Merge tag 'xfs-5.13-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113         if (rdev->constraints && rdev->constraints->name)
114                 return rdev->constraints->name;
115         else if (rdev->desc->name)
116                 return rdev->desc->name;
117         else
118                 return "";
119 }
120
121 static bool have_full_constraints(void)
122 {
123         return has_full_constraints || of_have_populated_dt();
124 }
125
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128         if (!rdev->constraints) {
129                 rdev_err(rdev, "no constraints\n");
130                 return false;
131         }
132
133         if (rdev->constraints->valid_ops_mask & ops)
134                 return true;
135
136         return false;
137 }
138
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:               regulator source
142  * @ww_ctx:             w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151                                         struct ww_acquire_ctx *ww_ctx)
152 {
153         bool lock = false;
154         int ret = 0;
155
156         mutex_lock(&regulator_nesting_mutex);
157
158         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159                 if (rdev->mutex_owner == current)
160                         rdev->ref_cnt++;
161                 else
162                         lock = true;
163
164                 if (lock) {
165                         mutex_unlock(&regulator_nesting_mutex);
166                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167                         mutex_lock(&regulator_nesting_mutex);
168                 }
169         } else {
170                 lock = true;
171         }
172
173         if (lock && ret != -EDEADLK) {
174                 rdev->ref_cnt++;
175                 rdev->mutex_owner = current;
176         }
177
178         mutex_unlock(&regulator_nesting_mutex);
179
180         return ret;
181 }
182
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:               regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195         regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:               regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207         mutex_lock(&regulator_nesting_mutex);
208
209         if (--rdev->ref_cnt == 0) {
210                 rdev->mutex_owner = NULL;
211                 ww_mutex_unlock(&rdev->mutex);
212         }
213
214         WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216         mutex_unlock(&regulator_nesting_mutex);
217 }
218
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221         struct regulator_dev *c_rdev;
222         int i;
223
224         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226
227                 if (rdev->supply->rdev == c_rdev)
228                         return true;
229         }
230
231         return false;
232 }
233
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235                                        unsigned int n_coupled)
236 {
237         struct regulator_dev *c_rdev, *supply_rdev;
238         int i, supply_n_coupled;
239
240         for (i = n_coupled; i > 0; i--) {
241                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242
243                 if (!c_rdev)
244                         continue;
245
246                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247                         supply_rdev = c_rdev->supply->rdev;
248                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249
250                         regulator_unlock_recursive(supply_rdev,
251                                                    supply_n_coupled);
252                 }
253
254                 regulator_unlock(c_rdev);
255         }
256 }
257
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259                                     struct regulator_dev **new_contended_rdev,
260                                     struct regulator_dev **old_contended_rdev,
261                                     struct ww_acquire_ctx *ww_ctx)
262 {
263         struct regulator_dev *c_rdev;
264         int i, err;
265
266         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268
269                 if (!c_rdev)
270                         continue;
271
272                 if (c_rdev != *old_contended_rdev) {
273                         err = regulator_lock_nested(c_rdev, ww_ctx);
274                         if (err) {
275                                 if (err == -EDEADLK) {
276                                         *new_contended_rdev = c_rdev;
277                                         goto err_unlock;
278                                 }
279
280                                 /* shouldn't happen */
281                                 WARN_ON_ONCE(err != -EALREADY);
282                         }
283                 } else {
284                         *old_contended_rdev = NULL;
285                 }
286
287                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288                         err = regulator_lock_recursive(c_rdev->supply->rdev,
289                                                        new_contended_rdev,
290                                                        old_contended_rdev,
291                                                        ww_ctx);
292                         if (err) {
293                                 regulator_unlock(c_rdev);
294                                 goto err_unlock;
295                         }
296                 }
297         }
298
299         return 0;
300
301 err_unlock:
302         regulator_unlock_recursive(rdev, i);
303
304         return err;
305 }
306
307 /**
308  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309  *                              regulators
310  * @rdev:                       regulator source
311  * @ww_ctx:                     w/w mutex acquire context
312  *
313  * Unlock all regulators related with rdev by coupling or supplying.
314  */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316                                        struct ww_acquire_ctx *ww_ctx)
317 {
318         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319         ww_acquire_fini(ww_ctx);
320 }
321
322 /**
323  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324  * @rdev:                       regulator source
325  * @ww_ctx:                     w/w mutex acquire context
326  *
327  * This function as a wrapper on regulator_lock_recursive(), which locks
328  * all regulators related with rdev by coupling or supplying.
329  */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331                                      struct ww_acquire_ctx *ww_ctx)
332 {
333         struct regulator_dev *new_contended_rdev = NULL;
334         struct regulator_dev *old_contended_rdev = NULL;
335         int err;
336
337         mutex_lock(&regulator_list_mutex);
338
339         ww_acquire_init(ww_ctx, &regulator_ww_class);
340
341         do {
342                 if (new_contended_rdev) {
343                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344                         old_contended_rdev = new_contended_rdev;
345                         old_contended_rdev->ref_cnt++;
346                 }
347
348                 err = regulator_lock_recursive(rdev,
349                                                &new_contended_rdev,
350                                                &old_contended_rdev,
351                                                ww_ctx);
352
353                 if (old_contended_rdev)
354                         regulator_unlock(old_contended_rdev);
355
356         } while (err == -EDEADLK);
357
358         ww_acquire_done(ww_ctx);
359
360         mutex_unlock(&regulator_list_mutex);
361 }
362
363 /**
364  * of_get_child_regulator - get a child regulator device node
365  * based on supply name
366  * @parent: Parent device node
367  * @prop_name: Combination regulator supply name and "-supply"
368  *
369  * Traverse all child nodes.
370  * Extract the child regulator device node corresponding to the supply name.
371  * returns the device node corresponding to the regulator if found, else
372  * returns NULL.
373  */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375                                                   const char *prop_name)
376 {
377         struct device_node *regnode = NULL;
378         struct device_node *child = NULL;
379
380         for_each_child_of_node(parent, child) {
381                 regnode = of_parse_phandle(child, prop_name, 0);
382
383                 if (!regnode) {
384                         regnode = of_get_child_regulator(child, prop_name);
385                         if (regnode)
386                                 goto err_node_put;
387                 } else {
388                         goto err_node_put;
389                 }
390         }
391         return NULL;
392
393 err_node_put:
394         of_node_put(child);
395         return regnode;
396 }
397
398 /**
399  * of_get_regulator - get a regulator device node based on supply name
400  * @dev: Device pointer for the consumer (of regulator) device
401  * @supply: regulator supply name
402  *
403  * Extract the regulator device node corresponding to the supply name.
404  * returns the device node corresponding to the regulator if found, else
405  * returns NULL.
406  */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409         struct device_node *regnode = NULL;
410         char prop_name[64]; /* 64 is max size of property name */
411
412         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413
414         snprintf(prop_name, 64, "%s-supply", supply);
415         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416
417         if (!regnode) {
418                 regnode = of_get_child_regulator(dev->of_node, prop_name);
419                 if (regnode)
420                         return regnode;
421
422                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423                                 prop_name, dev->of_node);
424                 return NULL;
425         }
426         return regnode;
427 }
428
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431                             int *min_uV, int *max_uV)
432 {
433         BUG_ON(*min_uV > *max_uV);
434
435         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436                 rdev_err(rdev, "voltage operation not allowed\n");
437                 return -EPERM;
438         }
439
440         if (*max_uV > rdev->constraints->max_uV)
441                 *max_uV = rdev->constraints->max_uV;
442         if (*min_uV < rdev->constraints->min_uV)
443                 *min_uV = rdev->constraints->min_uV;
444
445         if (*min_uV > *max_uV) {
446                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447                          *min_uV, *max_uV);
448                 return -EINVAL;
449         }
450
451         return 0;
452 }
453
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459
460 /* Make sure we select a voltage that suits the needs of all
461  * regulator consumers
462  */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464                               int *min_uV, int *max_uV,
465                               suspend_state_t state)
466 {
467         struct regulator *regulator;
468         struct regulator_voltage *voltage;
469
470         list_for_each_entry(regulator, &rdev->consumer_list, list) {
471                 voltage = &regulator->voltage[state];
472                 /*
473                  * Assume consumers that didn't say anything are OK
474                  * with anything in the constraint range.
475                  */
476                 if (!voltage->min_uV && !voltage->max_uV)
477                         continue;
478
479                 if (*max_uV > voltage->max_uV)
480                         *max_uV = voltage->max_uV;
481                 if (*min_uV < voltage->min_uV)
482                         *min_uV = voltage->min_uV;
483         }
484
485         if (*min_uV > *max_uV) {
486                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487                         *min_uV, *max_uV);
488                 return -EINVAL;
489         }
490
491         return 0;
492 }
493
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496                                         int *min_uA, int *max_uA)
497 {
498         BUG_ON(*min_uA > *max_uA);
499
500         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501                 rdev_err(rdev, "current operation not allowed\n");
502                 return -EPERM;
503         }
504
505         if (*max_uA > rdev->constraints->max_uA)
506                 *max_uA = rdev->constraints->max_uA;
507         if (*min_uA < rdev->constraints->min_uA)
508                 *min_uA = rdev->constraints->min_uA;
509
510         if (*min_uA > *max_uA) {
511                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512                          *min_uA, *max_uA);
513                 return -EINVAL;
514         }
515
516         return 0;
517 }
518
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521                                     unsigned int *mode)
522 {
523         switch (*mode) {
524         case REGULATOR_MODE_FAST:
525         case REGULATOR_MODE_NORMAL:
526         case REGULATOR_MODE_IDLE:
527         case REGULATOR_MODE_STANDBY:
528                 break;
529         default:
530                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
531                 return -EINVAL;
532         }
533
534         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535                 rdev_err(rdev, "mode operation not allowed\n");
536                 return -EPERM;
537         }
538
539         /* The modes are bitmasks, the most power hungry modes having
540          * the lowest values. If the requested mode isn't supported
541          * try higher modes.
542          */
543         while (*mode) {
544                 if (rdev->constraints->valid_modes_mask & *mode)
545                         return 0;
546                 *mode /= 2;
547         }
548
549         return -EINVAL;
550 }
551
552 static inline struct regulator_state *
553 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
554 {
555         if (rdev->constraints == NULL)
556                 return NULL;
557
558         switch (state) {
559         case PM_SUSPEND_STANDBY:
560                 return &rdev->constraints->state_standby;
561         case PM_SUSPEND_MEM:
562                 return &rdev->constraints->state_mem;
563         case PM_SUSPEND_MAX:
564                 return &rdev->constraints->state_disk;
565         default:
566                 return NULL;
567         }
568 }
569
570 static const struct regulator_state *
571 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
572 {
573         const struct regulator_state *rstate;
574
575         rstate = regulator_get_suspend_state(rdev, state);
576         if (rstate == NULL)
577                 return NULL;
578
579         /* If we have no suspend mode configuration don't set anything;
580          * only warn if the driver implements set_suspend_voltage or
581          * set_suspend_mode callback.
582          */
583         if (rstate->enabled != ENABLE_IN_SUSPEND &&
584             rstate->enabled != DISABLE_IN_SUSPEND) {
585                 if (rdev->desc->ops->set_suspend_voltage ||
586                     rdev->desc->ops->set_suspend_mode)
587                         rdev_warn(rdev, "No configuration\n");
588                 return NULL;
589         }
590
591         return rstate;
592 }
593
594 static ssize_t regulator_uV_show(struct device *dev,
595                                 struct device_attribute *attr, char *buf)
596 {
597         struct regulator_dev *rdev = dev_get_drvdata(dev);
598         int uV;
599
600         regulator_lock(rdev);
601         uV = regulator_get_voltage_rdev(rdev);
602         regulator_unlock(rdev);
603
604         if (uV < 0)
605                 return uV;
606         return sprintf(buf, "%d\n", uV);
607 }
608 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
609
610 static ssize_t regulator_uA_show(struct device *dev,
611                                 struct device_attribute *attr, char *buf)
612 {
613         struct regulator_dev *rdev = dev_get_drvdata(dev);
614
615         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
616 }
617 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
618
619 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
620                          char *buf)
621 {
622         struct regulator_dev *rdev = dev_get_drvdata(dev);
623
624         return sprintf(buf, "%s\n", rdev_get_name(rdev));
625 }
626 static DEVICE_ATTR_RO(name);
627
628 static const char *regulator_opmode_to_str(int mode)
629 {
630         switch (mode) {
631         case REGULATOR_MODE_FAST:
632                 return "fast";
633         case REGULATOR_MODE_NORMAL:
634                 return "normal";
635         case REGULATOR_MODE_IDLE:
636                 return "idle";
637         case REGULATOR_MODE_STANDBY:
638                 return "standby";
639         }
640         return "unknown";
641 }
642
643 static ssize_t regulator_print_opmode(char *buf, int mode)
644 {
645         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
646 }
647
648 static ssize_t regulator_opmode_show(struct device *dev,
649                                     struct device_attribute *attr, char *buf)
650 {
651         struct regulator_dev *rdev = dev_get_drvdata(dev);
652
653         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
654 }
655 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
656
657 static ssize_t regulator_print_state(char *buf, int state)
658 {
659         if (state > 0)
660                 return sprintf(buf, "enabled\n");
661         else if (state == 0)
662                 return sprintf(buf, "disabled\n");
663         else
664                 return sprintf(buf, "unknown\n");
665 }
666
667 static ssize_t regulator_state_show(struct device *dev,
668                                    struct device_attribute *attr, char *buf)
669 {
670         struct regulator_dev *rdev = dev_get_drvdata(dev);
671         ssize_t ret;
672
673         regulator_lock(rdev);
674         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
675         regulator_unlock(rdev);
676
677         return ret;
678 }
679 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
680
681 static ssize_t regulator_status_show(struct device *dev,
682                                    struct device_attribute *attr, char *buf)
683 {
684         struct regulator_dev *rdev = dev_get_drvdata(dev);
685         int status;
686         char *label;
687
688         status = rdev->desc->ops->get_status(rdev);
689         if (status < 0)
690                 return status;
691
692         switch (status) {
693         case REGULATOR_STATUS_OFF:
694                 label = "off";
695                 break;
696         case REGULATOR_STATUS_ON:
697                 label = "on";
698                 break;
699         case REGULATOR_STATUS_ERROR:
700                 label = "error";
701                 break;
702         case REGULATOR_STATUS_FAST:
703                 label = "fast";
704                 break;
705         case REGULATOR_STATUS_NORMAL:
706                 label = "normal";
707                 break;
708         case REGULATOR_STATUS_IDLE:
709                 label = "idle";
710                 break;
711         case REGULATOR_STATUS_STANDBY:
712                 label = "standby";
713                 break;
714         case REGULATOR_STATUS_BYPASS:
715                 label = "bypass";
716                 break;
717         case REGULATOR_STATUS_UNDEFINED:
718                 label = "undefined";
719                 break;
720         default:
721                 return -ERANGE;
722         }
723
724         return sprintf(buf, "%s\n", label);
725 }
726 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
727
728 static ssize_t regulator_min_uA_show(struct device *dev,
729                                     struct device_attribute *attr, char *buf)
730 {
731         struct regulator_dev *rdev = dev_get_drvdata(dev);
732
733         if (!rdev->constraints)
734                 return sprintf(buf, "constraint not defined\n");
735
736         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
737 }
738 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
739
740 static ssize_t regulator_max_uA_show(struct device *dev,
741                                     struct device_attribute *attr, char *buf)
742 {
743         struct regulator_dev *rdev = dev_get_drvdata(dev);
744
745         if (!rdev->constraints)
746                 return sprintf(buf, "constraint not defined\n");
747
748         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
749 }
750 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
751
752 static ssize_t regulator_min_uV_show(struct device *dev,
753                                     struct device_attribute *attr, char *buf)
754 {
755         struct regulator_dev *rdev = dev_get_drvdata(dev);
756
757         if (!rdev->constraints)
758                 return sprintf(buf, "constraint not defined\n");
759
760         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
761 }
762 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
763
764 static ssize_t regulator_max_uV_show(struct device *dev,
765                                     struct device_attribute *attr, char *buf)
766 {
767         struct regulator_dev *rdev = dev_get_drvdata(dev);
768
769         if (!rdev->constraints)
770                 return sprintf(buf, "constraint not defined\n");
771
772         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
773 }
774 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
775
776 static ssize_t regulator_total_uA_show(struct device *dev,
777                                       struct device_attribute *attr, char *buf)
778 {
779         struct regulator_dev *rdev = dev_get_drvdata(dev);
780         struct regulator *regulator;
781         int uA = 0;
782
783         regulator_lock(rdev);
784         list_for_each_entry(regulator, &rdev->consumer_list, list) {
785                 if (regulator->enable_count)
786                         uA += regulator->uA_load;
787         }
788         regulator_unlock(rdev);
789         return sprintf(buf, "%d\n", uA);
790 }
791 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
792
793 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
794                               char *buf)
795 {
796         struct regulator_dev *rdev = dev_get_drvdata(dev);
797         return sprintf(buf, "%d\n", rdev->use_count);
798 }
799 static DEVICE_ATTR_RO(num_users);
800
801 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
802                          char *buf)
803 {
804         struct regulator_dev *rdev = dev_get_drvdata(dev);
805
806         switch (rdev->desc->type) {
807         case REGULATOR_VOLTAGE:
808                 return sprintf(buf, "voltage\n");
809         case REGULATOR_CURRENT:
810                 return sprintf(buf, "current\n");
811         }
812         return sprintf(buf, "unknown\n");
813 }
814 static DEVICE_ATTR_RO(type);
815
816 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
817                                 struct device_attribute *attr, char *buf)
818 {
819         struct regulator_dev *rdev = dev_get_drvdata(dev);
820
821         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
822 }
823 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
824                 regulator_suspend_mem_uV_show, NULL);
825
826 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
827                                 struct device_attribute *attr, char *buf)
828 {
829         struct regulator_dev *rdev = dev_get_drvdata(dev);
830
831         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
832 }
833 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
834                 regulator_suspend_disk_uV_show, NULL);
835
836 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
837                                 struct device_attribute *attr, char *buf)
838 {
839         struct regulator_dev *rdev = dev_get_drvdata(dev);
840
841         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
842 }
843 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
844                 regulator_suspend_standby_uV_show, NULL);
845
846 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
847                                 struct device_attribute *attr, char *buf)
848 {
849         struct regulator_dev *rdev = dev_get_drvdata(dev);
850
851         return regulator_print_opmode(buf,
852                 rdev->constraints->state_mem.mode);
853 }
854 static DEVICE_ATTR(suspend_mem_mode, 0444,
855                 regulator_suspend_mem_mode_show, NULL);
856
857 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
858                                 struct device_attribute *attr, char *buf)
859 {
860         struct regulator_dev *rdev = dev_get_drvdata(dev);
861
862         return regulator_print_opmode(buf,
863                 rdev->constraints->state_disk.mode);
864 }
865 static DEVICE_ATTR(suspend_disk_mode, 0444,
866                 regulator_suspend_disk_mode_show, NULL);
867
868 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
869                                 struct device_attribute *attr, char *buf)
870 {
871         struct regulator_dev *rdev = dev_get_drvdata(dev);
872
873         return regulator_print_opmode(buf,
874                 rdev->constraints->state_standby.mode);
875 }
876 static DEVICE_ATTR(suspend_standby_mode, 0444,
877                 regulator_suspend_standby_mode_show, NULL);
878
879 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
880                                    struct device_attribute *attr, char *buf)
881 {
882         struct regulator_dev *rdev = dev_get_drvdata(dev);
883
884         return regulator_print_state(buf,
885                         rdev->constraints->state_mem.enabled);
886 }
887 static DEVICE_ATTR(suspend_mem_state, 0444,
888                 regulator_suspend_mem_state_show, NULL);
889
890 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
891                                    struct device_attribute *attr, char *buf)
892 {
893         struct regulator_dev *rdev = dev_get_drvdata(dev);
894
895         return regulator_print_state(buf,
896                         rdev->constraints->state_disk.enabled);
897 }
898 static DEVICE_ATTR(suspend_disk_state, 0444,
899                 regulator_suspend_disk_state_show, NULL);
900
901 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
902                                    struct device_attribute *attr, char *buf)
903 {
904         struct regulator_dev *rdev = dev_get_drvdata(dev);
905
906         return regulator_print_state(buf,
907                         rdev->constraints->state_standby.enabled);
908 }
909 static DEVICE_ATTR(suspend_standby_state, 0444,
910                 regulator_suspend_standby_state_show, NULL);
911
912 static ssize_t regulator_bypass_show(struct device *dev,
913                                      struct device_attribute *attr, char *buf)
914 {
915         struct regulator_dev *rdev = dev_get_drvdata(dev);
916         const char *report;
917         bool bypass;
918         int ret;
919
920         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
921
922         if (ret != 0)
923                 report = "unknown";
924         else if (bypass)
925                 report = "enabled";
926         else
927                 report = "disabled";
928
929         return sprintf(buf, "%s\n", report);
930 }
931 static DEVICE_ATTR(bypass, 0444,
932                    regulator_bypass_show, NULL);
933
934 /* Calculate the new optimum regulator operating mode based on the new total
935  * consumer load. All locks held by caller
936  */
937 static int drms_uA_update(struct regulator_dev *rdev)
938 {
939         struct regulator *sibling;
940         int current_uA = 0, output_uV, input_uV, err;
941         unsigned int mode;
942
943         /*
944          * first check to see if we can set modes at all, otherwise just
945          * tell the consumer everything is OK.
946          */
947         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
948                 rdev_dbg(rdev, "DRMS operation not allowed\n");
949                 return 0;
950         }
951
952         if (!rdev->desc->ops->get_optimum_mode &&
953             !rdev->desc->ops->set_load)
954                 return 0;
955
956         if (!rdev->desc->ops->set_mode &&
957             !rdev->desc->ops->set_load)
958                 return -EINVAL;
959
960         /* calc total requested load */
961         list_for_each_entry(sibling, &rdev->consumer_list, list) {
962                 if (sibling->enable_count)
963                         current_uA += sibling->uA_load;
964         }
965
966         current_uA += rdev->constraints->system_load;
967
968         if (rdev->desc->ops->set_load) {
969                 /* set the optimum mode for our new total regulator load */
970                 err = rdev->desc->ops->set_load(rdev, current_uA);
971                 if (err < 0)
972                         rdev_err(rdev, "failed to set load %d: %pe\n",
973                                  current_uA, ERR_PTR(err));
974         } else {
975                 /* get output voltage */
976                 output_uV = regulator_get_voltage_rdev(rdev);
977                 if (output_uV <= 0) {
978                         rdev_err(rdev, "invalid output voltage found\n");
979                         return -EINVAL;
980                 }
981
982                 /* get input voltage */
983                 input_uV = 0;
984                 if (rdev->supply)
985                         input_uV = regulator_get_voltage(rdev->supply);
986                 if (input_uV <= 0)
987                         input_uV = rdev->constraints->input_uV;
988                 if (input_uV <= 0) {
989                         rdev_err(rdev, "invalid input voltage found\n");
990                         return -EINVAL;
991                 }
992
993                 /* now get the optimum mode for our new total regulator load */
994                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
995                                                          output_uV, current_uA);
996
997                 /* check the new mode is allowed */
998                 err = regulator_mode_constrain(rdev, &mode);
999                 if (err < 0) {
1000                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1001                                  current_uA, input_uV, output_uV, ERR_PTR(err));
1002                         return err;
1003                 }
1004
1005                 err = rdev->desc->ops->set_mode(rdev, mode);
1006                 if (err < 0)
1007                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1008                                  mode, ERR_PTR(err));
1009         }
1010
1011         return err;
1012 }
1013
1014 static int __suspend_set_state(struct regulator_dev *rdev,
1015                                const struct regulator_state *rstate)
1016 {
1017         int ret = 0;
1018
1019         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1020                 rdev->desc->ops->set_suspend_enable)
1021                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1022         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1023                 rdev->desc->ops->set_suspend_disable)
1024                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1025         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1026                 ret = 0;
1027
1028         if (ret < 0) {
1029                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1030                 return ret;
1031         }
1032
1033         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1034                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1035                 if (ret < 0) {
1036                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1037                         return ret;
1038                 }
1039         }
1040
1041         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1042                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1043                 if (ret < 0) {
1044                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1045                         return ret;
1046                 }
1047         }
1048
1049         return ret;
1050 }
1051
1052 static int suspend_set_initial_state(struct regulator_dev *rdev)
1053 {
1054         const struct regulator_state *rstate;
1055
1056         rstate = regulator_get_suspend_state_check(rdev,
1057                         rdev->constraints->initial_state);
1058         if (!rstate)
1059                 return 0;
1060
1061         return __suspend_set_state(rdev, rstate);
1062 }
1063
1064 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1065 static void print_constraints_debug(struct regulator_dev *rdev)
1066 {
1067         struct regulation_constraints *constraints = rdev->constraints;
1068         char buf[160] = "";
1069         size_t len = sizeof(buf) - 1;
1070         int count = 0;
1071         int ret;
1072
1073         if (constraints->min_uV && constraints->max_uV) {
1074                 if (constraints->min_uV == constraints->max_uV)
1075                         count += scnprintf(buf + count, len - count, "%d mV ",
1076                                            constraints->min_uV / 1000);
1077                 else
1078                         count += scnprintf(buf + count, len - count,
1079                                            "%d <--> %d mV ",
1080                                            constraints->min_uV / 1000,
1081                                            constraints->max_uV / 1000);
1082         }
1083
1084         if (!constraints->min_uV ||
1085             constraints->min_uV != constraints->max_uV) {
1086                 ret = regulator_get_voltage_rdev(rdev);
1087                 if (ret > 0)
1088                         count += scnprintf(buf + count, len - count,
1089                                            "at %d mV ", ret / 1000);
1090         }
1091
1092         if (constraints->uV_offset)
1093                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1094                                    constraints->uV_offset / 1000);
1095
1096         if (constraints->min_uA && constraints->max_uA) {
1097                 if (constraints->min_uA == constraints->max_uA)
1098                         count += scnprintf(buf + count, len - count, "%d mA ",
1099                                            constraints->min_uA / 1000);
1100                 else
1101                         count += scnprintf(buf + count, len - count,
1102                                            "%d <--> %d mA ",
1103                                            constraints->min_uA / 1000,
1104                                            constraints->max_uA / 1000);
1105         }
1106
1107         if (!constraints->min_uA ||
1108             constraints->min_uA != constraints->max_uA) {
1109                 ret = _regulator_get_current_limit(rdev);
1110                 if (ret > 0)
1111                         count += scnprintf(buf + count, len - count,
1112                                            "at %d mA ", ret / 1000);
1113         }
1114
1115         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1116                 count += scnprintf(buf + count, len - count, "fast ");
1117         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1118                 count += scnprintf(buf + count, len - count, "normal ");
1119         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1120                 count += scnprintf(buf + count, len - count, "idle ");
1121         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1122                 count += scnprintf(buf + count, len - count, "standby ");
1123
1124         if (!count)
1125                 count = scnprintf(buf, len, "no parameters");
1126         else
1127                 --count;
1128
1129         count += scnprintf(buf + count, len - count, ", %s",
1130                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1131
1132         rdev_dbg(rdev, "%s\n", buf);
1133 }
1134 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1136 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1137
1138 static void print_constraints(struct regulator_dev *rdev)
1139 {
1140         struct regulation_constraints *constraints = rdev->constraints;
1141
1142         print_constraints_debug(rdev);
1143
1144         if ((constraints->min_uV != constraints->max_uV) &&
1145             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1146                 rdev_warn(rdev,
1147                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1148 }
1149
1150 static int machine_constraints_voltage(struct regulator_dev *rdev,
1151         struct regulation_constraints *constraints)
1152 {
1153         const struct regulator_ops *ops = rdev->desc->ops;
1154         int ret;
1155
1156         /* do we need to apply the constraint voltage */
1157         if (rdev->constraints->apply_uV &&
1158             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1159                 int target_min, target_max;
1160                 int current_uV = regulator_get_voltage_rdev(rdev);
1161
1162                 if (current_uV == -ENOTRECOVERABLE) {
1163                         /* This regulator can't be read and must be initialized */
1164                         rdev_info(rdev, "Setting %d-%duV\n",
1165                                   rdev->constraints->min_uV,
1166                                   rdev->constraints->max_uV);
1167                         _regulator_do_set_voltage(rdev,
1168                                                   rdev->constraints->min_uV,
1169                                                   rdev->constraints->max_uV);
1170                         current_uV = regulator_get_voltage_rdev(rdev);
1171                 }
1172
1173                 if (current_uV < 0) {
1174                         rdev_err(rdev,
1175                                  "failed to get the current voltage: %pe\n",
1176                                  ERR_PTR(current_uV));
1177                         return current_uV;
1178                 }
1179
1180                 /*
1181                  * If we're below the minimum voltage move up to the
1182                  * minimum voltage, if we're above the maximum voltage
1183                  * then move down to the maximum.
1184                  */
1185                 target_min = current_uV;
1186                 target_max = current_uV;
1187
1188                 if (current_uV < rdev->constraints->min_uV) {
1189                         target_min = rdev->constraints->min_uV;
1190                         target_max = rdev->constraints->min_uV;
1191                 }
1192
1193                 if (current_uV > rdev->constraints->max_uV) {
1194                         target_min = rdev->constraints->max_uV;
1195                         target_max = rdev->constraints->max_uV;
1196                 }
1197
1198                 if (target_min != current_uV || target_max != current_uV) {
1199                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1200                                   current_uV, target_min, target_max);
1201                         ret = _regulator_do_set_voltage(
1202                                 rdev, target_min, target_max);
1203                         if (ret < 0) {
1204                                 rdev_err(rdev,
1205                                         "failed to apply %d-%duV constraint: %pe\n",
1206                                         target_min, target_max, ERR_PTR(ret));
1207                                 return ret;
1208                         }
1209                 }
1210         }
1211
1212         /* constrain machine-level voltage specs to fit
1213          * the actual range supported by this regulator.
1214          */
1215         if (ops->list_voltage && rdev->desc->n_voltages) {
1216                 int     count = rdev->desc->n_voltages;
1217                 int     i;
1218                 int     min_uV = INT_MAX;
1219                 int     max_uV = INT_MIN;
1220                 int     cmin = constraints->min_uV;
1221                 int     cmax = constraints->max_uV;
1222
1223                 /* it's safe to autoconfigure fixed-voltage supplies
1224                  * and the constraints are used by list_voltage.
1225                  */
1226                 if (count == 1 && !cmin) {
1227                         cmin = 1;
1228                         cmax = INT_MAX;
1229                         constraints->min_uV = cmin;
1230                         constraints->max_uV = cmax;
1231                 }
1232
1233                 /* voltage constraints are optional */
1234                 if ((cmin == 0) && (cmax == 0))
1235                         return 0;
1236
1237                 /* else require explicit machine-level constraints */
1238                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1239                         rdev_err(rdev, "invalid voltage constraints\n");
1240                         return -EINVAL;
1241                 }
1242
1243                 /* no need to loop voltages if range is continuous */
1244                 if (rdev->desc->continuous_voltage_range)
1245                         return 0;
1246
1247                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1248                 for (i = 0; i < count; i++) {
1249                         int     value;
1250
1251                         value = ops->list_voltage(rdev, i);
1252                         if (value <= 0)
1253                                 continue;
1254
1255                         /* maybe adjust [min_uV..max_uV] */
1256                         if (value >= cmin && value < min_uV)
1257                                 min_uV = value;
1258                         if (value <= cmax && value > max_uV)
1259                                 max_uV = value;
1260                 }
1261
1262                 /* final: [min_uV..max_uV] valid iff constraints valid */
1263                 if (max_uV < min_uV) {
1264                         rdev_err(rdev,
1265                                  "unsupportable voltage constraints %u-%uuV\n",
1266                                  min_uV, max_uV);
1267                         return -EINVAL;
1268                 }
1269
1270                 /* use regulator's subset of machine constraints */
1271                 if (constraints->min_uV < min_uV) {
1272                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1273                                  constraints->min_uV, min_uV);
1274                         constraints->min_uV = min_uV;
1275                 }
1276                 if (constraints->max_uV > max_uV) {
1277                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1278                                  constraints->max_uV, max_uV);
1279                         constraints->max_uV = max_uV;
1280                 }
1281         }
1282
1283         return 0;
1284 }
1285
1286 static int machine_constraints_current(struct regulator_dev *rdev,
1287         struct regulation_constraints *constraints)
1288 {
1289         const struct regulator_ops *ops = rdev->desc->ops;
1290         int ret;
1291
1292         if (!constraints->min_uA && !constraints->max_uA)
1293                 return 0;
1294
1295         if (constraints->min_uA > constraints->max_uA) {
1296                 rdev_err(rdev, "Invalid current constraints\n");
1297                 return -EINVAL;
1298         }
1299
1300         if (!ops->set_current_limit || !ops->get_current_limit) {
1301                 rdev_warn(rdev, "Operation of current configuration missing\n");
1302                 return 0;
1303         }
1304
1305         /* Set regulator current in constraints range */
1306         ret = ops->set_current_limit(rdev, constraints->min_uA,
1307                         constraints->max_uA);
1308         if (ret < 0) {
1309                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1310                 return ret;
1311         }
1312
1313         return 0;
1314 }
1315
1316 static int _regulator_do_enable(struct regulator_dev *rdev);
1317
1318 /**
1319  * set_machine_constraints - sets regulator constraints
1320  * @rdev: regulator source
1321  *
1322  * Allows platform initialisation code to define and constrain
1323  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1324  * Constraints *must* be set by platform code in order for some
1325  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1326  * set_mode.
1327  */
1328 static int set_machine_constraints(struct regulator_dev *rdev)
1329 {
1330         int ret = 0;
1331         const struct regulator_ops *ops = rdev->desc->ops;
1332
1333         ret = machine_constraints_voltage(rdev, rdev->constraints);
1334         if (ret != 0)
1335                 return ret;
1336
1337         ret = machine_constraints_current(rdev, rdev->constraints);
1338         if (ret != 0)
1339                 return ret;
1340
1341         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1342                 ret = ops->set_input_current_limit(rdev,
1343                                                    rdev->constraints->ilim_uA);
1344                 if (ret < 0) {
1345                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1346                         return ret;
1347                 }
1348         }
1349
1350         /* do we need to setup our suspend state */
1351         if (rdev->constraints->initial_state) {
1352                 ret = suspend_set_initial_state(rdev);
1353                 if (ret < 0) {
1354                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1355                         return ret;
1356                 }
1357         }
1358
1359         if (rdev->constraints->initial_mode) {
1360                 if (!ops->set_mode) {
1361                         rdev_err(rdev, "no set_mode operation\n");
1362                         return -EINVAL;
1363                 }
1364
1365                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1366                 if (ret < 0) {
1367                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1368                         return ret;
1369                 }
1370         } else if (rdev->constraints->system_load) {
1371                 /*
1372                  * We'll only apply the initial system load if an
1373                  * initial mode wasn't specified.
1374                  */
1375                 drms_uA_update(rdev);
1376         }
1377
1378         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1379                 && ops->set_ramp_delay) {
1380                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1381                 if (ret < 0) {
1382                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1383                         return ret;
1384                 }
1385         }
1386
1387         if (rdev->constraints->pull_down && ops->set_pull_down) {
1388                 ret = ops->set_pull_down(rdev);
1389                 if (ret < 0) {
1390                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1391                         return ret;
1392                 }
1393         }
1394
1395         if (rdev->constraints->soft_start && ops->set_soft_start) {
1396                 ret = ops->set_soft_start(rdev);
1397                 if (ret < 0) {
1398                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1399                         return ret;
1400                 }
1401         }
1402
1403         if (rdev->constraints->over_current_protection
1404                 && ops->set_over_current_protection) {
1405                 ret = ops->set_over_current_protection(rdev);
1406                 if (ret < 0) {
1407                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1408                                  ERR_PTR(ret));
1409                         return ret;
1410                 }
1411         }
1412
1413         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1414                 bool ad_state = (rdev->constraints->active_discharge ==
1415                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1416
1417                 ret = ops->set_active_discharge(rdev, ad_state);
1418                 if (ret < 0) {
1419                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1420                         return ret;
1421                 }
1422         }
1423
1424         /* If the constraints say the regulator should be on at this point
1425          * and we have control then make sure it is enabled.
1426          */
1427         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1428                 if (rdev->supply) {
1429                         ret = regulator_enable(rdev->supply);
1430                         if (ret < 0) {
1431                                 _regulator_put(rdev->supply);
1432                                 rdev->supply = NULL;
1433                                 return ret;
1434                         }
1435                 }
1436
1437                 ret = _regulator_do_enable(rdev);
1438                 if (ret < 0 && ret != -EINVAL) {
1439                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1440                         return ret;
1441                 }
1442
1443                 if (rdev->constraints->always_on)
1444                         rdev->use_count++;
1445         } else if (rdev->desc->off_on_delay) {
1446                 rdev->last_off = ktime_get();
1447         }
1448
1449         print_constraints(rdev);
1450         return 0;
1451 }
1452
1453 /**
1454  * set_supply - set regulator supply regulator
1455  * @rdev: regulator name
1456  * @supply_rdev: supply regulator name
1457  *
1458  * Called by platform initialisation code to set the supply regulator for this
1459  * regulator. This ensures that a regulators supply will also be enabled by the
1460  * core if it's child is enabled.
1461  */
1462 static int set_supply(struct regulator_dev *rdev,
1463                       struct regulator_dev *supply_rdev)
1464 {
1465         int err;
1466
1467         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1468
1469         if (!try_module_get(supply_rdev->owner))
1470                 return -ENODEV;
1471
1472         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1473         if (rdev->supply == NULL) {
1474                 err = -ENOMEM;
1475                 return err;
1476         }
1477         supply_rdev->open_count++;
1478
1479         return 0;
1480 }
1481
1482 /**
1483  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1484  * @rdev:         regulator source
1485  * @consumer_dev_name: dev_name() string for device supply applies to
1486  * @supply:       symbolic name for supply
1487  *
1488  * Allows platform initialisation code to map physical regulator
1489  * sources to symbolic names for supplies for use by devices.  Devices
1490  * should use these symbolic names to request regulators, avoiding the
1491  * need to provide board-specific regulator names as platform data.
1492  */
1493 static int set_consumer_device_supply(struct regulator_dev *rdev,
1494                                       const char *consumer_dev_name,
1495                                       const char *supply)
1496 {
1497         struct regulator_map *node, *new_node;
1498         int has_dev;
1499
1500         if (supply == NULL)
1501                 return -EINVAL;
1502
1503         if (consumer_dev_name != NULL)
1504                 has_dev = 1;
1505         else
1506                 has_dev = 0;
1507
1508         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1509         if (new_node == NULL)
1510                 return -ENOMEM;
1511
1512         new_node->regulator = rdev;
1513         new_node->supply = supply;
1514
1515         if (has_dev) {
1516                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1517                 if (new_node->dev_name == NULL) {
1518                         kfree(new_node);
1519                         return -ENOMEM;
1520                 }
1521         }
1522
1523         mutex_lock(&regulator_list_mutex);
1524         list_for_each_entry(node, &regulator_map_list, list) {
1525                 if (node->dev_name && consumer_dev_name) {
1526                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1527                                 continue;
1528                 } else if (node->dev_name || consumer_dev_name) {
1529                         continue;
1530                 }
1531
1532                 if (strcmp(node->supply, supply) != 0)
1533                         continue;
1534
1535                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1536                          consumer_dev_name,
1537                          dev_name(&node->regulator->dev),
1538                          node->regulator->desc->name,
1539                          supply,
1540                          dev_name(&rdev->dev), rdev_get_name(rdev));
1541                 goto fail;
1542         }
1543
1544         list_add(&new_node->list, &regulator_map_list);
1545         mutex_unlock(&regulator_list_mutex);
1546
1547         return 0;
1548
1549 fail:
1550         mutex_unlock(&regulator_list_mutex);
1551         kfree(new_node->dev_name);
1552         kfree(new_node);
1553         return -EBUSY;
1554 }
1555
1556 static void unset_regulator_supplies(struct regulator_dev *rdev)
1557 {
1558         struct regulator_map *node, *n;
1559
1560         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1561                 if (rdev == node->regulator) {
1562                         list_del(&node->list);
1563                         kfree(node->dev_name);
1564                         kfree(node);
1565                 }
1566         }
1567 }
1568
1569 #ifdef CONFIG_DEBUG_FS
1570 static ssize_t constraint_flags_read_file(struct file *file,
1571                                           char __user *user_buf,
1572                                           size_t count, loff_t *ppos)
1573 {
1574         const struct regulator *regulator = file->private_data;
1575         const struct regulation_constraints *c = regulator->rdev->constraints;
1576         char *buf;
1577         ssize_t ret;
1578
1579         if (!c)
1580                 return 0;
1581
1582         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1583         if (!buf)
1584                 return -ENOMEM;
1585
1586         ret = snprintf(buf, PAGE_SIZE,
1587                         "always_on: %u\n"
1588                         "boot_on: %u\n"
1589                         "apply_uV: %u\n"
1590                         "ramp_disable: %u\n"
1591                         "soft_start: %u\n"
1592                         "pull_down: %u\n"
1593                         "over_current_protection: %u\n",
1594                         c->always_on,
1595                         c->boot_on,
1596                         c->apply_uV,
1597                         c->ramp_disable,
1598                         c->soft_start,
1599                         c->pull_down,
1600                         c->over_current_protection);
1601
1602         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1603         kfree(buf);
1604
1605         return ret;
1606 }
1607
1608 #endif
1609
1610 static const struct file_operations constraint_flags_fops = {
1611 #ifdef CONFIG_DEBUG_FS
1612         .open = simple_open,
1613         .read = constraint_flags_read_file,
1614         .llseek = default_llseek,
1615 #endif
1616 };
1617
1618 #define REG_STR_SIZE    64
1619
1620 static struct regulator *create_regulator(struct regulator_dev *rdev,
1621                                           struct device *dev,
1622                                           const char *supply_name)
1623 {
1624         struct regulator *regulator;
1625         int err = 0;
1626
1627         if (dev) {
1628                 char buf[REG_STR_SIZE];
1629                 int size;
1630
1631                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1632                                 dev->kobj.name, supply_name);
1633                 if (size >= REG_STR_SIZE)
1634                         return NULL;
1635
1636                 supply_name = kstrdup(buf, GFP_KERNEL);
1637                 if (supply_name == NULL)
1638                         return NULL;
1639         } else {
1640                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1641                 if (supply_name == NULL)
1642                         return NULL;
1643         }
1644
1645         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1646         if (regulator == NULL) {
1647                 kfree(supply_name);
1648                 return NULL;
1649         }
1650
1651         regulator->rdev = rdev;
1652         regulator->supply_name = supply_name;
1653
1654         regulator_lock(rdev);
1655         list_add(&regulator->list, &rdev->consumer_list);
1656         regulator_unlock(rdev);
1657
1658         if (dev) {
1659                 regulator->dev = dev;
1660
1661                 /* Add a link to the device sysfs entry */
1662                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1663                                                supply_name);
1664                 if (err) {
1665                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1666                                   dev->kobj.name, ERR_PTR(err));
1667                         /* non-fatal */
1668                 }
1669         }
1670
1671         if (err != -EEXIST)
1672                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1673         if (!regulator->debugfs) {
1674                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1675         } else {
1676                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1677                                    &regulator->uA_load);
1678                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1679                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1680                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1681                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1682                 debugfs_create_file("constraint_flags", 0444,
1683                                     regulator->debugfs, regulator,
1684                                     &constraint_flags_fops);
1685         }
1686
1687         /*
1688          * Check now if the regulator is an always on regulator - if
1689          * it is then we don't need to do nearly so much work for
1690          * enable/disable calls.
1691          */
1692         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1693             _regulator_is_enabled(rdev))
1694                 regulator->always_on = true;
1695
1696         return regulator;
1697 }
1698
1699 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1700 {
1701         if (rdev->constraints && rdev->constraints->enable_time)
1702                 return rdev->constraints->enable_time;
1703         if (rdev->desc->ops->enable_time)
1704                 return rdev->desc->ops->enable_time(rdev);
1705         return rdev->desc->enable_time;
1706 }
1707
1708 static struct regulator_supply_alias *regulator_find_supply_alias(
1709                 struct device *dev, const char *supply)
1710 {
1711         struct regulator_supply_alias *map;
1712
1713         list_for_each_entry(map, &regulator_supply_alias_list, list)
1714                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1715                         return map;
1716
1717         return NULL;
1718 }
1719
1720 static void regulator_supply_alias(struct device **dev, const char **supply)
1721 {
1722         struct regulator_supply_alias *map;
1723
1724         map = regulator_find_supply_alias(*dev, *supply);
1725         if (map) {
1726                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1727                                 *supply, map->alias_supply,
1728                                 dev_name(map->alias_dev));
1729                 *dev = map->alias_dev;
1730                 *supply = map->alias_supply;
1731         }
1732 }
1733
1734 static int regulator_match(struct device *dev, const void *data)
1735 {
1736         struct regulator_dev *r = dev_to_rdev(dev);
1737
1738         return strcmp(rdev_get_name(r), data) == 0;
1739 }
1740
1741 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1742 {
1743         struct device *dev;
1744
1745         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1746
1747         return dev ? dev_to_rdev(dev) : NULL;
1748 }
1749
1750 /**
1751  * regulator_dev_lookup - lookup a regulator device.
1752  * @dev: device for regulator "consumer".
1753  * @supply: Supply name or regulator ID.
1754  *
1755  * If successful, returns a struct regulator_dev that corresponds to the name
1756  * @supply and with the embedded struct device refcount incremented by one.
1757  * The refcount must be dropped by calling put_device().
1758  * On failure one of the following ERR-PTR-encoded values is returned:
1759  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1760  * in the future.
1761  */
1762 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1763                                                   const char *supply)
1764 {
1765         struct regulator_dev *r = NULL;
1766         struct device_node *node;
1767         struct regulator_map *map;
1768         const char *devname = NULL;
1769
1770         regulator_supply_alias(&dev, &supply);
1771
1772         /* first do a dt based lookup */
1773         if (dev && dev->of_node) {
1774                 node = of_get_regulator(dev, supply);
1775                 if (node) {
1776                         r = of_find_regulator_by_node(node);
1777                         if (r)
1778                                 return r;
1779
1780                         /*
1781                          * We have a node, but there is no device.
1782                          * assume it has not registered yet.
1783                          */
1784                         return ERR_PTR(-EPROBE_DEFER);
1785                 }
1786         }
1787
1788         /* if not found, try doing it non-dt way */
1789         if (dev)
1790                 devname = dev_name(dev);
1791
1792         mutex_lock(&regulator_list_mutex);
1793         list_for_each_entry(map, &regulator_map_list, list) {
1794                 /* If the mapping has a device set up it must match */
1795                 if (map->dev_name &&
1796                     (!devname || strcmp(map->dev_name, devname)))
1797                         continue;
1798
1799                 if (strcmp(map->supply, supply) == 0 &&
1800                     get_device(&map->regulator->dev)) {
1801                         r = map->regulator;
1802                         break;
1803                 }
1804         }
1805         mutex_unlock(&regulator_list_mutex);
1806
1807         if (r)
1808                 return r;
1809
1810         r = regulator_lookup_by_name(supply);
1811         if (r)
1812                 return r;
1813
1814         return ERR_PTR(-ENODEV);
1815 }
1816
1817 static int regulator_resolve_supply(struct regulator_dev *rdev)
1818 {
1819         struct regulator_dev *r;
1820         struct device *dev = rdev->dev.parent;
1821         int ret = 0;
1822
1823         /* No supply to resolve? */
1824         if (!rdev->supply_name)
1825                 return 0;
1826
1827         /* Supply already resolved? (fast-path without locking contention) */
1828         if (rdev->supply)
1829                 return 0;
1830
1831         r = regulator_dev_lookup(dev, rdev->supply_name);
1832         if (IS_ERR(r)) {
1833                 ret = PTR_ERR(r);
1834
1835                 /* Did the lookup explicitly defer for us? */
1836                 if (ret == -EPROBE_DEFER)
1837                         goto out;
1838
1839                 if (have_full_constraints()) {
1840                         r = dummy_regulator_rdev;
1841                         get_device(&r->dev);
1842                 } else {
1843                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1844                                 rdev->supply_name, rdev->desc->name);
1845                         ret = -EPROBE_DEFER;
1846                         goto out;
1847                 }
1848         }
1849
1850         if (r == rdev) {
1851                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1852                         rdev->desc->name, rdev->supply_name);
1853                 if (!have_full_constraints()) {
1854                         ret = -EINVAL;
1855                         goto out;
1856                 }
1857                 r = dummy_regulator_rdev;
1858                 get_device(&r->dev);
1859         }
1860
1861         /*
1862          * If the supply's parent device is not the same as the
1863          * regulator's parent device, then ensure the parent device
1864          * is bound before we resolve the supply, in case the parent
1865          * device get probe deferred and unregisters the supply.
1866          */
1867         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1868                 if (!device_is_bound(r->dev.parent)) {
1869                         put_device(&r->dev);
1870                         ret = -EPROBE_DEFER;
1871                         goto out;
1872                 }
1873         }
1874
1875         /* Recursively resolve the supply of the supply */
1876         ret = regulator_resolve_supply(r);
1877         if (ret < 0) {
1878                 put_device(&r->dev);
1879                 goto out;
1880         }
1881
1882         /*
1883          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1884          * between rdev->supply null check and setting rdev->supply in
1885          * set_supply() from concurrent tasks.
1886          */
1887         regulator_lock(rdev);
1888
1889         /* Supply just resolved by a concurrent task? */
1890         if (rdev->supply) {
1891                 regulator_unlock(rdev);
1892                 put_device(&r->dev);
1893                 goto out;
1894         }
1895
1896         ret = set_supply(rdev, r);
1897         if (ret < 0) {
1898                 regulator_unlock(rdev);
1899                 put_device(&r->dev);
1900                 goto out;
1901         }
1902
1903         regulator_unlock(rdev);
1904
1905         /*
1906          * In set_machine_constraints() we may have turned this regulator on
1907          * but we couldn't propagate to the supply if it hadn't been resolved
1908          * yet.  Do it now.
1909          */
1910         if (rdev->use_count) {
1911                 ret = regulator_enable(rdev->supply);
1912                 if (ret < 0) {
1913                         _regulator_put(rdev->supply);
1914                         rdev->supply = NULL;
1915                         goto out;
1916                 }
1917         }
1918
1919 out:
1920         return ret;
1921 }
1922
1923 /* Internal regulator request function */
1924 struct regulator *_regulator_get(struct device *dev, const char *id,
1925                                  enum regulator_get_type get_type)
1926 {
1927         struct regulator_dev *rdev;
1928         struct regulator *regulator;
1929         struct device_link *link;
1930         int ret;
1931
1932         if (get_type >= MAX_GET_TYPE) {
1933                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1934                 return ERR_PTR(-EINVAL);
1935         }
1936
1937         if (id == NULL) {
1938                 pr_err("get() with no identifier\n");
1939                 return ERR_PTR(-EINVAL);
1940         }
1941
1942         rdev = regulator_dev_lookup(dev, id);
1943         if (IS_ERR(rdev)) {
1944                 ret = PTR_ERR(rdev);
1945
1946                 /*
1947                  * If regulator_dev_lookup() fails with error other
1948                  * than -ENODEV our job here is done, we simply return it.
1949                  */
1950                 if (ret != -ENODEV)
1951                         return ERR_PTR(ret);
1952
1953                 if (!have_full_constraints()) {
1954                         dev_warn(dev,
1955                                  "incomplete constraints, dummy supplies not allowed\n");
1956                         return ERR_PTR(-ENODEV);
1957                 }
1958
1959                 switch (get_type) {
1960                 case NORMAL_GET:
1961                         /*
1962                          * Assume that a regulator is physically present and
1963                          * enabled, even if it isn't hooked up, and just
1964                          * provide a dummy.
1965                          */
1966                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1967                         rdev = dummy_regulator_rdev;
1968                         get_device(&rdev->dev);
1969                         break;
1970
1971                 case EXCLUSIVE_GET:
1972                         dev_warn(dev,
1973                                  "dummy supplies not allowed for exclusive requests\n");
1974                         fallthrough;
1975
1976                 default:
1977                         return ERR_PTR(-ENODEV);
1978                 }
1979         }
1980
1981         if (rdev->exclusive) {
1982                 regulator = ERR_PTR(-EPERM);
1983                 put_device(&rdev->dev);
1984                 return regulator;
1985         }
1986
1987         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1988                 regulator = ERR_PTR(-EBUSY);
1989                 put_device(&rdev->dev);
1990                 return regulator;
1991         }
1992
1993         mutex_lock(&regulator_list_mutex);
1994         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1995         mutex_unlock(&regulator_list_mutex);
1996
1997         if (ret != 0) {
1998                 regulator = ERR_PTR(-EPROBE_DEFER);
1999                 put_device(&rdev->dev);
2000                 return regulator;
2001         }
2002
2003         ret = regulator_resolve_supply(rdev);
2004         if (ret < 0) {
2005                 regulator = ERR_PTR(ret);
2006                 put_device(&rdev->dev);
2007                 return regulator;
2008         }
2009
2010         if (!try_module_get(rdev->owner)) {
2011                 regulator = ERR_PTR(-EPROBE_DEFER);
2012                 put_device(&rdev->dev);
2013                 return regulator;
2014         }
2015
2016         regulator = create_regulator(rdev, dev, id);
2017         if (regulator == NULL) {
2018                 regulator = ERR_PTR(-ENOMEM);
2019                 module_put(rdev->owner);
2020                 put_device(&rdev->dev);
2021                 return regulator;
2022         }
2023
2024         rdev->open_count++;
2025         if (get_type == EXCLUSIVE_GET) {
2026                 rdev->exclusive = 1;
2027
2028                 ret = _regulator_is_enabled(rdev);
2029                 if (ret > 0)
2030                         rdev->use_count = 1;
2031                 else
2032                         rdev->use_count = 0;
2033         }
2034
2035         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2036         if (!IS_ERR_OR_NULL(link))
2037                 regulator->device_link = true;
2038
2039         return regulator;
2040 }
2041
2042 /**
2043  * regulator_get - lookup and obtain a reference to a regulator.
2044  * @dev: device for regulator "consumer"
2045  * @id: Supply name or regulator ID.
2046  *
2047  * Returns a struct regulator corresponding to the regulator producer,
2048  * or IS_ERR() condition containing errno.
2049  *
2050  * Use of supply names configured via set_consumer_device_supply() is
2051  * strongly encouraged.  It is recommended that the supply name used
2052  * should match the name used for the supply and/or the relevant
2053  * device pins in the datasheet.
2054  */
2055 struct regulator *regulator_get(struct device *dev, const char *id)
2056 {
2057         return _regulator_get(dev, id, NORMAL_GET);
2058 }
2059 EXPORT_SYMBOL_GPL(regulator_get);
2060
2061 /**
2062  * regulator_get_exclusive - obtain exclusive access to a regulator.
2063  * @dev: device for regulator "consumer"
2064  * @id: Supply name or regulator ID.
2065  *
2066  * Returns a struct regulator corresponding to the regulator producer,
2067  * or IS_ERR() condition containing errno.  Other consumers will be
2068  * unable to obtain this regulator while this reference is held and the
2069  * use count for the regulator will be initialised to reflect the current
2070  * state of the regulator.
2071  *
2072  * This is intended for use by consumers which cannot tolerate shared
2073  * use of the regulator such as those which need to force the
2074  * regulator off for correct operation of the hardware they are
2075  * controlling.
2076  *
2077  * Use of supply names configured via set_consumer_device_supply() is
2078  * strongly encouraged.  It is recommended that the supply name used
2079  * should match the name used for the supply and/or the relevant
2080  * device pins in the datasheet.
2081  */
2082 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2083 {
2084         return _regulator_get(dev, id, EXCLUSIVE_GET);
2085 }
2086 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2087
2088 /**
2089  * regulator_get_optional - obtain optional access to a regulator.
2090  * @dev: device for regulator "consumer"
2091  * @id: Supply name or regulator ID.
2092  *
2093  * Returns a struct regulator corresponding to the regulator producer,
2094  * or IS_ERR() condition containing errno.
2095  *
2096  * This is intended for use by consumers for devices which can have
2097  * some supplies unconnected in normal use, such as some MMC devices.
2098  * It can allow the regulator core to provide stub supplies for other
2099  * supplies requested using normal regulator_get() calls without
2100  * disrupting the operation of drivers that can handle absent
2101  * supplies.
2102  *
2103  * Use of supply names configured via set_consumer_device_supply() is
2104  * strongly encouraged.  It is recommended that the supply name used
2105  * should match the name used for the supply and/or the relevant
2106  * device pins in the datasheet.
2107  */
2108 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2109 {
2110         return _regulator_get(dev, id, OPTIONAL_GET);
2111 }
2112 EXPORT_SYMBOL_GPL(regulator_get_optional);
2113
2114 static void destroy_regulator(struct regulator *regulator)
2115 {
2116         struct regulator_dev *rdev = regulator->rdev;
2117
2118         debugfs_remove_recursive(regulator->debugfs);
2119
2120         if (regulator->dev) {
2121                 if (regulator->device_link)
2122                         device_link_remove(regulator->dev, &rdev->dev);
2123
2124                 /* remove any sysfs entries */
2125                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2126         }
2127
2128         regulator_lock(rdev);
2129         list_del(&regulator->list);
2130
2131         rdev->open_count--;
2132         rdev->exclusive = 0;
2133         regulator_unlock(rdev);
2134
2135         kfree_const(regulator->supply_name);
2136         kfree(regulator);
2137 }
2138
2139 /* regulator_list_mutex lock held by regulator_put() */
2140 static void _regulator_put(struct regulator *regulator)
2141 {
2142         struct regulator_dev *rdev;
2143
2144         if (IS_ERR_OR_NULL(regulator))
2145                 return;
2146
2147         lockdep_assert_held_once(&regulator_list_mutex);
2148
2149         /* Docs say you must disable before calling regulator_put() */
2150         WARN_ON(regulator->enable_count);
2151
2152         rdev = regulator->rdev;
2153
2154         destroy_regulator(regulator);
2155
2156         module_put(rdev->owner);
2157         put_device(&rdev->dev);
2158 }
2159
2160 /**
2161  * regulator_put - "free" the regulator source
2162  * @regulator: regulator source
2163  *
2164  * Note: drivers must ensure that all regulator_enable calls made on this
2165  * regulator source are balanced by regulator_disable calls prior to calling
2166  * this function.
2167  */
2168 void regulator_put(struct regulator *regulator)
2169 {
2170         mutex_lock(&regulator_list_mutex);
2171         _regulator_put(regulator);
2172         mutex_unlock(&regulator_list_mutex);
2173 }
2174 EXPORT_SYMBOL_GPL(regulator_put);
2175
2176 /**
2177  * regulator_register_supply_alias - Provide device alias for supply lookup
2178  *
2179  * @dev: device that will be given as the regulator "consumer"
2180  * @id: Supply name or regulator ID
2181  * @alias_dev: device that should be used to lookup the supply
2182  * @alias_id: Supply name or regulator ID that should be used to lookup the
2183  * supply
2184  *
2185  * All lookups for id on dev will instead be conducted for alias_id on
2186  * alias_dev.
2187  */
2188 int regulator_register_supply_alias(struct device *dev, const char *id,
2189                                     struct device *alias_dev,
2190                                     const char *alias_id)
2191 {
2192         struct regulator_supply_alias *map;
2193
2194         map = regulator_find_supply_alias(dev, id);
2195         if (map)
2196                 return -EEXIST;
2197
2198         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2199         if (!map)
2200                 return -ENOMEM;
2201
2202         map->src_dev = dev;
2203         map->src_supply = id;
2204         map->alias_dev = alias_dev;
2205         map->alias_supply = alias_id;
2206
2207         list_add(&map->list, &regulator_supply_alias_list);
2208
2209         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2210                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2211
2212         return 0;
2213 }
2214 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2215
2216 /**
2217  * regulator_unregister_supply_alias - Remove device alias
2218  *
2219  * @dev: device that will be given as the regulator "consumer"
2220  * @id: Supply name or regulator ID
2221  *
2222  * Remove a lookup alias if one exists for id on dev.
2223  */
2224 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2225 {
2226         struct regulator_supply_alias *map;
2227
2228         map = regulator_find_supply_alias(dev, id);
2229         if (map) {
2230                 list_del(&map->list);
2231                 kfree(map);
2232         }
2233 }
2234 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2235
2236 /**
2237  * regulator_bulk_register_supply_alias - register multiple aliases
2238  *
2239  * @dev: device that will be given as the regulator "consumer"
2240  * @id: List of supply names or regulator IDs
2241  * @alias_dev: device that should be used to lookup the supply
2242  * @alias_id: List of supply names or regulator IDs that should be used to
2243  * lookup the supply
2244  * @num_id: Number of aliases to register
2245  *
2246  * @return 0 on success, an errno on failure.
2247  *
2248  * This helper function allows drivers to register several supply
2249  * aliases in one operation.  If any of the aliases cannot be
2250  * registered any aliases that were registered will be removed
2251  * before returning to the caller.
2252  */
2253 int regulator_bulk_register_supply_alias(struct device *dev,
2254                                          const char *const *id,
2255                                          struct device *alias_dev,
2256                                          const char *const *alias_id,
2257                                          int num_id)
2258 {
2259         int i;
2260         int ret;
2261
2262         for (i = 0; i < num_id; ++i) {
2263                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2264                                                       alias_id[i]);
2265                 if (ret < 0)
2266                         goto err;
2267         }
2268
2269         return 0;
2270
2271 err:
2272         dev_err(dev,
2273                 "Failed to create supply alias %s,%s -> %s,%s\n",
2274                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2275
2276         while (--i >= 0)
2277                 regulator_unregister_supply_alias(dev, id[i]);
2278
2279         return ret;
2280 }
2281 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2282
2283 /**
2284  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2285  *
2286  * @dev: device that will be given as the regulator "consumer"
2287  * @id: List of supply names or regulator IDs
2288  * @num_id: Number of aliases to unregister
2289  *
2290  * This helper function allows drivers to unregister several supply
2291  * aliases in one operation.
2292  */
2293 void regulator_bulk_unregister_supply_alias(struct device *dev,
2294                                             const char *const *id,
2295                                             int num_id)
2296 {
2297         int i;
2298
2299         for (i = 0; i < num_id; ++i)
2300                 regulator_unregister_supply_alias(dev, id[i]);
2301 }
2302 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2303
2304
2305 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2306 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2307                                 const struct regulator_config *config)
2308 {
2309         struct regulator_enable_gpio *pin, *new_pin;
2310         struct gpio_desc *gpiod;
2311
2312         gpiod = config->ena_gpiod;
2313         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2314
2315         mutex_lock(&regulator_list_mutex);
2316
2317         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2318                 if (pin->gpiod == gpiod) {
2319                         rdev_dbg(rdev, "GPIO is already used\n");
2320                         goto update_ena_gpio_to_rdev;
2321                 }
2322         }
2323
2324         if (new_pin == NULL) {
2325                 mutex_unlock(&regulator_list_mutex);
2326                 return -ENOMEM;
2327         }
2328
2329         pin = new_pin;
2330         new_pin = NULL;
2331
2332         pin->gpiod = gpiod;
2333         list_add(&pin->list, &regulator_ena_gpio_list);
2334
2335 update_ena_gpio_to_rdev:
2336         pin->request_count++;
2337         rdev->ena_pin = pin;
2338
2339         mutex_unlock(&regulator_list_mutex);
2340         kfree(new_pin);
2341
2342         return 0;
2343 }
2344
2345 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2346 {
2347         struct regulator_enable_gpio *pin, *n;
2348
2349         if (!rdev->ena_pin)
2350                 return;
2351
2352         /* Free the GPIO only in case of no use */
2353         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2354                 if (pin != rdev->ena_pin)
2355                         continue;
2356
2357                 if (--pin->request_count)
2358                         break;
2359
2360                 gpiod_put(pin->gpiod);
2361                 list_del(&pin->list);
2362                 kfree(pin);
2363                 break;
2364         }
2365
2366         rdev->ena_pin = NULL;
2367 }
2368
2369 /**
2370  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2371  * @rdev: regulator_dev structure
2372  * @enable: enable GPIO at initial use?
2373  *
2374  * GPIO is enabled in case of initial use. (enable_count is 0)
2375  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2376  */
2377 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2378 {
2379         struct regulator_enable_gpio *pin = rdev->ena_pin;
2380
2381         if (!pin)
2382                 return -EINVAL;
2383
2384         if (enable) {
2385                 /* Enable GPIO at initial use */
2386                 if (pin->enable_count == 0)
2387                         gpiod_set_value_cansleep(pin->gpiod, 1);
2388
2389                 pin->enable_count++;
2390         } else {
2391                 if (pin->enable_count > 1) {
2392                         pin->enable_count--;
2393                         return 0;
2394                 }
2395
2396                 /* Disable GPIO if not used */
2397                 if (pin->enable_count <= 1) {
2398                         gpiod_set_value_cansleep(pin->gpiod, 0);
2399                         pin->enable_count = 0;
2400                 }
2401         }
2402
2403         return 0;
2404 }
2405
2406 /**
2407  * _regulator_enable_delay - a delay helper function
2408  * @delay: time to delay in microseconds
2409  *
2410  * Delay for the requested amount of time as per the guidelines in:
2411  *
2412  *     Documentation/timers/timers-howto.rst
2413  *
2414  * The assumption here is that regulators will never be enabled in
2415  * atomic context and therefore sleeping functions can be used.
2416  */
2417 static void _regulator_enable_delay(unsigned int delay)
2418 {
2419         unsigned int ms = delay / 1000;
2420         unsigned int us = delay % 1000;
2421
2422         if (ms > 0) {
2423                 /*
2424                  * For small enough values, handle super-millisecond
2425                  * delays in the usleep_range() call below.
2426                  */
2427                 if (ms < 20)
2428                         us += ms * 1000;
2429                 else
2430                         msleep(ms);
2431         }
2432
2433         /*
2434          * Give the scheduler some room to coalesce with any other
2435          * wakeup sources. For delays shorter than 10 us, don't even
2436          * bother setting up high-resolution timers and just busy-
2437          * loop.
2438          */
2439         if (us >= 10)
2440                 usleep_range(us, us + 100);
2441         else
2442                 udelay(us);
2443 }
2444
2445 /**
2446  * _regulator_check_status_enabled
2447  *
2448  * A helper function to check if the regulator status can be interpreted
2449  * as 'regulator is enabled'.
2450  * @rdev: the regulator device to check
2451  *
2452  * Return:
2453  * * 1                  - if status shows regulator is in enabled state
2454  * * 0                  - if not enabled state
2455  * * Error Value        - as received from ops->get_status()
2456  */
2457 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2458 {
2459         int ret = rdev->desc->ops->get_status(rdev);
2460
2461         if (ret < 0) {
2462                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2463                 return ret;
2464         }
2465
2466         switch (ret) {
2467         case REGULATOR_STATUS_OFF:
2468         case REGULATOR_STATUS_ERROR:
2469         case REGULATOR_STATUS_UNDEFINED:
2470                 return 0;
2471         default:
2472                 return 1;
2473         }
2474 }
2475
2476 static int _regulator_do_enable(struct regulator_dev *rdev)
2477 {
2478         int ret, delay;
2479
2480         /* Query before enabling in case configuration dependent.  */
2481         ret = _regulator_get_enable_time(rdev);
2482         if (ret >= 0) {
2483                 delay = ret;
2484         } else {
2485                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2486                 delay = 0;
2487         }
2488
2489         trace_regulator_enable(rdev_get_name(rdev));
2490
2491         if (rdev->desc->off_on_delay && rdev->last_off) {
2492                 /* if needed, keep a distance of off_on_delay from last time
2493                  * this regulator was disabled.
2494                  */
2495                 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2496                 s64 remaining = ktime_us_delta(end, ktime_get());
2497
2498                 if (remaining > 0)
2499                         _regulator_enable_delay(remaining);
2500         }
2501
2502         if (rdev->ena_pin) {
2503                 if (!rdev->ena_gpio_state) {
2504                         ret = regulator_ena_gpio_ctrl(rdev, true);
2505                         if (ret < 0)
2506                                 return ret;
2507                         rdev->ena_gpio_state = 1;
2508                 }
2509         } else if (rdev->desc->ops->enable) {
2510                 ret = rdev->desc->ops->enable(rdev);
2511                 if (ret < 0)
2512                         return ret;
2513         } else {
2514                 return -EINVAL;
2515         }
2516
2517         /* Allow the regulator to ramp; it would be useful to extend
2518          * this for bulk operations so that the regulators can ramp
2519          * together.
2520          */
2521         trace_regulator_enable_delay(rdev_get_name(rdev));
2522
2523         /* If poll_enabled_time is set, poll upto the delay calculated
2524          * above, delaying poll_enabled_time uS to check if the regulator
2525          * actually got enabled.
2526          * If the regulator isn't enabled after enable_delay has
2527          * expired, return -ETIMEDOUT.
2528          */
2529         if (rdev->desc->poll_enabled_time) {
2530                 unsigned int time_remaining = delay;
2531
2532                 while (time_remaining > 0) {
2533                         _regulator_enable_delay(rdev->desc->poll_enabled_time);
2534
2535                         if (rdev->desc->ops->get_status) {
2536                                 ret = _regulator_check_status_enabled(rdev);
2537                                 if (ret < 0)
2538                                         return ret;
2539                                 else if (ret)
2540                                         break;
2541                         } else if (rdev->desc->ops->is_enabled(rdev))
2542                                 break;
2543
2544                         time_remaining -= rdev->desc->poll_enabled_time;
2545                 }
2546
2547                 if (time_remaining <= 0) {
2548                         rdev_err(rdev, "Enabled check timed out\n");
2549                         return -ETIMEDOUT;
2550                 }
2551         } else {
2552                 _regulator_enable_delay(delay);
2553         }
2554
2555         trace_regulator_enable_complete(rdev_get_name(rdev));
2556
2557         return 0;
2558 }
2559
2560 /**
2561  * _regulator_handle_consumer_enable - handle that a consumer enabled
2562  * @regulator: regulator source
2563  *
2564  * Some things on a regulator consumer (like the contribution towards total
2565  * load on the regulator) only have an effect when the consumer wants the
2566  * regulator enabled.  Explained in example with two consumers of the same
2567  * regulator:
2568  *   consumer A: set_load(100);       => total load = 0
2569  *   consumer A: regulator_enable();  => total load = 100
2570  *   consumer B: set_load(1000);      => total load = 100
2571  *   consumer B: regulator_enable();  => total load = 1100
2572  *   consumer A: regulator_disable(); => total_load = 1000
2573  *
2574  * This function (together with _regulator_handle_consumer_disable) is
2575  * responsible for keeping track of the refcount for a given regulator consumer
2576  * and applying / unapplying these things.
2577  *
2578  * Returns 0 upon no error; -error upon error.
2579  */
2580 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2581 {
2582         struct regulator_dev *rdev = regulator->rdev;
2583
2584         lockdep_assert_held_once(&rdev->mutex.base);
2585
2586         regulator->enable_count++;
2587         if (regulator->uA_load && regulator->enable_count == 1)
2588                 return drms_uA_update(rdev);
2589
2590         return 0;
2591 }
2592
2593 /**
2594  * _regulator_handle_consumer_disable - handle that a consumer disabled
2595  * @regulator: regulator source
2596  *
2597  * The opposite of _regulator_handle_consumer_enable().
2598  *
2599  * Returns 0 upon no error; -error upon error.
2600  */
2601 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2602 {
2603         struct regulator_dev *rdev = regulator->rdev;
2604
2605         lockdep_assert_held_once(&rdev->mutex.base);
2606
2607         if (!regulator->enable_count) {
2608                 rdev_err(rdev, "Underflow of regulator enable count\n");
2609                 return -EINVAL;
2610         }
2611
2612         regulator->enable_count--;
2613         if (regulator->uA_load && regulator->enable_count == 0)
2614                 return drms_uA_update(rdev);
2615
2616         return 0;
2617 }
2618
2619 /* locks held by regulator_enable() */
2620 static int _regulator_enable(struct regulator *regulator)
2621 {
2622         struct regulator_dev *rdev = regulator->rdev;
2623         int ret;
2624
2625         lockdep_assert_held_once(&rdev->mutex.base);
2626
2627         if (rdev->use_count == 0 && rdev->supply) {
2628                 ret = _regulator_enable(rdev->supply);
2629                 if (ret < 0)
2630                         return ret;
2631         }
2632
2633         /* balance only if there are regulators coupled */
2634         if (rdev->coupling_desc.n_coupled > 1) {
2635                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2636                 if (ret < 0)
2637                         goto err_disable_supply;
2638         }
2639
2640         ret = _regulator_handle_consumer_enable(regulator);
2641         if (ret < 0)
2642                 goto err_disable_supply;
2643
2644         if (rdev->use_count == 0) {
2645                 /*
2646                  * The regulator may already be enabled if it's not switchable
2647                  * or was left on
2648                  */
2649                 ret = _regulator_is_enabled(rdev);
2650                 if (ret == -EINVAL || ret == 0) {
2651                         if (!regulator_ops_is_valid(rdev,
2652                                         REGULATOR_CHANGE_STATUS)) {
2653                                 ret = -EPERM;
2654                                 goto err_consumer_disable;
2655                         }
2656
2657                         ret = _regulator_do_enable(rdev);
2658                         if (ret < 0)
2659                                 goto err_consumer_disable;
2660
2661                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2662                                              NULL);
2663                 } else if (ret < 0) {
2664                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2665                         goto err_consumer_disable;
2666                 }
2667                 /* Fallthrough on positive return values - already enabled */
2668         }
2669
2670         rdev->use_count++;
2671
2672         return 0;
2673
2674 err_consumer_disable:
2675         _regulator_handle_consumer_disable(regulator);
2676
2677 err_disable_supply:
2678         if (rdev->use_count == 0 && rdev->supply)
2679                 _regulator_disable(rdev->supply);
2680
2681         return ret;
2682 }
2683
2684 /**
2685  * regulator_enable - enable regulator output
2686  * @regulator: regulator source
2687  *
2688  * Request that the regulator be enabled with the regulator output at
2689  * the predefined voltage or current value.  Calls to regulator_enable()
2690  * must be balanced with calls to regulator_disable().
2691  *
2692  * NOTE: the output value can be set by other drivers, boot loader or may be
2693  * hardwired in the regulator.
2694  */
2695 int regulator_enable(struct regulator *regulator)
2696 {
2697         struct regulator_dev *rdev = regulator->rdev;
2698         struct ww_acquire_ctx ww_ctx;
2699         int ret;
2700
2701         regulator_lock_dependent(rdev, &ww_ctx);
2702         ret = _regulator_enable(regulator);
2703         regulator_unlock_dependent(rdev, &ww_ctx);
2704
2705         return ret;
2706 }
2707 EXPORT_SYMBOL_GPL(regulator_enable);
2708
2709 static int _regulator_do_disable(struct regulator_dev *rdev)
2710 {
2711         int ret;
2712
2713         trace_regulator_disable(rdev_get_name(rdev));
2714
2715         if (rdev->ena_pin) {
2716                 if (rdev->ena_gpio_state) {
2717                         ret = regulator_ena_gpio_ctrl(rdev, false);
2718                         if (ret < 0)
2719                                 return ret;
2720                         rdev->ena_gpio_state = 0;
2721                 }
2722
2723         } else if (rdev->desc->ops->disable) {
2724                 ret = rdev->desc->ops->disable(rdev);
2725                 if (ret != 0)
2726                         return ret;
2727         }
2728
2729         if (rdev->desc->off_on_delay)
2730                 rdev->last_off = ktime_get();
2731
2732         trace_regulator_disable_complete(rdev_get_name(rdev));
2733
2734         return 0;
2735 }
2736
2737 /* locks held by regulator_disable() */
2738 static int _regulator_disable(struct regulator *regulator)
2739 {
2740         struct regulator_dev *rdev = regulator->rdev;
2741         int ret = 0;
2742
2743         lockdep_assert_held_once(&rdev->mutex.base);
2744
2745         if (WARN(rdev->use_count <= 0,
2746                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2747                 return -EIO;
2748
2749         /* are we the last user and permitted to disable ? */
2750         if (rdev->use_count == 1 &&
2751             (rdev->constraints && !rdev->constraints->always_on)) {
2752
2753                 /* we are last user */
2754                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2755                         ret = _notifier_call_chain(rdev,
2756                                                    REGULATOR_EVENT_PRE_DISABLE,
2757                                                    NULL);
2758                         if (ret & NOTIFY_STOP_MASK)
2759                                 return -EINVAL;
2760
2761                         ret = _regulator_do_disable(rdev);
2762                         if (ret < 0) {
2763                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2764                                 _notifier_call_chain(rdev,
2765                                                 REGULATOR_EVENT_ABORT_DISABLE,
2766                                                 NULL);
2767                                 return ret;
2768                         }
2769                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2770                                         NULL);
2771                 }
2772
2773                 rdev->use_count = 0;
2774         } else if (rdev->use_count > 1) {
2775                 rdev->use_count--;
2776         }
2777
2778         if (ret == 0)
2779                 ret = _regulator_handle_consumer_disable(regulator);
2780
2781         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2782                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2783
2784         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2785                 ret = _regulator_disable(rdev->supply);
2786
2787         return ret;
2788 }
2789
2790 /**
2791  * regulator_disable - disable regulator output
2792  * @regulator: regulator source
2793  *
2794  * Disable the regulator output voltage or current.  Calls to
2795  * regulator_enable() must be balanced with calls to
2796  * regulator_disable().
2797  *
2798  * NOTE: this will only disable the regulator output if no other consumer
2799  * devices have it enabled, the regulator device supports disabling and
2800  * machine constraints permit this operation.
2801  */
2802 int regulator_disable(struct regulator *regulator)
2803 {
2804         struct regulator_dev *rdev = regulator->rdev;
2805         struct ww_acquire_ctx ww_ctx;
2806         int ret;
2807
2808         regulator_lock_dependent(rdev, &ww_ctx);
2809         ret = _regulator_disable(regulator);
2810         regulator_unlock_dependent(rdev, &ww_ctx);
2811
2812         return ret;
2813 }
2814 EXPORT_SYMBOL_GPL(regulator_disable);
2815
2816 /* locks held by regulator_force_disable() */
2817 static int _regulator_force_disable(struct regulator_dev *rdev)
2818 {
2819         int ret = 0;
2820
2821         lockdep_assert_held_once(&rdev->mutex.base);
2822
2823         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2824                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2825         if (ret & NOTIFY_STOP_MASK)
2826                 return -EINVAL;
2827
2828         ret = _regulator_do_disable(rdev);
2829         if (ret < 0) {
2830                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2831                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2832                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2833                 return ret;
2834         }
2835
2836         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2837                         REGULATOR_EVENT_DISABLE, NULL);
2838
2839         return 0;
2840 }
2841
2842 /**
2843  * regulator_force_disable - force disable regulator output
2844  * @regulator: regulator source
2845  *
2846  * Forcibly disable the regulator output voltage or current.
2847  * NOTE: this *will* disable the regulator output even if other consumer
2848  * devices have it enabled. This should be used for situations when device
2849  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2850  */
2851 int regulator_force_disable(struct regulator *regulator)
2852 {
2853         struct regulator_dev *rdev = regulator->rdev;
2854         struct ww_acquire_ctx ww_ctx;
2855         int ret;
2856
2857         regulator_lock_dependent(rdev, &ww_ctx);
2858
2859         ret = _regulator_force_disable(regulator->rdev);
2860
2861         if (rdev->coupling_desc.n_coupled > 1)
2862                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2863
2864         if (regulator->uA_load) {
2865                 regulator->uA_load = 0;
2866                 ret = drms_uA_update(rdev);
2867         }
2868
2869         if (rdev->use_count != 0 && rdev->supply)
2870                 _regulator_disable(rdev->supply);
2871
2872         regulator_unlock_dependent(rdev, &ww_ctx);
2873
2874         return ret;
2875 }
2876 EXPORT_SYMBOL_GPL(regulator_force_disable);
2877
2878 static void regulator_disable_work(struct work_struct *work)
2879 {
2880         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2881                                                   disable_work.work);
2882         struct ww_acquire_ctx ww_ctx;
2883         int count, i, ret;
2884         struct regulator *regulator;
2885         int total_count = 0;
2886
2887         regulator_lock_dependent(rdev, &ww_ctx);
2888
2889         /*
2890          * Workqueue functions queue the new work instance while the previous
2891          * work instance is being processed. Cancel the queued work instance
2892          * as the work instance under processing does the job of the queued
2893          * work instance.
2894          */
2895         cancel_delayed_work(&rdev->disable_work);
2896
2897         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2898                 count = regulator->deferred_disables;
2899
2900                 if (!count)
2901                         continue;
2902
2903                 total_count += count;
2904                 regulator->deferred_disables = 0;
2905
2906                 for (i = 0; i < count; i++) {
2907                         ret = _regulator_disable(regulator);
2908                         if (ret != 0)
2909                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
2910                                          ERR_PTR(ret));
2911                 }
2912         }
2913         WARN_ON(!total_count);
2914
2915         if (rdev->coupling_desc.n_coupled > 1)
2916                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2917
2918         regulator_unlock_dependent(rdev, &ww_ctx);
2919 }
2920
2921 /**
2922  * regulator_disable_deferred - disable regulator output with delay
2923  * @regulator: regulator source
2924  * @ms: milliseconds until the regulator is disabled
2925  *
2926  * Execute regulator_disable() on the regulator after a delay.  This
2927  * is intended for use with devices that require some time to quiesce.
2928  *
2929  * NOTE: this will only disable the regulator output if no other consumer
2930  * devices have it enabled, the regulator device supports disabling and
2931  * machine constraints permit this operation.
2932  */
2933 int regulator_disable_deferred(struct regulator *regulator, int ms)
2934 {
2935         struct regulator_dev *rdev = regulator->rdev;
2936
2937         if (!ms)
2938                 return regulator_disable(regulator);
2939
2940         regulator_lock(rdev);
2941         regulator->deferred_disables++;
2942         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2943                          msecs_to_jiffies(ms));
2944         regulator_unlock(rdev);
2945
2946         return 0;
2947 }
2948 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2949
2950 static int _regulator_is_enabled(struct regulator_dev *rdev)
2951 {
2952         /* A GPIO control always takes precedence */
2953         if (rdev->ena_pin)
2954                 return rdev->ena_gpio_state;
2955
2956         /* If we don't know then assume that the regulator is always on */
2957         if (!rdev->desc->ops->is_enabled)
2958                 return 1;
2959
2960         return rdev->desc->ops->is_enabled(rdev);
2961 }
2962
2963 static int _regulator_list_voltage(struct regulator_dev *rdev,
2964                                    unsigned selector, int lock)
2965 {
2966         const struct regulator_ops *ops = rdev->desc->ops;
2967         int ret;
2968
2969         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2970                 return rdev->desc->fixed_uV;
2971
2972         if (ops->list_voltage) {
2973                 if (selector >= rdev->desc->n_voltages)
2974                         return -EINVAL;
2975                 if (selector < rdev->desc->linear_min_sel)
2976                         return 0;
2977                 if (lock)
2978                         regulator_lock(rdev);
2979                 ret = ops->list_voltage(rdev, selector);
2980                 if (lock)
2981                         regulator_unlock(rdev);
2982         } else if (rdev->is_switch && rdev->supply) {
2983                 ret = _regulator_list_voltage(rdev->supply->rdev,
2984                                               selector, lock);
2985         } else {
2986                 return -EINVAL;
2987         }
2988
2989         if (ret > 0) {
2990                 if (ret < rdev->constraints->min_uV)
2991                         ret = 0;
2992                 else if (ret > rdev->constraints->max_uV)
2993                         ret = 0;
2994         }
2995
2996         return ret;
2997 }
2998
2999 /**
3000  * regulator_is_enabled - is the regulator output enabled
3001  * @regulator: regulator source
3002  *
3003  * Returns positive if the regulator driver backing the source/client
3004  * has requested that the device be enabled, zero if it hasn't, else a
3005  * negative errno code.
3006  *
3007  * Note that the device backing this regulator handle can have multiple
3008  * users, so it might be enabled even if regulator_enable() was never
3009  * called for this particular source.
3010  */
3011 int regulator_is_enabled(struct regulator *regulator)
3012 {
3013         int ret;
3014
3015         if (regulator->always_on)
3016                 return 1;
3017
3018         regulator_lock(regulator->rdev);
3019         ret = _regulator_is_enabled(regulator->rdev);
3020         regulator_unlock(regulator->rdev);
3021
3022         return ret;
3023 }
3024 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3025
3026 /**
3027  * regulator_count_voltages - count regulator_list_voltage() selectors
3028  * @regulator: regulator source
3029  *
3030  * Returns number of selectors, or negative errno.  Selectors are
3031  * numbered starting at zero, and typically correspond to bitfields
3032  * in hardware registers.
3033  */
3034 int regulator_count_voltages(struct regulator *regulator)
3035 {
3036         struct regulator_dev    *rdev = regulator->rdev;
3037
3038         if (rdev->desc->n_voltages)
3039                 return rdev->desc->n_voltages;
3040
3041         if (!rdev->is_switch || !rdev->supply)
3042                 return -EINVAL;
3043
3044         return regulator_count_voltages(rdev->supply);
3045 }
3046 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3047
3048 /**
3049  * regulator_list_voltage - enumerate supported voltages
3050  * @regulator: regulator source
3051  * @selector: identify voltage to list
3052  * Context: can sleep
3053  *
3054  * Returns a voltage that can be passed to @regulator_set_voltage(),
3055  * zero if this selector code can't be used on this system, or a
3056  * negative errno.
3057  */
3058 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3059 {
3060         return _regulator_list_voltage(regulator->rdev, selector, 1);
3061 }
3062 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3063
3064 /**
3065  * regulator_get_regmap - get the regulator's register map
3066  * @regulator: regulator source
3067  *
3068  * Returns the register map for the given regulator, or an ERR_PTR value
3069  * if the regulator doesn't use regmap.
3070  */
3071 struct regmap *regulator_get_regmap(struct regulator *regulator)
3072 {
3073         struct regmap *map = regulator->rdev->regmap;
3074
3075         return map ? map : ERR_PTR(-EOPNOTSUPP);
3076 }
3077
3078 /**
3079  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3080  * @regulator: regulator source
3081  * @vsel_reg: voltage selector register, output parameter
3082  * @vsel_mask: mask for voltage selector bitfield, output parameter
3083  *
3084  * Returns the hardware register offset and bitmask used for setting the
3085  * regulator voltage. This might be useful when configuring voltage-scaling
3086  * hardware or firmware that can make I2C requests behind the kernel's back,
3087  * for example.
3088  *
3089  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3090  * and 0 is returned, otherwise a negative errno is returned.
3091  */
3092 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3093                                          unsigned *vsel_reg,
3094                                          unsigned *vsel_mask)
3095 {
3096         struct regulator_dev *rdev = regulator->rdev;
3097         const struct regulator_ops *ops = rdev->desc->ops;
3098
3099         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3100                 return -EOPNOTSUPP;
3101
3102         *vsel_reg = rdev->desc->vsel_reg;
3103         *vsel_mask = rdev->desc->vsel_mask;
3104
3105         return 0;
3106 }
3107 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3108
3109 /**
3110  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3111  * @regulator: regulator source
3112  * @selector: identify voltage to list
3113  *
3114  * Converts the selector to a hardware-specific voltage selector that can be
3115  * directly written to the regulator registers. The address of the voltage
3116  * register can be determined by calling @regulator_get_hardware_vsel_register.
3117  *
3118  * On error a negative errno is returned.
3119  */
3120 int regulator_list_hardware_vsel(struct regulator *regulator,
3121                                  unsigned selector)
3122 {
3123         struct regulator_dev *rdev = regulator->rdev;
3124         const struct regulator_ops *ops = rdev->desc->ops;
3125
3126         if (selector >= rdev->desc->n_voltages)
3127                 return -EINVAL;
3128         if (selector < rdev->desc->linear_min_sel)
3129                 return 0;
3130         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3131                 return -EOPNOTSUPP;
3132
3133         return selector;
3134 }
3135 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3136
3137 /**
3138  * regulator_get_linear_step - return the voltage step size between VSEL values
3139  * @regulator: regulator source
3140  *
3141  * Returns the voltage step size between VSEL values for linear
3142  * regulators, or return 0 if the regulator isn't a linear regulator.
3143  */
3144 unsigned int regulator_get_linear_step(struct regulator *regulator)
3145 {
3146         struct regulator_dev *rdev = regulator->rdev;
3147
3148         return rdev->desc->uV_step;
3149 }
3150 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3151
3152 /**
3153  * regulator_is_supported_voltage - check if a voltage range can be supported
3154  *
3155  * @regulator: Regulator to check.
3156  * @min_uV: Minimum required voltage in uV.
3157  * @max_uV: Maximum required voltage in uV.
3158  *
3159  * Returns a boolean.
3160  */
3161 int regulator_is_supported_voltage(struct regulator *regulator,
3162                                    int min_uV, int max_uV)
3163 {
3164         struct regulator_dev *rdev = regulator->rdev;
3165         int i, voltages, ret;
3166
3167         /* If we can't change voltage check the current voltage */
3168         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3169                 ret = regulator_get_voltage(regulator);
3170                 if (ret >= 0)
3171                         return min_uV <= ret && ret <= max_uV;
3172                 else
3173                         return ret;
3174         }
3175
3176         /* Any voltage within constrains range is fine? */
3177         if (rdev->desc->continuous_voltage_range)
3178                 return min_uV >= rdev->constraints->min_uV &&
3179                                 max_uV <= rdev->constraints->max_uV;
3180
3181         ret = regulator_count_voltages(regulator);
3182         if (ret < 0)
3183                 return 0;
3184         voltages = ret;
3185
3186         for (i = 0; i < voltages; i++) {
3187                 ret = regulator_list_voltage(regulator, i);
3188
3189                 if (ret >= min_uV && ret <= max_uV)
3190                         return 1;
3191         }
3192
3193         return 0;
3194 }
3195 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3196
3197 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3198                                  int max_uV)
3199 {
3200         const struct regulator_desc *desc = rdev->desc;
3201
3202         if (desc->ops->map_voltage)
3203                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3204
3205         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3206                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3207
3208         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3209                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3210
3211         if (desc->ops->list_voltage ==
3212                 regulator_list_voltage_pickable_linear_range)
3213                 return regulator_map_voltage_pickable_linear_range(rdev,
3214                                                         min_uV, max_uV);
3215
3216         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3217 }
3218
3219 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3220                                        int min_uV, int max_uV,
3221                                        unsigned *selector)
3222 {
3223         struct pre_voltage_change_data data;
3224         int ret;
3225
3226         data.old_uV = regulator_get_voltage_rdev(rdev);
3227         data.min_uV = min_uV;
3228         data.max_uV = max_uV;
3229         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3230                                    &data);
3231         if (ret & NOTIFY_STOP_MASK)
3232                 return -EINVAL;
3233
3234         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3235         if (ret >= 0)
3236                 return ret;
3237
3238         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3239                              (void *)data.old_uV);
3240
3241         return ret;
3242 }
3243
3244 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3245                                            int uV, unsigned selector)
3246 {
3247         struct pre_voltage_change_data data;
3248         int ret;
3249
3250         data.old_uV = regulator_get_voltage_rdev(rdev);
3251         data.min_uV = uV;
3252         data.max_uV = uV;
3253         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3254                                    &data);
3255         if (ret & NOTIFY_STOP_MASK)
3256                 return -EINVAL;
3257
3258         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3259         if (ret >= 0)
3260                 return ret;
3261
3262         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3263                              (void *)data.old_uV);
3264
3265         return ret;
3266 }
3267
3268 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3269                                            int uV, int new_selector)
3270 {
3271         const struct regulator_ops *ops = rdev->desc->ops;
3272         int diff, old_sel, curr_sel, ret;
3273
3274         /* Stepping is only needed if the regulator is enabled. */
3275         if (!_regulator_is_enabled(rdev))
3276                 goto final_set;
3277
3278         if (!ops->get_voltage_sel)
3279                 return -EINVAL;
3280
3281         old_sel = ops->get_voltage_sel(rdev);
3282         if (old_sel < 0)
3283                 return old_sel;
3284
3285         diff = new_selector - old_sel;
3286         if (diff == 0)
3287                 return 0; /* No change needed. */
3288
3289         if (diff > 0) {
3290                 /* Stepping up. */
3291                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3292                      curr_sel < new_selector;
3293                      curr_sel += rdev->desc->vsel_step) {
3294                         /*
3295                          * Call the callback directly instead of using
3296                          * _regulator_call_set_voltage_sel() as we don't
3297                          * want to notify anyone yet. Same in the branch
3298                          * below.
3299                          */
3300                         ret = ops->set_voltage_sel(rdev, curr_sel);
3301                         if (ret)
3302                                 goto try_revert;
3303                 }
3304         } else {
3305                 /* Stepping down. */
3306                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3307                      curr_sel > new_selector;
3308                      curr_sel -= rdev->desc->vsel_step) {
3309                         ret = ops->set_voltage_sel(rdev, curr_sel);
3310                         if (ret)
3311                                 goto try_revert;
3312                 }
3313         }
3314
3315 final_set:
3316         /* The final selector will trigger the notifiers. */
3317         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3318
3319 try_revert:
3320         /*
3321          * At least try to return to the previous voltage if setting a new
3322          * one failed.
3323          */
3324         (void)ops->set_voltage_sel(rdev, old_sel);
3325         return ret;
3326 }
3327
3328 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3329                                        int old_uV, int new_uV)
3330 {
3331         unsigned int ramp_delay = 0;
3332
3333         if (rdev->constraints->ramp_delay)
3334                 ramp_delay = rdev->constraints->ramp_delay;
3335         else if (rdev->desc->ramp_delay)
3336                 ramp_delay = rdev->desc->ramp_delay;
3337         else if (rdev->constraints->settling_time)
3338                 return rdev->constraints->settling_time;
3339         else if (rdev->constraints->settling_time_up &&
3340                  (new_uV > old_uV))
3341                 return rdev->constraints->settling_time_up;
3342         else if (rdev->constraints->settling_time_down &&
3343                  (new_uV < old_uV))
3344                 return rdev->constraints->settling_time_down;
3345
3346         if (ramp_delay == 0) {
3347                 rdev_dbg(rdev, "ramp_delay not set\n");
3348                 return 0;
3349         }
3350
3351         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3352 }
3353
3354 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3355                                      int min_uV, int max_uV)
3356 {
3357         int ret;
3358         int delay = 0;
3359         int best_val = 0;
3360         unsigned int selector;
3361         int old_selector = -1;
3362         const struct regulator_ops *ops = rdev->desc->ops;
3363         int old_uV = regulator_get_voltage_rdev(rdev);
3364
3365         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3366
3367         min_uV += rdev->constraints->uV_offset;
3368         max_uV += rdev->constraints->uV_offset;
3369
3370         /*
3371          * If we can't obtain the old selector there is not enough
3372          * info to call set_voltage_time_sel().
3373          */
3374         if (_regulator_is_enabled(rdev) &&
3375             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3376                 old_selector = ops->get_voltage_sel(rdev);
3377                 if (old_selector < 0)
3378                         return old_selector;
3379         }
3380
3381         if (ops->set_voltage) {
3382                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3383                                                   &selector);
3384
3385                 if (ret >= 0) {
3386                         if (ops->list_voltage)
3387                                 best_val = ops->list_voltage(rdev,
3388                                                              selector);
3389                         else
3390                                 best_val = regulator_get_voltage_rdev(rdev);
3391                 }
3392
3393         } else if (ops->set_voltage_sel) {
3394                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3395                 if (ret >= 0) {
3396                         best_val = ops->list_voltage(rdev, ret);
3397                         if (min_uV <= best_val && max_uV >= best_val) {
3398                                 selector = ret;
3399                                 if (old_selector == selector)
3400                                         ret = 0;
3401                                 else if (rdev->desc->vsel_step)
3402                                         ret = _regulator_set_voltage_sel_step(
3403                                                 rdev, best_val, selector);
3404                                 else
3405                                         ret = _regulator_call_set_voltage_sel(
3406                                                 rdev, best_val, selector);
3407                         } else {
3408                                 ret = -EINVAL;
3409                         }
3410                 }
3411         } else {
3412                 ret = -EINVAL;
3413         }
3414
3415         if (ret)
3416                 goto out;
3417
3418         if (ops->set_voltage_time_sel) {
3419                 /*
3420                  * Call set_voltage_time_sel if successfully obtained
3421                  * old_selector
3422                  */
3423                 if (old_selector >= 0 && old_selector != selector)
3424                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3425                                                           selector);
3426         } else {
3427                 if (old_uV != best_val) {
3428                         if (ops->set_voltage_time)
3429                                 delay = ops->set_voltage_time(rdev, old_uV,
3430                                                               best_val);
3431                         else
3432                                 delay = _regulator_set_voltage_time(rdev,
3433                                                                     old_uV,
3434                                                                     best_val);
3435                 }
3436         }
3437
3438         if (delay < 0) {
3439                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3440                 delay = 0;
3441         }
3442
3443         /* Insert any necessary delays */
3444         if (delay >= 1000) {
3445                 mdelay(delay / 1000);
3446                 udelay(delay % 1000);
3447         } else if (delay) {
3448                 udelay(delay);
3449         }
3450
3451         if (best_val >= 0) {
3452                 unsigned long data = best_val;
3453
3454                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3455                                      (void *)data);
3456         }
3457
3458 out:
3459         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3460
3461         return ret;
3462 }
3463
3464 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3465                                   int min_uV, int max_uV, suspend_state_t state)
3466 {
3467         struct regulator_state *rstate;
3468         int uV, sel;
3469
3470         rstate = regulator_get_suspend_state(rdev, state);
3471         if (rstate == NULL)
3472                 return -EINVAL;
3473
3474         if (min_uV < rstate->min_uV)
3475                 min_uV = rstate->min_uV;
3476         if (max_uV > rstate->max_uV)
3477                 max_uV = rstate->max_uV;
3478
3479         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3480         if (sel < 0)
3481                 return sel;
3482
3483         uV = rdev->desc->ops->list_voltage(rdev, sel);
3484         if (uV >= min_uV && uV <= max_uV)
3485                 rstate->uV = uV;
3486
3487         return 0;
3488 }
3489
3490 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3491                                           int min_uV, int max_uV,
3492                                           suspend_state_t state)
3493 {
3494         struct regulator_dev *rdev = regulator->rdev;
3495         struct regulator_voltage *voltage = &regulator->voltage[state];
3496         int ret = 0;
3497         int old_min_uV, old_max_uV;
3498         int current_uV;
3499
3500         /* If we're setting the same range as last time the change
3501          * should be a noop (some cpufreq implementations use the same
3502          * voltage for multiple frequencies, for example).
3503          */
3504         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3505                 goto out;
3506
3507         /* If we're trying to set a range that overlaps the current voltage,
3508          * return successfully even though the regulator does not support
3509          * changing the voltage.
3510          */
3511         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3512                 current_uV = regulator_get_voltage_rdev(rdev);
3513                 if (min_uV <= current_uV && current_uV <= max_uV) {
3514                         voltage->min_uV = min_uV;
3515                         voltage->max_uV = max_uV;
3516                         goto out;
3517                 }
3518         }
3519
3520         /* sanity check */
3521         if (!rdev->desc->ops->set_voltage &&
3522             !rdev->desc->ops->set_voltage_sel) {
3523                 ret = -EINVAL;
3524                 goto out;
3525         }
3526
3527         /* constraints check */
3528         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3529         if (ret < 0)
3530                 goto out;
3531
3532         /* restore original values in case of error */
3533         old_min_uV = voltage->min_uV;
3534         old_max_uV = voltage->max_uV;
3535         voltage->min_uV = min_uV;
3536         voltage->max_uV = max_uV;
3537
3538         /* for not coupled regulators this will just set the voltage */
3539         ret = regulator_balance_voltage(rdev, state);
3540         if (ret < 0) {
3541                 voltage->min_uV = old_min_uV;
3542                 voltage->max_uV = old_max_uV;
3543         }
3544
3545 out:
3546         return ret;
3547 }
3548
3549 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3550                                int max_uV, suspend_state_t state)
3551 {
3552         int best_supply_uV = 0;
3553         int supply_change_uV = 0;
3554         int ret;
3555
3556         if (rdev->supply &&
3557             regulator_ops_is_valid(rdev->supply->rdev,
3558                                    REGULATOR_CHANGE_VOLTAGE) &&
3559             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3560                                            rdev->desc->ops->get_voltage_sel))) {
3561                 int current_supply_uV;
3562                 int selector;
3563
3564                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3565                 if (selector < 0) {
3566                         ret = selector;
3567                         goto out;
3568                 }
3569
3570                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3571                 if (best_supply_uV < 0) {
3572                         ret = best_supply_uV;
3573                         goto out;
3574                 }
3575
3576                 best_supply_uV += rdev->desc->min_dropout_uV;
3577
3578                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3579                 if (current_supply_uV < 0) {
3580                         ret = current_supply_uV;
3581                         goto out;
3582                 }
3583
3584                 supply_change_uV = best_supply_uV - current_supply_uV;
3585         }
3586
3587         if (supply_change_uV > 0) {
3588                 ret = regulator_set_voltage_unlocked(rdev->supply,
3589                                 best_supply_uV, INT_MAX, state);
3590                 if (ret) {
3591                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3592                                 ERR_PTR(ret));
3593                         goto out;
3594                 }
3595         }
3596
3597         if (state == PM_SUSPEND_ON)
3598                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3599         else
3600                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3601                                                         max_uV, state);
3602         if (ret < 0)
3603                 goto out;
3604
3605         if (supply_change_uV < 0) {
3606                 ret = regulator_set_voltage_unlocked(rdev->supply,
3607                                 best_supply_uV, INT_MAX, state);
3608                 if (ret)
3609                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3610                                  ERR_PTR(ret));
3611                 /* No need to fail here */
3612                 ret = 0;
3613         }
3614
3615 out:
3616         return ret;
3617 }
3618 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3619
3620 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3621                                         int *current_uV, int *min_uV)
3622 {
3623         struct regulation_constraints *constraints = rdev->constraints;
3624
3625         /* Limit voltage change only if necessary */
3626         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3627                 return 1;
3628
3629         if (*current_uV < 0) {
3630                 *current_uV = regulator_get_voltage_rdev(rdev);
3631
3632                 if (*current_uV < 0)
3633                         return *current_uV;
3634         }
3635
3636         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3637                 return 1;
3638
3639         /* Clamp target voltage within the given step */
3640         if (*current_uV < *min_uV)
3641                 *min_uV = min(*current_uV + constraints->max_uV_step,
3642                               *min_uV);
3643         else
3644                 *min_uV = max(*current_uV - constraints->max_uV_step,
3645                               *min_uV);
3646
3647         return 0;
3648 }
3649
3650 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3651                                          int *current_uV,
3652                                          int *min_uV, int *max_uV,
3653                                          suspend_state_t state,
3654                                          int n_coupled)
3655 {
3656         struct coupling_desc *c_desc = &rdev->coupling_desc;
3657         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3658         struct regulation_constraints *constraints = rdev->constraints;
3659         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3660         int max_current_uV = 0, min_current_uV = INT_MAX;
3661         int highest_min_uV = 0, target_uV, possible_uV;
3662         int i, ret, max_spread;
3663         bool done;
3664
3665         *current_uV = -1;
3666
3667         /*
3668          * If there are no coupled regulators, simply set the voltage
3669          * demanded by consumers.
3670          */
3671         if (n_coupled == 1) {
3672                 /*
3673                  * If consumers don't provide any demands, set voltage
3674                  * to min_uV
3675                  */
3676                 desired_min_uV = constraints->min_uV;
3677                 desired_max_uV = constraints->max_uV;
3678
3679                 ret = regulator_check_consumers(rdev,
3680                                                 &desired_min_uV,
3681                                                 &desired_max_uV, state);
3682                 if (ret < 0)
3683                         return ret;
3684
3685                 possible_uV = desired_min_uV;
3686                 done = true;
3687
3688                 goto finish;
3689         }
3690
3691         /* Find highest min desired voltage */
3692         for (i = 0; i < n_coupled; i++) {
3693                 int tmp_min = 0;
3694                 int tmp_max = INT_MAX;
3695
3696                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3697
3698                 ret = regulator_check_consumers(c_rdevs[i],
3699                                                 &tmp_min,
3700                                                 &tmp_max, state);
3701                 if (ret < 0)
3702                         return ret;
3703
3704                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3705                 if (ret < 0)
3706                         return ret;
3707
3708                 highest_min_uV = max(highest_min_uV, tmp_min);
3709
3710                 if (i == 0) {
3711                         desired_min_uV = tmp_min;
3712                         desired_max_uV = tmp_max;
3713                 }
3714         }
3715
3716         max_spread = constraints->max_spread[0];
3717
3718         /*
3719          * Let target_uV be equal to the desired one if possible.
3720          * If not, set it to minimum voltage, allowed by other coupled
3721          * regulators.
3722          */
3723         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3724
3725         /*
3726          * Find min and max voltages, which currently aren't violating
3727          * max_spread.
3728          */
3729         for (i = 1; i < n_coupled; i++) {
3730                 int tmp_act;
3731
3732                 if (!_regulator_is_enabled(c_rdevs[i]))
3733                         continue;
3734
3735                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3736                 if (tmp_act < 0)
3737                         return tmp_act;
3738
3739                 min_current_uV = min(tmp_act, min_current_uV);
3740                 max_current_uV = max(tmp_act, max_current_uV);
3741         }
3742
3743         /* There aren't any other regulators enabled */
3744         if (max_current_uV == 0) {
3745                 possible_uV = target_uV;
3746         } else {
3747                 /*
3748                  * Correct target voltage, so as it currently isn't
3749                  * violating max_spread
3750                  */
3751                 possible_uV = max(target_uV, max_current_uV - max_spread);
3752                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3753         }
3754
3755         if (possible_uV > desired_max_uV)
3756                 return -EINVAL;
3757
3758         done = (possible_uV == target_uV);
3759         desired_min_uV = possible_uV;
3760
3761 finish:
3762         /* Apply max_uV_step constraint if necessary */
3763         if (state == PM_SUSPEND_ON) {
3764                 ret = regulator_limit_voltage_step(rdev, current_uV,
3765                                                    &desired_min_uV);
3766                 if (ret < 0)
3767                         return ret;
3768
3769                 if (ret == 0)
3770                         done = false;
3771         }
3772
3773         /* Set current_uV if wasn't done earlier in the code and if necessary */
3774         if (n_coupled > 1 && *current_uV == -1) {
3775
3776                 if (_regulator_is_enabled(rdev)) {
3777                         ret = regulator_get_voltage_rdev(rdev);
3778                         if (ret < 0)
3779                                 return ret;
3780
3781                         *current_uV = ret;
3782                 } else {
3783                         *current_uV = desired_min_uV;
3784                 }
3785         }
3786
3787         *min_uV = desired_min_uV;
3788         *max_uV = desired_max_uV;
3789
3790         return done;
3791 }
3792
3793 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3794                                  suspend_state_t state, bool skip_coupled)
3795 {
3796         struct regulator_dev **c_rdevs;
3797         struct regulator_dev *best_rdev;
3798         struct coupling_desc *c_desc = &rdev->coupling_desc;
3799         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3800         unsigned int delta, best_delta;
3801         unsigned long c_rdev_done = 0;
3802         bool best_c_rdev_done;
3803
3804         c_rdevs = c_desc->coupled_rdevs;
3805         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3806
3807         /*
3808          * Find the best possible voltage change on each loop. Leave the loop
3809          * if there isn't any possible change.
3810          */
3811         do {
3812                 best_c_rdev_done = false;
3813                 best_delta = 0;
3814                 best_min_uV = 0;
3815                 best_max_uV = 0;
3816                 best_c_rdev = 0;
3817                 best_rdev = NULL;
3818
3819                 /*
3820                  * Find highest difference between optimal voltage
3821                  * and current voltage.
3822                  */
3823                 for (i = 0; i < n_coupled; i++) {
3824                         /*
3825                          * optimal_uV is the best voltage that can be set for
3826                          * i-th regulator at the moment without violating
3827                          * max_spread constraint in order to balance
3828                          * the coupled voltages.
3829                          */
3830                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3831
3832                         if (test_bit(i, &c_rdev_done))
3833                                 continue;
3834
3835                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3836                                                             &current_uV,
3837                                                             &optimal_uV,
3838                                                             &optimal_max_uV,
3839                                                             state, n_coupled);
3840                         if (ret < 0)
3841                                 goto out;
3842
3843                         delta = abs(optimal_uV - current_uV);
3844
3845                         if (delta && best_delta <= delta) {
3846                                 best_c_rdev_done = ret;
3847                                 best_delta = delta;
3848                                 best_rdev = c_rdevs[i];
3849                                 best_min_uV = optimal_uV;
3850                                 best_max_uV = optimal_max_uV;
3851                                 best_c_rdev = i;
3852                         }
3853                 }
3854
3855                 /* Nothing to change, return successfully */
3856                 if (!best_rdev) {
3857                         ret = 0;
3858                         goto out;
3859                 }
3860
3861                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3862                                                  best_max_uV, state);
3863
3864                 if (ret < 0)
3865                         goto out;
3866
3867                 if (best_c_rdev_done)
3868                         set_bit(best_c_rdev, &c_rdev_done);
3869
3870         } while (n_coupled > 1);
3871
3872 out:
3873         return ret;
3874 }
3875
3876 static int regulator_balance_voltage(struct regulator_dev *rdev,
3877                                      suspend_state_t state)
3878 {
3879         struct coupling_desc *c_desc = &rdev->coupling_desc;
3880         struct regulator_coupler *coupler = c_desc->coupler;
3881         bool skip_coupled = false;
3882
3883         /*
3884          * If system is in a state other than PM_SUSPEND_ON, don't check
3885          * other coupled regulators.
3886          */
3887         if (state != PM_SUSPEND_ON)
3888                 skip_coupled = true;
3889
3890         if (c_desc->n_resolved < c_desc->n_coupled) {
3891                 rdev_err(rdev, "Not all coupled regulators registered\n");
3892                 return -EPERM;
3893         }
3894
3895         /* Invoke custom balancer for customized couplers */
3896         if (coupler && coupler->balance_voltage)
3897                 return coupler->balance_voltage(coupler, rdev, state);
3898
3899         return regulator_do_balance_voltage(rdev, state, skip_coupled);
3900 }
3901
3902 /**
3903  * regulator_set_voltage - set regulator output voltage
3904  * @regulator: regulator source
3905  * @min_uV: Minimum required voltage in uV
3906  * @max_uV: Maximum acceptable voltage in uV
3907  *
3908  * Sets a voltage regulator to the desired output voltage. This can be set
3909  * during any regulator state. IOW, regulator can be disabled or enabled.
3910  *
3911  * If the regulator is enabled then the voltage will change to the new value
3912  * immediately otherwise if the regulator is disabled the regulator will
3913  * output at the new voltage when enabled.
3914  *
3915  * NOTE: If the regulator is shared between several devices then the lowest
3916  * request voltage that meets the system constraints will be used.
3917  * Regulator system constraints must be set for this regulator before
3918  * calling this function otherwise this call will fail.
3919  */
3920 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3921 {
3922         struct ww_acquire_ctx ww_ctx;
3923         int ret;
3924
3925         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3926
3927         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3928                                              PM_SUSPEND_ON);
3929
3930         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3931
3932         return ret;
3933 }
3934 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3935
3936 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3937                                            suspend_state_t state, bool en)
3938 {
3939         struct regulator_state *rstate;
3940
3941         rstate = regulator_get_suspend_state(rdev, state);
3942         if (rstate == NULL)
3943                 return -EINVAL;
3944
3945         if (!rstate->changeable)
3946                 return -EPERM;
3947
3948         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3949
3950         return 0;
3951 }
3952
3953 int regulator_suspend_enable(struct regulator_dev *rdev,
3954                                     suspend_state_t state)
3955 {
3956         return regulator_suspend_toggle(rdev, state, true);
3957 }
3958 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3959
3960 int regulator_suspend_disable(struct regulator_dev *rdev,
3961                                      suspend_state_t state)
3962 {
3963         struct regulator *regulator;
3964         struct regulator_voltage *voltage;
3965
3966         /*
3967          * if any consumer wants this regulator device keeping on in
3968          * suspend states, don't set it as disabled.
3969          */
3970         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3971                 voltage = &regulator->voltage[state];
3972                 if (voltage->min_uV || voltage->max_uV)
3973                         return 0;
3974         }
3975
3976         return regulator_suspend_toggle(rdev, state, false);
3977 }
3978 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3979
3980 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3981                                           int min_uV, int max_uV,
3982                                           suspend_state_t state)
3983 {
3984         struct regulator_dev *rdev = regulator->rdev;
3985         struct regulator_state *rstate;
3986
3987         rstate = regulator_get_suspend_state(rdev, state);
3988         if (rstate == NULL)
3989                 return -EINVAL;
3990
3991         if (rstate->min_uV == rstate->max_uV) {
3992                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3993                 return -EPERM;
3994         }
3995
3996         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3997 }
3998
3999 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4000                                   int max_uV, suspend_state_t state)
4001 {
4002         struct ww_acquire_ctx ww_ctx;
4003         int ret;
4004
4005         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4006         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4007                 return -EINVAL;
4008
4009         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4010
4011         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4012                                              max_uV, state);
4013
4014         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4015
4016         return ret;
4017 }
4018 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4019
4020 /**
4021  * regulator_set_voltage_time - get raise/fall time
4022  * @regulator: regulator source
4023  * @old_uV: starting voltage in microvolts
4024  * @new_uV: target voltage in microvolts
4025  *
4026  * Provided with the starting and ending voltage, this function attempts to
4027  * calculate the time in microseconds required to rise or fall to this new
4028  * voltage.
4029  */
4030 int regulator_set_voltage_time(struct regulator *regulator,
4031                                int old_uV, int new_uV)
4032 {
4033         struct regulator_dev *rdev = regulator->rdev;
4034         const struct regulator_ops *ops = rdev->desc->ops;
4035         int old_sel = -1;
4036         int new_sel = -1;
4037         int voltage;
4038         int i;
4039
4040         if (ops->set_voltage_time)
4041                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4042         else if (!ops->set_voltage_time_sel)
4043                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4044
4045         /* Currently requires operations to do this */
4046         if (!ops->list_voltage || !rdev->desc->n_voltages)
4047                 return -EINVAL;
4048
4049         for (i = 0; i < rdev->desc->n_voltages; i++) {
4050                 /* We only look for exact voltage matches here */
4051                 if (i < rdev->desc->linear_min_sel)
4052                         continue;
4053
4054                 if (old_sel >= 0 && new_sel >= 0)
4055                         break;
4056
4057                 voltage = regulator_list_voltage(regulator, i);
4058                 if (voltage < 0)
4059                         return -EINVAL;
4060                 if (voltage == 0)
4061                         continue;
4062                 if (voltage == old_uV)
4063                         old_sel = i;
4064                 if (voltage == new_uV)
4065                         new_sel = i;
4066         }
4067
4068         if (old_sel < 0 || new_sel < 0)
4069                 return -EINVAL;
4070
4071         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4072 }
4073 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4074
4075 /**
4076  * regulator_set_voltage_time_sel - get raise/fall time
4077  * @rdev: regulator source device
4078  * @old_selector: selector for starting voltage
4079  * @new_selector: selector for target voltage
4080  *
4081  * Provided with the starting and target voltage selectors, this function
4082  * returns time in microseconds required to rise or fall to this new voltage
4083  *
4084  * Drivers providing ramp_delay in regulation_constraints can use this as their
4085  * set_voltage_time_sel() operation.
4086  */
4087 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4088                                    unsigned int old_selector,
4089                                    unsigned int new_selector)
4090 {
4091         int old_volt, new_volt;
4092
4093         /* sanity check */
4094         if (!rdev->desc->ops->list_voltage)
4095                 return -EINVAL;
4096
4097         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4098         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4099
4100         if (rdev->desc->ops->set_voltage_time)
4101                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4102                                                          new_volt);
4103         else
4104                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4105 }
4106 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4107
4108 /**
4109  * regulator_sync_voltage - re-apply last regulator output voltage
4110  * @regulator: regulator source
4111  *
4112  * Re-apply the last configured voltage.  This is intended to be used
4113  * where some external control source the consumer is cooperating with
4114  * has caused the configured voltage to change.
4115  */
4116 int regulator_sync_voltage(struct regulator *regulator)
4117 {
4118         struct regulator_dev *rdev = regulator->rdev;
4119         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4120         int ret, min_uV, max_uV;
4121
4122         regulator_lock(rdev);
4123
4124         if (!rdev->desc->ops->set_voltage &&
4125             !rdev->desc->ops->set_voltage_sel) {
4126                 ret = -EINVAL;
4127                 goto out;
4128         }
4129
4130         /* This is only going to work if we've had a voltage configured. */
4131         if (!voltage->min_uV && !voltage->max_uV) {
4132                 ret = -EINVAL;
4133                 goto out;
4134         }
4135
4136         min_uV = voltage->min_uV;
4137         max_uV = voltage->max_uV;
4138
4139         /* This should be a paranoia check... */
4140         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4141         if (ret < 0)
4142                 goto out;
4143
4144         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4145         if (ret < 0)
4146                 goto out;
4147
4148         /* balance only, if regulator is coupled */
4149         if (rdev->coupling_desc.n_coupled > 1)
4150                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4151         else
4152                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4153
4154 out:
4155         regulator_unlock(rdev);
4156         return ret;
4157 }
4158 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4159
4160 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4161 {
4162         int sel, ret;
4163         bool bypassed;
4164
4165         if (rdev->desc->ops->get_bypass) {
4166                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4167                 if (ret < 0)
4168                         return ret;
4169                 if (bypassed) {
4170                         /* if bypassed the regulator must have a supply */
4171                         if (!rdev->supply) {
4172                                 rdev_err(rdev,
4173                                          "bypassed regulator has no supply!\n");
4174                                 return -EPROBE_DEFER;
4175                         }
4176
4177                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4178                 }
4179         }
4180
4181         if (rdev->desc->ops->get_voltage_sel) {
4182                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4183                 if (sel < 0)
4184                         return sel;
4185                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4186         } else if (rdev->desc->ops->get_voltage) {
4187                 ret = rdev->desc->ops->get_voltage(rdev);
4188         } else if (rdev->desc->ops->list_voltage) {
4189                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4190         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4191                 ret = rdev->desc->fixed_uV;
4192         } else if (rdev->supply) {
4193                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4194         } else if (rdev->supply_name) {
4195                 return -EPROBE_DEFER;
4196         } else {
4197                 return -EINVAL;
4198         }
4199
4200         if (ret < 0)
4201                 return ret;
4202         return ret - rdev->constraints->uV_offset;
4203 }
4204 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4205
4206 /**
4207  * regulator_get_voltage - get regulator output voltage
4208  * @regulator: regulator source
4209  *
4210  * This returns the current regulator voltage in uV.
4211  *
4212  * NOTE: If the regulator is disabled it will return the voltage value. This
4213  * function should not be used to determine regulator state.
4214  */
4215 int regulator_get_voltage(struct regulator *regulator)
4216 {
4217         struct ww_acquire_ctx ww_ctx;
4218         int ret;
4219
4220         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4221         ret = regulator_get_voltage_rdev(regulator->rdev);
4222         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4223
4224         return ret;
4225 }
4226 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4227
4228 /**
4229  * regulator_set_current_limit - set regulator output current limit
4230  * @regulator: regulator source
4231  * @min_uA: Minimum supported current in uA
4232  * @max_uA: Maximum supported current in uA
4233  *
4234  * Sets current sink to the desired output current. This can be set during
4235  * any regulator state. IOW, regulator can be disabled or enabled.
4236  *
4237  * If the regulator is enabled then the current will change to the new value
4238  * immediately otherwise if the regulator is disabled the regulator will
4239  * output at the new current when enabled.
4240  *
4241  * NOTE: Regulator system constraints must be set for this regulator before
4242  * calling this function otherwise this call will fail.
4243  */
4244 int regulator_set_current_limit(struct regulator *regulator,
4245                                int min_uA, int max_uA)
4246 {
4247         struct regulator_dev *rdev = regulator->rdev;
4248         int ret;
4249
4250         regulator_lock(rdev);
4251
4252         /* sanity check */
4253         if (!rdev->desc->ops->set_current_limit) {
4254                 ret = -EINVAL;
4255                 goto out;
4256         }
4257
4258         /* constraints check */
4259         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4260         if (ret < 0)
4261                 goto out;
4262
4263         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4264 out:
4265         regulator_unlock(rdev);
4266         return ret;
4267 }
4268 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4269
4270 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4271 {
4272         /* sanity check */
4273         if (!rdev->desc->ops->get_current_limit)
4274                 return -EINVAL;
4275
4276         return rdev->desc->ops->get_current_limit(rdev);
4277 }
4278
4279 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4280 {
4281         int ret;
4282
4283         regulator_lock(rdev);
4284         ret = _regulator_get_current_limit_unlocked(rdev);
4285         regulator_unlock(rdev);
4286
4287         return ret;
4288 }
4289
4290 /**
4291  * regulator_get_current_limit - get regulator output current
4292  * @regulator: regulator source
4293  *
4294  * This returns the current supplied by the specified current sink in uA.
4295  *
4296  * NOTE: If the regulator is disabled it will return the current value. This
4297  * function should not be used to determine regulator state.
4298  */
4299 int regulator_get_current_limit(struct regulator *regulator)
4300 {
4301         return _regulator_get_current_limit(regulator->rdev);
4302 }
4303 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4304
4305 /**
4306  * regulator_set_mode - set regulator operating mode
4307  * @regulator: regulator source
4308  * @mode: operating mode - one of the REGULATOR_MODE constants
4309  *
4310  * Set regulator operating mode to increase regulator efficiency or improve
4311  * regulation performance.
4312  *
4313  * NOTE: Regulator system constraints must be set for this regulator before
4314  * calling this function otherwise this call will fail.
4315  */
4316 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4317 {
4318         struct regulator_dev *rdev = regulator->rdev;
4319         int ret;
4320         int regulator_curr_mode;
4321
4322         regulator_lock(rdev);
4323
4324         /* sanity check */
4325         if (!rdev->desc->ops->set_mode) {
4326                 ret = -EINVAL;
4327                 goto out;
4328         }
4329
4330         /* return if the same mode is requested */
4331         if (rdev->desc->ops->get_mode) {
4332                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4333                 if (regulator_curr_mode == mode) {
4334                         ret = 0;
4335                         goto out;
4336                 }
4337         }
4338
4339         /* constraints check */
4340         ret = regulator_mode_constrain(rdev, &mode);
4341         if (ret < 0)
4342                 goto out;
4343
4344         ret = rdev->desc->ops->set_mode(rdev, mode);
4345 out:
4346         regulator_unlock(rdev);
4347         return ret;
4348 }
4349 EXPORT_SYMBOL_GPL(regulator_set_mode);
4350
4351 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4352 {
4353         /* sanity check */
4354         if (!rdev->desc->ops->get_mode)
4355                 return -EINVAL;
4356
4357         return rdev->desc->ops->get_mode(rdev);
4358 }
4359
4360 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4361 {
4362         int ret;
4363
4364         regulator_lock(rdev);
4365         ret = _regulator_get_mode_unlocked(rdev);
4366         regulator_unlock(rdev);
4367
4368         return ret;
4369 }
4370
4371 /**
4372  * regulator_get_mode - get regulator operating mode
4373  * @regulator: regulator source
4374  *
4375  * Get the current regulator operating mode.
4376  */
4377 unsigned int regulator_get_mode(struct regulator *regulator)
4378 {
4379         return _regulator_get_mode(regulator->rdev);
4380 }
4381 EXPORT_SYMBOL_GPL(regulator_get_mode);
4382
4383 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4384                                         unsigned int *flags)
4385 {
4386         int ret;
4387
4388         regulator_lock(rdev);
4389
4390         /* sanity check */
4391         if (!rdev->desc->ops->get_error_flags) {
4392                 ret = -EINVAL;
4393                 goto out;
4394         }
4395
4396         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4397 out:
4398         regulator_unlock(rdev);
4399         return ret;
4400 }
4401
4402 /**
4403  * regulator_get_error_flags - get regulator error information
4404  * @regulator: regulator source
4405  * @flags: pointer to store error flags
4406  *
4407  * Get the current regulator error information.
4408  */
4409 int regulator_get_error_flags(struct regulator *regulator,
4410                                 unsigned int *flags)
4411 {
4412         return _regulator_get_error_flags(regulator->rdev, flags);
4413 }
4414 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4415
4416 /**
4417  * regulator_set_load - set regulator load
4418  * @regulator: regulator source
4419  * @uA_load: load current
4420  *
4421  * Notifies the regulator core of a new device load. This is then used by
4422  * DRMS (if enabled by constraints) to set the most efficient regulator
4423  * operating mode for the new regulator loading.
4424  *
4425  * Consumer devices notify their supply regulator of the maximum power
4426  * they will require (can be taken from device datasheet in the power
4427  * consumption tables) when they change operational status and hence power
4428  * state. Examples of operational state changes that can affect power
4429  * consumption are :-
4430  *
4431  *    o Device is opened / closed.
4432  *    o Device I/O is about to begin or has just finished.
4433  *    o Device is idling in between work.
4434  *
4435  * This information is also exported via sysfs to userspace.
4436  *
4437  * DRMS will sum the total requested load on the regulator and change
4438  * to the most efficient operating mode if platform constraints allow.
4439  *
4440  * NOTE: when a regulator consumer requests to have a regulator
4441  * disabled then any load that consumer requested no longer counts
4442  * toward the total requested load.  If the regulator is re-enabled
4443  * then the previously requested load will start counting again.
4444  *
4445  * If a regulator is an always-on regulator then an individual consumer's
4446  * load will still be removed if that consumer is fully disabled.
4447  *
4448  * On error a negative errno is returned.
4449  */
4450 int regulator_set_load(struct regulator *regulator, int uA_load)
4451 {
4452         struct regulator_dev *rdev = regulator->rdev;
4453         int old_uA_load;
4454         int ret = 0;
4455
4456         regulator_lock(rdev);
4457         old_uA_load = regulator->uA_load;
4458         regulator->uA_load = uA_load;
4459         if (regulator->enable_count && old_uA_load != uA_load) {
4460                 ret = drms_uA_update(rdev);
4461                 if (ret < 0)
4462                         regulator->uA_load = old_uA_load;
4463         }
4464         regulator_unlock(rdev);
4465
4466         return ret;
4467 }
4468 EXPORT_SYMBOL_GPL(regulator_set_load);
4469
4470 /**
4471  * regulator_allow_bypass - allow the regulator to go into bypass mode
4472  *
4473  * @regulator: Regulator to configure
4474  * @enable: enable or disable bypass mode
4475  *
4476  * Allow the regulator to go into bypass mode if all other consumers
4477  * for the regulator also enable bypass mode and the machine
4478  * constraints allow this.  Bypass mode means that the regulator is
4479  * simply passing the input directly to the output with no regulation.
4480  */
4481 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4482 {
4483         struct regulator_dev *rdev = regulator->rdev;
4484         const char *name = rdev_get_name(rdev);
4485         int ret = 0;
4486
4487         if (!rdev->desc->ops->set_bypass)
4488                 return 0;
4489
4490         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4491                 return 0;
4492
4493         regulator_lock(rdev);
4494
4495         if (enable && !regulator->bypass) {
4496                 rdev->bypass_count++;
4497
4498                 if (rdev->bypass_count == rdev->open_count) {
4499                         trace_regulator_bypass_enable(name);
4500
4501                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4502                         if (ret != 0)
4503                                 rdev->bypass_count--;
4504                         else
4505                                 trace_regulator_bypass_enable_complete(name);
4506                 }
4507
4508         } else if (!enable && regulator->bypass) {
4509                 rdev->bypass_count--;
4510
4511                 if (rdev->bypass_count != rdev->open_count) {
4512                         trace_regulator_bypass_disable(name);
4513
4514                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4515                         if (ret != 0)
4516                                 rdev->bypass_count++;
4517                         else
4518                                 trace_regulator_bypass_disable_complete(name);
4519                 }
4520         }
4521
4522         if (ret == 0)
4523                 regulator->bypass = enable;
4524
4525         regulator_unlock(rdev);
4526
4527         return ret;
4528 }
4529 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4530
4531 /**
4532  * regulator_register_notifier - register regulator event notifier
4533  * @regulator: regulator source
4534  * @nb: notifier block
4535  *
4536  * Register notifier block to receive regulator events.
4537  */
4538 int regulator_register_notifier(struct regulator *regulator,
4539                               struct notifier_block *nb)
4540 {
4541         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4542                                                 nb);
4543 }
4544 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4545
4546 /**
4547  * regulator_unregister_notifier - unregister regulator event notifier
4548  * @regulator: regulator source
4549  * @nb: notifier block
4550  *
4551  * Unregister regulator event notifier block.
4552  */
4553 int regulator_unregister_notifier(struct regulator *regulator,
4554                                 struct notifier_block *nb)
4555 {
4556         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4557                                                   nb);
4558 }
4559 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4560
4561 /* notify regulator consumers and downstream regulator consumers.
4562  * Note mutex must be held by caller.
4563  */
4564 static int _notifier_call_chain(struct regulator_dev *rdev,
4565                                   unsigned long event, void *data)
4566 {
4567         /* call rdev chain first */
4568         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4569 }
4570
4571 /**
4572  * regulator_bulk_get - get multiple regulator consumers
4573  *
4574  * @dev:           Device to supply
4575  * @num_consumers: Number of consumers to register
4576  * @consumers:     Configuration of consumers; clients are stored here.
4577  *
4578  * @return 0 on success, an errno on failure.
4579  *
4580  * This helper function allows drivers to get several regulator
4581  * consumers in one operation.  If any of the regulators cannot be
4582  * acquired then any regulators that were allocated will be freed
4583  * before returning to the caller.
4584  */
4585 int regulator_bulk_get(struct device *dev, int num_consumers,
4586                        struct regulator_bulk_data *consumers)
4587 {
4588         int i;
4589         int ret;
4590
4591         for (i = 0; i < num_consumers; i++)
4592                 consumers[i].consumer = NULL;
4593
4594         for (i = 0; i < num_consumers; i++) {
4595                 consumers[i].consumer = regulator_get(dev,
4596                                                       consumers[i].supply);
4597                 if (IS_ERR(consumers[i].consumer)) {
4598                         ret = PTR_ERR(consumers[i].consumer);
4599                         consumers[i].consumer = NULL;
4600                         goto err;
4601                 }
4602         }
4603
4604         return 0;
4605
4606 err:
4607         if (ret != -EPROBE_DEFER)
4608                 dev_err(dev, "Failed to get supply '%s': %pe\n",
4609                         consumers[i].supply, ERR_PTR(ret));
4610         else
4611                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4612                         consumers[i].supply);
4613
4614         while (--i >= 0)
4615                 regulator_put(consumers[i].consumer);
4616
4617         return ret;
4618 }
4619 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4620
4621 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4622 {
4623         struct regulator_bulk_data *bulk = data;
4624
4625         bulk->ret = regulator_enable(bulk->consumer);
4626 }
4627
4628 /**
4629  * regulator_bulk_enable - enable multiple regulator consumers
4630  *
4631  * @num_consumers: Number of consumers
4632  * @consumers:     Consumer data; clients are stored here.
4633  * @return         0 on success, an errno on failure
4634  *
4635  * This convenience API allows consumers to enable multiple regulator
4636  * clients in a single API call.  If any consumers cannot be enabled
4637  * then any others that were enabled will be disabled again prior to
4638  * return.
4639  */
4640 int regulator_bulk_enable(int num_consumers,
4641                           struct regulator_bulk_data *consumers)
4642 {
4643         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4644         int i;
4645         int ret = 0;
4646
4647         for (i = 0; i < num_consumers; i++) {
4648                 async_schedule_domain(regulator_bulk_enable_async,
4649                                       &consumers[i], &async_domain);
4650         }
4651
4652         async_synchronize_full_domain(&async_domain);
4653
4654         /* If any consumer failed we need to unwind any that succeeded */
4655         for (i = 0; i < num_consumers; i++) {
4656                 if (consumers[i].ret != 0) {
4657                         ret = consumers[i].ret;
4658                         goto err;
4659                 }
4660         }
4661
4662         return 0;
4663
4664 err:
4665         for (i = 0; i < num_consumers; i++) {
4666                 if (consumers[i].ret < 0)
4667                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4668                                ERR_PTR(consumers[i].ret));
4669                 else
4670                         regulator_disable(consumers[i].consumer);
4671         }
4672
4673         return ret;
4674 }
4675 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4676
4677 /**
4678  * regulator_bulk_disable - disable multiple regulator consumers
4679  *
4680  * @num_consumers: Number of consumers
4681  * @consumers:     Consumer data; clients are stored here.
4682  * @return         0 on success, an errno on failure
4683  *
4684  * This convenience API allows consumers to disable multiple regulator
4685  * clients in a single API call.  If any consumers cannot be disabled
4686  * then any others that were disabled will be enabled again prior to
4687  * return.
4688  */
4689 int regulator_bulk_disable(int num_consumers,
4690                            struct regulator_bulk_data *consumers)
4691 {
4692         int i;
4693         int ret, r;
4694
4695         for (i = num_consumers - 1; i >= 0; --i) {
4696                 ret = regulator_disable(consumers[i].consumer);
4697                 if (ret != 0)
4698                         goto err;
4699         }
4700
4701         return 0;
4702
4703 err:
4704         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4705         for (++i; i < num_consumers; ++i) {
4706                 r = regulator_enable(consumers[i].consumer);
4707                 if (r != 0)
4708                         pr_err("Failed to re-enable %s: %pe\n",
4709                                consumers[i].supply, ERR_PTR(r));
4710         }
4711
4712         return ret;
4713 }
4714 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4715
4716 /**
4717  * regulator_bulk_force_disable - force disable multiple regulator consumers
4718  *
4719  * @num_consumers: Number of consumers
4720  * @consumers:     Consumer data; clients are stored here.
4721  * @return         0 on success, an errno on failure
4722  *
4723  * This convenience API allows consumers to forcibly disable multiple regulator
4724  * clients in a single API call.
4725  * NOTE: This should be used for situations when device damage will
4726  * likely occur if the regulators are not disabled (e.g. over temp).
4727  * Although regulator_force_disable function call for some consumers can
4728  * return error numbers, the function is called for all consumers.
4729  */
4730 int regulator_bulk_force_disable(int num_consumers,
4731                            struct regulator_bulk_data *consumers)
4732 {
4733         int i;
4734         int ret = 0;
4735
4736         for (i = 0; i < num_consumers; i++) {
4737                 consumers[i].ret =
4738                             regulator_force_disable(consumers[i].consumer);
4739
4740                 /* Store first error for reporting */
4741                 if (consumers[i].ret && !ret)
4742                         ret = consumers[i].ret;
4743         }
4744
4745         return ret;
4746 }
4747 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4748
4749 /**
4750  * regulator_bulk_free - free multiple regulator consumers
4751  *
4752  * @num_consumers: Number of consumers
4753  * @consumers:     Consumer data; clients are stored here.
4754  *
4755  * This convenience API allows consumers to free multiple regulator
4756  * clients in a single API call.
4757  */
4758 void regulator_bulk_free(int num_consumers,
4759                          struct regulator_bulk_data *consumers)
4760 {
4761         int i;
4762
4763         for (i = 0; i < num_consumers; i++) {
4764                 regulator_put(consumers[i].consumer);
4765                 consumers[i].consumer = NULL;
4766         }
4767 }
4768 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4769
4770 /**
4771  * regulator_notifier_call_chain - call regulator event notifier
4772  * @rdev: regulator source
4773  * @event: notifier block
4774  * @data: callback-specific data.
4775  *
4776  * Called by regulator drivers to notify clients a regulator event has
4777  * occurred.
4778  */
4779 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4780                                   unsigned long event, void *data)
4781 {
4782         _notifier_call_chain(rdev, event, data);
4783         return NOTIFY_DONE;
4784
4785 }
4786 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4787
4788 /**
4789  * regulator_mode_to_status - convert a regulator mode into a status
4790  *
4791  * @mode: Mode to convert
4792  *
4793  * Convert a regulator mode into a status.
4794  */
4795 int regulator_mode_to_status(unsigned int mode)
4796 {
4797         switch (mode) {
4798         case REGULATOR_MODE_FAST:
4799                 return REGULATOR_STATUS_FAST;
4800         case REGULATOR_MODE_NORMAL:
4801                 return REGULATOR_STATUS_NORMAL;
4802         case REGULATOR_MODE_IDLE:
4803                 return REGULATOR_STATUS_IDLE;
4804         case REGULATOR_MODE_STANDBY:
4805                 return REGULATOR_STATUS_STANDBY;
4806         default:
4807                 return REGULATOR_STATUS_UNDEFINED;
4808         }
4809 }
4810 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4811
4812 static struct attribute *regulator_dev_attrs[] = {
4813         &dev_attr_name.attr,
4814         &dev_attr_num_users.attr,
4815         &dev_attr_type.attr,
4816         &dev_attr_microvolts.attr,
4817         &dev_attr_microamps.attr,
4818         &dev_attr_opmode.attr,
4819         &dev_attr_state.attr,
4820         &dev_attr_status.attr,
4821         &dev_attr_bypass.attr,
4822         &dev_attr_requested_microamps.attr,
4823         &dev_attr_min_microvolts.attr,
4824         &dev_attr_max_microvolts.attr,
4825         &dev_attr_min_microamps.attr,
4826         &dev_attr_max_microamps.attr,
4827         &dev_attr_suspend_standby_state.attr,
4828         &dev_attr_suspend_mem_state.attr,
4829         &dev_attr_suspend_disk_state.attr,
4830         &dev_attr_suspend_standby_microvolts.attr,
4831         &dev_attr_suspend_mem_microvolts.attr,
4832         &dev_attr_suspend_disk_microvolts.attr,
4833         &dev_attr_suspend_standby_mode.attr,
4834         &dev_attr_suspend_mem_mode.attr,
4835         &dev_attr_suspend_disk_mode.attr,
4836         NULL
4837 };
4838
4839 /*
4840  * To avoid cluttering sysfs (and memory) with useless state, only
4841  * create attributes that can be meaningfully displayed.
4842  */
4843 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4844                                          struct attribute *attr, int idx)
4845 {
4846         struct device *dev = kobj_to_dev(kobj);
4847         struct regulator_dev *rdev = dev_to_rdev(dev);
4848         const struct regulator_ops *ops = rdev->desc->ops;
4849         umode_t mode = attr->mode;
4850
4851         /* these three are always present */
4852         if (attr == &dev_attr_name.attr ||
4853             attr == &dev_attr_num_users.attr ||
4854             attr == &dev_attr_type.attr)
4855                 return mode;
4856
4857         /* some attributes need specific methods to be displayed */
4858         if (attr == &dev_attr_microvolts.attr) {
4859                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4860                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4861                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4862                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4863                         return mode;
4864                 return 0;
4865         }
4866
4867         if (attr == &dev_attr_microamps.attr)
4868                 return ops->get_current_limit ? mode : 0;
4869
4870         if (attr == &dev_attr_opmode.attr)
4871                 return ops->get_mode ? mode : 0;
4872
4873         if (attr == &dev_attr_state.attr)
4874                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4875
4876         if (attr == &dev_attr_status.attr)
4877                 return ops->get_status ? mode : 0;
4878
4879         if (attr == &dev_attr_bypass.attr)
4880                 return ops->get_bypass ? mode : 0;
4881
4882         /* constraints need specific supporting methods */
4883         if (attr == &dev_attr_min_microvolts.attr ||
4884             attr == &dev_attr_max_microvolts.attr)
4885                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4886
4887         if (attr == &dev_attr_min_microamps.attr ||
4888             attr == &dev_attr_max_microamps.attr)
4889                 return ops->set_current_limit ? mode : 0;
4890
4891         if (attr == &dev_attr_suspend_standby_state.attr ||
4892             attr == &dev_attr_suspend_mem_state.attr ||
4893             attr == &dev_attr_suspend_disk_state.attr)
4894                 return mode;
4895
4896         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4897             attr == &dev_attr_suspend_mem_microvolts.attr ||
4898             attr == &dev_attr_suspend_disk_microvolts.attr)
4899                 return ops->set_suspend_voltage ? mode : 0;
4900
4901         if (attr == &dev_attr_suspend_standby_mode.attr ||
4902             attr == &dev_attr_suspend_mem_mode.attr ||
4903             attr == &dev_attr_suspend_disk_mode.attr)
4904                 return ops->set_suspend_mode ? mode : 0;
4905
4906         return mode;
4907 }
4908
4909 static const struct attribute_group regulator_dev_group = {
4910         .attrs = regulator_dev_attrs,
4911         .is_visible = regulator_attr_is_visible,
4912 };
4913
4914 static const struct attribute_group *regulator_dev_groups[] = {
4915         &regulator_dev_group,
4916         NULL
4917 };
4918
4919 static void regulator_dev_release(struct device *dev)
4920 {
4921         struct regulator_dev *rdev = dev_get_drvdata(dev);
4922
4923         kfree(rdev->constraints);
4924         of_node_put(rdev->dev.of_node);
4925         kfree(rdev);
4926 }
4927
4928 static void rdev_init_debugfs(struct regulator_dev *rdev)
4929 {
4930         struct device *parent = rdev->dev.parent;
4931         const char *rname = rdev_get_name(rdev);
4932         char name[NAME_MAX];
4933
4934         /* Avoid duplicate debugfs directory names */
4935         if (parent && rname == rdev->desc->name) {
4936                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4937                          rname);
4938                 rname = name;
4939         }
4940
4941         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4942         if (!rdev->debugfs) {
4943                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4944                 return;
4945         }
4946
4947         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4948                            &rdev->use_count);
4949         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4950                            &rdev->open_count);
4951         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4952                            &rdev->bypass_count);
4953 }
4954
4955 static int regulator_register_resolve_supply(struct device *dev, void *data)
4956 {
4957         struct regulator_dev *rdev = dev_to_rdev(dev);
4958
4959         if (regulator_resolve_supply(rdev))
4960                 rdev_dbg(rdev, "unable to resolve supply\n");
4961
4962         return 0;
4963 }
4964
4965 int regulator_coupler_register(struct regulator_coupler *coupler)
4966 {
4967         mutex_lock(&regulator_list_mutex);
4968         list_add_tail(&coupler->list, &regulator_coupler_list);
4969         mutex_unlock(&regulator_list_mutex);
4970
4971         return 0;
4972 }
4973
4974 static struct regulator_coupler *
4975 regulator_find_coupler(struct regulator_dev *rdev)
4976 {
4977         struct regulator_coupler *coupler;
4978         int err;
4979
4980         /*
4981          * Note that regulators are appended to the list and the generic
4982          * coupler is registered first, hence it will be attached at last
4983          * if nobody cared.
4984          */
4985         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4986                 err = coupler->attach_regulator(coupler, rdev);
4987                 if (!err) {
4988                         if (!coupler->balance_voltage &&
4989                             rdev->coupling_desc.n_coupled > 2)
4990                                 goto err_unsupported;
4991
4992                         return coupler;
4993                 }
4994
4995                 if (err < 0)
4996                         return ERR_PTR(err);
4997
4998                 if (err == 1)
4999                         continue;
5000
5001                 break;
5002         }
5003
5004         return ERR_PTR(-EINVAL);
5005
5006 err_unsupported:
5007         if (coupler->detach_regulator)
5008                 coupler->detach_regulator(coupler, rdev);
5009
5010         rdev_err(rdev,
5011                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5012
5013         return ERR_PTR(-EPERM);
5014 }
5015
5016 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5017 {
5018         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5019         struct coupling_desc *c_desc = &rdev->coupling_desc;
5020         int n_coupled = c_desc->n_coupled;
5021         struct regulator_dev *c_rdev;
5022         int i;
5023
5024         for (i = 1; i < n_coupled; i++) {
5025                 /* already resolved */
5026                 if (c_desc->coupled_rdevs[i])
5027                         continue;
5028
5029                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5030
5031                 if (!c_rdev)
5032                         continue;
5033
5034                 if (c_rdev->coupling_desc.coupler != coupler) {
5035                         rdev_err(rdev, "coupler mismatch with %s\n",
5036                                  rdev_get_name(c_rdev));
5037                         return;
5038                 }
5039
5040                 c_desc->coupled_rdevs[i] = c_rdev;
5041                 c_desc->n_resolved++;
5042
5043                 regulator_resolve_coupling(c_rdev);
5044         }
5045 }
5046
5047 static void regulator_remove_coupling(struct regulator_dev *rdev)
5048 {
5049         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5050         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5051         struct regulator_dev *__c_rdev, *c_rdev;
5052         unsigned int __n_coupled, n_coupled;
5053         int i, k;
5054         int err;
5055
5056         n_coupled = c_desc->n_coupled;
5057
5058         for (i = 1; i < n_coupled; i++) {
5059                 c_rdev = c_desc->coupled_rdevs[i];
5060
5061                 if (!c_rdev)
5062                         continue;
5063
5064                 regulator_lock(c_rdev);
5065
5066                 __c_desc = &c_rdev->coupling_desc;
5067                 __n_coupled = __c_desc->n_coupled;
5068
5069                 for (k = 1; k < __n_coupled; k++) {
5070                         __c_rdev = __c_desc->coupled_rdevs[k];
5071
5072                         if (__c_rdev == rdev) {
5073                                 __c_desc->coupled_rdevs[k] = NULL;
5074                                 __c_desc->n_resolved--;
5075                                 break;
5076                         }
5077                 }
5078
5079                 regulator_unlock(c_rdev);
5080
5081                 c_desc->coupled_rdevs[i] = NULL;
5082                 c_desc->n_resolved--;
5083         }
5084
5085         if (coupler && coupler->detach_regulator) {
5086                 err = coupler->detach_regulator(coupler, rdev);
5087                 if (err)
5088                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5089                                  ERR_PTR(err));
5090         }
5091
5092         kfree(rdev->coupling_desc.coupled_rdevs);
5093         rdev->coupling_desc.coupled_rdevs = NULL;
5094 }
5095
5096 static int regulator_init_coupling(struct regulator_dev *rdev)
5097 {
5098         struct regulator_dev **coupled;
5099         int err, n_phandles;
5100
5101         if (!IS_ENABLED(CONFIG_OF))
5102                 n_phandles = 0;
5103         else
5104                 n_phandles = of_get_n_coupled(rdev);
5105
5106         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5107         if (!coupled)
5108                 return -ENOMEM;
5109
5110         rdev->coupling_desc.coupled_rdevs = coupled;
5111
5112         /*
5113          * Every regulator should always have coupling descriptor filled with
5114          * at least pointer to itself.
5115          */
5116         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5117         rdev->coupling_desc.n_coupled = n_phandles + 1;
5118         rdev->coupling_desc.n_resolved++;
5119
5120         /* regulator isn't coupled */
5121         if (n_phandles == 0)
5122                 return 0;
5123
5124         if (!of_check_coupling_data(rdev))
5125                 return -EPERM;
5126
5127         mutex_lock(&regulator_list_mutex);
5128         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5129         mutex_unlock(&regulator_list_mutex);
5130
5131         if (IS_ERR(rdev->coupling_desc.coupler)) {
5132                 err = PTR_ERR(rdev->coupling_desc.coupler);
5133                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5134                 return err;
5135         }
5136
5137         return 0;
5138 }
5139
5140 static int generic_coupler_attach(struct regulator_coupler *coupler,
5141                                   struct regulator_dev *rdev)
5142 {
5143         if (rdev->coupling_desc.n_coupled > 2) {
5144                 rdev_err(rdev,
5145                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5146                 return -EPERM;
5147         }
5148
5149         if (!rdev->constraints->always_on) {
5150                 rdev_err(rdev,
5151                          "Coupling of a non always-on regulator is unimplemented\n");
5152                 return -ENOTSUPP;
5153         }
5154
5155         return 0;
5156 }
5157
5158 static struct regulator_coupler generic_regulator_coupler = {
5159         .attach_regulator = generic_coupler_attach,
5160 };
5161
5162 /**
5163  * regulator_register - register regulator
5164  * @regulator_desc: regulator to register
5165  * @cfg: runtime configuration for regulator
5166  *
5167  * Called by regulator drivers to register a regulator.
5168  * Returns a valid pointer to struct regulator_dev on success
5169  * or an ERR_PTR() on error.
5170  */
5171 struct regulator_dev *
5172 regulator_register(const struct regulator_desc *regulator_desc,
5173                    const struct regulator_config *cfg)
5174 {
5175         const struct regulator_init_data *init_data;
5176         struct regulator_config *config = NULL;
5177         static atomic_t regulator_no = ATOMIC_INIT(-1);
5178         struct regulator_dev *rdev;
5179         bool dangling_cfg_gpiod = false;
5180         bool dangling_of_gpiod = false;
5181         struct device *dev;
5182         int ret, i;
5183
5184         if (cfg == NULL)
5185                 return ERR_PTR(-EINVAL);
5186         if (cfg->ena_gpiod)
5187                 dangling_cfg_gpiod = true;
5188         if (regulator_desc == NULL) {
5189                 ret = -EINVAL;
5190                 goto rinse;
5191         }
5192
5193         dev = cfg->dev;
5194         WARN_ON(!dev);
5195
5196         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5197                 ret = -EINVAL;
5198                 goto rinse;
5199         }
5200
5201         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5202             regulator_desc->type != REGULATOR_CURRENT) {
5203                 ret = -EINVAL;
5204                 goto rinse;
5205         }
5206
5207         /* Only one of each should be implemented */
5208         WARN_ON(regulator_desc->ops->get_voltage &&
5209                 regulator_desc->ops->get_voltage_sel);
5210         WARN_ON(regulator_desc->ops->set_voltage &&
5211                 regulator_desc->ops->set_voltage_sel);
5212
5213         /* If we're using selectors we must implement list_voltage. */
5214         if (regulator_desc->ops->get_voltage_sel &&
5215             !regulator_desc->ops->list_voltage) {
5216                 ret = -EINVAL;
5217                 goto rinse;
5218         }
5219         if (regulator_desc->ops->set_voltage_sel &&
5220             !regulator_desc->ops->list_voltage) {
5221                 ret = -EINVAL;
5222                 goto rinse;
5223         }
5224
5225         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5226         if (rdev == NULL) {
5227                 ret = -ENOMEM;
5228                 goto rinse;
5229         }
5230         device_initialize(&rdev->dev);
5231
5232         /*
5233          * Duplicate the config so the driver could override it after
5234          * parsing init data.
5235          */
5236         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5237         if (config == NULL) {
5238                 ret = -ENOMEM;
5239                 goto clean;
5240         }
5241
5242         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5243                                                &rdev->dev.of_node);
5244
5245         /*
5246          * Sometimes not all resources are probed already so we need to take
5247          * that into account. This happens most the time if the ena_gpiod comes
5248          * from a gpio extender or something else.
5249          */
5250         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5251                 ret = -EPROBE_DEFER;
5252                 goto clean;
5253         }
5254
5255         /*
5256          * We need to keep track of any GPIO descriptor coming from the
5257          * device tree until we have handled it over to the core. If the
5258          * config that was passed in to this function DOES NOT contain
5259          * a descriptor, and the config after this call DOES contain
5260          * a descriptor, we definitely got one from parsing the device
5261          * tree.
5262          */
5263         if (!cfg->ena_gpiod && config->ena_gpiod)
5264                 dangling_of_gpiod = true;
5265         if (!init_data) {
5266                 init_data = config->init_data;
5267                 rdev->dev.of_node = of_node_get(config->of_node);
5268         }
5269
5270         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5271         rdev->reg_data = config->driver_data;
5272         rdev->owner = regulator_desc->owner;
5273         rdev->desc = regulator_desc;
5274         if (config->regmap)
5275                 rdev->regmap = config->regmap;
5276         else if (dev_get_regmap(dev, NULL))
5277                 rdev->regmap = dev_get_regmap(dev, NULL);
5278         else if (dev->parent)
5279                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5280         INIT_LIST_HEAD(&rdev->consumer_list);
5281         INIT_LIST_HEAD(&rdev->list);
5282         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5283         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5284
5285         /* preform any regulator specific init */
5286         if (init_data && init_data->regulator_init) {
5287                 ret = init_data->regulator_init(rdev->reg_data);
5288                 if (ret < 0)
5289                         goto clean;
5290         }
5291
5292         if (config->ena_gpiod) {
5293                 ret = regulator_ena_gpio_request(rdev, config);
5294                 if (ret != 0) {
5295                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5296                                  ERR_PTR(ret));
5297                         goto clean;
5298                 }
5299                 /* The regulator core took over the GPIO descriptor */
5300                 dangling_cfg_gpiod = false;
5301                 dangling_of_gpiod = false;
5302         }
5303
5304         /* register with sysfs */
5305         rdev->dev.class = &regulator_class;
5306         rdev->dev.parent = dev;
5307         dev_set_name(&rdev->dev, "regulator.%lu",
5308                     (unsigned long) atomic_inc_return(&regulator_no));
5309         dev_set_drvdata(&rdev->dev, rdev);
5310
5311         /* set regulator constraints */
5312         if (init_data)
5313                 rdev->constraints = kmemdup(&init_data->constraints,
5314                                             sizeof(*rdev->constraints),
5315                                             GFP_KERNEL);
5316         else
5317                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5318                                             GFP_KERNEL);
5319         if (!rdev->constraints) {
5320                 ret = -ENOMEM;
5321                 goto wash;
5322         }
5323
5324         if (init_data && init_data->supply_regulator)
5325                 rdev->supply_name = init_data->supply_regulator;
5326         else if (regulator_desc->supply_name)
5327                 rdev->supply_name = regulator_desc->supply_name;
5328
5329         ret = set_machine_constraints(rdev);
5330         if (ret == -EPROBE_DEFER) {
5331                 /* Regulator might be in bypass mode and so needs its supply
5332                  * to set the constraints
5333                  */
5334                 /* FIXME: this currently triggers a chicken-and-egg problem
5335                  * when creating -SUPPLY symlink in sysfs to a regulator
5336                  * that is just being created
5337                  */
5338                 rdev_dbg(rdev, "will resolve supply early: %s\n",
5339                          rdev->supply_name);
5340                 ret = regulator_resolve_supply(rdev);
5341                 if (!ret)
5342                         ret = set_machine_constraints(rdev);
5343                 else
5344                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5345                                  ERR_PTR(ret));
5346         }
5347         if (ret < 0)
5348                 goto wash;
5349
5350         ret = regulator_init_coupling(rdev);
5351         if (ret < 0)
5352                 goto wash;
5353
5354         /* add consumers devices */
5355         if (init_data) {
5356                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5357                         ret = set_consumer_device_supply(rdev,
5358                                 init_data->consumer_supplies[i].dev_name,
5359                                 init_data->consumer_supplies[i].supply);
5360                         if (ret < 0) {
5361                                 dev_err(dev, "Failed to set supply %s\n",
5362                                         init_data->consumer_supplies[i].supply);
5363                                 goto unset_supplies;
5364                         }
5365                 }
5366         }
5367
5368         if (!rdev->desc->ops->get_voltage &&
5369             !rdev->desc->ops->list_voltage &&
5370             !rdev->desc->fixed_uV)
5371                 rdev->is_switch = true;
5372
5373         ret = device_add(&rdev->dev);
5374         if (ret != 0)
5375                 goto unset_supplies;
5376
5377         rdev_init_debugfs(rdev);
5378
5379         /* try to resolve regulators coupling since a new one was registered */
5380         mutex_lock(&regulator_list_mutex);
5381         regulator_resolve_coupling(rdev);
5382         mutex_unlock(&regulator_list_mutex);
5383
5384         /* try to resolve regulators supply since a new one was registered */
5385         class_for_each_device(&regulator_class, NULL, NULL,
5386                               regulator_register_resolve_supply);
5387         kfree(config);
5388         return rdev;
5389
5390 unset_supplies:
5391         mutex_lock(&regulator_list_mutex);
5392         unset_regulator_supplies(rdev);
5393         regulator_remove_coupling(rdev);
5394         mutex_unlock(&regulator_list_mutex);
5395 wash:
5396         kfree(rdev->coupling_desc.coupled_rdevs);
5397         mutex_lock(&regulator_list_mutex);
5398         regulator_ena_gpio_free(rdev);
5399         mutex_unlock(&regulator_list_mutex);
5400 clean:
5401         if (dangling_of_gpiod)
5402                 gpiod_put(config->ena_gpiod);
5403         kfree(config);
5404         put_device(&rdev->dev);
5405 rinse:
5406         if (dangling_cfg_gpiod)
5407                 gpiod_put(cfg->ena_gpiod);
5408         return ERR_PTR(ret);
5409 }
5410 EXPORT_SYMBOL_GPL(regulator_register);
5411
5412 /**
5413  * regulator_unregister - unregister regulator
5414  * @rdev: regulator to unregister
5415  *
5416  * Called by regulator drivers to unregister a regulator.
5417  */
5418 void regulator_unregister(struct regulator_dev *rdev)
5419 {
5420         if (rdev == NULL)
5421                 return;
5422
5423         if (rdev->supply) {
5424                 while (rdev->use_count--)
5425                         regulator_disable(rdev->supply);
5426                 regulator_put(rdev->supply);
5427         }
5428
5429         flush_work(&rdev->disable_work.work);
5430
5431         mutex_lock(&regulator_list_mutex);
5432
5433         debugfs_remove_recursive(rdev->debugfs);
5434         WARN_ON(rdev->open_count);
5435         regulator_remove_coupling(rdev);
5436         unset_regulator_supplies(rdev);
5437         list_del(&rdev->list);
5438         regulator_ena_gpio_free(rdev);
5439         device_unregister(&rdev->dev);
5440
5441         mutex_unlock(&regulator_list_mutex);
5442 }
5443 EXPORT_SYMBOL_GPL(regulator_unregister);
5444
5445 #ifdef CONFIG_SUSPEND
5446 /**
5447  * regulator_suspend - prepare regulators for system wide suspend
5448  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5449  *
5450  * Configure each regulator with it's suspend operating parameters for state.
5451  */
5452 static int regulator_suspend(struct device *dev)
5453 {
5454         struct regulator_dev *rdev = dev_to_rdev(dev);
5455         suspend_state_t state = pm_suspend_target_state;
5456         int ret;
5457         const struct regulator_state *rstate;
5458
5459         rstate = regulator_get_suspend_state_check(rdev, state);
5460         if (!rstate)
5461                 return 0;
5462
5463         regulator_lock(rdev);
5464         ret = __suspend_set_state(rdev, rstate);
5465         regulator_unlock(rdev);
5466
5467         return ret;
5468 }
5469
5470 static int regulator_resume(struct device *dev)
5471 {
5472         suspend_state_t state = pm_suspend_target_state;
5473         struct regulator_dev *rdev = dev_to_rdev(dev);
5474         struct regulator_state *rstate;
5475         int ret = 0;
5476
5477         rstate = regulator_get_suspend_state(rdev, state);
5478         if (rstate == NULL)
5479                 return 0;
5480
5481         /* Avoid grabbing the lock if we don't need to */
5482         if (!rdev->desc->ops->resume)
5483                 return 0;
5484
5485         regulator_lock(rdev);
5486
5487         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5488             rstate->enabled == DISABLE_IN_SUSPEND)
5489                 ret = rdev->desc->ops->resume(rdev);
5490
5491         regulator_unlock(rdev);
5492
5493         return ret;
5494 }
5495 #else /* !CONFIG_SUSPEND */
5496
5497 #define regulator_suspend       NULL
5498 #define regulator_resume        NULL
5499
5500 #endif /* !CONFIG_SUSPEND */
5501
5502 #ifdef CONFIG_PM
5503 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5504         .suspend        = regulator_suspend,
5505         .resume         = regulator_resume,
5506 };
5507 #endif
5508
5509 struct class regulator_class = {
5510         .name = "regulator",
5511         .dev_release = regulator_dev_release,
5512         .dev_groups = regulator_dev_groups,
5513 #ifdef CONFIG_PM
5514         .pm = &regulator_pm_ops,
5515 #endif
5516 };
5517 /**
5518  * regulator_has_full_constraints - the system has fully specified constraints
5519  *
5520  * Calling this function will cause the regulator API to disable all
5521  * regulators which have a zero use count and don't have an always_on
5522  * constraint in a late_initcall.
5523  *
5524  * The intention is that this will become the default behaviour in a
5525  * future kernel release so users are encouraged to use this facility
5526  * now.
5527  */
5528 void regulator_has_full_constraints(void)
5529 {
5530         has_full_constraints = 1;
5531 }
5532 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5533
5534 /**
5535  * rdev_get_drvdata - get rdev regulator driver data
5536  * @rdev: regulator
5537  *
5538  * Get rdev regulator driver private data. This call can be used in the
5539  * regulator driver context.
5540  */
5541 void *rdev_get_drvdata(struct regulator_dev *rdev)
5542 {
5543         return rdev->reg_data;
5544 }
5545 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5546
5547 /**
5548  * regulator_get_drvdata - get regulator driver data
5549  * @regulator: regulator
5550  *
5551  * Get regulator driver private data. This call can be used in the consumer
5552  * driver context when non API regulator specific functions need to be called.
5553  */
5554 void *regulator_get_drvdata(struct regulator *regulator)
5555 {
5556         return regulator->rdev->reg_data;
5557 }
5558 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5559
5560 /**
5561  * regulator_set_drvdata - set regulator driver data
5562  * @regulator: regulator
5563  * @data: data
5564  */
5565 void regulator_set_drvdata(struct regulator *regulator, void *data)
5566 {
5567         regulator->rdev->reg_data = data;
5568 }
5569 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5570
5571 /**
5572  * rdev_get_id - get regulator ID
5573  * @rdev: regulator
5574  */
5575 int rdev_get_id(struct regulator_dev *rdev)
5576 {
5577         return rdev->desc->id;
5578 }
5579 EXPORT_SYMBOL_GPL(rdev_get_id);
5580
5581 struct device *rdev_get_dev(struct regulator_dev *rdev)
5582 {
5583         return &rdev->dev;
5584 }
5585 EXPORT_SYMBOL_GPL(rdev_get_dev);
5586
5587 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5588 {
5589         return rdev->regmap;
5590 }
5591 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5592
5593 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5594 {
5595         return reg_init_data->driver_data;
5596 }
5597 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5598
5599 #ifdef CONFIG_DEBUG_FS
5600 static int supply_map_show(struct seq_file *sf, void *data)
5601 {
5602         struct regulator_map *map;
5603
5604         list_for_each_entry(map, &regulator_map_list, list) {
5605                 seq_printf(sf, "%s -> %s.%s\n",
5606                                 rdev_get_name(map->regulator), map->dev_name,
5607                                 map->supply);
5608         }
5609
5610         return 0;
5611 }
5612 DEFINE_SHOW_ATTRIBUTE(supply_map);
5613
5614 struct summary_data {
5615         struct seq_file *s;
5616         struct regulator_dev *parent;
5617         int level;
5618 };
5619
5620 static void regulator_summary_show_subtree(struct seq_file *s,
5621                                            struct regulator_dev *rdev,
5622                                            int level);
5623
5624 static int regulator_summary_show_children(struct device *dev, void *data)
5625 {
5626         struct regulator_dev *rdev = dev_to_rdev(dev);
5627         struct summary_data *summary_data = data;
5628
5629         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5630                 regulator_summary_show_subtree(summary_data->s, rdev,
5631                                                summary_data->level + 1);
5632
5633         return 0;
5634 }
5635
5636 static void regulator_summary_show_subtree(struct seq_file *s,
5637                                            struct regulator_dev *rdev,
5638                                            int level)
5639 {
5640         struct regulation_constraints *c;
5641         struct regulator *consumer;
5642         struct summary_data summary_data;
5643         unsigned int opmode;
5644
5645         if (!rdev)
5646                 return;
5647
5648         opmode = _regulator_get_mode_unlocked(rdev);
5649         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5650                    level * 3 + 1, "",
5651                    30 - level * 3, rdev_get_name(rdev),
5652                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5653                    regulator_opmode_to_str(opmode));
5654
5655         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5656         seq_printf(s, "%5dmA ",
5657                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5658
5659         c = rdev->constraints;
5660         if (c) {
5661                 switch (rdev->desc->type) {
5662                 case REGULATOR_VOLTAGE:
5663                         seq_printf(s, "%5dmV %5dmV ",
5664                                    c->min_uV / 1000, c->max_uV / 1000);
5665                         break;
5666                 case REGULATOR_CURRENT:
5667                         seq_printf(s, "%5dmA %5dmA ",
5668                                    c->min_uA / 1000, c->max_uA / 1000);
5669                         break;
5670                 }
5671         }
5672
5673         seq_puts(s, "\n");
5674
5675         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5676                 if (consumer->dev && consumer->dev->class == &regulator_class)
5677                         continue;
5678
5679                 seq_printf(s, "%*s%-*s ",
5680                            (level + 1) * 3 + 1, "",
5681                            30 - (level + 1) * 3,
5682                            consumer->supply_name ? consumer->supply_name :
5683                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5684
5685                 switch (rdev->desc->type) {
5686                 case REGULATOR_VOLTAGE:
5687                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5688                                    consumer->enable_count,
5689                                    consumer->uA_load / 1000,
5690                                    consumer->uA_load && !consumer->enable_count ?
5691                                    '*' : ' ',
5692                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5693                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5694                         break;
5695                 case REGULATOR_CURRENT:
5696                         break;
5697                 }
5698
5699                 seq_puts(s, "\n");
5700         }
5701
5702         summary_data.s = s;
5703         summary_data.level = level;
5704         summary_data.parent = rdev;
5705
5706         class_for_each_device(&regulator_class, NULL, &summary_data,
5707                               regulator_summary_show_children);
5708 }
5709
5710 struct summary_lock_data {
5711         struct ww_acquire_ctx *ww_ctx;
5712         struct regulator_dev **new_contended_rdev;
5713         struct regulator_dev **old_contended_rdev;
5714 };
5715
5716 static int regulator_summary_lock_one(struct device *dev, void *data)
5717 {
5718         struct regulator_dev *rdev = dev_to_rdev(dev);
5719         struct summary_lock_data *lock_data = data;
5720         int ret = 0;
5721
5722         if (rdev != *lock_data->old_contended_rdev) {
5723                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5724
5725                 if (ret == -EDEADLK)
5726                         *lock_data->new_contended_rdev = rdev;
5727                 else
5728                         WARN_ON_ONCE(ret);
5729         } else {
5730                 *lock_data->old_contended_rdev = NULL;
5731         }
5732
5733         return ret;
5734 }
5735
5736 static int regulator_summary_unlock_one(struct device *dev, void *data)
5737 {
5738         struct regulator_dev *rdev = dev_to_rdev(dev);
5739         struct summary_lock_data *lock_data = data;
5740
5741         if (lock_data) {
5742                 if (rdev == *lock_data->new_contended_rdev)
5743                         return -EDEADLK;
5744         }
5745
5746         regulator_unlock(rdev);
5747
5748         return 0;
5749 }
5750
5751 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5752                                       struct regulator_dev **new_contended_rdev,
5753                                       struct regulator_dev **old_contended_rdev)
5754 {
5755         struct summary_lock_data lock_data;
5756         int ret;
5757
5758         lock_data.ww_ctx = ww_ctx;
5759         lock_data.new_contended_rdev = new_contended_rdev;
5760         lock_data.old_contended_rdev = old_contended_rdev;
5761
5762         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5763                                     regulator_summary_lock_one);
5764         if (ret)
5765                 class_for_each_device(&regulator_class, NULL, &lock_data,
5766                                       regulator_summary_unlock_one);
5767
5768         return ret;
5769 }
5770
5771 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5772 {
5773         struct regulator_dev *new_contended_rdev = NULL;
5774         struct regulator_dev *old_contended_rdev = NULL;
5775         int err;
5776
5777         mutex_lock(&regulator_list_mutex);
5778
5779         ww_acquire_init(ww_ctx, &regulator_ww_class);
5780
5781         do {
5782                 if (new_contended_rdev) {
5783                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5784                         old_contended_rdev = new_contended_rdev;
5785                         old_contended_rdev->ref_cnt++;
5786                 }
5787
5788                 err = regulator_summary_lock_all(ww_ctx,
5789                                                  &new_contended_rdev,
5790                                                  &old_contended_rdev);
5791
5792                 if (old_contended_rdev)
5793                         regulator_unlock(old_contended_rdev);
5794
5795         } while (err == -EDEADLK);
5796
5797         ww_acquire_done(ww_ctx);
5798 }
5799
5800 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5801 {
5802         class_for_each_device(&regulator_class, NULL, NULL,
5803                               regulator_summary_unlock_one);
5804         ww_acquire_fini(ww_ctx);
5805
5806         mutex_unlock(&regulator_list_mutex);
5807 }
5808
5809 static int regulator_summary_show_roots(struct device *dev, void *data)
5810 {
5811         struct regulator_dev *rdev = dev_to_rdev(dev);
5812         struct seq_file *s = data;
5813
5814         if (!rdev->supply)
5815                 regulator_summary_show_subtree(s, rdev, 0);
5816
5817         return 0;
5818 }
5819
5820 static int regulator_summary_show(struct seq_file *s, void *data)
5821 {
5822         struct ww_acquire_ctx ww_ctx;
5823
5824         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5825         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5826
5827         regulator_summary_lock(&ww_ctx);
5828
5829         class_for_each_device(&regulator_class, NULL, s,
5830                               regulator_summary_show_roots);
5831
5832         regulator_summary_unlock(&ww_ctx);
5833
5834         return 0;
5835 }
5836 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5837 #endif /* CONFIG_DEBUG_FS */
5838
5839 static int __init regulator_init(void)
5840 {
5841         int ret;
5842
5843         ret = class_register(&regulator_class);
5844
5845         debugfs_root = debugfs_create_dir("regulator", NULL);
5846         if (!debugfs_root)
5847                 pr_warn("regulator: Failed to create debugfs directory\n");
5848
5849 #ifdef CONFIG_DEBUG_FS
5850         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5851                             &supply_map_fops);
5852
5853         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5854                             NULL, &regulator_summary_fops);
5855 #endif
5856         regulator_dummy_init();
5857
5858         regulator_coupler_register(&generic_regulator_coupler);
5859
5860         return ret;
5861 }
5862
5863 /* init early to allow our consumers to complete system booting */
5864 core_initcall(regulator_init);
5865
5866 static int regulator_late_cleanup(struct device *dev, void *data)
5867 {
5868         struct regulator_dev *rdev = dev_to_rdev(dev);
5869         const struct regulator_ops *ops = rdev->desc->ops;
5870         struct regulation_constraints *c = rdev->constraints;
5871         int enabled, ret;
5872
5873         if (c && c->always_on)
5874                 return 0;
5875
5876         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5877                 return 0;
5878
5879         regulator_lock(rdev);
5880
5881         if (rdev->use_count)
5882                 goto unlock;
5883
5884         /* If we can't read the status assume it's always on. */
5885         if (ops->is_enabled)
5886                 enabled = ops->is_enabled(rdev);
5887         else
5888                 enabled = 1;
5889
5890         /* But if reading the status failed, assume that it's off. */
5891         if (enabled <= 0)
5892                 goto unlock;
5893
5894         if (have_full_constraints()) {
5895                 /* We log since this may kill the system if it goes
5896                  * wrong.
5897                  */
5898                 rdev_info(rdev, "disabling\n");
5899                 ret = _regulator_do_disable(rdev);
5900                 if (ret != 0)
5901                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5902         } else {
5903                 /* The intention is that in future we will
5904                  * assume that full constraints are provided
5905                  * so warn even if we aren't going to do
5906                  * anything here.
5907                  */
5908                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5909         }
5910
5911 unlock:
5912         regulator_unlock(rdev);
5913
5914         return 0;
5915 }
5916
5917 static void regulator_init_complete_work_function(struct work_struct *work)
5918 {
5919         /*
5920          * Regulators may had failed to resolve their input supplies
5921          * when were registered, either because the input supply was
5922          * not registered yet or because its parent device was not
5923          * bound yet. So attempt to resolve the input supplies for
5924          * pending regulators before trying to disable unused ones.
5925          */
5926         class_for_each_device(&regulator_class, NULL, NULL,
5927                               regulator_register_resolve_supply);
5928
5929         /* If we have a full configuration then disable any regulators
5930          * we have permission to change the status for and which are
5931          * not in use or always_on.  This is effectively the default
5932          * for DT and ACPI as they have full constraints.
5933          */
5934         class_for_each_device(&regulator_class, NULL, NULL,
5935                               regulator_late_cleanup);
5936 }
5937
5938 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5939                             regulator_init_complete_work_function);
5940
5941 static int __init regulator_init_complete(void)
5942 {
5943         /*
5944          * Since DT doesn't provide an idiomatic mechanism for
5945          * enabling full constraints and since it's much more natural
5946          * with DT to provide them just assume that a DT enabled
5947          * system has full constraints.
5948          */
5949         if (of_have_populated_dt())
5950                 has_full_constraints = true;
5951
5952         /*
5953          * We punt completion for an arbitrary amount of time since
5954          * systems like distros will load many drivers from userspace
5955          * so consumers might not always be ready yet, this is
5956          * particularly an issue with laptops where this might bounce
5957          * the display off then on.  Ideally we'd get a notification
5958          * from userspace when this happens but we don't so just wait
5959          * a bit and hope we waited long enough.  It'd be better if
5960          * we'd only do this on systems that need it, and a kernel
5961          * command line option might be useful.
5962          */
5963         schedule_delayed_work(&regulator_init_complete_work,
5964                               msecs_to_jiffies(30000));
5965
5966         return 0;
5967 }
5968 late_initcall_sync(regulator_init_complete);