31/A23
4  *
5  * Copyright (c) 2014, Chen-Yu Tsai <wens@csie.org>
6  *
7  * based on rtc-sunxi.c
8  *
9  * An RTC driver for Allwinner A10/A20
10  *
11  * Copyright (c) 2013, Carlo Caione <carlo.caione@gmail.com>
12  */
13
14 #include <linux/clk.h>
15 #include <linux/clk-provider.h>
16 #include <linux/clk/sunxi-ng.h>
17 #include <linux/delay.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/platform_device.h>
28 #include <linux/rtc.h>
29 #include <linux/slab.h>
30 #include <linux/types.h>
31
32 /* Control register */
33 #define SUN6I_LOSC_CTRL                         0x0000
34 #define SUN6I_LOSC_CTRL_KEY                     (0x16aa << 16)
35 #define SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS         BIT(15)
36 #define SUN6I_LOSC_CTRL_ALM_DHMS_ACC            BIT(9)
37 #define SUN6I_LOSC_CTRL_RTC_HMS_ACC             BIT(8)
38 #define SUN6I_LOSC_CTRL_RTC_YMD_ACC             BIT(7)
39 #define SUN6I_LOSC_CTRL_EXT_LOSC_EN             BIT(4)
40 #define SUN6I_LOSC_CTRL_EXT_OSC                 BIT(0)
41 #define SUN6I_LOSC_CTRL_ACC_MASK                GENMASK(9, 7)
42
43 #define SUN6I_LOSC_CLK_PRESCAL                  0x0008
44
45 /* RTC */
46 #define SUN6I_RTC_YMD                           0x0010
47 #define SUN6I_RTC_HMS                           0x0014
48
49 /* Alarm 0 (counter) */
50 #define SUN6I_ALRM_COUNTER                      0x0020
51 /* This holds the remaining alarm seconds on older SoCs (current value) */
52 #define SUN6I_ALRM_COUNTER_HMS                  0x0024
53 #define SUN6I_ALRM_EN                           0x0028
54 #define SUN6I_ALRM_EN_CNT_EN                    BIT(0)
55 #define SUN6I_ALRM_IRQ_EN                       0x002c
56 #define SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN            BIT(0)
57 #define SUN6I_ALRM_IRQ_STA                      0x0030
58 #define SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND         BIT(0)
59
60 /* Alarm 1 (wall clock) */
61 #define SUN6I_ALRM1_EN                          0x0044
62 #define SUN6I_ALRM1_IRQ_EN                      0x0048
63 #define SUN6I_ALRM1_IRQ_STA                     0x004c
64 #define SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND       BIT(0)
65
66 /* Alarm config */
67 #define SUN6I_ALARM_CONFIG                      0x0050
68 #define SUN6I_ALARM_CONFIG_WAKEUP               BIT(0)
69
70 #define SUN6I_LOSC_OUT_GATING                   0x0060
71 #define SUN6I_LOSC_OUT_GATING_EN_OFFSET         0
72
73 /* General-purpose data */
74 #define SUN6I_GP_DATA                           0x0100
75 #define SUN6I_GP_DATA_SIZE                      0x20
76
77 /*
78  * Get date values
79  */
80 #define SUN6I_DATE_GET_DAY_VALUE(x)             ((x)  & 0x0000001f)
81 #define SUN6I_DATE_GET_MON_VALUE(x)             (((x) & 0x00000f00) >> 8)
82 #define SUN6I_DATE_GET_YEAR_VALUE(x)            (((x) & 0x003f0000) >> 16)
83 #define SUN6I_LEAP_GET_VALUE(x)                 (((x) & 0x00400000) >> 22)
84
85 /*
86  * Get time values
87  */
88 #define SUN6I_TIME_GET_SEC_VALUE(x)             ((x)  & 0x0000003f)
89 #define SUN6I_TIME_GET_MIN_VALUE(x)             (((x) & 0x00003f00) >> 8)
90 #define SUN6I_TIME_GET_HOUR_VALUE(x)            (((x) & 0x001f0000) >> 16)
91
92 /*
93  * Set date values
94  */
95 #define SUN6I_DATE_SET_DAY_VALUE(x)             ((x)       & 0x0000001f)
96 #define SUN6I_DATE_SET_MON_VALUE(x)             ((x) <<  8 & 0x00000f00)
97 #define SUN6I_DATE_SET_YEAR_VALUE(x)            ((x) << 16 & 0x003f0000)
98 #define SUN6I_LEAP_SET_VALUE(x)                 ((x) << 22 & 0x00400000)
99
100 /*
101  * Set time values
102  */
103 #define SUN6I_TIME_SET_SEC_VALUE(x)             ((x)       & 0x0000003f)
104 #define SUN6I_TIME_SET_MIN_VALUE(x)             ((x) <<  8 & 0x00003f00)
105 #define SUN6I_TIME_SET_HOUR_VALUE(x)            ((x) << 16 & 0x001f0000)
106
107 /*
108  * The year parameter passed to the driver is usually an offset relative to
109  * the year 1900. This macro is used to convert this offset to another one
110  * relative to the minimum year allowed by the hardware.
111  *
112  * The year range is 1970 - 2033. This range is selected to match Allwinner's
113  * driver, even though it is somewhat limited.
114  */
115 #define SUN6I_YEAR_MIN                          1970
116 #define SUN6I_YEAR_OFF                          (SUN6I_YEAR_MIN - 1900)
117
118 #define SECS_PER_DAY                            (24 * 3600ULL)
119
120 /*
121  * There are other differences between models, including:
122  *
123  *   - number of GPIO pins that can be configured to hold a certain level
124  *   - crypto-key related registers (H5, H6)
125  *   - boot process related (super standby, secondary processor entry address)
126  *     registers (R40, H6)
127  *   - SYS power domain controls (R40)
128  *   - DCXO controls (H6)
129  *   - RC oscillator calibration (H6)
130  *
131  * These functions are not covered by this driver.
132  */
133 struct sun6i_rtc_clk_data {
134         unsigned long rc_osc_rate;
135         unsigned int fixed_prescaler : 16;
136         unsigned int has_prescaler : 1;
137         unsigned int has_out_clk : 1;
138         unsigned int has_losc_en : 1;
139         unsigned int has_auto_swt : 1;
140 };
141
142 #define RTC_LINEAR_DAY  BIT(0)
143
144 struct sun6i_rtc_dev {
145         struct rtc_device *rtc;
146         const struct sun6i_rtc_clk_data *data;
147         void __iomem *base;
148         int irq;
149         time64_t alarm;
150         unsigned long flags;
151
152         struct clk_hw hw;
153         struct clk_hw *int_osc;
154         struct clk *losc;
155         struct clk *ext_losc;
156
157         spinlock_t lock;
158 };
159
160 static struct sun6i_rtc_dev *sun6i_rtc;
161
162 static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
163                                                unsigned long parent_rate)
164 {
165         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
166         u32 val = 0;
167
168         val = readl(rtc->base + SUN6I_LOSC_CTRL);
169         if (val & SUN6I_LOSC_CTRL_EXT_OSC)
170                 return parent_rate;
171
172         if (rtc->data->fixed_prescaler)
173                 parent_rate /= rtc->data->fixed_prescaler;
174
175         if (rtc->data->has_prescaler) {
176                 val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
177                 val &= GENMASK(4, 0);
178         }
179
180         return parent_rate / (val + 1);
181 }
182
183 static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
184 {
185         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
186
187         return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
188 }
189
190 static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
191 {
192         struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
193         unsigned long flags;
194         u32 val;
195
196         if (index > 1)
197                 return -EINVAL;
198
199         spin_lock_irqsave(&rtc->lock, flags);
200         val = readl(rtc->base + SUN6I_LOSC_CTRL);
201         val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
202         val |= SUN6I_LOSC_CTRL_KEY;
203         val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
204         if (rtc->data->has_losc_en) {
205                 val &= ~SUN6I_LOSC_CTRL_EXT_LOSC_EN;
206                 val |= index ? SUN6I_LOSC_CTRL_EXT_LOSC_EN : 0;
207         }
208         writel(val, rtc->base + SUN6I_LOSC_CTRL);
209         spin_unlock_irqrestore(&rtc->lock, flags);
210
211         return 0;
212 }
213
214 static const struct clk_ops sun6i_rtc_osc_ops = {
215         .recalc_rate    = sun6i_rtc_osc_recalc_rate,
216         .determine_rate = clk_hw_determine_rate_no_reparent,
217
218         .get_parent     = sun6i_rtc_osc_get_parent,
219         .set_parent     = sun6i_rtc_osc_set_parent,
220 };
221
222 static void __init sun6i_rtc_clk_init(struct device_node *node,
223                                       const struct sun6i_rtc_clk_data *data)
224 {
225         struct clk_hw_onecell_data *clk_data;
226         struct sun6i_rtc_dev *rtc;
227         struct clk_init_data init = {
228                 .ops            = &sun6i_rtc_osc_ops,
229                 .name           = "losc",
230         };
231         const char *iosc_name = "rtc-int-osc";
232         const char *clkout_name = "osc32k-out";
233         const char *parents[2];
234         u32 reg;
235
236         rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
237         if (!rtc)
238                 return;
239
240         rtc->data = data;
241         clk_data = kzalloc(struct_size(clk_data, hws, 3), GFP_KERNEL);
242         if (!clk_data) {
243                 kfree(rtc);
244                 return;
245         }
246
247         spin_lock_init(&rtc->lock);
248
249         rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
250         if (IS_ERR(rtc->base)) {
251                 pr_crit("Can't map RTC registers");
252                 goto err;
253         }
254
255         reg = SUN6I_LOSC_CTRL_KEY;
256         if (rtc->data->has_auto_swt) {
257                 /* Bypass auto-switch to int osc, on ext losc failure */
258                 reg |= SUN6I_LOSC_CTRL_AUTO_SWT_BYPASS;
259                 writel(reg, rtc->base + SUN6I_LOSC_CTRL);
260         }
261
262         /* Switch to the external, more precise, oscillator, if present */
263         if (of_property_present(node, "clocks")) {
264                 reg |= SUN6I_LOSC_CTRL_EXT_OSC;
265                 if (rtc->data->has_losc_en)
266                         reg |= SUN6I_LOSC_CTRL_EXT_LOSC_EN;
267         }
268         writel(reg, rtc->base + SUN6I_LOSC_CTRL);
269
270         /* Yes, I know, this is ugly. */
271         sun6i_rtc = rtc;
272
273         of_property_read_string_index(node, "clock-output-names", 2,
274                                       &iosc_name);
275
276         rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
277                                                                 iosc_name,
278                                                                 NULL, 0,
279                                                                 rtc->data->rc_osc_rate,
280                                                                 300000000);
281         if (IS_ERR(rtc->int_osc)) {
282                 pr_crit("Couldn't register the internal oscillator\n");
283                 goto err;
284         }
285
286         parents[0] = clk_hw_get_name(rtc->int_osc);
287         /* If there is no external oscillator, this will be NULL and ... */
288         parents[1] = of_clk_get_parent_name(node, 0);
289
290         rtc->hw.init = &init;
291
292         init.parent_names = parents;
293         /* ... number of clock parents will be 1. */
294         init.num_parents = of_clk_get_parent_count(node) + 1;
295         of_property_read_string_index(node, "clock-output-names", 0,
296                                       &init.name);
297
298         rtc->losc = clk_register(NULL, &rtc->hw);
299         if (IS_ERR(rtc->losc)) {
300                 pr_crit("Couldn't register the LOSC clock\n");
301                 goto err_register;
302         }
303
304         of_property_read_string_index(node, "clock-output-names", 1,
305                                       &clkout_name);
306         rtc->ext_losc = clk_register_gate(NULL, clkout_name, init.name,
307                                           0, rtc->base + SUN6I_LOSC_OUT_GATING,
308                                           SUN6I_LOSC_OUT_GATING_EN_OFFSET, 0,
309                                           &rtc->lock);
310         if (IS_ERR(rtc->ext_losc)) {
311                 pr_crit("Couldn't register the LOSC external gate\n");
312                 goto err_register;
313         }
314
315         clk_data->num = 3;
316         clk_data->hws[0] = &rtc->hw;
317         clk_data->hws[1] = __clk_get_hw(rtc->ext_losc);
318         clk_data->hws[2] = rtc->int_osc;
319         of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
320         return;
321
322 err_register:
323         clk_hw_unregister_fixed_rate(rtc->int_osc);
324 err:
325         kfree(clk_data);
326 }
327
328 static const struct sun6i_rtc_clk_data sun6i_a31_rtc_data = {
329         .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
330         .has_prescaler = 1,
331 };
332
333 static void __init sun6i_a31_rtc_clk_init(struct device_node *node)
334 {
335         sun6i_rtc_clk_init(node, &sun6i_a31_rtc_data);
336 }
337 CLK_OF_DECLARE_DRIVER(sun6i_a31_rtc_clk, "allwinner,sun6i-a31-rtc",
338                       sun6i_a31_rtc_clk_init);
339
340 static const struct sun6i_rtc_clk_data sun8i_a23_rtc_data = {
341         .rc_osc_rate = 667000, /* datasheet says 600 ~ 700 KHz */
342         .has_prescaler = 1,
343         .has_out_clk = 1,
344 };
345
346 static void __init sun8i_a23_rtc_clk_init(struct device_node *node)
347 {
348         sun6i_rtc_clk_init(node, &sun8i_a23_rtc_data);
349 }
350 CLK_OF_DECLARE_DRIVER(sun8i_a23_rtc_clk, "allwinner,sun8i-a23-rtc",
351                       sun8i_a23_rtc_clk_init);
352
353 static const struct sun6i_rtc_clk_data sun8i_h3_rtc_data = {
354         .rc_osc_rate = 16000000,
355         .fixed_prescaler = 32,
356         .has_prescaler = 1,
357         .has_out_clk = 1,
358 };
359
360 static void __init sun8i_h3_rtc_clk_init(struct device_node *node)
361 {
362         sun6i_rtc_clk_init(node, &sun8i_h3_rtc_data);
363 }
364 CLK_OF_DECLARE_DRIVER(sun8i_h3_rtc_clk, "allwinner,sun8i-h3-rtc",
365                       sun8i_h3_rtc_clk_init);
366 /* As far as we are concerned, clocks for H5 are the same as H3 */
367 CLK_OF_DECLARE_DRIVER(sun50i_h5_rtc_clk, "allwinner,sun50i-h5-rtc",
368                       sun8i_h3_rtc_clk_init);
369
370 static const struct sun6i_rtc_clk_data sun50i_h6_rtc_data = {
371         .rc_osc_rate = 16000000,
372         .fixed_prescaler = 32,
373         .has_prescaler = 1,
374         .has_out_clk = 1,
375         .has_losc_en = 1,
376         .has_auto_swt = 1,
377 };
378
379 static void __init sun50i_h6_rtc_clk_init(struct device_node *node)
380 {
381         sun6i_rtc_clk_init(node, &sun50i_h6_rtc_data);
382 }
383 CLK_OF_DECLARE_DRIVER(sun50i_h6_rtc_clk, "allwinner,sun50i-h6-rtc",
384                       sun50i_h6_rtc_clk_init);
385
386 /*
387  * The R40 user manual is self-conflicting on whether the prescaler is
388  * fixed or configurable. The clock diagram shows it as fixed, but there
389  * is also a configurable divider in the RTC block.
390  */
391 static const struct sun6i_rtc_clk_data sun8i_r40_rtc_data = {
392         .rc_osc_rate = 16000000,
393         .fixed_prescaler = 512,
394 };
395 static void __init sun8i_r40_rtc_clk_init(struct device_node *node)
396 {
397         sun6i_rtc_clk_init(node, &sun8i_r40_rtc_data);
398 }
399 CLK_OF_DECLARE_DRIVER(sun8i_r40_rtc_clk, "allwinner,sun8i-r40-rtc",
400                       sun8i_r40_rtc_clk_init);
401
402 static const struct sun6i_rtc_clk_data sun8i_v3_rtc_data = {
403         .rc_osc_rate = 32000,
404         .has_out_clk = 1,
405 };
406
407 static void __init sun8i_v3_rtc_clk_init(struct device_node *node)
408 {
409         sun6i_rtc_clk_init(node, &sun8i_v3_rtc_data);
410 }
411 CLK_OF_DECLARE_DRIVER(sun8i_v3_rtc_clk, "allwinner,sun8i-v3-rtc",
412                       sun8i_v3_rtc_clk_init);
413
414 static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
415 {
416         struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
417         irqreturn_t ret = IRQ_NONE;
418         u32 val;
419
420         spin_lock(&chip->lock);
421         val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
422
423         if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
424                 val |= SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND;
425                 writel(val, chip->base + SUN6I_ALRM_IRQ_STA);
426
427                 rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
428
429                 ret = IRQ_HANDLED;
430         }
431         spin_unlock(&chip->lock);
432
433         return ret;
434 }
435
436 static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
437 {
438         u32 alrm_val = 0;
439         u32 alrm_irq_val = 0;
440         u32 alrm_wake_val = 0;
441         unsigned long flags;
442
443         if (to) {
444                 alrm_val = SUN6I_ALRM_EN_CNT_EN;
445                 alrm_irq_val = SUN6I_ALRM_IRQ_EN_CNT_IRQ_EN;
446                 alrm_wake_val = SUN6I_ALARM_CONFIG_WAKEUP;
447         } else {
448                 writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
449                        chip->base + SUN6I_ALRM_IRQ_STA);
450         }
451
452         spin_lock_irqsave(&chip->lock, flags);
453         writel(alrm_val, chip->base + SUN6I_ALRM_EN);
454         writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
455         writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
456         spin_unlock_irqrestore(&chip->lock, flags);
457 }
458
459 static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
460 {
461         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
462         u32 date, time;
463
464         /*
465          * read again in case it changes
466          */
467         do {
468                 date = readl(chip->base + SUN6I_RTC_YMD);
469                 time = readl(chip->base + SUN6I_RTC_HMS);
470         } while ((date != readl(chip->base + SUN6I_RTC_YMD)) ||
471                  (time != readl(chip->base + SUN6I_RTC_HMS)));
472
473         if (chip->flags & RTC_LINEAR_DAY) {
474                 /*
475                  * Newer chips store a linear day number, the manual
476                  * does not mandate any epoch base. The BSP driver uses
477                  * the UNIX epoch, let's just copy that, as it's the
478                  * easiest anyway.
479                  */
480                 rtc_time64_to_tm((date & 0xffff) * SECS_PER_DAY, rtc_tm);
481         } else {
482                 rtc_tm->tm_mday = SUN6I_DATE_GET_DAY_VALUE(date);
483                 rtc_tm->tm_mon  = SUN6I_DATE_GET_MON_VALUE(date) - 1;
484                 rtc_tm->tm_year = SUN6I_DATE_GET_YEAR_VALUE(date);
485
486                 /*
487                  * switch from (data_year->min)-relative offset to
488                  * a (1900)-relative one
489                  */
490                 rtc_tm->tm_year += SUN6I_YEAR_OFF;
491         }
492
493         rtc_tm->tm_sec  = SUN6I_TIME_GET_SEC_VALUE(time);
494         rtc_tm->tm_min  = SUN6I_TIME_GET_MIN_VALUE(time);
495         rtc_tm->tm_hour = SUN6I_TIME_GET_HOUR_VALUE(time);
496
497         return 0;
498 }
499
500 static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
501 {
502         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
503         unsigned long flags;
504         u32 alrm_st;
505         u32 alrm_en;
506
507         spin_lock_irqsave(&chip->lock, flags);
508         alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
509         alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
510         spin_unlock_irqrestore(&chip->lock, flags);
511
512         wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
513         wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
514         rtc_time64_to_tm(chip->alarm, &wkalrm->time);
515
516         return 0;
517 }
518
519 static int sun6i_rtc_setalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
520 {
521         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
522         struct rtc_time *alrm_tm = &wkalrm->time;
523         struct rtc_time tm_now;
524         time64_t time_set;
525         u32 counter_val, counter_val_hms;
526         int ret;
527
528         time_set = rtc_tm_to_time64(alrm_tm);
529
530         if (chip->flags & RTC_LINEAR_DAY) {
531                 /*
532                  * The alarm registers hold the actual alarm time, encoded
533                  * in the same way (linear day + HMS) as the current time.
534                  */
535                 counter_val_hms = SUN6I_TIME_SET_SEC_VALUE(alrm_tm->tm_sec)  |
536                                   SUN6I_TIME_SET_MIN_VALUE(alrm_tm->tm_min)  |
537                                   SUN6I_TIME_SET_HOUR_VALUE(alrm_tm->tm_hour);
538                 /* The division will cut off the H:M:S part of alrm_tm. */
539                 counter_val = div_u64(rtc_tm_to_time64(alrm_tm), SECS_PER_DAY);
540         } else {
541                 /* The alarm register holds the number of seconds left. */
542                 time64_t time_now;
543
544                 ret = sun6i_rtc_gettime(dev, &tm_now);
545                 if (ret < 0) {
546                         dev_err(dev, "Error in getting time\n");
547                         return -EINVAL;
548                 }
549
550                 time_now = rtc_tm_to_time64(&tm_now);
551                 if (time_set <= time_now) {
552                         dev_err(dev, "Date to set in the past\n");
553                         return -EINVAL;
554                 }
555                 if ((time_set - time_now) > U32_MAX) {
556                         dev_err(dev, "Date too far in the future\n");
557                         return -EINVAL;
558                 }
559
560                 counter_val = time_set - time_now;
561         }
562
563         sun6i_rtc_setaie(0, chip);
564         writel(0, chip->base + SUN6I_ALRM_COUNTER);
565         if (chip->flags & RTC_LINEAR_DAY)
566                 writel(0, chip->base + SUN6I_ALRM_COUNTER_HMS);
567         usleep_range(100, 300);
568
569         writel(counter_val, chip->base + SUN6I_ALRM_COUNTER);
570         if (chip->flags & RTC_LINEAR_DAY)
571                 writel(counter_val_hms, chip->base + SUN6I_ALRM_COUNTER_HMS);
572         chip->alarm = time_set;
573
574         sun6i_rtc_setaie(wkalrm->enabled, chip);
575
576         return 0;
577 }
578
579 static int sun6i_rtc_wait(struct sun6i_rtc_dev *chip, int offset,
580                           unsigned int mask, unsigned int ms_timeout)
581 {
582         const unsigned long timeout = jiffies + msecs_to_jiffies(ms_timeout);
583         u32 reg;
584
585         do {
586                 reg = readl(chip->base + offset);
587                 reg &= mask;
588
589                 if (!reg)
590                         return 0;
591
592         } while (time_before(jiffies, timeout));
593
594         return -ETIMEDOUT;
595 }
596
597 static int sun6i_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
598 {
599         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
600         u32 date = 0;
601         u32 time = 0;
602
603         time = SUN6I_TIME_SET_SEC_VALUE(rtc_tm->tm_sec)  |
604                 SUN6I_TIME_SET_MIN_VALUE(rtc_tm->tm_min)  |
605                 SUN6I_TIME_SET_HOUR_VALUE(rtc_tm->tm_hour);
606
607         if (chip->flags & RTC_LINEAR_DAY) {
608                 /* The division will cut off the H:M:S part of rtc_tm. */
609                 date = div_u64(rtc_tm_to_time64(rtc_tm), SECS_PER_DAY);
610         } else {
611                 rtc_tm->tm_year -= SUN6I_YEAR_OFF;
612                 rtc_tm->tm_mon += 1;
613
614                 date = SUN6I_DATE_SET_DAY_VALUE(rtc_tm->tm_mday) |
615                         SUN6I_DATE_SET_MON_VALUE(rtc_tm->tm_mon)  |
616                         SUN6I_DATE_SET_YEAR_VALUE(rtc_tm->tm_year);
617
618                 if (is_leap_year(rtc_tm->tm_year + SUN6I_YEAR_MIN))
619                         date |= SUN6I_LEAP_SET_VALUE(1);
620         }
621
622         /* Check whether registers are writable */
623         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
624                            SUN6I_LOSC_CTRL_ACC_MASK, 50)) {
625                 dev_err(dev, "rtc is still busy.\n");
626                 return -EBUSY;
627         }
628
629         writel(time, chip->base + SUN6I_RTC_HMS);
630
631         /*
632          * After writing the RTC HH-MM-SS register, the
633          * SUN6I_LOSC_CTRL_RTC_HMS_ACC bit is set and it will not
634          * be cleared until the real writing operation is finished
635          */
636
637         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
638                            SUN6I_LOSC_CTRL_RTC_HMS_ACC, 50)) {
639                 dev_err(dev, "Failed to set rtc time.\n");
640                 return -ETIMEDOUT;
641         }
642
643         writel(date, chip->base + SUN6I_RTC_YMD);
644
645         /*
646          * After writing the RTC YY-MM-DD register, the
647          * SUN6I_LOSC_CTRL_RTC_YMD_ACC bit is set and it will not
648          * be cleared until the real writing operation is finished
649          */
650
651         if (sun6i_rtc_wait(chip, SUN6I_LOSC_CTRL,
652                            SUN6I_LOSC_CTRL_RTC_YMD_ACC, 50)) {
653                 dev_err(dev, "Failed to set rtc time.\n");
654                 return -ETIMEDOUT;
655         }
656
657         return 0;
658 }
659
660 static int sun6i_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
661 {
662         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
663
664         if (!enabled)
665                 sun6i_rtc_setaie(enabled, chip);
666
667         return 0;
668 }
669
670 static const struct rtc_class_ops sun6i_rtc_ops = {
671         .read_time              = sun6i_rtc_gettime,
672         .set_time               = sun6i_rtc_settime,
673         .read_alarm             = sun6i_rtc_getalarm,
674         .set_alarm              = sun6i_rtc_setalarm,
675         .alarm_irq_enable       = sun6i_rtc_alarm_irq_enable
676 };
677
678 static int sun6i_rtc_nvmem_read(void *priv, unsigned int offset, void *_val, size_t bytes)
679 {
680         struct sun6i_rtc_dev *chip = priv;
681         u32 *val = _val;
682         int i;
683
684         for (i = 0; i < bytes / 4; ++i)
685                 val[i] = readl(chip->base + SUN6I_GP_DATA + offset + 4 * i);
686
687         return 0;
688 }
689
690 static int sun6i_rtc_nvmem_write(void *priv, unsigned int offset, void *_val, size_t bytes)
691 {
692         struct sun6i_rtc_dev *chip = priv;
693         u32 *val = _val;
694         int i;
695
696         for (i = 0; i < bytes / 4; ++i)
697                 writel(val[i], chip->base + SUN6I_GP_DATA + offset + 4 * i);
698
699         return 0;
700 }
701
702 static struct nvmem_config sun6i_rtc_nvmem_cfg = {
703         .type           = NVMEM_TYPE_BATTERY_BACKED,
704         .reg_read       = sun6i_rtc_nvmem_read,
705         .reg_write      = sun6i_rtc_nvmem_write,
706         .size           = SUN6I_GP_DATA_SIZE,
707         .word_size      = 4,
708         .stride         = 4,
709 };
710
711 #ifdef CONFIG_PM_SLEEP
712 /* Enable IRQ wake on suspend, to wake up from RTC. */
713 static int sun6i_rtc_suspend(struct device *dev)
714 {
715         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
716
717         if (device_may_wakeup(dev))
718                 enable_irq_wake(chip->irq);
719
720         return 0;
721 }
722
723 /* Disable IRQ wake on resume. */
724 static int sun6i_rtc_resume(struct device *dev)
725 {
726         struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
727
728         if (device_may_wakeup(dev))
729                 disable_irq_wake(chip->irq);
730
731         return 0;
732 }
733 #endif
734
735 static SIMPLE_DEV_PM_OPS(sun6i_rtc_pm_ops,
736         sun6i_rtc_suspend, sun6i_rtc_resume);
737
738 static void sun6i_rtc_bus_clk_cleanup(void *data)
739 {
740         struct clk *bus_clk = data;
741
742         clk_disable_unprepare(bus_clk);
743 }
744
745 static int sun6i_rtc_probe(struct platform_device *pdev)
746 {
747         struct sun6i_rtc_dev *chip = sun6i_rtc;
748         struct device *dev = &pdev->dev;
749         struct clk *bus_clk;
750         int ret;
751
752         bus_clk = devm_clk_get_optional(dev, "bus");
753         if (IS_ERR(bus_clk))
754                 return PTR_ERR(bus_clk);
755
756         if (bus_clk) {
757                 ret = clk_prepare_enable(bus_clk);
758                 if (ret)
759                         return ret;
760
761                 ret = devm_add_action_or_reset(dev, sun6i_rtc_bus_clk_cleanup,
762                                                bus_clk);
763                 if (ret)
764                         return ret;
765         }
766
767         if (!chip) {
768                 chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
769                 if (!chip)
770                         return -ENOMEM;
771
772                 spin_lock_init(&chip->lock);
773
774                 chip->base = devm_platform_ioremap_resource(pdev, 0);
775                 if (IS_ERR(chip->base))
776                         return PTR_ERR(chip->base);
777
778                 if (IS_REACHABLE(CONFIG_SUN6I_RTC_CCU)) {
779                         ret = sun6i_rtc_ccu_probe(dev, chip->base);
780                         if (ret)
781                                 return ret;
782                 }
783         }
784
785         platform_set_drvdata(pdev, chip);
786
787         chip->flags = (unsigned long)of_device_get_match_data(&pdev->dev);
788
789         chip->irq = platform_get_irq(pdev, 0);
790         if (chip->irq < 0)
791                 return chip->irq;
792
793         ret = devm_request_irq(&pdev->dev, chip->irq, sun6i_rtc_alarmirq,
794                                0, dev_name(&pdev->dev), chip);
795         if (ret) {
796                 dev_err(&pdev->dev, "Could not request IRQ\n");
797                 return ret;
798         }
799
800         /* clear the alarm counter value */
801         writel(0, chip->base + SUN6I_ALRM_COUNTER);
802
803         /* disable counter alarm */
804         writel(0, chip->base + SUN6I_ALRM_EN);
805
806         /* disable counter alarm interrupt */
807         writel(0, chip->base + SUN6I_ALRM_IRQ_EN);
808
809         /* disable week alarm */
810         writel(0, chip->base + SUN6I_ALRM1_EN);
811
812         /* disable week alarm interrupt */
813         writel(0, chip->base + SUN6I_ALRM1_IRQ_EN);
814
815         /* clear counter alarm pending interrupts */
816         writel(SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND,
817                chip->base + SUN6I_ALRM_IRQ_STA);
818
819         /* clear week alarm pending interrupts */
820         writel(SUN6I_ALRM1_IRQ_STA_WEEK_IRQ_PEND,
821                chip->base + SUN6I_ALRM1_IRQ_STA);
822
823         /* disable alarm wakeup */
824         writel(0, chip->base + SUN6I_ALARM_CONFIG);
825
826         clk_prepare_enable(chip->losc);
827
828         device_init_wakeup(&pdev->dev, 1);
829
830         chip->rtc = devm_rtc_allocate_device(&pdev->dev);
831         if (IS_ERR(chip->rtc))
832                 return PTR_ERR(chip->rtc);
833
834         chip->rtc->ops = &sun6i_rtc_ops;
835         if (chip->flags & RTC_LINEAR_DAY)
836                 chip->rtc->range_max = (65536 * SECS_PER_DAY) - 1;
837         else
838                 chip->rtc->range_max = 2019686399LL; /* 2033-12-31 23:59:59 */
839
840         ret = devm_rtc_register_device(chip->rtc);
841         if (ret)
842                 return ret;
843
844         sun6i_rtc_nvmem_cfg.priv = chip;
845         ret = devm_rtc_nvmem_register(chip->rtc, &sun6i_rtc_nvmem_cfg);
846         if (ret)
847                 return ret;
848
849         return 0;
850 }
851
852 /*
853  * As far as RTC functionality goes, all models are the same. The
854  * datasheets claim that different models have different number of
855  * registers available for non-volatile storage, but experiments show
856  * that all SoCs have 16 registers available for this purpose.
857  */
858 static const struct of_device_id sun6i_rtc_dt_ids[] = {
859         { .compatible = "allwinner,sun6i-a31-rtc" },
860         { .compatible = "allwinner,sun8i-a23-rtc" },
861         { .compatible = "allwinner,sun8i-h3-rtc" },
862         { .compatible = "allwinner,sun8i-r40-rtc" },
863         { .compatible = "allwinner,sun8i-v3-rtc" },
864         { .compatible = "allwinner,sun50i-h5-rtc" },
865         { .compatible = "allwinner,sun50i-h6-rtc" },
866         { .compatible = "allwinner,sun50i-h616-rtc",
867                 .data = (void *)RTC_LINEAR_DAY },
868         { .compatible = "allwinner,sun50i-r329-rtc",
869                 .data = (void *)RTC_LINEAR_DAY },
870         { /* sentinel */ },
871 };
872 MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
873
874 static struct platform_driver sun6i_rtc_driver = {
875         .probe          = sun6i_rtc_probe,
876         .driver         = {
877                 .name           = "sun6i-rtc",
878                 .of_match_table = sun6i_rtc_dt_ids,
879                 .pm = &sun6i_rtc_pm_ops,
880         },
881 };
882 builtin_platform_driver(sun6i_rtc_driver);