Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / rtc / rtc-sh.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH On-Chip RTC Support
4  *
5  * Copyright (C) 2006 - 2009  Paul Mundt
6  * Copyright (C) 2006  Jamie Lenehan
7  * Copyright (C) 2008  Angelo Castello
8  *
9  * Based on the old arch/sh/kernel/cpu/rtc.c by:
10  *
11  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
12  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
13  */
14 #include <linux/module.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/kernel.h>
17 #include <linux/bcd.h>
18 #include <linux/rtc.h>
19 #include <linux/init.h>
20 #include <linux/platform_device.h>
21 #include <linux/seq_file.h>
22 #include <linux/interrupt.h>
23 #include <linux/spinlock.h>
24 #include <linux/io.h>
25 #include <linux/log2.h>
26 #include <linux/clk.h>
27 #include <linux/slab.h>
28 #ifdef CONFIG_SUPERH
29 #include <asm/rtc.h>
30 #else
31 /* Default values for RZ/A RTC */
32 #define rtc_reg_size            sizeof(u16)
33 #define RTC_BIT_INVERTED        0       /* no chip bugs */
34 #define RTC_CAP_4_DIGIT_YEAR    (1 << 0)
35 #define RTC_DEF_CAPABILITIES    RTC_CAP_4_DIGIT_YEAR
36 #endif
37
38 #define DRV_NAME        "sh-rtc"
39
40 #define RTC_REG(r)      ((r) * rtc_reg_size)
41
42 #define R64CNT          RTC_REG(0)
43
44 #define RSECCNT         RTC_REG(1)      /* RTC sec */
45 #define RMINCNT         RTC_REG(2)      /* RTC min */
46 #define RHRCNT          RTC_REG(3)      /* RTC hour */
47 #define RWKCNT          RTC_REG(4)      /* RTC week */
48 #define RDAYCNT         RTC_REG(5)      /* RTC day */
49 #define RMONCNT         RTC_REG(6)      /* RTC month */
50 #define RYRCNT          RTC_REG(7)      /* RTC year */
51 #define RSECAR          RTC_REG(8)      /* ALARM sec */
52 #define RMINAR          RTC_REG(9)      /* ALARM min */
53 #define RHRAR           RTC_REG(10)     /* ALARM hour */
54 #define RWKAR           RTC_REG(11)     /* ALARM week */
55 #define RDAYAR          RTC_REG(12)     /* ALARM day */
56 #define RMONAR          RTC_REG(13)     /* ALARM month */
57 #define RCR1            RTC_REG(14)     /* Control */
58 #define RCR2            RTC_REG(15)     /* Control */
59
60 /*
61  * Note on RYRAR and RCR3: Up until this point most of the register
62  * definitions are consistent across all of the available parts. However,
63  * the placement of the optional RYRAR and RCR3 (the RYRAR control
64  * register used to control RYRCNT/RYRAR compare) varies considerably
65  * across various parts, occasionally being mapped in to a completely
66  * unrelated address space. For proper RYRAR support a separate resource
67  * would have to be handed off, but as this is purely optional in
68  * practice, we simply opt not to support it, thereby keeping the code
69  * quite a bit more simplified.
70  */
71
72 /* ALARM Bits - or with BCD encoded value */
73 #define AR_ENB          0x80    /* Enable for alarm cmp   */
74
75 /* Period Bits */
76 #define PF_HP           0x100   /* Enable Half Period to support 8,32,128Hz */
77 #define PF_COUNT        0x200   /* Half periodic counter */
78 #define PF_OXS          0x400   /* Periodic One x Second */
79 #define PF_KOU          0x800   /* Kernel or User periodic request 1=kernel */
80 #define PF_MASK         0xf00
81
82 /* RCR1 Bits */
83 #define RCR1_CF         0x80    /* Carry Flag             */
84 #define RCR1_CIE        0x10    /* Carry Interrupt Enable */
85 #define RCR1_AIE        0x08    /* Alarm Interrupt Enable */
86 #define RCR1_AF         0x01    /* Alarm Flag             */
87
88 /* RCR2 Bits */
89 #define RCR2_PEF        0x80    /* PEriodic interrupt Flag */
90 #define RCR2_PESMASK    0x70    /* Periodic interrupt Set  */
91 #define RCR2_RTCEN      0x08    /* ENable RTC              */
92 #define RCR2_ADJ        0x04    /* ADJustment (30-second)  */
93 #define RCR2_RESET      0x02    /* Reset bit               */
94 #define RCR2_START      0x01    /* Start bit               */
95
96 struct sh_rtc {
97         void __iomem            *regbase;
98         unsigned long           regsize;
99         struct resource         *res;
100         int                     alarm_irq;
101         int                     periodic_irq;
102         int                     carry_irq;
103         struct clk              *clk;
104         struct rtc_device       *rtc_dev;
105         spinlock_t              lock;
106         unsigned long           capabilities;   /* See asm/rtc.h for cap bits */
107         unsigned short          periodic_freq;
108 };
109
110 static int __sh_rtc_interrupt(struct sh_rtc *rtc)
111 {
112         unsigned int tmp, pending;
113
114         tmp = readb(rtc->regbase + RCR1);
115         pending = tmp & RCR1_CF;
116         tmp &= ~RCR1_CF;
117         writeb(tmp, rtc->regbase + RCR1);
118
119         /* Users have requested One x Second IRQ */
120         if (pending && rtc->periodic_freq & PF_OXS)
121                 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
122
123         return pending;
124 }
125
126 static int __sh_rtc_alarm(struct sh_rtc *rtc)
127 {
128         unsigned int tmp, pending;
129
130         tmp = readb(rtc->regbase + RCR1);
131         pending = tmp & RCR1_AF;
132         tmp &= ~(RCR1_AF | RCR1_AIE);
133         writeb(tmp, rtc->regbase + RCR1);
134
135         if (pending)
136                 rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
137
138         return pending;
139 }
140
141 static int __sh_rtc_periodic(struct sh_rtc *rtc)
142 {
143         unsigned int tmp, pending;
144
145         tmp = readb(rtc->regbase + RCR2);
146         pending = tmp & RCR2_PEF;
147         tmp &= ~RCR2_PEF;
148         writeb(tmp, rtc->regbase + RCR2);
149
150         if (!pending)
151                 return 0;
152
153         /* Half period enabled than one skipped and the next notified */
154         if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
155                 rtc->periodic_freq &= ~PF_COUNT;
156         else {
157                 if (rtc->periodic_freq & PF_HP)
158                         rtc->periodic_freq |= PF_COUNT;
159                 rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
160         }
161
162         return pending;
163 }
164
165 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
166 {
167         struct sh_rtc *rtc = dev_id;
168         int ret;
169
170         spin_lock(&rtc->lock);
171         ret = __sh_rtc_interrupt(rtc);
172         spin_unlock(&rtc->lock);
173
174         return IRQ_RETVAL(ret);
175 }
176
177 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
178 {
179         struct sh_rtc *rtc = dev_id;
180         int ret;
181
182         spin_lock(&rtc->lock);
183         ret = __sh_rtc_alarm(rtc);
184         spin_unlock(&rtc->lock);
185
186         return IRQ_RETVAL(ret);
187 }
188
189 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
190 {
191         struct sh_rtc *rtc = dev_id;
192         int ret;
193
194         spin_lock(&rtc->lock);
195         ret = __sh_rtc_periodic(rtc);
196         spin_unlock(&rtc->lock);
197
198         return IRQ_RETVAL(ret);
199 }
200
201 static irqreturn_t sh_rtc_shared(int irq, void *dev_id)
202 {
203         struct sh_rtc *rtc = dev_id;
204         int ret;
205
206         spin_lock(&rtc->lock);
207         ret = __sh_rtc_interrupt(rtc);
208         ret |= __sh_rtc_alarm(rtc);
209         ret |= __sh_rtc_periodic(rtc);
210         spin_unlock(&rtc->lock);
211
212         return IRQ_RETVAL(ret);
213 }
214
215 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
216 {
217         struct sh_rtc *rtc = dev_get_drvdata(dev);
218         unsigned int tmp;
219
220         spin_lock_irq(&rtc->lock);
221
222         tmp = readb(rtc->regbase + RCR1);
223
224         if (enable)
225                 tmp |= RCR1_AIE;
226         else
227                 tmp &= ~RCR1_AIE;
228
229         writeb(tmp, rtc->regbase + RCR1);
230
231         spin_unlock_irq(&rtc->lock);
232 }
233
234 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
235 {
236         struct sh_rtc *rtc = dev_get_drvdata(dev);
237         unsigned int tmp;
238
239         tmp = readb(rtc->regbase + RCR1);
240         seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
241
242         tmp = readb(rtc->regbase + RCR2);
243         seq_printf(seq, "periodic_IRQ\t: %s\n",
244                    (tmp & RCR2_PESMASK) ? "yes" : "no");
245
246         return 0;
247 }
248
249 static inline void sh_rtc_setcie(struct device *dev, unsigned int enable)
250 {
251         struct sh_rtc *rtc = dev_get_drvdata(dev);
252         unsigned int tmp;
253
254         spin_lock_irq(&rtc->lock);
255
256         tmp = readb(rtc->regbase + RCR1);
257
258         if (!enable)
259                 tmp &= ~RCR1_CIE;
260         else
261                 tmp |= RCR1_CIE;
262
263         writeb(tmp, rtc->regbase + RCR1);
264
265         spin_unlock_irq(&rtc->lock);
266 }
267
268 static int sh_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
269 {
270         sh_rtc_setaie(dev, enabled);
271         return 0;
272 }
273
274 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
275 {
276         struct sh_rtc *rtc = dev_get_drvdata(dev);
277         unsigned int sec128, sec2, yr, yr100, cf_bit;
278
279         if (!(readb(rtc->regbase + RCR2) & RCR2_RTCEN))
280                 return -EINVAL;
281
282         do {
283                 unsigned int tmp;
284
285                 spin_lock_irq(&rtc->lock);
286
287                 tmp = readb(rtc->regbase + RCR1);
288                 tmp &= ~RCR1_CF; /* Clear CF-bit */
289                 tmp |= RCR1_CIE;
290                 writeb(tmp, rtc->regbase + RCR1);
291
292                 sec128 = readb(rtc->regbase + R64CNT);
293
294                 tm->tm_sec      = bcd2bin(readb(rtc->regbase + RSECCNT));
295                 tm->tm_min      = bcd2bin(readb(rtc->regbase + RMINCNT));
296                 tm->tm_hour     = bcd2bin(readb(rtc->regbase + RHRCNT));
297                 tm->tm_wday     = bcd2bin(readb(rtc->regbase + RWKCNT));
298                 tm->tm_mday     = bcd2bin(readb(rtc->regbase + RDAYCNT));
299                 tm->tm_mon      = bcd2bin(readb(rtc->regbase + RMONCNT)) - 1;
300
301                 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
302                         yr  = readw(rtc->regbase + RYRCNT);
303                         yr100 = bcd2bin(yr >> 8);
304                         yr &= 0xff;
305                 } else {
306                         yr  = readb(rtc->regbase + RYRCNT);
307                         yr100 = bcd2bin((yr == 0x99) ? 0x19 : 0x20);
308                 }
309
310                 tm->tm_year = (yr100 * 100 + bcd2bin(yr)) - 1900;
311
312                 sec2 = readb(rtc->regbase + R64CNT);
313                 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
314
315                 spin_unlock_irq(&rtc->lock);
316         } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
317
318 #if RTC_BIT_INVERTED != 0
319         if ((sec128 & RTC_BIT_INVERTED))
320                 tm->tm_sec--;
321 #endif
322
323         /* only keep the carry interrupt enabled if UIE is on */
324         if (!(rtc->periodic_freq & PF_OXS))
325                 sh_rtc_setcie(dev, 0);
326
327         dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
328                 "mday=%d, mon=%d, year=%d, wday=%d\n",
329                 __func__,
330                 tm->tm_sec, tm->tm_min, tm->tm_hour,
331                 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
332
333         return 0;
334 }
335
336 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
337 {
338         struct sh_rtc *rtc = dev_get_drvdata(dev);
339         unsigned int tmp;
340         int year;
341
342         spin_lock_irq(&rtc->lock);
343
344         /* Reset pre-scaler & stop RTC */
345         tmp = readb(rtc->regbase + RCR2);
346         tmp |= RCR2_RESET;
347         tmp &= ~RCR2_START;
348         writeb(tmp, rtc->regbase + RCR2);
349
350         writeb(bin2bcd(tm->tm_sec),  rtc->regbase + RSECCNT);
351         writeb(bin2bcd(tm->tm_min),  rtc->regbase + RMINCNT);
352         writeb(bin2bcd(tm->tm_hour), rtc->regbase + RHRCNT);
353         writeb(bin2bcd(tm->tm_wday), rtc->regbase + RWKCNT);
354         writeb(bin2bcd(tm->tm_mday), rtc->regbase + RDAYCNT);
355         writeb(bin2bcd(tm->tm_mon + 1), rtc->regbase + RMONCNT);
356
357         if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
358                 year = (bin2bcd((tm->tm_year + 1900) / 100) << 8) |
359                         bin2bcd(tm->tm_year % 100);
360                 writew(year, rtc->regbase + RYRCNT);
361         } else {
362                 year = tm->tm_year % 100;
363                 writeb(bin2bcd(year), rtc->regbase + RYRCNT);
364         }
365
366         /* Start RTC */
367         tmp = readb(rtc->regbase + RCR2);
368         tmp &= ~RCR2_RESET;
369         tmp |= RCR2_RTCEN | RCR2_START;
370         writeb(tmp, rtc->regbase + RCR2);
371
372         spin_unlock_irq(&rtc->lock);
373
374         return 0;
375 }
376
377 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
378 {
379         unsigned int byte;
380         int value = -1;                 /* return -1 for ignored values */
381
382         byte = readb(rtc->regbase + reg_off);
383         if (byte & AR_ENB) {
384                 byte &= ~AR_ENB;        /* strip the enable bit */
385                 value = bcd2bin(byte);
386         }
387
388         return value;
389 }
390
391 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
392 {
393         struct sh_rtc *rtc = dev_get_drvdata(dev);
394         struct rtc_time *tm = &wkalrm->time;
395
396         spin_lock_irq(&rtc->lock);
397
398         tm->tm_sec      = sh_rtc_read_alarm_value(rtc, RSECAR);
399         tm->tm_min      = sh_rtc_read_alarm_value(rtc, RMINAR);
400         tm->tm_hour     = sh_rtc_read_alarm_value(rtc, RHRAR);
401         tm->tm_wday     = sh_rtc_read_alarm_value(rtc, RWKAR);
402         tm->tm_mday     = sh_rtc_read_alarm_value(rtc, RDAYAR);
403         tm->tm_mon      = sh_rtc_read_alarm_value(rtc, RMONAR);
404         if (tm->tm_mon > 0)
405                 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
406
407         wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
408
409         spin_unlock_irq(&rtc->lock);
410
411         return 0;
412 }
413
414 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
415                                             int value, int reg_off)
416 {
417         /* < 0 for a value that is ignored */
418         if (value < 0)
419                 writeb(0, rtc->regbase + reg_off);
420         else
421                 writeb(bin2bcd(value) | AR_ENB,  rtc->regbase + reg_off);
422 }
423
424 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
425 {
426         struct sh_rtc *rtc = dev_get_drvdata(dev);
427         unsigned int rcr1;
428         struct rtc_time *tm = &wkalrm->time;
429         int mon;
430
431         spin_lock_irq(&rtc->lock);
432
433         /* disable alarm interrupt and clear the alarm flag */
434         rcr1 = readb(rtc->regbase + RCR1);
435         rcr1 &= ~(RCR1_AF | RCR1_AIE);
436         writeb(rcr1, rtc->regbase + RCR1);
437
438         /* set alarm time */
439         sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
440         sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
441         sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
442         sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
443         sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
444         mon = tm->tm_mon;
445         if (mon >= 0)
446                 mon += 1;
447         sh_rtc_write_alarm_value(rtc, mon, RMONAR);
448
449         if (wkalrm->enabled) {
450                 rcr1 |= RCR1_AIE;
451                 writeb(rcr1, rtc->regbase + RCR1);
452         }
453
454         spin_unlock_irq(&rtc->lock);
455
456         return 0;
457 }
458
459 static const struct rtc_class_ops sh_rtc_ops = {
460         .read_time      = sh_rtc_read_time,
461         .set_time       = sh_rtc_set_time,
462         .read_alarm     = sh_rtc_read_alarm,
463         .set_alarm      = sh_rtc_set_alarm,
464         .proc           = sh_rtc_proc,
465         .alarm_irq_enable = sh_rtc_alarm_irq_enable,
466 };
467
468 static int __init sh_rtc_probe(struct platform_device *pdev)
469 {
470         struct sh_rtc *rtc;
471         struct resource *res;
472         char clk_name[6];
473         int clk_id, ret;
474
475         rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
476         if (unlikely(!rtc))
477                 return -ENOMEM;
478
479         spin_lock_init(&rtc->lock);
480
481         /* get periodic/carry/alarm irqs */
482         ret = platform_get_irq(pdev, 0);
483         if (unlikely(ret <= 0)) {
484                 dev_err(&pdev->dev, "No IRQ resource\n");
485                 return -ENOENT;
486         }
487
488         rtc->periodic_irq = ret;
489         rtc->carry_irq = platform_get_irq(pdev, 1);
490         rtc->alarm_irq = platform_get_irq(pdev, 2);
491
492         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
493         if (!res)
494                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
495         if (unlikely(res == NULL)) {
496                 dev_err(&pdev->dev, "No IO resource\n");
497                 return -ENOENT;
498         }
499
500         rtc->regsize = resource_size(res);
501
502         rtc->res = devm_request_mem_region(&pdev->dev, res->start,
503                                         rtc->regsize, pdev->name);
504         if (unlikely(!rtc->res))
505                 return -EBUSY;
506
507         rtc->regbase = devm_ioremap(&pdev->dev, rtc->res->start, rtc->regsize);
508         if (unlikely(!rtc->regbase))
509                 return -EINVAL;
510
511         if (!pdev->dev.of_node) {
512                 clk_id = pdev->id;
513                 /* With a single device, the clock id is still "rtc0" */
514                 if (clk_id < 0)
515                         clk_id = 0;
516
517                 snprintf(clk_name, sizeof(clk_name), "rtc%d", clk_id);
518         } else
519                 snprintf(clk_name, sizeof(clk_name), "fck");
520
521         rtc->clk = devm_clk_get(&pdev->dev, clk_name);
522         if (IS_ERR(rtc->clk)) {
523                 /*
524                  * No error handling for rtc->clk intentionally, not all
525                  * platforms will have a unique clock for the RTC, and
526                  * the clk API can handle the struct clk pointer being
527                  * NULL.
528                  */
529                 rtc->clk = NULL;
530         }
531
532         rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
533         if (IS_ERR(rtc->rtc_dev))
534                 return PTR_ERR(rtc->rtc_dev);
535
536         clk_enable(rtc->clk);
537
538         rtc->capabilities = RTC_DEF_CAPABILITIES;
539
540 #ifdef CONFIG_SUPERH
541         if (dev_get_platdata(&pdev->dev)) {
542                 struct sh_rtc_platform_info *pinfo =
543                         dev_get_platdata(&pdev->dev);
544
545                 /*
546                  * Some CPUs have special capabilities in addition to the
547                  * default set. Add those in here.
548                  */
549                 rtc->capabilities |= pinfo->capabilities;
550         }
551 #endif
552
553         if (rtc->carry_irq <= 0) {
554                 /* register shared periodic/carry/alarm irq */
555                 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
556                                 sh_rtc_shared, 0, "sh-rtc", rtc);
557                 if (unlikely(ret)) {
558                         dev_err(&pdev->dev,
559                                 "request IRQ failed with %d, IRQ %d\n", ret,
560                                 rtc->periodic_irq);
561                         goto err_unmap;
562                 }
563         } else {
564                 /* register periodic/carry/alarm irqs */
565                 ret = devm_request_irq(&pdev->dev, rtc->periodic_irq,
566                                 sh_rtc_periodic, 0, "sh-rtc period", rtc);
567                 if (unlikely(ret)) {
568                         dev_err(&pdev->dev,
569                                 "request period IRQ failed with %d, IRQ %d\n",
570                                 ret, rtc->periodic_irq);
571                         goto err_unmap;
572                 }
573
574                 ret = devm_request_irq(&pdev->dev, rtc->carry_irq,
575                                 sh_rtc_interrupt, 0, "sh-rtc carry", rtc);
576                 if (unlikely(ret)) {
577                         dev_err(&pdev->dev,
578                                 "request carry IRQ failed with %d, IRQ %d\n",
579                                 ret, rtc->carry_irq);
580                         goto err_unmap;
581                 }
582
583                 ret = devm_request_irq(&pdev->dev, rtc->alarm_irq,
584                                 sh_rtc_alarm, 0, "sh-rtc alarm", rtc);
585                 if (unlikely(ret)) {
586                         dev_err(&pdev->dev,
587                                 "request alarm IRQ failed with %d, IRQ %d\n",
588                                 ret, rtc->alarm_irq);
589                         goto err_unmap;
590                 }
591         }
592
593         platform_set_drvdata(pdev, rtc);
594
595         /* everything disabled by default */
596         sh_rtc_setaie(&pdev->dev, 0);
597         sh_rtc_setcie(&pdev->dev, 0);
598
599         rtc->rtc_dev->ops = &sh_rtc_ops;
600         rtc->rtc_dev->max_user_freq = 256;
601
602         if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
603                 rtc->rtc_dev->range_min = RTC_TIMESTAMP_BEGIN_1900;
604                 rtc->rtc_dev->range_max = RTC_TIMESTAMP_END_9999;
605         } else {
606                 rtc->rtc_dev->range_min = mktime64(1999, 1, 1, 0, 0, 0);
607                 rtc->rtc_dev->range_max = mktime64(2098, 12, 31, 23, 59, 59);
608         }
609
610         ret = devm_rtc_register_device(rtc->rtc_dev);
611         if (ret)
612                 goto err_unmap;
613
614         device_init_wakeup(&pdev->dev, 1);
615         return 0;
616
617 err_unmap:
618         clk_disable(rtc->clk);
619
620         return ret;
621 }
622
623 static int __exit sh_rtc_remove(struct platform_device *pdev)
624 {
625         struct sh_rtc *rtc = platform_get_drvdata(pdev);
626
627         sh_rtc_setaie(&pdev->dev, 0);
628         sh_rtc_setcie(&pdev->dev, 0);
629
630         clk_disable(rtc->clk);
631
632         return 0;
633 }
634
635 static void sh_rtc_set_irq_wake(struct device *dev, int enabled)
636 {
637         struct sh_rtc *rtc = dev_get_drvdata(dev);
638
639         irq_set_irq_wake(rtc->periodic_irq, enabled);
640
641         if (rtc->carry_irq > 0) {
642                 irq_set_irq_wake(rtc->carry_irq, enabled);
643                 irq_set_irq_wake(rtc->alarm_irq, enabled);
644         }
645 }
646
647 static int __maybe_unused sh_rtc_suspend(struct device *dev)
648 {
649         if (device_may_wakeup(dev))
650                 sh_rtc_set_irq_wake(dev, 1);
651
652         return 0;
653 }
654
655 static int __maybe_unused sh_rtc_resume(struct device *dev)
656 {
657         if (device_may_wakeup(dev))
658                 sh_rtc_set_irq_wake(dev, 0);
659
660         return 0;
661 }
662
663 static SIMPLE_DEV_PM_OPS(sh_rtc_pm_ops, sh_rtc_suspend, sh_rtc_resume);
664
665 static const struct of_device_id sh_rtc_of_match[] = {
666         { .compatible = "renesas,sh-rtc", },
667         { /* sentinel */ }
668 };
669 MODULE_DEVICE_TABLE(of, sh_rtc_of_match);
670
671 static struct platform_driver sh_rtc_platform_driver = {
672         .driver         = {
673                 .name   = DRV_NAME,
674                 .pm     = &sh_rtc_pm_ops,
675                 .of_match_table = sh_rtc_of_match,
676         },
677         .remove         = __exit_p(sh_rtc_remove),
678 };
679
680 module_platform_driver_probe(sh_rtc_platform_driver, sh_rtc_probe);
681
682 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
683 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
684               "Jamie Lenehan <lenehan@twibble.org>, "
685               "Angelo Castello <angelo.castello@st.com>");
686 MODULE_LICENSE("GPL v2");
687 MODULE_ALIAS("platform:" DRV_NAME);