Merge branch 'akpm' (patches from Andrew)
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
44
45 static struct dentry *debugfs_root;
46
47 /*
48  * struct regulator_map
49  *
50  * Used to provide symbolic supply names to devices.
51  */
52 struct regulator_map {
53         struct list_head list;
54         const char *dev_name;   /* The dev_name() for the consumer */
55         const char *supply;
56         struct regulator_dev *regulator;
57 };
58
59 /*
60  * struct regulator_enable_gpio
61  *
62  * Management for shared enable GPIO pin
63  */
64 struct regulator_enable_gpio {
65         struct list_head list;
66         struct gpio_desc *gpiod;
67         u32 enable_count;       /* a number of enabled shared GPIO */
68         u32 request_count;      /* a number of requested shared GPIO */
69 };
70
71 /*
72  * struct regulator_supply_alias
73  *
74  * Used to map lookups for a supply onto an alternative device.
75  */
76 struct regulator_supply_alias {
77         struct list_head list;
78         struct device *src_dev;
79         const char *src_supply;
80         struct device *alias_dev;
81         const char *alias_supply;
82 };
83
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_current_limit(struct regulator_dev *rdev);
87 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88 static int _notifier_call_chain(struct regulator_dev *rdev,
89                                   unsigned long event, void *data);
90 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
91                                      int min_uV, int max_uV);
92 static int regulator_balance_voltage(struct regulator_dev *rdev,
93                                      suspend_state_t state);
94 static struct regulator *create_regulator(struct regulator_dev *rdev,
95                                           struct device *dev,
96                                           const char *supply_name);
97 static void destroy_regulator(struct regulator *regulator);
98 static void _regulator_put(struct regulator *regulator);
99
100 const char *rdev_get_name(struct regulator_dev *rdev)
101 {
102         if (rdev->constraints && rdev->constraints->name)
103                 return rdev->constraints->name;
104         else if (rdev->desc->name)
105                 return rdev->desc->name;
106         else
107                 return "";
108 }
109 EXPORT_SYMBOL_GPL(rdev_get_name);
110
111 static bool have_full_constraints(void)
112 {
113         return has_full_constraints || of_have_populated_dt();
114 }
115
116 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
117 {
118         if (!rdev->constraints) {
119                 rdev_err(rdev, "no constraints\n");
120                 return false;
121         }
122
123         if (rdev->constraints->valid_ops_mask & ops)
124                 return true;
125
126         return false;
127 }
128
129 /**
130  * regulator_lock_nested - lock a single regulator
131  * @rdev:               regulator source
132  * @ww_ctx:             w/w mutex acquire context
133  *
134  * This function can be called many times by one task on
135  * a single regulator and its mutex will be locked only
136  * once. If a task, which is calling this function is other
137  * than the one, which initially locked the mutex, it will
138  * wait on mutex.
139  */
140 static inline int regulator_lock_nested(struct regulator_dev *rdev,
141                                         struct ww_acquire_ctx *ww_ctx)
142 {
143         bool lock = false;
144         int ret = 0;
145
146         mutex_lock(&regulator_nesting_mutex);
147
148         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
149                 if (rdev->mutex_owner == current)
150                         rdev->ref_cnt++;
151                 else
152                         lock = true;
153
154                 if (lock) {
155                         mutex_unlock(&regulator_nesting_mutex);
156                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
157                         mutex_lock(&regulator_nesting_mutex);
158                 }
159         } else {
160                 lock = true;
161         }
162
163         if (lock && ret != -EDEADLK) {
164                 rdev->ref_cnt++;
165                 rdev->mutex_owner = current;
166         }
167
168         mutex_unlock(&regulator_nesting_mutex);
169
170         return ret;
171 }
172
173 /**
174  * regulator_lock - lock a single regulator
175  * @rdev:               regulator source
176  *
177  * This function can be called many times by one task on
178  * a single regulator and its mutex will be locked only
179  * once. If a task, which is calling this function is other
180  * than the one, which initially locked the mutex, it will
181  * wait on mutex.
182  */
183 static void regulator_lock(struct regulator_dev *rdev)
184 {
185         regulator_lock_nested(rdev, NULL);
186 }
187
188 /**
189  * regulator_unlock - unlock a single regulator
190  * @rdev:               regulator_source
191  *
192  * This function unlocks the mutex when the
193  * reference counter reaches 0.
194  */
195 static void regulator_unlock(struct regulator_dev *rdev)
196 {
197         mutex_lock(&regulator_nesting_mutex);
198
199         if (--rdev->ref_cnt == 0) {
200                 rdev->mutex_owner = NULL;
201                 ww_mutex_unlock(&rdev->mutex);
202         }
203
204         WARN_ON_ONCE(rdev->ref_cnt < 0);
205
206         mutex_unlock(&regulator_nesting_mutex);
207 }
208
209 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
210 {
211         struct regulator_dev *c_rdev;
212         int i;
213
214         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
215                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
216
217                 if (rdev->supply->rdev == c_rdev)
218                         return true;
219         }
220
221         return false;
222 }
223
224 static void regulator_unlock_recursive(struct regulator_dev *rdev,
225                                        unsigned int n_coupled)
226 {
227         struct regulator_dev *c_rdev, *supply_rdev;
228         int i, supply_n_coupled;
229
230         for (i = n_coupled; i > 0; i--) {
231                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
232
233                 if (!c_rdev)
234                         continue;
235
236                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
237                         supply_rdev = c_rdev->supply->rdev;
238                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
239
240                         regulator_unlock_recursive(supply_rdev,
241                                                    supply_n_coupled);
242                 }
243
244                 regulator_unlock(c_rdev);
245         }
246 }
247
248 static int regulator_lock_recursive(struct regulator_dev *rdev,
249                                     struct regulator_dev **new_contended_rdev,
250                                     struct regulator_dev **old_contended_rdev,
251                                     struct ww_acquire_ctx *ww_ctx)
252 {
253         struct regulator_dev *c_rdev;
254         int i, err;
255
256         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
257                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
258
259                 if (!c_rdev)
260                         continue;
261
262                 if (c_rdev != *old_contended_rdev) {
263                         err = regulator_lock_nested(c_rdev, ww_ctx);
264                         if (err) {
265                                 if (err == -EDEADLK) {
266                                         *new_contended_rdev = c_rdev;
267                                         goto err_unlock;
268                                 }
269
270                                 /* shouldn't happen */
271                                 WARN_ON_ONCE(err != -EALREADY);
272                         }
273                 } else {
274                         *old_contended_rdev = NULL;
275                 }
276
277                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278                         err = regulator_lock_recursive(c_rdev->supply->rdev,
279                                                        new_contended_rdev,
280                                                        old_contended_rdev,
281                                                        ww_ctx);
282                         if (err) {
283                                 regulator_unlock(c_rdev);
284                                 goto err_unlock;
285                         }
286                 }
287         }
288
289         return 0;
290
291 err_unlock:
292         regulator_unlock_recursive(rdev, i);
293
294         return err;
295 }
296
297 /**
298  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
299  *                              regulators
300  * @rdev:                       regulator source
301  * @ww_ctx:                     w/w mutex acquire context
302  *
303  * Unlock all regulators related with rdev by coupling or supplying.
304  */
305 static void regulator_unlock_dependent(struct regulator_dev *rdev,
306                                        struct ww_acquire_ctx *ww_ctx)
307 {
308         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
309         ww_acquire_fini(ww_ctx);
310 }
311
312 /**
313  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
314  * @rdev:                       regulator source
315  * @ww_ctx:                     w/w mutex acquire context
316  *
317  * This function as a wrapper on regulator_lock_recursive(), which locks
318  * all regulators related with rdev by coupling or supplying.
319  */
320 static void regulator_lock_dependent(struct regulator_dev *rdev,
321                                      struct ww_acquire_ctx *ww_ctx)
322 {
323         struct regulator_dev *new_contended_rdev = NULL;
324         struct regulator_dev *old_contended_rdev = NULL;
325         int err;
326
327         mutex_lock(&regulator_list_mutex);
328
329         ww_acquire_init(ww_ctx, &regulator_ww_class);
330
331         do {
332                 if (new_contended_rdev) {
333                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
334                         old_contended_rdev = new_contended_rdev;
335                         old_contended_rdev->ref_cnt++;
336                 }
337
338                 err = regulator_lock_recursive(rdev,
339                                                &new_contended_rdev,
340                                                &old_contended_rdev,
341                                                ww_ctx);
342
343                 if (old_contended_rdev)
344                         regulator_unlock(old_contended_rdev);
345
346         } while (err == -EDEADLK);
347
348         ww_acquire_done(ww_ctx);
349
350         mutex_unlock(&regulator_list_mutex);
351 }
352
353 /**
354  * of_get_child_regulator - get a child regulator device node
355  * based on supply name
356  * @parent: Parent device node
357  * @prop_name: Combination regulator supply name and "-supply"
358  *
359  * Traverse all child nodes.
360  * Extract the child regulator device node corresponding to the supply name.
361  * returns the device node corresponding to the regulator if found, else
362  * returns NULL.
363  */
364 static struct device_node *of_get_child_regulator(struct device_node *parent,
365                                                   const char *prop_name)
366 {
367         struct device_node *regnode = NULL;
368         struct device_node *child = NULL;
369
370         for_each_child_of_node(parent, child) {
371                 regnode = of_parse_phandle(child, prop_name, 0);
372
373                 if (!regnode) {
374                         regnode = of_get_child_regulator(child, prop_name);
375                         if (regnode)
376                                 goto err_node_put;
377                 } else {
378                         goto err_node_put;
379                 }
380         }
381         return NULL;
382
383 err_node_put:
384         of_node_put(child);
385         return regnode;
386 }
387
388 /**
389  * of_get_regulator - get a regulator device node based on supply name
390  * @dev: Device pointer for the consumer (of regulator) device
391  * @supply: regulator supply name
392  *
393  * Extract the regulator device node corresponding to the supply name.
394  * returns the device node corresponding to the regulator if found, else
395  * returns NULL.
396  */
397 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
398 {
399         struct device_node *regnode = NULL;
400         char prop_name[64]; /* 64 is max size of property name */
401
402         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
403
404         snprintf(prop_name, 64, "%s-supply", supply);
405         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
406
407         if (!regnode) {
408                 regnode = of_get_child_regulator(dev->of_node, prop_name);
409                 if (regnode)
410                         return regnode;
411
412                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
413                                 prop_name, dev->of_node);
414                 return NULL;
415         }
416         return regnode;
417 }
418
419 /* Platform voltage constraint check */
420 int regulator_check_voltage(struct regulator_dev *rdev,
421                             int *min_uV, int *max_uV)
422 {
423         BUG_ON(*min_uV > *max_uV);
424
425         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426                 rdev_err(rdev, "voltage operation not allowed\n");
427                 return -EPERM;
428         }
429
430         if (*max_uV > rdev->constraints->max_uV)
431                 *max_uV = rdev->constraints->max_uV;
432         if (*min_uV < rdev->constraints->min_uV)
433                 *min_uV = rdev->constraints->min_uV;
434
435         if (*min_uV > *max_uV) {
436                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
437                          *min_uV, *max_uV);
438                 return -EINVAL;
439         }
440
441         return 0;
442 }
443
444 /* return 0 if the state is valid */
445 static int regulator_check_states(suspend_state_t state)
446 {
447         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
448 }
449
450 /* Make sure we select a voltage that suits the needs of all
451  * regulator consumers
452  */
453 int regulator_check_consumers(struct regulator_dev *rdev,
454                               int *min_uV, int *max_uV,
455                               suspend_state_t state)
456 {
457         struct regulator *regulator;
458         struct regulator_voltage *voltage;
459
460         list_for_each_entry(regulator, &rdev->consumer_list, list) {
461                 voltage = &regulator->voltage[state];
462                 /*
463                  * Assume consumers that didn't say anything are OK
464                  * with anything in the constraint range.
465                  */
466                 if (!voltage->min_uV && !voltage->max_uV)
467                         continue;
468
469                 if (*max_uV > voltage->max_uV)
470                         *max_uV = voltage->max_uV;
471                 if (*min_uV < voltage->min_uV)
472                         *min_uV = voltage->min_uV;
473         }
474
475         if (*min_uV > *max_uV) {
476                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
477                         *min_uV, *max_uV);
478                 return -EINVAL;
479         }
480
481         return 0;
482 }
483
484 /* current constraint check */
485 static int regulator_check_current_limit(struct regulator_dev *rdev,
486                                         int *min_uA, int *max_uA)
487 {
488         BUG_ON(*min_uA > *max_uA);
489
490         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491                 rdev_err(rdev, "current operation not allowed\n");
492                 return -EPERM;
493         }
494
495         if (*max_uA > rdev->constraints->max_uA)
496                 *max_uA = rdev->constraints->max_uA;
497         if (*min_uA < rdev->constraints->min_uA)
498                 *min_uA = rdev->constraints->min_uA;
499
500         if (*min_uA > *max_uA) {
501                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
502                          *min_uA, *max_uA);
503                 return -EINVAL;
504         }
505
506         return 0;
507 }
508
509 /* operating mode constraint check */
510 static int regulator_mode_constrain(struct regulator_dev *rdev,
511                                     unsigned int *mode)
512 {
513         switch (*mode) {
514         case REGULATOR_MODE_FAST:
515         case REGULATOR_MODE_NORMAL:
516         case REGULATOR_MODE_IDLE:
517         case REGULATOR_MODE_STANDBY:
518                 break;
519         default:
520                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
521                 return -EINVAL;
522         }
523
524         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525                 rdev_err(rdev, "mode operation not allowed\n");
526                 return -EPERM;
527         }
528
529         /* The modes are bitmasks, the most power hungry modes having
530          * the lowest values. If the requested mode isn't supported
531          * try higher modes.
532          */
533         while (*mode) {
534                 if (rdev->constraints->valid_modes_mask & *mode)
535                         return 0;
536                 *mode /= 2;
537         }
538
539         return -EINVAL;
540 }
541
542 static inline struct regulator_state *
543 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
544 {
545         if (rdev->constraints == NULL)
546                 return NULL;
547
548         switch (state) {
549         case PM_SUSPEND_STANDBY:
550                 return &rdev->constraints->state_standby;
551         case PM_SUSPEND_MEM:
552                 return &rdev->constraints->state_mem;
553         case PM_SUSPEND_MAX:
554                 return &rdev->constraints->state_disk;
555         default:
556                 return NULL;
557         }
558 }
559
560 static const struct regulator_state *
561 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
562 {
563         const struct regulator_state *rstate;
564
565         rstate = regulator_get_suspend_state(rdev, state);
566         if (rstate == NULL)
567                 return NULL;
568
569         /* If we have no suspend mode configuration don't set anything;
570          * only warn if the driver implements set_suspend_voltage or
571          * set_suspend_mode callback.
572          */
573         if (rstate->enabled != ENABLE_IN_SUSPEND &&
574             rstate->enabled != DISABLE_IN_SUSPEND) {
575                 if (rdev->desc->ops->set_suspend_voltage ||
576                     rdev->desc->ops->set_suspend_mode)
577                         rdev_warn(rdev, "No configuration\n");
578                 return NULL;
579         }
580
581         return rstate;
582 }
583
584 static ssize_t microvolts_show(struct device *dev,
585                                struct device_attribute *attr, char *buf)
586 {
587         struct regulator_dev *rdev = dev_get_drvdata(dev);
588         int uV;
589
590         regulator_lock(rdev);
591         uV = regulator_get_voltage_rdev(rdev);
592         regulator_unlock(rdev);
593
594         if (uV < 0)
595                 return uV;
596         return sprintf(buf, "%d\n", uV);
597 }
598 static DEVICE_ATTR_RO(microvolts);
599
600 static ssize_t microamps_show(struct device *dev,
601                               struct device_attribute *attr, char *buf)
602 {
603         struct regulator_dev *rdev = dev_get_drvdata(dev);
604
605         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
606 }
607 static DEVICE_ATTR_RO(microamps);
608
609 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
610                          char *buf)
611 {
612         struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614         return sprintf(buf, "%s\n", rdev_get_name(rdev));
615 }
616 static DEVICE_ATTR_RO(name);
617
618 static const char *regulator_opmode_to_str(int mode)
619 {
620         switch (mode) {
621         case REGULATOR_MODE_FAST:
622                 return "fast";
623         case REGULATOR_MODE_NORMAL:
624                 return "normal";
625         case REGULATOR_MODE_IDLE:
626                 return "idle";
627         case REGULATOR_MODE_STANDBY:
628                 return "standby";
629         }
630         return "unknown";
631 }
632
633 static ssize_t regulator_print_opmode(char *buf, int mode)
634 {
635         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
636 }
637
638 static ssize_t opmode_show(struct device *dev,
639                            struct device_attribute *attr, char *buf)
640 {
641         struct regulator_dev *rdev = dev_get_drvdata(dev);
642
643         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
644 }
645 static DEVICE_ATTR_RO(opmode);
646
647 static ssize_t regulator_print_state(char *buf, int state)
648 {
649         if (state > 0)
650                 return sprintf(buf, "enabled\n");
651         else if (state == 0)
652                 return sprintf(buf, "disabled\n");
653         else
654                 return sprintf(buf, "unknown\n");
655 }
656
657 static ssize_t state_show(struct device *dev,
658                           struct device_attribute *attr, char *buf)
659 {
660         struct regulator_dev *rdev = dev_get_drvdata(dev);
661         ssize_t ret;
662
663         regulator_lock(rdev);
664         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665         regulator_unlock(rdev);
666
667         return ret;
668 }
669 static DEVICE_ATTR_RO(state);
670
671 static ssize_t status_show(struct device *dev,
672                            struct device_attribute *attr, char *buf)
673 {
674         struct regulator_dev *rdev = dev_get_drvdata(dev);
675         int status;
676         char *label;
677
678         status = rdev->desc->ops->get_status(rdev);
679         if (status < 0)
680                 return status;
681
682         switch (status) {
683         case REGULATOR_STATUS_OFF:
684                 label = "off";
685                 break;
686         case REGULATOR_STATUS_ON:
687                 label = "on";
688                 break;
689         case REGULATOR_STATUS_ERROR:
690                 label = "error";
691                 break;
692         case REGULATOR_STATUS_FAST:
693                 label = "fast";
694                 break;
695         case REGULATOR_STATUS_NORMAL:
696                 label = "normal";
697                 break;
698         case REGULATOR_STATUS_IDLE:
699                 label = "idle";
700                 break;
701         case REGULATOR_STATUS_STANDBY:
702                 label = "standby";
703                 break;
704         case REGULATOR_STATUS_BYPASS:
705                 label = "bypass";
706                 break;
707         case REGULATOR_STATUS_UNDEFINED:
708                 label = "undefined";
709                 break;
710         default:
711                 return -ERANGE;
712         }
713
714         return sprintf(buf, "%s\n", label);
715 }
716 static DEVICE_ATTR_RO(status);
717
718 static ssize_t min_microamps_show(struct device *dev,
719                                   struct device_attribute *attr, char *buf)
720 {
721         struct regulator_dev *rdev = dev_get_drvdata(dev);
722
723         if (!rdev->constraints)
724                 return sprintf(buf, "constraint not defined\n");
725
726         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
727 }
728 static DEVICE_ATTR_RO(min_microamps);
729
730 static ssize_t max_microamps_show(struct device *dev,
731                                   struct device_attribute *attr, char *buf)
732 {
733         struct regulator_dev *rdev = dev_get_drvdata(dev);
734
735         if (!rdev->constraints)
736                 return sprintf(buf, "constraint not defined\n");
737
738         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
739 }
740 static DEVICE_ATTR_RO(max_microamps);
741
742 static ssize_t min_microvolts_show(struct device *dev,
743                                    struct device_attribute *attr, char *buf)
744 {
745         struct regulator_dev *rdev = dev_get_drvdata(dev);
746
747         if (!rdev->constraints)
748                 return sprintf(buf, "constraint not defined\n");
749
750         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
751 }
752 static DEVICE_ATTR_RO(min_microvolts);
753
754 static ssize_t max_microvolts_show(struct device *dev,
755                                    struct device_attribute *attr, char *buf)
756 {
757         struct regulator_dev *rdev = dev_get_drvdata(dev);
758
759         if (!rdev->constraints)
760                 return sprintf(buf, "constraint not defined\n");
761
762         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
763 }
764 static DEVICE_ATTR_RO(max_microvolts);
765
766 static ssize_t requested_microamps_show(struct device *dev,
767                                         struct device_attribute *attr, char *buf)
768 {
769         struct regulator_dev *rdev = dev_get_drvdata(dev);
770         struct regulator *regulator;
771         int uA = 0;
772
773         regulator_lock(rdev);
774         list_for_each_entry(regulator, &rdev->consumer_list, list) {
775                 if (regulator->enable_count)
776                         uA += regulator->uA_load;
777         }
778         regulator_unlock(rdev);
779         return sprintf(buf, "%d\n", uA);
780 }
781 static DEVICE_ATTR_RO(requested_microamps);
782
783 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
784                               char *buf)
785 {
786         struct regulator_dev *rdev = dev_get_drvdata(dev);
787         return sprintf(buf, "%d\n", rdev->use_count);
788 }
789 static DEVICE_ATTR_RO(num_users);
790
791 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
792                          char *buf)
793 {
794         struct regulator_dev *rdev = dev_get_drvdata(dev);
795
796         switch (rdev->desc->type) {
797         case REGULATOR_VOLTAGE:
798                 return sprintf(buf, "voltage\n");
799         case REGULATOR_CURRENT:
800                 return sprintf(buf, "current\n");
801         }
802         return sprintf(buf, "unknown\n");
803 }
804 static DEVICE_ATTR_RO(type);
805
806 static ssize_t suspend_mem_microvolts_show(struct device *dev,
807                                            struct device_attribute *attr, char *buf)
808 {
809         struct regulator_dev *rdev = dev_get_drvdata(dev);
810
811         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
812 }
813 static DEVICE_ATTR_RO(suspend_mem_microvolts);
814
815 static ssize_t suspend_disk_microvolts_show(struct device *dev,
816                                             struct device_attribute *attr, char *buf)
817 {
818         struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
821 }
822 static DEVICE_ATTR_RO(suspend_disk_microvolts);
823
824 static ssize_t suspend_standby_microvolts_show(struct device *dev,
825                                                struct device_attribute *attr, char *buf)
826 {
827         struct regulator_dev *rdev = dev_get_drvdata(dev);
828
829         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
830 }
831 static DEVICE_ATTR_RO(suspend_standby_microvolts);
832
833 static ssize_t suspend_mem_mode_show(struct device *dev,
834                                      struct device_attribute *attr, char *buf)
835 {
836         struct regulator_dev *rdev = dev_get_drvdata(dev);
837
838         return regulator_print_opmode(buf,
839                 rdev->constraints->state_mem.mode);
840 }
841 static DEVICE_ATTR_RO(suspend_mem_mode);
842
843 static ssize_t suspend_disk_mode_show(struct device *dev,
844                                       struct device_attribute *attr, char *buf)
845 {
846         struct regulator_dev *rdev = dev_get_drvdata(dev);
847
848         return regulator_print_opmode(buf,
849                 rdev->constraints->state_disk.mode);
850 }
851 static DEVICE_ATTR_RO(suspend_disk_mode);
852
853 static ssize_t suspend_standby_mode_show(struct device *dev,
854                                          struct device_attribute *attr, char *buf)
855 {
856         struct regulator_dev *rdev = dev_get_drvdata(dev);
857
858         return regulator_print_opmode(buf,
859                 rdev->constraints->state_standby.mode);
860 }
861 static DEVICE_ATTR_RO(suspend_standby_mode);
862
863 static ssize_t suspend_mem_state_show(struct device *dev,
864                                       struct device_attribute *attr, char *buf)
865 {
866         struct regulator_dev *rdev = dev_get_drvdata(dev);
867
868         return regulator_print_state(buf,
869                         rdev->constraints->state_mem.enabled);
870 }
871 static DEVICE_ATTR_RO(suspend_mem_state);
872
873 static ssize_t suspend_disk_state_show(struct device *dev,
874                                        struct device_attribute *attr, char *buf)
875 {
876         struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878         return regulator_print_state(buf,
879                         rdev->constraints->state_disk.enabled);
880 }
881 static DEVICE_ATTR_RO(suspend_disk_state);
882
883 static ssize_t suspend_standby_state_show(struct device *dev,
884                                           struct device_attribute *attr, char *buf)
885 {
886         struct regulator_dev *rdev = dev_get_drvdata(dev);
887
888         return regulator_print_state(buf,
889                         rdev->constraints->state_standby.enabled);
890 }
891 static DEVICE_ATTR_RO(suspend_standby_state);
892
893 static ssize_t bypass_show(struct device *dev,
894                            struct device_attribute *attr, char *buf)
895 {
896         struct regulator_dev *rdev = dev_get_drvdata(dev);
897         const char *report;
898         bool bypass;
899         int ret;
900
901         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
902
903         if (ret != 0)
904                 report = "unknown";
905         else if (bypass)
906                 report = "enabled";
907         else
908                 report = "disabled";
909
910         return sprintf(buf, "%s\n", report);
911 }
912 static DEVICE_ATTR_RO(bypass);
913
914 /* Calculate the new optimum regulator operating mode based on the new total
915  * consumer load. All locks held by caller
916  */
917 static int drms_uA_update(struct regulator_dev *rdev)
918 {
919         struct regulator *sibling;
920         int current_uA = 0, output_uV, input_uV, err;
921         unsigned int mode;
922
923         /*
924          * first check to see if we can set modes at all, otherwise just
925          * tell the consumer everything is OK.
926          */
927         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
928                 rdev_dbg(rdev, "DRMS operation not allowed\n");
929                 return 0;
930         }
931
932         if (!rdev->desc->ops->get_optimum_mode &&
933             !rdev->desc->ops->set_load)
934                 return 0;
935
936         if (!rdev->desc->ops->set_mode &&
937             !rdev->desc->ops->set_load)
938                 return -EINVAL;
939
940         /* calc total requested load */
941         list_for_each_entry(sibling, &rdev->consumer_list, list) {
942                 if (sibling->enable_count)
943                         current_uA += sibling->uA_load;
944         }
945
946         current_uA += rdev->constraints->system_load;
947
948         if (rdev->desc->ops->set_load) {
949                 /* set the optimum mode for our new total regulator load */
950                 err = rdev->desc->ops->set_load(rdev, current_uA);
951                 if (err < 0)
952                         rdev_err(rdev, "failed to set load %d: %pe\n",
953                                  current_uA, ERR_PTR(err));
954         } else {
955                 /* get output voltage */
956                 output_uV = regulator_get_voltage_rdev(rdev);
957                 if (output_uV <= 0) {
958                         rdev_err(rdev, "invalid output voltage found\n");
959                         return -EINVAL;
960                 }
961
962                 /* get input voltage */
963                 input_uV = 0;
964                 if (rdev->supply)
965                         input_uV = regulator_get_voltage(rdev->supply);
966                 if (input_uV <= 0)
967                         input_uV = rdev->constraints->input_uV;
968                 if (input_uV <= 0) {
969                         rdev_err(rdev, "invalid input voltage found\n");
970                         return -EINVAL;
971                 }
972
973                 /* now get the optimum mode for our new total regulator load */
974                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
975                                                          output_uV, current_uA);
976
977                 /* check the new mode is allowed */
978                 err = regulator_mode_constrain(rdev, &mode);
979                 if (err < 0) {
980                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
981                                  current_uA, input_uV, output_uV, ERR_PTR(err));
982                         return err;
983                 }
984
985                 err = rdev->desc->ops->set_mode(rdev, mode);
986                 if (err < 0)
987                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
988                                  mode, ERR_PTR(err));
989         }
990
991         return err;
992 }
993
994 static int __suspend_set_state(struct regulator_dev *rdev,
995                                const struct regulator_state *rstate)
996 {
997         int ret = 0;
998
999         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000                 rdev->desc->ops->set_suspend_enable)
1001                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1002         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003                 rdev->desc->ops->set_suspend_disable)
1004                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1005         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1006                 ret = 0;
1007
1008         if (ret < 0) {
1009                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1010                 return ret;
1011         }
1012
1013         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1015                 if (ret < 0) {
1016                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1017                         return ret;
1018                 }
1019         }
1020
1021         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1023                 if (ret < 0) {
1024                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1025                         return ret;
1026                 }
1027         }
1028
1029         return ret;
1030 }
1031
1032 static int suspend_set_initial_state(struct regulator_dev *rdev)
1033 {
1034         const struct regulator_state *rstate;
1035
1036         rstate = regulator_get_suspend_state_check(rdev,
1037                         rdev->constraints->initial_state);
1038         if (!rstate)
1039                 return 0;
1040
1041         return __suspend_set_state(rdev, rstate);
1042 }
1043
1044 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045 static void print_constraints_debug(struct regulator_dev *rdev)
1046 {
1047         struct regulation_constraints *constraints = rdev->constraints;
1048         char buf[160] = "";
1049         size_t len = sizeof(buf) - 1;
1050         int count = 0;
1051         int ret;
1052
1053         if (constraints->min_uV && constraints->max_uV) {
1054                 if (constraints->min_uV == constraints->max_uV)
1055                         count += scnprintf(buf + count, len - count, "%d mV ",
1056                                            constraints->min_uV / 1000);
1057                 else
1058                         count += scnprintf(buf + count, len - count,
1059                                            "%d <--> %d mV ",
1060                                            constraints->min_uV / 1000,
1061                                            constraints->max_uV / 1000);
1062         }
1063
1064         if (!constraints->min_uV ||
1065             constraints->min_uV != constraints->max_uV) {
1066                 ret = regulator_get_voltage_rdev(rdev);
1067                 if (ret > 0)
1068                         count += scnprintf(buf + count, len - count,
1069                                            "at %d mV ", ret / 1000);
1070         }
1071
1072         if (constraints->uV_offset)
1073                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1074                                    constraints->uV_offset / 1000);
1075
1076         if (constraints->min_uA && constraints->max_uA) {
1077                 if (constraints->min_uA == constraints->max_uA)
1078                         count += scnprintf(buf + count, len - count, "%d mA ",
1079                                            constraints->min_uA / 1000);
1080                 else
1081                         count += scnprintf(buf + count, len - count,
1082                                            "%d <--> %d mA ",
1083                                            constraints->min_uA / 1000,
1084                                            constraints->max_uA / 1000);
1085         }
1086
1087         if (!constraints->min_uA ||
1088             constraints->min_uA != constraints->max_uA) {
1089                 ret = _regulator_get_current_limit(rdev);
1090                 if (ret > 0)
1091                         count += scnprintf(buf + count, len - count,
1092                                            "at %d mA ", ret / 1000);
1093         }
1094
1095         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096                 count += scnprintf(buf + count, len - count, "fast ");
1097         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098                 count += scnprintf(buf + count, len - count, "normal ");
1099         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100                 count += scnprintf(buf + count, len - count, "idle ");
1101         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102                 count += scnprintf(buf + count, len - count, "standby ");
1103
1104         if (!count)
1105                 count = scnprintf(buf, len, "no parameters");
1106         else
1107                 --count;
1108
1109         count += scnprintf(buf + count, len - count, ", %s",
1110                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1111
1112         rdev_dbg(rdev, "%s\n", buf);
1113 }
1114 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1117
1118 static void print_constraints(struct regulator_dev *rdev)
1119 {
1120         struct regulation_constraints *constraints = rdev->constraints;
1121
1122         print_constraints_debug(rdev);
1123
1124         if ((constraints->min_uV != constraints->max_uV) &&
1125             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1126                 rdev_warn(rdev,
1127                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1128 }
1129
1130 static int machine_constraints_voltage(struct regulator_dev *rdev,
1131         struct regulation_constraints *constraints)
1132 {
1133         const struct regulator_ops *ops = rdev->desc->ops;
1134         int ret;
1135
1136         /* do we need to apply the constraint voltage */
1137         if (rdev->constraints->apply_uV &&
1138             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139                 int target_min, target_max;
1140                 int current_uV = regulator_get_voltage_rdev(rdev);
1141
1142                 if (current_uV == -ENOTRECOVERABLE) {
1143                         /* This regulator can't be read and must be initialized */
1144                         rdev_info(rdev, "Setting %d-%duV\n",
1145                                   rdev->constraints->min_uV,
1146                                   rdev->constraints->max_uV);
1147                         _regulator_do_set_voltage(rdev,
1148                                                   rdev->constraints->min_uV,
1149                                                   rdev->constraints->max_uV);
1150                         current_uV = regulator_get_voltage_rdev(rdev);
1151                 }
1152
1153                 if (current_uV < 0) {
1154                         rdev_err(rdev,
1155                                  "failed to get the current voltage: %pe\n",
1156                                  ERR_PTR(current_uV));
1157                         return current_uV;
1158                 }
1159
1160                 /*
1161                  * If we're below the minimum voltage move up to the
1162                  * minimum voltage, if we're above the maximum voltage
1163                  * then move down to the maximum.
1164                  */
1165                 target_min = current_uV;
1166                 target_max = current_uV;
1167
1168                 if (current_uV < rdev->constraints->min_uV) {
1169                         target_min = rdev->constraints->min_uV;
1170                         target_max = rdev->constraints->min_uV;
1171                 }
1172
1173                 if (current_uV > rdev->constraints->max_uV) {
1174                         target_min = rdev->constraints->max_uV;
1175                         target_max = rdev->constraints->max_uV;
1176                 }
1177
1178                 if (target_min != current_uV || target_max != current_uV) {
1179                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1180                                   current_uV, target_min, target_max);
1181                         ret = _regulator_do_set_voltage(
1182                                 rdev, target_min, target_max);
1183                         if (ret < 0) {
1184                                 rdev_err(rdev,
1185                                         "failed to apply %d-%duV constraint: %pe\n",
1186                                         target_min, target_max, ERR_PTR(ret));
1187                                 return ret;
1188                         }
1189                 }
1190         }
1191
1192         /* constrain machine-level voltage specs to fit
1193          * the actual range supported by this regulator.
1194          */
1195         if (ops->list_voltage && rdev->desc->n_voltages) {
1196                 int     count = rdev->desc->n_voltages;
1197                 int     i;
1198                 int     min_uV = INT_MAX;
1199                 int     max_uV = INT_MIN;
1200                 int     cmin = constraints->min_uV;
1201                 int     cmax = constraints->max_uV;
1202
1203                 /* it's safe to autoconfigure fixed-voltage supplies
1204                  * and the constraints are used by list_voltage.
1205                  */
1206                 if (count == 1 && !cmin) {
1207                         cmin = 1;
1208                         cmax = INT_MAX;
1209                         constraints->min_uV = cmin;
1210                         constraints->max_uV = cmax;
1211                 }
1212
1213                 /* voltage constraints are optional */
1214                 if ((cmin == 0) && (cmax == 0))
1215                         return 0;
1216
1217                 /* else require explicit machine-level constraints */
1218                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1219                         rdev_err(rdev, "invalid voltage constraints\n");
1220                         return -EINVAL;
1221                 }
1222
1223                 /* no need to loop voltages if range is continuous */
1224                 if (rdev->desc->continuous_voltage_range)
1225                         return 0;
1226
1227                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1228                 for (i = 0; i < count; i++) {
1229                         int     value;
1230
1231                         value = ops->list_voltage(rdev, i);
1232                         if (value <= 0)
1233                                 continue;
1234
1235                         /* maybe adjust [min_uV..max_uV] */
1236                         if (value >= cmin && value < min_uV)
1237                                 min_uV = value;
1238                         if (value <= cmax && value > max_uV)
1239                                 max_uV = value;
1240                 }
1241
1242                 /* final: [min_uV..max_uV] valid iff constraints valid */
1243                 if (max_uV < min_uV) {
1244                         rdev_err(rdev,
1245                                  "unsupportable voltage constraints %u-%uuV\n",
1246                                  min_uV, max_uV);
1247                         return -EINVAL;
1248                 }
1249
1250                 /* use regulator's subset of machine constraints */
1251                 if (constraints->min_uV < min_uV) {
1252                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1253                                  constraints->min_uV, min_uV);
1254                         constraints->min_uV = min_uV;
1255                 }
1256                 if (constraints->max_uV > max_uV) {
1257                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1258                                  constraints->max_uV, max_uV);
1259                         constraints->max_uV = max_uV;
1260                 }
1261         }
1262
1263         return 0;
1264 }
1265
1266 static int machine_constraints_current(struct regulator_dev *rdev,
1267         struct regulation_constraints *constraints)
1268 {
1269         const struct regulator_ops *ops = rdev->desc->ops;
1270         int ret;
1271
1272         if (!constraints->min_uA && !constraints->max_uA)
1273                 return 0;
1274
1275         if (constraints->min_uA > constraints->max_uA) {
1276                 rdev_err(rdev, "Invalid current constraints\n");
1277                 return -EINVAL;
1278         }
1279
1280         if (!ops->set_current_limit || !ops->get_current_limit) {
1281                 rdev_warn(rdev, "Operation of current configuration missing\n");
1282                 return 0;
1283         }
1284
1285         /* Set regulator current in constraints range */
1286         ret = ops->set_current_limit(rdev, constraints->min_uA,
1287                         constraints->max_uA);
1288         if (ret < 0) {
1289                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1290                 return ret;
1291         }
1292
1293         return 0;
1294 }
1295
1296 static int _regulator_do_enable(struct regulator_dev *rdev);
1297
1298 static int notif_set_limit(struct regulator_dev *rdev,
1299                            int (*set)(struct regulator_dev *, int, int, bool),
1300                            int limit, int severity)
1301 {
1302         bool enable;
1303
1304         if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1305                 enable = false;
1306                 limit = 0;
1307         } else {
1308                 enable = true;
1309         }
1310
1311         if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1312                 limit = 0;
1313
1314         return set(rdev, limit, severity, enable);
1315 }
1316
1317 static int handle_notify_limits(struct regulator_dev *rdev,
1318                         int (*set)(struct regulator_dev *, int, int, bool),
1319                         struct notification_limit *limits)
1320 {
1321         int ret = 0;
1322
1323         if (!set)
1324                 return -EOPNOTSUPP;
1325
1326         if (limits->prot)
1327                 ret = notif_set_limit(rdev, set, limits->prot,
1328                                       REGULATOR_SEVERITY_PROT);
1329         if (ret)
1330                 return ret;
1331
1332         if (limits->err)
1333                 ret = notif_set_limit(rdev, set, limits->err,
1334                                       REGULATOR_SEVERITY_ERR);
1335         if (ret)
1336                 return ret;
1337
1338         if (limits->warn)
1339                 ret = notif_set_limit(rdev, set, limits->warn,
1340                                       REGULATOR_SEVERITY_WARN);
1341
1342         return ret;
1343 }
1344 /**
1345  * set_machine_constraints - sets regulator constraints
1346  * @rdev: regulator source
1347  *
1348  * Allows platform initialisation code to define and constrain
1349  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1350  * Constraints *must* be set by platform code in order for some
1351  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1352  * set_mode.
1353  */
1354 static int set_machine_constraints(struct regulator_dev *rdev)
1355 {
1356         int ret = 0;
1357         const struct regulator_ops *ops = rdev->desc->ops;
1358
1359         ret = machine_constraints_voltage(rdev, rdev->constraints);
1360         if (ret != 0)
1361                 return ret;
1362
1363         ret = machine_constraints_current(rdev, rdev->constraints);
1364         if (ret != 0)
1365                 return ret;
1366
1367         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1368                 ret = ops->set_input_current_limit(rdev,
1369                                                    rdev->constraints->ilim_uA);
1370                 if (ret < 0) {
1371                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1372                         return ret;
1373                 }
1374         }
1375
1376         /* do we need to setup our suspend state */
1377         if (rdev->constraints->initial_state) {
1378                 ret = suspend_set_initial_state(rdev);
1379                 if (ret < 0) {
1380                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1381                         return ret;
1382                 }
1383         }
1384
1385         if (rdev->constraints->initial_mode) {
1386                 if (!ops->set_mode) {
1387                         rdev_err(rdev, "no set_mode operation\n");
1388                         return -EINVAL;
1389                 }
1390
1391                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1392                 if (ret < 0) {
1393                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1394                         return ret;
1395                 }
1396         } else if (rdev->constraints->system_load) {
1397                 /*
1398                  * We'll only apply the initial system load if an
1399                  * initial mode wasn't specified.
1400                  */
1401                 drms_uA_update(rdev);
1402         }
1403
1404         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1405                 && ops->set_ramp_delay) {
1406                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1407                 if (ret < 0) {
1408                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1409                         return ret;
1410                 }
1411         }
1412
1413         if (rdev->constraints->pull_down && ops->set_pull_down) {
1414                 ret = ops->set_pull_down(rdev);
1415                 if (ret < 0) {
1416                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1417                         return ret;
1418                 }
1419         }
1420
1421         if (rdev->constraints->soft_start && ops->set_soft_start) {
1422                 ret = ops->set_soft_start(rdev);
1423                 if (ret < 0) {
1424                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1425                         return ret;
1426                 }
1427         }
1428
1429         /*
1430          * Existing logic does not warn if over_current_protection is given as
1431          * a constraint but driver does not support that. I think we should
1432          * warn about this type of issues as it is possible someone changes
1433          * PMIC on board to another type - and the another PMIC's driver does
1434          * not support setting protection. Board composer may happily believe
1435          * the DT limits are respected - especially if the new PMIC HW also
1436          * supports protection but the driver does not. I won't change the logic
1437          * without hearing more experienced opinion on this though.
1438          *
1439          * If warning is seen as a good idea then we can merge handling the
1440          * over-curret protection and detection and get rid of this special
1441          * handling.
1442          */
1443         if (rdev->constraints->over_current_protection
1444                 && ops->set_over_current_protection) {
1445                 int lim = rdev->constraints->over_curr_limits.prot;
1446
1447                 ret = ops->set_over_current_protection(rdev, lim,
1448                                                        REGULATOR_SEVERITY_PROT,
1449                                                        true);
1450                 if (ret < 0) {
1451                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1452                                  ERR_PTR(ret));
1453                         return ret;
1454                 }
1455         }
1456
1457         if (rdev->constraints->over_current_detection)
1458                 ret = handle_notify_limits(rdev,
1459                                            ops->set_over_current_protection,
1460                                            &rdev->constraints->over_curr_limits);
1461         if (ret) {
1462                 if (ret != -EOPNOTSUPP) {
1463                         rdev_err(rdev, "failed to set over current limits: %pe\n",
1464                                  ERR_PTR(ret));
1465                         return ret;
1466                 }
1467                 rdev_warn(rdev,
1468                           "IC does not support requested over-current limits\n");
1469         }
1470
1471         if (rdev->constraints->over_voltage_detection)
1472                 ret = handle_notify_limits(rdev,
1473                                            ops->set_over_voltage_protection,
1474                                            &rdev->constraints->over_voltage_limits);
1475         if (ret) {
1476                 if (ret != -EOPNOTSUPP) {
1477                         rdev_err(rdev, "failed to set over voltage limits %pe\n",
1478                                  ERR_PTR(ret));
1479                         return ret;
1480                 }
1481                 rdev_warn(rdev,
1482                           "IC does not support requested over voltage limits\n");
1483         }
1484
1485         if (rdev->constraints->under_voltage_detection)
1486                 ret = handle_notify_limits(rdev,
1487                                            ops->set_under_voltage_protection,
1488                                            &rdev->constraints->under_voltage_limits);
1489         if (ret) {
1490                 if (ret != -EOPNOTSUPP) {
1491                         rdev_err(rdev, "failed to set under voltage limits %pe\n",
1492                                  ERR_PTR(ret));
1493                         return ret;
1494                 }
1495                 rdev_warn(rdev,
1496                           "IC does not support requested under voltage limits\n");
1497         }
1498
1499         if (rdev->constraints->over_temp_detection)
1500                 ret = handle_notify_limits(rdev,
1501                                            ops->set_thermal_protection,
1502                                            &rdev->constraints->temp_limits);
1503         if (ret) {
1504                 if (ret != -EOPNOTSUPP) {
1505                         rdev_err(rdev, "failed to set temperature limits %pe\n",
1506                                  ERR_PTR(ret));
1507                         return ret;
1508                 }
1509                 rdev_warn(rdev,
1510                           "IC does not support requested temperature limits\n");
1511         }
1512
1513         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1514                 bool ad_state = (rdev->constraints->active_discharge ==
1515                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1516
1517                 ret = ops->set_active_discharge(rdev, ad_state);
1518                 if (ret < 0) {
1519                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1520                         return ret;
1521                 }
1522         }
1523
1524         /* If the constraints say the regulator should be on at this point
1525          * and we have control then make sure it is enabled.
1526          */
1527         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1528                 /* If we want to enable this regulator, make sure that we know
1529                  * the supplying regulator.
1530                  */
1531                 if (rdev->supply_name && !rdev->supply)
1532                         return -EPROBE_DEFER;
1533
1534                 if (rdev->supply) {
1535                         ret = regulator_enable(rdev->supply);
1536                         if (ret < 0) {
1537                                 _regulator_put(rdev->supply);
1538                                 rdev->supply = NULL;
1539                                 return ret;
1540                         }
1541                 }
1542
1543                 ret = _regulator_do_enable(rdev);
1544                 if (ret < 0 && ret != -EINVAL) {
1545                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1546                         return ret;
1547                 }
1548
1549                 if (rdev->constraints->always_on)
1550                         rdev->use_count++;
1551         } else if (rdev->desc->off_on_delay) {
1552                 rdev->last_off = ktime_get();
1553         }
1554
1555         print_constraints(rdev);
1556         return 0;
1557 }
1558
1559 /**
1560  * set_supply - set regulator supply regulator
1561  * @rdev: regulator name
1562  * @supply_rdev: supply regulator name
1563  *
1564  * Called by platform initialisation code to set the supply regulator for this
1565  * regulator. This ensures that a regulators supply will also be enabled by the
1566  * core if it's child is enabled.
1567  */
1568 static int set_supply(struct regulator_dev *rdev,
1569                       struct regulator_dev *supply_rdev)
1570 {
1571         int err;
1572
1573         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1574
1575         if (!try_module_get(supply_rdev->owner))
1576                 return -ENODEV;
1577
1578         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1579         if (rdev->supply == NULL) {
1580                 err = -ENOMEM;
1581                 return err;
1582         }
1583         supply_rdev->open_count++;
1584
1585         return 0;
1586 }
1587
1588 /**
1589  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1590  * @rdev:         regulator source
1591  * @consumer_dev_name: dev_name() string for device supply applies to
1592  * @supply:       symbolic name for supply
1593  *
1594  * Allows platform initialisation code to map physical regulator
1595  * sources to symbolic names for supplies for use by devices.  Devices
1596  * should use these symbolic names to request regulators, avoiding the
1597  * need to provide board-specific regulator names as platform data.
1598  */
1599 static int set_consumer_device_supply(struct regulator_dev *rdev,
1600                                       const char *consumer_dev_name,
1601                                       const char *supply)
1602 {
1603         struct regulator_map *node, *new_node;
1604         int has_dev;
1605
1606         if (supply == NULL)
1607                 return -EINVAL;
1608
1609         if (consumer_dev_name != NULL)
1610                 has_dev = 1;
1611         else
1612                 has_dev = 0;
1613
1614         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1615         if (new_node == NULL)
1616                 return -ENOMEM;
1617
1618         new_node->regulator = rdev;
1619         new_node->supply = supply;
1620
1621         if (has_dev) {
1622                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1623                 if (new_node->dev_name == NULL) {
1624                         kfree(new_node);
1625                         return -ENOMEM;
1626                 }
1627         }
1628
1629         mutex_lock(&regulator_list_mutex);
1630         list_for_each_entry(node, &regulator_map_list, list) {
1631                 if (node->dev_name && consumer_dev_name) {
1632                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1633                                 continue;
1634                 } else if (node->dev_name || consumer_dev_name) {
1635                         continue;
1636                 }
1637
1638                 if (strcmp(node->supply, supply) != 0)
1639                         continue;
1640
1641                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1642                          consumer_dev_name,
1643                          dev_name(&node->regulator->dev),
1644                          node->regulator->desc->name,
1645                          supply,
1646                          dev_name(&rdev->dev), rdev_get_name(rdev));
1647                 goto fail;
1648         }
1649
1650         list_add(&new_node->list, &regulator_map_list);
1651         mutex_unlock(&regulator_list_mutex);
1652
1653         return 0;
1654
1655 fail:
1656         mutex_unlock(&regulator_list_mutex);
1657         kfree(new_node->dev_name);
1658         kfree(new_node);
1659         return -EBUSY;
1660 }
1661
1662 static void unset_regulator_supplies(struct regulator_dev *rdev)
1663 {
1664         struct regulator_map *node, *n;
1665
1666         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1667                 if (rdev == node->regulator) {
1668                         list_del(&node->list);
1669                         kfree(node->dev_name);
1670                         kfree(node);
1671                 }
1672         }
1673 }
1674
1675 #ifdef CONFIG_DEBUG_FS
1676 static ssize_t constraint_flags_read_file(struct file *file,
1677                                           char __user *user_buf,
1678                                           size_t count, loff_t *ppos)
1679 {
1680         const struct regulator *regulator = file->private_data;
1681         const struct regulation_constraints *c = regulator->rdev->constraints;
1682         char *buf;
1683         ssize_t ret;
1684
1685         if (!c)
1686                 return 0;
1687
1688         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1689         if (!buf)
1690                 return -ENOMEM;
1691
1692         ret = snprintf(buf, PAGE_SIZE,
1693                         "always_on: %u\n"
1694                         "boot_on: %u\n"
1695                         "apply_uV: %u\n"
1696                         "ramp_disable: %u\n"
1697                         "soft_start: %u\n"
1698                         "pull_down: %u\n"
1699                         "over_current_protection: %u\n",
1700                         c->always_on,
1701                         c->boot_on,
1702                         c->apply_uV,
1703                         c->ramp_disable,
1704                         c->soft_start,
1705                         c->pull_down,
1706                         c->over_current_protection);
1707
1708         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1709         kfree(buf);
1710
1711         return ret;
1712 }
1713
1714 #endif
1715
1716 static const struct file_operations constraint_flags_fops = {
1717 #ifdef CONFIG_DEBUG_FS
1718         .open = simple_open,
1719         .read = constraint_flags_read_file,
1720         .llseek = default_llseek,
1721 #endif
1722 };
1723
1724 #define REG_STR_SIZE    64
1725
1726 static struct regulator *create_regulator(struct regulator_dev *rdev,
1727                                           struct device *dev,
1728                                           const char *supply_name)
1729 {
1730         struct regulator *regulator;
1731         int err = 0;
1732
1733         if (dev) {
1734                 char buf[REG_STR_SIZE];
1735                 int size;
1736
1737                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1738                                 dev->kobj.name, supply_name);
1739                 if (size >= REG_STR_SIZE)
1740                         return NULL;
1741
1742                 supply_name = kstrdup(buf, GFP_KERNEL);
1743                 if (supply_name == NULL)
1744                         return NULL;
1745         } else {
1746                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1747                 if (supply_name == NULL)
1748                         return NULL;
1749         }
1750
1751         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1752         if (regulator == NULL) {
1753                 kfree(supply_name);
1754                 return NULL;
1755         }
1756
1757         regulator->rdev = rdev;
1758         regulator->supply_name = supply_name;
1759
1760         regulator_lock(rdev);
1761         list_add(&regulator->list, &rdev->consumer_list);
1762         regulator_unlock(rdev);
1763
1764         if (dev) {
1765                 regulator->dev = dev;
1766
1767                 /* Add a link to the device sysfs entry */
1768                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1769                                                supply_name);
1770                 if (err) {
1771                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1772                                   dev->kobj.name, ERR_PTR(err));
1773                         /* non-fatal */
1774                 }
1775         }
1776
1777         if (err != -EEXIST)
1778                 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1779         if (!regulator->debugfs) {
1780                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1781         } else {
1782                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1783                                    &regulator->uA_load);
1784                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1785                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1786                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1787                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1788                 debugfs_create_file("constraint_flags", 0444,
1789                                     regulator->debugfs, regulator,
1790                                     &constraint_flags_fops);
1791         }
1792
1793         /*
1794          * Check now if the regulator is an always on regulator - if
1795          * it is then we don't need to do nearly so much work for
1796          * enable/disable calls.
1797          */
1798         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1799             _regulator_is_enabled(rdev))
1800                 regulator->always_on = true;
1801
1802         return regulator;
1803 }
1804
1805 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1806 {
1807         if (rdev->constraints && rdev->constraints->enable_time)
1808                 return rdev->constraints->enable_time;
1809         if (rdev->desc->ops->enable_time)
1810                 return rdev->desc->ops->enable_time(rdev);
1811         return rdev->desc->enable_time;
1812 }
1813
1814 static struct regulator_supply_alias *regulator_find_supply_alias(
1815                 struct device *dev, const char *supply)
1816 {
1817         struct regulator_supply_alias *map;
1818
1819         list_for_each_entry(map, &regulator_supply_alias_list, list)
1820                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1821                         return map;
1822
1823         return NULL;
1824 }
1825
1826 static void regulator_supply_alias(struct device **dev, const char **supply)
1827 {
1828         struct regulator_supply_alias *map;
1829
1830         map = regulator_find_supply_alias(*dev, *supply);
1831         if (map) {
1832                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1833                                 *supply, map->alias_supply,
1834                                 dev_name(map->alias_dev));
1835                 *dev = map->alias_dev;
1836                 *supply = map->alias_supply;
1837         }
1838 }
1839
1840 static int regulator_match(struct device *dev, const void *data)
1841 {
1842         struct regulator_dev *r = dev_to_rdev(dev);
1843
1844         return strcmp(rdev_get_name(r), data) == 0;
1845 }
1846
1847 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1848 {
1849         struct device *dev;
1850
1851         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1852
1853         return dev ? dev_to_rdev(dev) : NULL;
1854 }
1855
1856 /**
1857  * regulator_dev_lookup - lookup a regulator device.
1858  * @dev: device for regulator "consumer".
1859  * @supply: Supply name or regulator ID.
1860  *
1861  * If successful, returns a struct regulator_dev that corresponds to the name
1862  * @supply and with the embedded struct device refcount incremented by one.
1863  * The refcount must be dropped by calling put_device().
1864  * On failure one of the following ERR-PTR-encoded values is returned:
1865  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1866  * in the future.
1867  */
1868 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1869                                                   const char *supply)
1870 {
1871         struct regulator_dev *r = NULL;
1872         struct device_node *node;
1873         struct regulator_map *map;
1874         const char *devname = NULL;
1875
1876         regulator_supply_alias(&dev, &supply);
1877
1878         /* first do a dt based lookup */
1879         if (dev && dev->of_node) {
1880                 node = of_get_regulator(dev, supply);
1881                 if (node) {
1882                         r = of_find_regulator_by_node(node);
1883                         if (r)
1884                                 return r;
1885
1886                         /*
1887                          * We have a node, but there is no device.
1888                          * assume it has not registered yet.
1889                          */
1890                         return ERR_PTR(-EPROBE_DEFER);
1891                 }
1892         }
1893
1894         /* if not found, try doing it non-dt way */
1895         if (dev)
1896                 devname = dev_name(dev);
1897
1898         mutex_lock(&regulator_list_mutex);
1899         list_for_each_entry(map, &regulator_map_list, list) {
1900                 /* If the mapping has a device set up it must match */
1901                 if (map->dev_name &&
1902                     (!devname || strcmp(map->dev_name, devname)))
1903                         continue;
1904
1905                 if (strcmp(map->supply, supply) == 0 &&
1906                     get_device(&map->regulator->dev)) {
1907                         r = map->regulator;
1908                         break;
1909                 }
1910         }
1911         mutex_unlock(&regulator_list_mutex);
1912
1913         if (r)
1914                 return r;
1915
1916         r = regulator_lookup_by_name(supply);
1917         if (r)
1918                 return r;
1919
1920         return ERR_PTR(-ENODEV);
1921 }
1922
1923 static int regulator_resolve_supply(struct regulator_dev *rdev)
1924 {
1925         struct regulator_dev *r;
1926         struct device *dev = rdev->dev.parent;
1927         int ret = 0;
1928
1929         /* No supply to resolve? */
1930         if (!rdev->supply_name)
1931                 return 0;
1932
1933         /* Supply already resolved? (fast-path without locking contention) */
1934         if (rdev->supply)
1935                 return 0;
1936
1937         r = regulator_dev_lookup(dev, rdev->supply_name);
1938         if (IS_ERR(r)) {
1939                 ret = PTR_ERR(r);
1940
1941                 /* Did the lookup explicitly defer for us? */
1942                 if (ret == -EPROBE_DEFER)
1943                         goto out;
1944
1945                 if (have_full_constraints()) {
1946                         r = dummy_regulator_rdev;
1947                         get_device(&r->dev);
1948                 } else {
1949                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1950                                 rdev->supply_name, rdev->desc->name);
1951                         ret = -EPROBE_DEFER;
1952                         goto out;
1953                 }
1954         }
1955
1956         if (r == rdev) {
1957                 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1958                         rdev->desc->name, rdev->supply_name);
1959                 if (!have_full_constraints()) {
1960                         ret = -EINVAL;
1961                         goto out;
1962                 }
1963                 r = dummy_regulator_rdev;
1964                 get_device(&r->dev);
1965         }
1966
1967         /*
1968          * If the supply's parent device is not the same as the
1969          * regulator's parent device, then ensure the parent device
1970          * is bound before we resolve the supply, in case the parent
1971          * device get probe deferred and unregisters the supply.
1972          */
1973         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1974                 if (!device_is_bound(r->dev.parent)) {
1975                         put_device(&r->dev);
1976                         ret = -EPROBE_DEFER;
1977                         goto out;
1978                 }
1979         }
1980
1981         /* Recursively resolve the supply of the supply */
1982         ret = regulator_resolve_supply(r);
1983         if (ret < 0) {
1984                 put_device(&r->dev);
1985                 goto out;
1986         }
1987
1988         /*
1989          * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1990          * between rdev->supply null check and setting rdev->supply in
1991          * set_supply() from concurrent tasks.
1992          */
1993         regulator_lock(rdev);
1994
1995         /* Supply just resolved by a concurrent task? */
1996         if (rdev->supply) {
1997                 regulator_unlock(rdev);
1998                 put_device(&r->dev);
1999                 goto out;
2000         }
2001
2002         ret = set_supply(rdev, r);
2003         if (ret < 0) {
2004                 regulator_unlock(rdev);
2005                 put_device(&r->dev);
2006                 goto out;
2007         }
2008
2009         regulator_unlock(rdev);
2010
2011         /*
2012          * In set_machine_constraints() we may have turned this regulator on
2013          * but we couldn't propagate to the supply if it hadn't been resolved
2014          * yet.  Do it now.
2015          */
2016         if (rdev->use_count) {
2017                 ret = regulator_enable(rdev->supply);
2018                 if (ret < 0) {
2019                         _regulator_put(rdev->supply);
2020                         rdev->supply = NULL;
2021                         goto out;
2022                 }
2023         }
2024
2025 out:
2026         return ret;
2027 }
2028
2029 /* Internal regulator request function */
2030 struct regulator *_regulator_get(struct device *dev, const char *id,
2031                                  enum regulator_get_type get_type)
2032 {
2033         struct regulator_dev *rdev;
2034         struct regulator *regulator;
2035         struct device_link *link;
2036         int ret;
2037
2038         if (get_type >= MAX_GET_TYPE) {
2039                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2040                 return ERR_PTR(-EINVAL);
2041         }
2042
2043         if (id == NULL) {
2044                 pr_err("get() with no identifier\n");
2045                 return ERR_PTR(-EINVAL);
2046         }
2047
2048         rdev = regulator_dev_lookup(dev, id);
2049         if (IS_ERR(rdev)) {
2050                 ret = PTR_ERR(rdev);
2051
2052                 /*
2053                  * If regulator_dev_lookup() fails with error other
2054                  * than -ENODEV our job here is done, we simply return it.
2055                  */
2056                 if (ret != -ENODEV)
2057                         return ERR_PTR(ret);
2058
2059                 if (!have_full_constraints()) {
2060                         dev_warn(dev,
2061                                  "incomplete constraints, dummy supplies not allowed\n");
2062                         return ERR_PTR(-ENODEV);
2063                 }
2064
2065                 switch (get_type) {
2066                 case NORMAL_GET:
2067                         /*
2068                          * Assume that a regulator is physically present and
2069                          * enabled, even if it isn't hooked up, and just
2070                          * provide a dummy.
2071                          */
2072                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2073                         rdev = dummy_regulator_rdev;
2074                         get_device(&rdev->dev);
2075                         break;
2076
2077                 case EXCLUSIVE_GET:
2078                         dev_warn(dev,
2079                                  "dummy supplies not allowed for exclusive requests\n");
2080                         fallthrough;
2081
2082                 default:
2083                         return ERR_PTR(-ENODEV);
2084                 }
2085         }
2086
2087         if (rdev->exclusive) {
2088                 regulator = ERR_PTR(-EPERM);
2089                 put_device(&rdev->dev);
2090                 return regulator;
2091         }
2092
2093         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2094                 regulator = ERR_PTR(-EBUSY);
2095                 put_device(&rdev->dev);
2096                 return regulator;
2097         }
2098
2099         mutex_lock(&regulator_list_mutex);
2100         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2101         mutex_unlock(&regulator_list_mutex);
2102
2103         if (ret != 0) {
2104                 regulator = ERR_PTR(-EPROBE_DEFER);
2105                 put_device(&rdev->dev);
2106                 return regulator;
2107         }
2108
2109         ret = regulator_resolve_supply(rdev);
2110         if (ret < 0) {
2111                 regulator = ERR_PTR(ret);
2112                 put_device(&rdev->dev);
2113                 return regulator;
2114         }
2115
2116         if (!try_module_get(rdev->owner)) {
2117                 regulator = ERR_PTR(-EPROBE_DEFER);
2118                 put_device(&rdev->dev);
2119                 return regulator;
2120         }
2121
2122         regulator = create_regulator(rdev, dev, id);
2123         if (regulator == NULL) {
2124                 regulator = ERR_PTR(-ENOMEM);
2125                 module_put(rdev->owner);
2126                 put_device(&rdev->dev);
2127                 return regulator;
2128         }
2129
2130         rdev->open_count++;
2131         if (get_type == EXCLUSIVE_GET) {
2132                 rdev->exclusive = 1;
2133
2134                 ret = _regulator_is_enabled(rdev);
2135                 if (ret > 0)
2136                         rdev->use_count = 1;
2137                 else
2138                         rdev->use_count = 0;
2139         }
2140
2141         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2142         if (!IS_ERR_OR_NULL(link))
2143                 regulator->device_link = true;
2144
2145         return regulator;
2146 }
2147
2148 /**
2149  * regulator_get - lookup and obtain a reference to a regulator.
2150  * @dev: device for regulator "consumer"
2151  * @id: Supply name or regulator ID.
2152  *
2153  * Returns a struct regulator corresponding to the regulator producer,
2154  * or IS_ERR() condition containing errno.
2155  *
2156  * Use of supply names configured via set_consumer_device_supply() is
2157  * strongly encouraged.  It is recommended that the supply name used
2158  * should match the name used for the supply and/or the relevant
2159  * device pins in the datasheet.
2160  */
2161 struct regulator *regulator_get(struct device *dev, const char *id)
2162 {
2163         return _regulator_get(dev, id, NORMAL_GET);
2164 }
2165 EXPORT_SYMBOL_GPL(regulator_get);
2166
2167 /**
2168  * regulator_get_exclusive - obtain exclusive access to a regulator.
2169  * @dev: device for regulator "consumer"
2170  * @id: Supply name or regulator ID.
2171  *
2172  * Returns a struct regulator corresponding to the regulator producer,
2173  * or IS_ERR() condition containing errno.  Other consumers will be
2174  * unable to obtain this regulator while this reference is held and the
2175  * use count for the regulator will be initialised to reflect the current
2176  * state of the regulator.
2177  *
2178  * This is intended for use by consumers which cannot tolerate shared
2179  * use of the regulator such as those which need to force the
2180  * regulator off for correct operation of the hardware they are
2181  * controlling.
2182  *
2183  * Use of supply names configured via set_consumer_device_supply() is
2184  * strongly encouraged.  It is recommended that the supply name used
2185  * should match the name used for the supply and/or the relevant
2186  * device pins in the datasheet.
2187  */
2188 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2189 {
2190         return _regulator_get(dev, id, EXCLUSIVE_GET);
2191 }
2192 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2193
2194 /**
2195  * regulator_get_optional - obtain optional access to a regulator.
2196  * @dev: device for regulator "consumer"
2197  * @id: Supply name or regulator ID.
2198  *
2199  * Returns a struct regulator corresponding to the regulator producer,
2200  * or IS_ERR() condition containing errno.
2201  *
2202  * This is intended for use by consumers for devices which can have
2203  * some supplies unconnected in normal use, such as some MMC devices.
2204  * It can allow the regulator core to provide stub supplies for other
2205  * supplies requested using normal regulator_get() calls without
2206  * disrupting the operation of drivers that can handle absent
2207  * supplies.
2208  *
2209  * Use of supply names configured via set_consumer_device_supply() is
2210  * strongly encouraged.  It is recommended that the supply name used
2211  * should match the name used for the supply and/or the relevant
2212  * device pins in the datasheet.
2213  */
2214 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2215 {
2216         return _regulator_get(dev, id, OPTIONAL_GET);
2217 }
2218 EXPORT_SYMBOL_GPL(regulator_get_optional);
2219
2220 static void destroy_regulator(struct regulator *regulator)
2221 {
2222         struct regulator_dev *rdev = regulator->rdev;
2223
2224         debugfs_remove_recursive(regulator->debugfs);
2225
2226         if (regulator->dev) {
2227                 if (regulator->device_link)
2228                         device_link_remove(regulator->dev, &rdev->dev);
2229
2230                 /* remove any sysfs entries */
2231                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2232         }
2233
2234         regulator_lock(rdev);
2235         list_del(&regulator->list);
2236
2237         rdev->open_count--;
2238         rdev->exclusive = 0;
2239         regulator_unlock(rdev);
2240
2241         kfree_const(regulator->supply_name);
2242         kfree(regulator);
2243 }
2244
2245 /* regulator_list_mutex lock held by regulator_put() */
2246 static void _regulator_put(struct regulator *regulator)
2247 {
2248         struct regulator_dev *rdev;
2249
2250         if (IS_ERR_OR_NULL(regulator))
2251                 return;
2252
2253         lockdep_assert_held_once(&regulator_list_mutex);
2254
2255         /* Docs say you must disable before calling regulator_put() */
2256         WARN_ON(regulator->enable_count);
2257
2258         rdev = regulator->rdev;
2259
2260         destroy_regulator(regulator);
2261
2262         module_put(rdev->owner);
2263         put_device(&rdev->dev);
2264 }
2265
2266 /**
2267  * regulator_put - "free" the regulator source
2268  * @regulator: regulator source
2269  *
2270  * Note: drivers must ensure that all regulator_enable calls made on this
2271  * regulator source are balanced by regulator_disable calls prior to calling
2272  * this function.
2273  */
2274 void regulator_put(struct regulator *regulator)
2275 {
2276         mutex_lock(&regulator_list_mutex);
2277         _regulator_put(regulator);
2278         mutex_unlock(&regulator_list_mutex);
2279 }
2280 EXPORT_SYMBOL_GPL(regulator_put);
2281
2282 /**
2283  * regulator_register_supply_alias - Provide device alias for supply lookup
2284  *
2285  * @dev: device that will be given as the regulator "consumer"
2286  * @id: Supply name or regulator ID
2287  * @alias_dev: device that should be used to lookup the supply
2288  * @alias_id: Supply name or regulator ID that should be used to lookup the
2289  * supply
2290  *
2291  * All lookups for id on dev will instead be conducted for alias_id on
2292  * alias_dev.
2293  */
2294 int regulator_register_supply_alias(struct device *dev, const char *id,
2295                                     struct device *alias_dev,
2296                                     const char *alias_id)
2297 {
2298         struct regulator_supply_alias *map;
2299
2300         map = regulator_find_supply_alias(dev, id);
2301         if (map)
2302                 return -EEXIST;
2303
2304         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2305         if (!map)
2306                 return -ENOMEM;
2307
2308         map->src_dev = dev;
2309         map->src_supply = id;
2310         map->alias_dev = alias_dev;
2311         map->alias_supply = alias_id;
2312
2313         list_add(&map->list, &regulator_supply_alias_list);
2314
2315         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2316                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2317
2318         return 0;
2319 }
2320 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2321
2322 /**
2323  * regulator_unregister_supply_alias - Remove device alias
2324  *
2325  * @dev: device that will be given as the regulator "consumer"
2326  * @id: Supply name or regulator ID
2327  *
2328  * Remove a lookup alias if one exists for id on dev.
2329  */
2330 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2331 {
2332         struct regulator_supply_alias *map;
2333
2334         map = regulator_find_supply_alias(dev, id);
2335         if (map) {
2336                 list_del(&map->list);
2337                 kfree(map);
2338         }
2339 }
2340 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2341
2342 /**
2343  * regulator_bulk_register_supply_alias - register multiple aliases
2344  *
2345  * @dev: device that will be given as the regulator "consumer"
2346  * @id: List of supply names or regulator IDs
2347  * @alias_dev: device that should be used to lookup the supply
2348  * @alias_id: List of supply names or regulator IDs that should be used to
2349  * lookup the supply
2350  * @num_id: Number of aliases to register
2351  *
2352  * @return 0 on success, an errno on failure.
2353  *
2354  * This helper function allows drivers to register several supply
2355  * aliases in one operation.  If any of the aliases cannot be
2356  * registered any aliases that were registered will be removed
2357  * before returning to the caller.
2358  */
2359 int regulator_bulk_register_supply_alias(struct device *dev,
2360                                          const char *const *id,
2361                                          struct device *alias_dev,
2362                                          const char *const *alias_id,
2363                                          int num_id)
2364 {
2365         int i;
2366         int ret;
2367
2368         for (i = 0; i < num_id; ++i) {
2369                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2370                                                       alias_id[i]);
2371                 if (ret < 0)
2372                         goto err;
2373         }
2374
2375         return 0;
2376
2377 err:
2378         dev_err(dev,
2379                 "Failed to create supply alias %s,%s -> %s,%s\n",
2380                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2381
2382         while (--i >= 0)
2383                 regulator_unregister_supply_alias(dev, id[i]);
2384
2385         return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2388
2389 /**
2390  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2391  *
2392  * @dev: device that will be given as the regulator "consumer"
2393  * @id: List of supply names or regulator IDs
2394  * @num_id: Number of aliases to unregister
2395  *
2396  * This helper function allows drivers to unregister several supply
2397  * aliases in one operation.
2398  */
2399 void regulator_bulk_unregister_supply_alias(struct device *dev,
2400                                             const char *const *id,
2401                                             int num_id)
2402 {
2403         int i;
2404
2405         for (i = 0; i < num_id; ++i)
2406                 regulator_unregister_supply_alias(dev, id[i]);
2407 }
2408 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2409
2410
2411 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2412 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2413                                 const struct regulator_config *config)
2414 {
2415         struct regulator_enable_gpio *pin, *new_pin;
2416         struct gpio_desc *gpiod;
2417
2418         gpiod = config->ena_gpiod;
2419         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2420
2421         mutex_lock(&regulator_list_mutex);
2422
2423         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2424                 if (pin->gpiod == gpiod) {
2425                         rdev_dbg(rdev, "GPIO is already used\n");
2426                         goto update_ena_gpio_to_rdev;
2427                 }
2428         }
2429
2430         if (new_pin == NULL) {
2431                 mutex_unlock(&regulator_list_mutex);
2432                 return -ENOMEM;
2433         }
2434
2435         pin = new_pin;
2436         new_pin = NULL;
2437
2438         pin->gpiod = gpiod;
2439         list_add(&pin->list, &regulator_ena_gpio_list);
2440
2441 update_ena_gpio_to_rdev:
2442         pin->request_count++;
2443         rdev->ena_pin = pin;
2444
2445         mutex_unlock(&regulator_list_mutex);
2446         kfree(new_pin);
2447
2448         return 0;
2449 }
2450
2451 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2452 {
2453         struct regulator_enable_gpio *pin, *n;
2454
2455         if (!rdev->ena_pin)
2456                 return;
2457
2458         /* Free the GPIO only in case of no use */
2459         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2460                 if (pin != rdev->ena_pin)
2461                         continue;
2462
2463                 if (--pin->request_count)
2464                         break;
2465
2466                 gpiod_put(pin->gpiod);
2467                 list_del(&pin->list);
2468                 kfree(pin);
2469                 break;
2470         }
2471
2472         rdev->ena_pin = NULL;
2473 }
2474
2475 /**
2476  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2477  * @rdev: regulator_dev structure
2478  * @enable: enable GPIO at initial use?
2479  *
2480  * GPIO is enabled in case of initial use. (enable_count is 0)
2481  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2482  */
2483 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2484 {
2485         struct regulator_enable_gpio *pin = rdev->ena_pin;
2486
2487         if (!pin)
2488                 return -EINVAL;
2489
2490         if (enable) {
2491                 /* Enable GPIO at initial use */
2492                 if (pin->enable_count == 0)
2493                         gpiod_set_value_cansleep(pin->gpiod, 1);
2494
2495                 pin->enable_count++;
2496         } else {
2497                 if (pin->enable_count > 1) {
2498                         pin->enable_count--;
2499                         return 0;
2500                 }
2501
2502                 /* Disable GPIO if not used */
2503                 if (pin->enable_count <= 1) {
2504                         gpiod_set_value_cansleep(pin->gpiod, 0);
2505                         pin->enable_count = 0;
2506                 }
2507         }
2508
2509         return 0;
2510 }
2511
2512 /**
2513  * _regulator_enable_delay - a delay helper function
2514  * @delay: time to delay in microseconds
2515  *
2516  * Delay for the requested amount of time as per the guidelines in:
2517  *
2518  *     Documentation/timers/timers-howto.rst
2519  *
2520  * The assumption here is that regulators will never be enabled in
2521  * atomic context and therefore sleeping functions can be used.
2522  */
2523 static void _regulator_enable_delay(unsigned int delay)
2524 {
2525         unsigned int ms = delay / 1000;
2526         unsigned int us = delay % 1000;
2527
2528         if (ms > 0) {
2529                 /*
2530                  * For small enough values, handle super-millisecond
2531                  * delays in the usleep_range() call below.
2532                  */
2533                 if (ms < 20)
2534                         us += ms * 1000;
2535                 else
2536                         msleep(ms);
2537         }
2538
2539         /*
2540          * Give the scheduler some room to coalesce with any other
2541          * wakeup sources. For delays shorter than 10 us, don't even
2542          * bother setting up high-resolution timers and just busy-
2543          * loop.
2544          */
2545         if (us >= 10)
2546                 usleep_range(us, us + 100);
2547         else
2548                 udelay(us);
2549 }
2550
2551 /**
2552  * _regulator_check_status_enabled
2553  *
2554  * A helper function to check if the regulator status can be interpreted
2555  * as 'regulator is enabled'.
2556  * @rdev: the regulator device to check
2557  *
2558  * Return:
2559  * * 1                  - if status shows regulator is in enabled state
2560  * * 0                  - if not enabled state
2561  * * Error Value        - as received from ops->get_status()
2562  */
2563 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2564 {
2565         int ret = rdev->desc->ops->get_status(rdev);
2566
2567         if (ret < 0) {
2568                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2569                 return ret;
2570         }
2571
2572         switch (ret) {
2573         case REGULATOR_STATUS_OFF:
2574         case REGULATOR_STATUS_ERROR:
2575         case REGULATOR_STATUS_UNDEFINED:
2576                 return 0;
2577         default:
2578                 return 1;
2579         }
2580 }
2581
2582 static int _regulator_do_enable(struct regulator_dev *rdev)
2583 {
2584         int ret, delay;
2585
2586         /* Query before enabling in case configuration dependent.  */
2587         ret = _regulator_get_enable_time(rdev);
2588         if (ret >= 0) {
2589                 delay = ret;
2590         } else {
2591                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2592                 delay = 0;
2593         }
2594
2595         trace_regulator_enable(rdev_get_name(rdev));
2596
2597         if (rdev->desc->off_on_delay && rdev->last_off) {
2598                 /* if needed, keep a distance of off_on_delay from last time
2599                  * this regulator was disabled.
2600                  */
2601                 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2602                 s64 remaining = ktime_us_delta(end, ktime_get());
2603
2604                 if (remaining > 0)
2605                         _regulator_enable_delay(remaining);
2606         }
2607
2608         if (rdev->ena_pin) {
2609                 if (!rdev->ena_gpio_state) {
2610                         ret = regulator_ena_gpio_ctrl(rdev, true);
2611                         if (ret < 0)
2612                                 return ret;
2613                         rdev->ena_gpio_state = 1;
2614                 }
2615         } else if (rdev->desc->ops->enable) {
2616                 ret = rdev->desc->ops->enable(rdev);
2617                 if (ret < 0)
2618                         return ret;
2619         } else {
2620                 return -EINVAL;
2621         }
2622
2623         /* Allow the regulator to ramp; it would be useful to extend
2624          * this for bulk operations so that the regulators can ramp
2625          * together.
2626          */
2627         trace_regulator_enable_delay(rdev_get_name(rdev));
2628
2629         /* If poll_enabled_time is set, poll upto the delay calculated
2630          * above, delaying poll_enabled_time uS to check if the regulator
2631          * actually got enabled.
2632          * If the regulator isn't enabled after enable_delay has
2633          * expired, return -ETIMEDOUT.
2634          */
2635         if (rdev->desc->poll_enabled_time) {
2636                 unsigned int time_remaining = delay;
2637
2638                 while (time_remaining > 0) {
2639                         _regulator_enable_delay(rdev->desc->poll_enabled_time);
2640
2641                         if (rdev->desc->ops->get_status) {
2642                                 ret = _regulator_check_status_enabled(rdev);
2643                                 if (ret < 0)
2644                                         return ret;
2645                                 else if (ret)
2646                                         break;
2647                         } else if (rdev->desc->ops->is_enabled(rdev))
2648                                 break;
2649
2650                         time_remaining -= rdev->desc->poll_enabled_time;
2651                 }
2652
2653                 if (time_remaining <= 0) {
2654                         rdev_err(rdev, "Enabled check timed out\n");
2655                         return -ETIMEDOUT;
2656                 }
2657         } else {
2658                 _regulator_enable_delay(delay);
2659         }
2660
2661         trace_regulator_enable_complete(rdev_get_name(rdev));
2662
2663         return 0;
2664 }
2665
2666 /**
2667  * _regulator_handle_consumer_enable - handle that a consumer enabled
2668  * @regulator: regulator source
2669  *
2670  * Some things on a regulator consumer (like the contribution towards total
2671  * load on the regulator) only have an effect when the consumer wants the
2672  * regulator enabled.  Explained in example with two consumers of the same
2673  * regulator:
2674  *   consumer A: set_load(100);       => total load = 0
2675  *   consumer A: regulator_enable();  => total load = 100
2676  *   consumer B: set_load(1000);      => total load = 100
2677  *   consumer B: regulator_enable();  => total load = 1100
2678  *   consumer A: regulator_disable(); => total_load = 1000
2679  *
2680  * This function (together with _regulator_handle_consumer_disable) is
2681  * responsible for keeping track of the refcount for a given regulator consumer
2682  * and applying / unapplying these things.
2683  *
2684  * Returns 0 upon no error; -error upon error.
2685  */
2686 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2687 {
2688         struct regulator_dev *rdev = regulator->rdev;
2689
2690         lockdep_assert_held_once(&rdev->mutex.base);
2691
2692         regulator->enable_count++;
2693         if (regulator->uA_load && regulator->enable_count == 1)
2694                 return drms_uA_update(rdev);
2695
2696         return 0;
2697 }
2698
2699 /**
2700  * _regulator_handle_consumer_disable - handle that a consumer disabled
2701  * @regulator: regulator source
2702  *
2703  * The opposite of _regulator_handle_consumer_enable().
2704  *
2705  * Returns 0 upon no error; -error upon error.
2706  */
2707 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2708 {
2709         struct regulator_dev *rdev = regulator->rdev;
2710
2711         lockdep_assert_held_once(&rdev->mutex.base);
2712
2713         if (!regulator->enable_count) {
2714                 rdev_err(rdev, "Underflow of regulator enable count\n");
2715                 return -EINVAL;
2716         }
2717
2718         regulator->enable_count--;
2719         if (regulator->uA_load && regulator->enable_count == 0)
2720                 return drms_uA_update(rdev);
2721
2722         return 0;
2723 }
2724
2725 /* locks held by regulator_enable() */
2726 static int _regulator_enable(struct regulator *regulator)
2727 {
2728         struct regulator_dev *rdev = regulator->rdev;
2729         int ret;
2730
2731         lockdep_assert_held_once(&rdev->mutex.base);
2732
2733         if (rdev->use_count == 0 && rdev->supply) {
2734                 ret = _regulator_enable(rdev->supply);
2735                 if (ret < 0)
2736                         return ret;
2737         }
2738
2739         /* balance only if there are regulators coupled */
2740         if (rdev->coupling_desc.n_coupled > 1) {
2741                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2742                 if (ret < 0)
2743                         goto err_disable_supply;
2744         }
2745
2746         ret = _regulator_handle_consumer_enable(regulator);
2747         if (ret < 0)
2748                 goto err_disable_supply;
2749
2750         if (rdev->use_count == 0) {
2751                 /*
2752                  * The regulator may already be enabled if it's not switchable
2753                  * or was left on
2754                  */
2755                 ret = _regulator_is_enabled(rdev);
2756                 if (ret == -EINVAL || ret == 0) {
2757                         if (!regulator_ops_is_valid(rdev,
2758                                         REGULATOR_CHANGE_STATUS)) {
2759                                 ret = -EPERM;
2760                                 goto err_consumer_disable;
2761                         }
2762
2763                         ret = _regulator_do_enable(rdev);
2764                         if (ret < 0)
2765                                 goto err_consumer_disable;
2766
2767                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2768                                              NULL);
2769                 } else if (ret < 0) {
2770                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2771                         goto err_consumer_disable;
2772                 }
2773                 /* Fallthrough on positive return values - already enabled */
2774         }
2775
2776         rdev->use_count++;
2777
2778         return 0;
2779
2780 err_consumer_disable:
2781         _regulator_handle_consumer_disable(regulator);
2782
2783 err_disable_supply:
2784         if (rdev->use_count == 0 && rdev->supply)
2785                 _regulator_disable(rdev->supply);
2786
2787         return ret;
2788 }
2789
2790 /**
2791  * regulator_enable - enable regulator output
2792  * @regulator: regulator source
2793  *
2794  * Request that the regulator be enabled with the regulator output at
2795  * the predefined voltage or current value.  Calls to regulator_enable()
2796  * must be balanced with calls to regulator_disable().
2797  *
2798  * NOTE: the output value can be set by other drivers, boot loader or may be
2799  * hardwired in the regulator.
2800  */
2801 int regulator_enable(struct regulator *regulator)
2802 {
2803         struct regulator_dev *rdev = regulator->rdev;
2804         struct ww_acquire_ctx ww_ctx;
2805         int ret;
2806
2807         regulator_lock_dependent(rdev, &ww_ctx);
2808         ret = _regulator_enable(regulator);
2809         regulator_unlock_dependent(rdev, &ww_ctx);
2810
2811         return ret;
2812 }
2813 EXPORT_SYMBOL_GPL(regulator_enable);
2814
2815 static int _regulator_do_disable(struct regulator_dev *rdev)
2816 {
2817         int ret;
2818
2819         trace_regulator_disable(rdev_get_name(rdev));
2820
2821         if (rdev->ena_pin) {
2822                 if (rdev->ena_gpio_state) {
2823                         ret = regulator_ena_gpio_ctrl(rdev, false);
2824                         if (ret < 0)
2825                                 return ret;
2826                         rdev->ena_gpio_state = 0;
2827                 }
2828
2829         } else if (rdev->desc->ops->disable) {
2830                 ret = rdev->desc->ops->disable(rdev);
2831                 if (ret != 0)
2832                         return ret;
2833         }
2834
2835         if (rdev->desc->off_on_delay)
2836                 rdev->last_off = ktime_get();
2837
2838         trace_regulator_disable_complete(rdev_get_name(rdev));
2839
2840         return 0;
2841 }
2842
2843 /* locks held by regulator_disable() */
2844 static int _regulator_disable(struct regulator *regulator)
2845 {
2846         struct regulator_dev *rdev = regulator->rdev;
2847         int ret = 0;
2848
2849         lockdep_assert_held_once(&rdev->mutex.base);
2850
2851         if (WARN(rdev->use_count <= 0,
2852                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2853                 return -EIO;
2854
2855         /* are we the last user and permitted to disable ? */
2856         if (rdev->use_count == 1 &&
2857             (rdev->constraints && !rdev->constraints->always_on)) {
2858
2859                 /* we are last user */
2860                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2861                         ret = _notifier_call_chain(rdev,
2862                                                    REGULATOR_EVENT_PRE_DISABLE,
2863                                                    NULL);
2864                         if (ret & NOTIFY_STOP_MASK)
2865                                 return -EINVAL;
2866
2867                         ret = _regulator_do_disable(rdev);
2868                         if (ret < 0) {
2869                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2870                                 _notifier_call_chain(rdev,
2871                                                 REGULATOR_EVENT_ABORT_DISABLE,
2872                                                 NULL);
2873                                 return ret;
2874                         }
2875                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2876                                         NULL);
2877                 }
2878
2879                 rdev->use_count = 0;
2880         } else if (rdev->use_count > 1) {
2881                 rdev->use_count--;
2882         }
2883
2884         if (ret == 0)
2885                 ret = _regulator_handle_consumer_disable(regulator);
2886
2887         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2888                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889
2890         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2891                 ret = _regulator_disable(rdev->supply);
2892
2893         return ret;
2894 }
2895
2896 /**
2897  * regulator_disable - disable regulator output
2898  * @regulator: regulator source
2899  *
2900  * Disable the regulator output voltage or current.  Calls to
2901  * regulator_enable() must be balanced with calls to
2902  * regulator_disable().
2903  *
2904  * NOTE: this will only disable the regulator output if no other consumer
2905  * devices have it enabled, the regulator device supports disabling and
2906  * machine constraints permit this operation.
2907  */
2908 int regulator_disable(struct regulator *regulator)
2909 {
2910         struct regulator_dev *rdev = regulator->rdev;
2911         struct ww_acquire_ctx ww_ctx;
2912         int ret;
2913
2914         regulator_lock_dependent(rdev, &ww_ctx);
2915         ret = _regulator_disable(regulator);
2916         regulator_unlock_dependent(rdev, &ww_ctx);
2917
2918         return ret;
2919 }
2920 EXPORT_SYMBOL_GPL(regulator_disable);
2921
2922 /* locks held by regulator_force_disable() */
2923 static int _regulator_force_disable(struct regulator_dev *rdev)
2924 {
2925         int ret = 0;
2926
2927         lockdep_assert_held_once(&rdev->mutex.base);
2928
2929         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2930                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2931         if (ret & NOTIFY_STOP_MASK)
2932                 return -EINVAL;
2933
2934         ret = _regulator_do_disable(rdev);
2935         if (ret < 0) {
2936                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2937                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2938                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2939                 return ret;
2940         }
2941
2942         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2943                         REGULATOR_EVENT_DISABLE, NULL);
2944
2945         return 0;
2946 }
2947
2948 /**
2949  * regulator_force_disable - force disable regulator output
2950  * @regulator: regulator source
2951  *
2952  * Forcibly disable the regulator output voltage or current.
2953  * NOTE: this *will* disable the regulator output even if other consumer
2954  * devices have it enabled. This should be used for situations when device
2955  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2956  */
2957 int regulator_force_disable(struct regulator *regulator)
2958 {
2959         struct regulator_dev *rdev = regulator->rdev;
2960         struct ww_acquire_ctx ww_ctx;
2961         int ret;
2962
2963         regulator_lock_dependent(rdev, &ww_ctx);
2964
2965         ret = _regulator_force_disable(regulator->rdev);
2966
2967         if (rdev->coupling_desc.n_coupled > 1)
2968                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2969
2970         if (regulator->uA_load) {
2971                 regulator->uA_load = 0;
2972                 ret = drms_uA_update(rdev);
2973         }
2974
2975         if (rdev->use_count != 0 && rdev->supply)
2976                 _regulator_disable(rdev->supply);
2977
2978         regulator_unlock_dependent(rdev, &ww_ctx);
2979
2980         return ret;
2981 }
2982 EXPORT_SYMBOL_GPL(regulator_force_disable);
2983
2984 static void regulator_disable_work(struct work_struct *work)
2985 {
2986         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2987                                                   disable_work.work);
2988         struct ww_acquire_ctx ww_ctx;
2989         int count, i, ret;
2990         struct regulator *regulator;
2991         int total_count = 0;
2992
2993         regulator_lock_dependent(rdev, &ww_ctx);
2994
2995         /*
2996          * Workqueue functions queue the new work instance while the previous
2997          * work instance is being processed. Cancel the queued work instance
2998          * as the work instance under processing does the job of the queued
2999          * work instance.
3000          */
3001         cancel_delayed_work(&rdev->disable_work);
3002
3003         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3004                 count = regulator->deferred_disables;
3005
3006                 if (!count)
3007                         continue;
3008
3009                 total_count += count;
3010                 regulator->deferred_disables = 0;
3011
3012                 for (i = 0; i < count; i++) {
3013                         ret = _regulator_disable(regulator);
3014                         if (ret != 0)
3015                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
3016                                          ERR_PTR(ret));
3017                 }
3018         }
3019         WARN_ON(!total_count);
3020
3021         if (rdev->coupling_desc.n_coupled > 1)
3022                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3023
3024         regulator_unlock_dependent(rdev, &ww_ctx);
3025 }
3026
3027 /**
3028  * regulator_disable_deferred - disable regulator output with delay
3029  * @regulator: regulator source
3030  * @ms: milliseconds until the regulator is disabled
3031  *
3032  * Execute regulator_disable() on the regulator after a delay.  This
3033  * is intended for use with devices that require some time to quiesce.
3034  *
3035  * NOTE: this will only disable the regulator output if no other consumer
3036  * devices have it enabled, the regulator device supports disabling and
3037  * machine constraints permit this operation.
3038  */
3039 int regulator_disable_deferred(struct regulator *regulator, int ms)
3040 {
3041         struct regulator_dev *rdev = regulator->rdev;
3042
3043         if (!ms)
3044                 return regulator_disable(regulator);
3045
3046         regulator_lock(rdev);
3047         regulator->deferred_disables++;
3048         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3049                          msecs_to_jiffies(ms));
3050         regulator_unlock(rdev);
3051
3052         return 0;
3053 }
3054 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3055
3056 static int _regulator_is_enabled(struct regulator_dev *rdev)
3057 {
3058         /* A GPIO control always takes precedence */
3059         if (rdev->ena_pin)
3060                 return rdev->ena_gpio_state;
3061
3062         /* If we don't know then assume that the regulator is always on */
3063         if (!rdev->desc->ops->is_enabled)
3064                 return 1;
3065
3066         return rdev->desc->ops->is_enabled(rdev);
3067 }
3068
3069 static int _regulator_list_voltage(struct regulator_dev *rdev,
3070                                    unsigned selector, int lock)
3071 {
3072         const struct regulator_ops *ops = rdev->desc->ops;
3073         int ret;
3074
3075         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3076                 return rdev->desc->fixed_uV;
3077
3078         if (ops->list_voltage) {
3079                 if (selector >= rdev->desc->n_voltages)
3080                         return -EINVAL;
3081                 if (selector < rdev->desc->linear_min_sel)
3082                         return 0;
3083                 if (lock)
3084                         regulator_lock(rdev);
3085                 ret = ops->list_voltage(rdev, selector);
3086                 if (lock)
3087                         regulator_unlock(rdev);
3088         } else if (rdev->is_switch && rdev->supply) {
3089                 ret = _regulator_list_voltage(rdev->supply->rdev,
3090                                               selector, lock);
3091         } else {
3092                 return -EINVAL;
3093         }
3094
3095         if (ret > 0) {
3096                 if (ret < rdev->constraints->min_uV)
3097                         ret = 0;
3098                 else if (ret > rdev->constraints->max_uV)
3099                         ret = 0;
3100         }
3101
3102         return ret;
3103 }
3104
3105 /**
3106  * regulator_is_enabled - is the regulator output enabled
3107  * @regulator: regulator source
3108  *
3109  * Returns positive if the regulator driver backing the source/client
3110  * has requested that the device be enabled, zero if it hasn't, else a
3111  * negative errno code.
3112  *
3113  * Note that the device backing this regulator handle can have multiple
3114  * users, so it might be enabled even if regulator_enable() was never
3115  * called for this particular source.
3116  */
3117 int regulator_is_enabled(struct regulator *regulator)
3118 {
3119         int ret;
3120
3121         if (regulator->always_on)
3122                 return 1;
3123
3124         regulator_lock(regulator->rdev);
3125         ret = _regulator_is_enabled(regulator->rdev);
3126         regulator_unlock(regulator->rdev);
3127
3128         return ret;
3129 }
3130 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3131
3132 /**
3133  * regulator_count_voltages - count regulator_list_voltage() selectors
3134  * @regulator: regulator source
3135  *
3136  * Returns number of selectors, or negative errno.  Selectors are
3137  * numbered starting at zero, and typically correspond to bitfields
3138  * in hardware registers.
3139  */
3140 int regulator_count_voltages(struct regulator *regulator)
3141 {
3142         struct regulator_dev    *rdev = regulator->rdev;
3143
3144         if (rdev->desc->n_voltages)
3145                 return rdev->desc->n_voltages;
3146
3147         if (!rdev->is_switch || !rdev->supply)
3148                 return -EINVAL;
3149
3150         return regulator_count_voltages(rdev->supply);
3151 }
3152 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3153
3154 /**
3155  * regulator_list_voltage - enumerate supported voltages
3156  * @regulator: regulator source
3157  * @selector: identify voltage to list
3158  * Context: can sleep
3159  *
3160  * Returns a voltage that can be passed to @regulator_set_voltage(),
3161  * zero if this selector code can't be used on this system, or a
3162  * negative errno.
3163  */
3164 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3165 {
3166         return _regulator_list_voltage(regulator->rdev, selector, 1);
3167 }
3168 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3169
3170 /**
3171  * regulator_get_regmap - get the regulator's register map
3172  * @regulator: regulator source
3173  *
3174  * Returns the register map for the given regulator, or an ERR_PTR value
3175  * if the regulator doesn't use regmap.
3176  */
3177 struct regmap *regulator_get_regmap(struct regulator *regulator)
3178 {
3179         struct regmap *map = regulator->rdev->regmap;
3180
3181         return map ? map : ERR_PTR(-EOPNOTSUPP);
3182 }
3183
3184 /**
3185  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3186  * @regulator: regulator source
3187  * @vsel_reg: voltage selector register, output parameter
3188  * @vsel_mask: mask for voltage selector bitfield, output parameter
3189  *
3190  * Returns the hardware register offset and bitmask used for setting the
3191  * regulator voltage. This might be useful when configuring voltage-scaling
3192  * hardware or firmware that can make I2C requests behind the kernel's back,
3193  * for example.
3194  *
3195  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3196  * and 0 is returned, otherwise a negative errno is returned.
3197  */
3198 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3199                                          unsigned *vsel_reg,
3200                                          unsigned *vsel_mask)
3201 {
3202         struct regulator_dev *rdev = regulator->rdev;
3203         const struct regulator_ops *ops = rdev->desc->ops;
3204
3205         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3206                 return -EOPNOTSUPP;
3207
3208         *vsel_reg = rdev->desc->vsel_reg;
3209         *vsel_mask = rdev->desc->vsel_mask;
3210
3211         return 0;
3212 }
3213 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3214
3215 /**
3216  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3217  * @regulator: regulator source
3218  * @selector: identify voltage to list
3219  *
3220  * Converts the selector to a hardware-specific voltage selector that can be
3221  * directly written to the regulator registers. The address of the voltage
3222  * register can be determined by calling @regulator_get_hardware_vsel_register.
3223  *
3224  * On error a negative errno is returned.
3225  */
3226 int regulator_list_hardware_vsel(struct regulator *regulator,
3227                                  unsigned selector)
3228 {
3229         struct regulator_dev *rdev = regulator->rdev;
3230         const struct regulator_ops *ops = rdev->desc->ops;
3231
3232         if (selector >= rdev->desc->n_voltages)
3233                 return -EINVAL;
3234         if (selector < rdev->desc->linear_min_sel)
3235                 return 0;
3236         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3237                 return -EOPNOTSUPP;
3238
3239         return selector;
3240 }
3241 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3242
3243 /**
3244  * regulator_get_linear_step - return the voltage step size between VSEL values
3245  * @regulator: regulator source
3246  *
3247  * Returns the voltage step size between VSEL values for linear
3248  * regulators, or return 0 if the regulator isn't a linear regulator.
3249  */
3250 unsigned int regulator_get_linear_step(struct regulator *regulator)
3251 {
3252         struct regulator_dev *rdev = regulator->rdev;
3253
3254         return rdev->desc->uV_step;
3255 }
3256 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3257
3258 /**
3259  * regulator_is_supported_voltage - check if a voltage range can be supported
3260  *
3261  * @regulator: Regulator to check.
3262  * @min_uV: Minimum required voltage in uV.
3263  * @max_uV: Maximum required voltage in uV.
3264  *
3265  * Returns a boolean.
3266  */
3267 int regulator_is_supported_voltage(struct regulator *regulator,
3268                                    int min_uV, int max_uV)
3269 {
3270         struct regulator_dev *rdev = regulator->rdev;
3271         int i, voltages, ret;
3272
3273         /* If we can't change voltage check the current voltage */
3274         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3275                 ret = regulator_get_voltage(regulator);
3276                 if (ret >= 0)
3277                         return min_uV <= ret && ret <= max_uV;
3278                 else
3279                         return ret;
3280         }
3281
3282         /* Any voltage within constrains range is fine? */
3283         if (rdev->desc->continuous_voltage_range)
3284                 return min_uV >= rdev->constraints->min_uV &&
3285                                 max_uV <= rdev->constraints->max_uV;
3286
3287         ret = regulator_count_voltages(regulator);
3288         if (ret < 0)
3289                 return 0;
3290         voltages = ret;
3291
3292         for (i = 0; i < voltages; i++) {
3293                 ret = regulator_list_voltage(regulator, i);
3294
3295                 if (ret >= min_uV && ret <= max_uV)
3296                         return 1;
3297         }
3298
3299         return 0;
3300 }
3301 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3302
3303 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3304                                  int max_uV)
3305 {
3306         const struct regulator_desc *desc = rdev->desc;
3307
3308         if (desc->ops->map_voltage)
3309                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3310
3311         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3312                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3313
3314         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3315                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3316
3317         if (desc->ops->list_voltage ==
3318                 regulator_list_voltage_pickable_linear_range)
3319                 return regulator_map_voltage_pickable_linear_range(rdev,
3320                                                         min_uV, max_uV);
3321
3322         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3323 }
3324
3325 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3326                                        int min_uV, int max_uV,
3327                                        unsigned *selector)
3328 {
3329         struct pre_voltage_change_data data;
3330         int ret;
3331
3332         data.old_uV = regulator_get_voltage_rdev(rdev);
3333         data.min_uV = min_uV;
3334         data.max_uV = max_uV;
3335         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3336                                    &data);
3337         if (ret & NOTIFY_STOP_MASK)
3338                 return -EINVAL;
3339
3340         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3341         if (ret >= 0)
3342                 return ret;
3343
3344         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3345                              (void *)data.old_uV);
3346
3347         return ret;
3348 }
3349
3350 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3351                                            int uV, unsigned selector)
3352 {
3353         struct pre_voltage_change_data data;
3354         int ret;
3355
3356         data.old_uV = regulator_get_voltage_rdev(rdev);
3357         data.min_uV = uV;
3358         data.max_uV = uV;
3359         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3360                                    &data);
3361         if (ret & NOTIFY_STOP_MASK)
3362                 return -EINVAL;
3363
3364         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3365         if (ret >= 0)
3366                 return ret;
3367
3368         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3369                              (void *)data.old_uV);
3370
3371         return ret;
3372 }
3373
3374 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3375                                            int uV, int new_selector)
3376 {
3377         const struct regulator_ops *ops = rdev->desc->ops;
3378         int diff, old_sel, curr_sel, ret;
3379
3380         /* Stepping is only needed if the regulator is enabled. */
3381         if (!_regulator_is_enabled(rdev))
3382                 goto final_set;
3383
3384         if (!ops->get_voltage_sel)
3385                 return -EINVAL;
3386
3387         old_sel = ops->get_voltage_sel(rdev);
3388         if (old_sel < 0)
3389                 return old_sel;
3390
3391         diff = new_selector - old_sel;
3392         if (diff == 0)
3393                 return 0; /* No change needed. */
3394
3395         if (diff > 0) {
3396                 /* Stepping up. */
3397                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3398                      curr_sel < new_selector;
3399                      curr_sel += rdev->desc->vsel_step) {
3400                         /*
3401                          * Call the callback directly instead of using
3402                          * _regulator_call_set_voltage_sel() as we don't
3403                          * want to notify anyone yet. Same in the branch
3404                          * below.
3405                          */
3406                         ret = ops->set_voltage_sel(rdev, curr_sel);
3407                         if (ret)
3408                                 goto try_revert;
3409                 }
3410         } else {
3411                 /* Stepping down. */
3412                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3413                      curr_sel > new_selector;
3414                      curr_sel -= rdev->desc->vsel_step) {
3415                         ret = ops->set_voltage_sel(rdev, curr_sel);
3416                         if (ret)
3417                                 goto try_revert;
3418                 }
3419         }
3420
3421 final_set:
3422         /* The final selector will trigger the notifiers. */
3423         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3424
3425 try_revert:
3426         /*
3427          * At least try to return to the previous voltage if setting a new
3428          * one failed.
3429          */
3430         (void)ops->set_voltage_sel(rdev, old_sel);
3431         return ret;
3432 }
3433
3434 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3435                                        int old_uV, int new_uV)
3436 {
3437         unsigned int ramp_delay = 0;
3438
3439         if (rdev->constraints->ramp_delay)
3440                 ramp_delay = rdev->constraints->ramp_delay;
3441         else if (rdev->desc->ramp_delay)
3442                 ramp_delay = rdev->desc->ramp_delay;
3443         else if (rdev->constraints->settling_time)
3444                 return rdev->constraints->settling_time;
3445         else if (rdev->constraints->settling_time_up &&
3446                  (new_uV > old_uV))
3447                 return rdev->constraints->settling_time_up;
3448         else if (rdev->constraints->settling_time_down &&
3449                  (new_uV < old_uV))
3450                 return rdev->constraints->settling_time_down;
3451
3452         if (ramp_delay == 0) {
3453                 rdev_dbg(rdev, "ramp_delay not set\n");
3454                 return 0;
3455         }
3456
3457         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3458 }
3459
3460 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3461                                      int min_uV, int max_uV)
3462 {
3463         int ret;
3464         int delay = 0;
3465         int best_val = 0;
3466         unsigned int selector;
3467         int old_selector = -1;
3468         const struct regulator_ops *ops = rdev->desc->ops;
3469         int old_uV = regulator_get_voltage_rdev(rdev);
3470
3471         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3472
3473         min_uV += rdev->constraints->uV_offset;
3474         max_uV += rdev->constraints->uV_offset;
3475
3476         /*
3477          * If we can't obtain the old selector there is not enough
3478          * info to call set_voltage_time_sel().
3479          */
3480         if (_regulator_is_enabled(rdev) &&
3481             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3482                 old_selector = ops->get_voltage_sel(rdev);
3483                 if (old_selector < 0)
3484                         return old_selector;
3485         }
3486
3487         if (ops->set_voltage) {
3488                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3489                                                   &selector);
3490
3491                 if (ret >= 0) {
3492                         if (ops->list_voltage)
3493                                 best_val = ops->list_voltage(rdev,
3494                                                              selector);
3495                         else
3496                                 best_val = regulator_get_voltage_rdev(rdev);
3497                 }
3498
3499         } else if (ops->set_voltage_sel) {
3500                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3501                 if (ret >= 0) {
3502                         best_val = ops->list_voltage(rdev, ret);
3503                         if (min_uV <= best_val && max_uV >= best_val) {
3504                                 selector = ret;
3505                                 if (old_selector == selector)
3506                                         ret = 0;
3507                                 else if (rdev->desc->vsel_step)
3508                                         ret = _regulator_set_voltage_sel_step(
3509                                                 rdev, best_val, selector);
3510                                 else
3511                                         ret = _regulator_call_set_voltage_sel(
3512                                                 rdev, best_val, selector);
3513                         } else {
3514                                 ret = -EINVAL;
3515                         }
3516                 }
3517         } else {
3518                 ret = -EINVAL;
3519         }
3520
3521         if (ret)
3522                 goto out;
3523
3524         if (ops->set_voltage_time_sel) {
3525                 /*
3526                  * Call set_voltage_time_sel if successfully obtained
3527                  * old_selector
3528                  */
3529                 if (old_selector >= 0 && old_selector != selector)
3530                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3531                                                           selector);
3532         } else {
3533                 if (old_uV != best_val) {
3534                         if (ops->set_voltage_time)
3535                                 delay = ops->set_voltage_time(rdev, old_uV,
3536                                                               best_val);
3537                         else
3538                                 delay = _regulator_set_voltage_time(rdev,
3539                                                                     old_uV,
3540                                                                     best_val);
3541                 }
3542         }
3543
3544         if (delay < 0) {
3545                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3546                 delay = 0;
3547         }
3548
3549         /* Insert any necessary delays */
3550         if (delay >= 1000) {
3551                 mdelay(delay / 1000);
3552                 udelay(delay % 1000);
3553         } else if (delay) {
3554                 udelay(delay);
3555         }
3556
3557         if (best_val >= 0) {
3558                 unsigned long data = best_val;
3559
3560                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3561                                      (void *)data);
3562         }
3563
3564 out:
3565         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3566
3567         return ret;
3568 }
3569
3570 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3571                                   int min_uV, int max_uV, suspend_state_t state)
3572 {
3573         struct regulator_state *rstate;
3574         int uV, sel;
3575
3576         rstate = regulator_get_suspend_state(rdev, state);
3577         if (rstate == NULL)
3578                 return -EINVAL;
3579
3580         if (min_uV < rstate->min_uV)
3581                 min_uV = rstate->min_uV;
3582         if (max_uV > rstate->max_uV)
3583                 max_uV = rstate->max_uV;
3584
3585         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3586         if (sel < 0)
3587                 return sel;
3588
3589         uV = rdev->desc->ops->list_voltage(rdev, sel);
3590         if (uV >= min_uV && uV <= max_uV)
3591                 rstate->uV = uV;
3592
3593         return 0;
3594 }
3595
3596 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3597                                           int min_uV, int max_uV,
3598                                           suspend_state_t state)
3599 {
3600         struct regulator_dev *rdev = regulator->rdev;
3601         struct regulator_voltage *voltage = &regulator->voltage[state];
3602         int ret = 0;
3603         int old_min_uV, old_max_uV;
3604         int current_uV;
3605
3606         /* If we're setting the same range as last time the change
3607          * should be a noop (some cpufreq implementations use the same
3608          * voltage for multiple frequencies, for example).
3609          */
3610         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3611                 goto out;
3612
3613         /* If we're trying to set a range that overlaps the current voltage,
3614          * return successfully even though the regulator does not support
3615          * changing the voltage.
3616          */
3617         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3618                 current_uV = regulator_get_voltage_rdev(rdev);
3619                 if (min_uV <= current_uV && current_uV <= max_uV) {
3620                         voltage->min_uV = min_uV;
3621                         voltage->max_uV = max_uV;
3622                         goto out;
3623                 }
3624         }
3625
3626         /* sanity check */
3627         if (!rdev->desc->ops->set_voltage &&
3628             !rdev->desc->ops->set_voltage_sel) {
3629                 ret = -EINVAL;
3630                 goto out;
3631         }
3632
3633         /* constraints check */
3634         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3635         if (ret < 0)
3636                 goto out;
3637
3638         /* restore original values in case of error */
3639         old_min_uV = voltage->min_uV;
3640         old_max_uV = voltage->max_uV;
3641         voltage->min_uV = min_uV;
3642         voltage->max_uV = max_uV;
3643
3644         /* for not coupled regulators this will just set the voltage */
3645         ret = regulator_balance_voltage(rdev, state);
3646         if (ret < 0) {
3647                 voltage->min_uV = old_min_uV;
3648                 voltage->max_uV = old_max_uV;
3649         }
3650
3651 out:
3652         return ret;
3653 }
3654
3655 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3656                                int max_uV, suspend_state_t state)
3657 {
3658         int best_supply_uV = 0;
3659         int supply_change_uV = 0;
3660         int ret;
3661
3662         if (rdev->supply &&
3663             regulator_ops_is_valid(rdev->supply->rdev,
3664                                    REGULATOR_CHANGE_VOLTAGE) &&
3665             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3666                                            rdev->desc->ops->get_voltage_sel))) {
3667                 int current_supply_uV;
3668                 int selector;
3669
3670                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3671                 if (selector < 0) {
3672                         ret = selector;
3673                         goto out;
3674                 }
3675
3676                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3677                 if (best_supply_uV < 0) {
3678                         ret = best_supply_uV;
3679                         goto out;
3680                 }
3681
3682                 best_supply_uV += rdev->desc->min_dropout_uV;
3683
3684                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3685                 if (current_supply_uV < 0) {
3686                         ret = current_supply_uV;
3687                         goto out;
3688                 }
3689
3690                 supply_change_uV = best_supply_uV - current_supply_uV;
3691         }
3692
3693         if (supply_change_uV > 0) {
3694                 ret = regulator_set_voltage_unlocked(rdev->supply,
3695                                 best_supply_uV, INT_MAX, state);
3696                 if (ret) {
3697                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3698                                 ERR_PTR(ret));
3699                         goto out;
3700                 }
3701         }
3702
3703         if (state == PM_SUSPEND_ON)
3704                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3705         else
3706                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3707                                                         max_uV, state);
3708         if (ret < 0)
3709                 goto out;
3710
3711         if (supply_change_uV < 0) {
3712                 ret = regulator_set_voltage_unlocked(rdev->supply,
3713                                 best_supply_uV, INT_MAX, state);
3714                 if (ret)
3715                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3716                                  ERR_PTR(ret));
3717                 /* No need to fail here */
3718                 ret = 0;
3719         }
3720
3721 out:
3722         return ret;
3723 }
3724 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3725
3726 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3727                                         int *current_uV, int *min_uV)
3728 {
3729         struct regulation_constraints *constraints = rdev->constraints;
3730
3731         /* Limit voltage change only if necessary */
3732         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3733                 return 1;
3734
3735         if (*current_uV < 0) {
3736                 *current_uV = regulator_get_voltage_rdev(rdev);
3737
3738                 if (*current_uV < 0)
3739                         return *current_uV;
3740         }
3741
3742         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3743                 return 1;
3744
3745         /* Clamp target voltage within the given step */
3746         if (*current_uV < *min_uV)
3747                 *min_uV = min(*current_uV + constraints->max_uV_step,
3748                               *min_uV);
3749         else
3750                 *min_uV = max(*current_uV - constraints->max_uV_step,
3751                               *min_uV);
3752
3753         return 0;
3754 }
3755
3756 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3757                                          int *current_uV,
3758                                          int *min_uV, int *max_uV,
3759                                          suspend_state_t state,
3760                                          int n_coupled)
3761 {
3762         struct coupling_desc *c_desc = &rdev->coupling_desc;
3763         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3764         struct regulation_constraints *constraints = rdev->constraints;
3765         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3766         int max_current_uV = 0, min_current_uV = INT_MAX;
3767         int highest_min_uV = 0, target_uV, possible_uV;
3768         int i, ret, max_spread;
3769         bool done;
3770
3771         *current_uV = -1;
3772
3773         /*
3774          * If there are no coupled regulators, simply set the voltage
3775          * demanded by consumers.
3776          */
3777         if (n_coupled == 1) {
3778                 /*
3779                  * If consumers don't provide any demands, set voltage
3780                  * to min_uV
3781                  */
3782                 desired_min_uV = constraints->min_uV;
3783                 desired_max_uV = constraints->max_uV;
3784
3785                 ret = regulator_check_consumers(rdev,
3786                                                 &desired_min_uV,
3787                                                 &desired_max_uV, state);
3788                 if (ret < 0)
3789                         return ret;
3790
3791                 possible_uV = desired_min_uV;
3792                 done = true;
3793
3794                 goto finish;
3795         }
3796
3797         /* Find highest min desired voltage */
3798         for (i = 0; i < n_coupled; i++) {
3799                 int tmp_min = 0;
3800                 int tmp_max = INT_MAX;
3801
3802                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3803
3804                 ret = regulator_check_consumers(c_rdevs[i],
3805                                                 &tmp_min,
3806                                                 &tmp_max, state);
3807                 if (ret < 0)
3808                         return ret;
3809
3810                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3811                 if (ret < 0)
3812                         return ret;
3813
3814                 highest_min_uV = max(highest_min_uV, tmp_min);
3815
3816                 if (i == 0) {
3817                         desired_min_uV = tmp_min;
3818                         desired_max_uV = tmp_max;
3819                 }
3820         }
3821
3822         max_spread = constraints->max_spread[0];
3823
3824         /*
3825          * Let target_uV be equal to the desired one if possible.
3826          * If not, set it to minimum voltage, allowed by other coupled
3827          * regulators.
3828          */
3829         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3830
3831         /*
3832          * Find min and max voltages, which currently aren't violating
3833          * max_spread.
3834          */
3835         for (i = 1; i < n_coupled; i++) {
3836                 int tmp_act;
3837
3838                 if (!_regulator_is_enabled(c_rdevs[i]))
3839                         continue;
3840
3841                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3842                 if (tmp_act < 0)
3843                         return tmp_act;
3844
3845                 min_current_uV = min(tmp_act, min_current_uV);
3846                 max_current_uV = max(tmp_act, max_current_uV);
3847         }
3848
3849         /* There aren't any other regulators enabled */
3850         if (max_current_uV == 0) {
3851                 possible_uV = target_uV;
3852         } else {
3853                 /*
3854                  * Correct target voltage, so as it currently isn't
3855                  * violating max_spread
3856                  */
3857                 possible_uV = max(target_uV, max_current_uV - max_spread);
3858                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3859         }
3860
3861         if (possible_uV > desired_max_uV)
3862                 return -EINVAL;
3863
3864         done = (possible_uV == target_uV);
3865         desired_min_uV = possible_uV;
3866
3867 finish:
3868         /* Apply max_uV_step constraint if necessary */
3869         if (state == PM_SUSPEND_ON) {
3870                 ret = regulator_limit_voltage_step(rdev, current_uV,
3871                                                    &desired_min_uV);
3872                 if (ret < 0)
3873                         return ret;
3874
3875                 if (ret == 0)
3876                         done = false;
3877         }
3878
3879         /* Set current_uV if wasn't done earlier in the code and if necessary */
3880         if (n_coupled > 1 && *current_uV == -1) {
3881
3882                 if (_regulator_is_enabled(rdev)) {
3883                         ret = regulator_get_voltage_rdev(rdev);
3884                         if (ret < 0)
3885                                 return ret;
3886
3887                         *current_uV = ret;
3888                 } else {
3889                         *current_uV = desired_min_uV;
3890                 }
3891         }
3892
3893         *min_uV = desired_min_uV;
3894         *max_uV = desired_max_uV;
3895
3896         return done;
3897 }
3898
3899 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3900                                  suspend_state_t state, bool skip_coupled)
3901 {
3902         struct regulator_dev **c_rdevs;
3903         struct regulator_dev *best_rdev;
3904         struct coupling_desc *c_desc = &rdev->coupling_desc;
3905         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3906         unsigned int delta, best_delta;
3907         unsigned long c_rdev_done = 0;
3908         bool best_c_rdev_done;
3909
3910         c_rdevs = c_desc->coupled_rdevs;
3911         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3912
3913         /*
3914          * Find the best possible voltage change on each loop. Leave the loop
3915          * if there isn't any possible change.
3916          */
3917         do {
3918                 best_c_rdev_done = false;
3919                 best_delta = 0;
3920                 best_min_uV = 0;
3921                 best_max_uV = 0;
3922                 best_c_rdev = 0;
3923                 best_rdev = NULL;
3924
3925                 /*
3926                  * Find highest difference between optimal voltage
3927                  * and current voltage.
3928                  */
3929                 for (i = 0; i < n_coupled; i++) {
3930                         /*
3931                          * optimal_uV is the best voltage that can be set for
3932                          * i-th regulator at the moment without violating
3933                          * max_spread constraint in order to balance
3934                          * the coupled voltages.
3935                          */
3936                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3937
3938                         if (test_bit(i, &c_rdev_done))
3939                                 continue;
3940
3941                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3942                                                             &current_uV,
3943                                                             &optimal_uV,
3944                                                             &optimal_max_uV,
3945                                                             state, n_coupled);
3946                         if (ret < 0)
3947                                 goto out;
3948
3949                         delta = abs(optimal_uV - current_uV);
3950
3951                         if (delta && best_delta <= delta) {
3952                                 best_c_rdev_done = ret;
3953                                 best_delta = delta;
3954                                 best_rdev = c_rdevs[i];
3955                                 best_min_uV = optimal_uV;
3956                                 best_max_uV = optimal_max_uV;
3957                                 best_c_rdev = i;
3958                         }
3959                 }
3960
3961                 /* Nothing to change, return successfully */
3962                 if (!best_rdev) {
3963                         ret = 0;
3964                         goto out;
3965                 }
3966
3967                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3968                                                  best_max_uV, state);
3969
3970                 if (ret < 0)
3971                         goto out;
3972
3973                 if (best_c_rdev_done)
3974                         set_bit(best_c_rdev, &c_rdev_done);
3975
3976         } while (n_coupled > 1);
3977
3978 out:
3979         return ret;
3980 }
3981
3982 static int regulator_balance_voltage(struct regulator_dev *rdev,
3983                                      suspend_state_t state)
3984 {
3985         struct coupling_desc *c_desc = &rdev->coupling_desc;
3986         struct regulator_coupler *coupler = c_desc->coupler;
3987         bool skip_coupled = false;
3988
3989         /*
3990          * If system is in a state other than PM_SUSPEND_ON, don't check
3991          * other coupled regulators.
3992          */
3993         if (state != PM_SUSPEND_ON)
3994                 skip_coupled = true;
3995
3996         if (c_desc->n_resolved < c_desc->n_coupled) {
3997                 rdev_err(rdev, "Not all coupled regulators registered\n");
3998                 return -EPERM;
3999         }
4000
4001         /* Invoke custom balancer for customized couplers */
4002         if (coupler && coupler->balance_voltage)
4003                 return coupler->balance_voltage(coupler, rdev, state);
4004
4005         return regulator_do_balance_voltage(rdev, state, skip_coupled);
4006 }
4007
4008 /**
4009  * regulator_set_voltage - set regulator output voltage
4010  * @regulator: regulator source
4011  * @min_uV: Minimum required voltage in uV
4012  * @max_uV: Maximum acceptable voltage in uV
4013  *
4014  * Sets a voltage regulator to the desired output voltage. This can be set
4015  * during any regulator state. IOW, regulator can be disabled or enabled.
4016  *
4017  * If the regulator is enabled then the voltage will change to the new value
4018  * immediately otherwise if the regulator is disabled the regulator will
4019  * output at the new voltage when enabled.
4020  *
4021  * NOTE: If the regulator is shared between several devices then the lowest
4022  * request voltage that meets the system constraints will be used.
4023  * Regulator system constraints must be set for this regulator before
4024  * calling this function otherwise this call will fail.
4025  */
4026 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4027 {
4028         struct ww_acquire_ctx ww_ctx;
4029         int ret;
4030
4031         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4032
4033         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4034                                              PM_SUSPEND_ON);
4035
4036         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4037
4038         return ret;
4039 }
4040 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4041
4042 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4043                                            suspend_state_t state, bool en)
4044 {
4045         struct regulator_state *rstate;
4046
4047         rstate = regulator_get_suspend_state(rdev, state);
4048         if (rstate == NULL)
4049                 return -EINVAL;
4050
4051         if (!rstate->changeable)
4052                 return -EPERM;
4053
4054         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4055
4056         return 0;
4057 }
4058
4059 int regulator_suspend_enable(struct regulator_dev *rdev,
4060                                     suspend_state_t state)
4061 {
4062         return regulator_suspend_toggle(rdev, state, true);
4063 }
4064 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4065
4066 int regulator_suspend_disable(struct regulator_dev *rdev,
4067                                      suspend_state_t state)
4068 {
4069         struct regulator *regulator;
4070         struct regulator_voltage *voltage;
4071
4072         /*
4073          * if any consumer wants this regulator device keeping on in
4074          * suspend states, don't set it as disabled.
4075          */
4076         list_for_each_entry(regulator, &rdev->consumer_list, list) {
4077                 voltage = &regulator->voltage[state];
4078                 if (voltage->min_uV || voltage->max_uV)
4079                         return 0;
4080         }
4081
4082         return regulator_suspend_toggle(rdev, state, false);
4083 }
4084 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4085
4086 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4087                                           int min_uV, int max_uV,
4088                                           suspend_state_t state)
4089 {
4090         struct regulator_dev *rdev = regulator->rdev;
4091         struct regulator_state *rstate;
4092
4093         rstate = regulator_get_suspend_state(rdev, state);
4094         if (rstate == NULL)
4095                 return -EINVAL;
4096
4097         if (rstate->min_uV == rstate->max_uV) {
4098                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4099                 return -EPERM;
4100         }
4101
4102         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4103 }
4104
4105 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4106                                   int max_uV, suspend_state_t state)
4107 {
4108         struct ww_acquire_ctx ww_ctx;
4109         int ret;
4110
4111         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4112         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4113                 return -EINVAL;
4114
4115         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4116
4117         ret = _regulator_set_suspend_voltage(regulator, min_uV,
4118                                              max_uV, state);
4119
4120         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4121
4122         return ret;
4123 }
4124 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4125
4126 /**
4127  * regulator_set_voltage_time - get raise/fall time
4128  * @regulator: regulator source
4129  * @old_uV: starting voltage in microvolts
4130  * @new_uV: target voltage in microvolts
4131  *
4132  * Provided with the starting and ending voltage, this function attempts to
4133  * calculate the time in microseconds required to rise or fall to this new
4134  * voltage.
4135  */
4136 int regulator_set_voltage_time(struct regulator *regulator,
4137                                int old_uV, int new_uV)
4138 {
4139         struct regulator_dev *rdev = regulator->rdev;
4140         const struct regulator_ops *ops = rdev->desc->ops;
4141         int old_sel = -1;
4142         int new_sel = -1;
4143         int voltage;
4144         int i;
4145
4146         if (ops->set_voltage_time)
4147                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4148         else if (!ops->set_voltage_time_sel)
4149                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4150
4151         /* Currently requires operations to do this */
4152         if (!ops->list_voltage || !rdev->desc->n_voltages)
4153                 return -EINVAL;
4154
4155         for (i = 0; i < rdev->desc->n_voltages; i++) {
4156                 /* We only look for exact voltage matches here */
4157                 if (i < rdev->desc->linear_min_sel)
4158                         continue;
4159
4160                 if (old_sel >= 0 && new_sel >= 0)
4161                         break;
4162
4163                 voltage = regulator_list_voltage(regulator, i);
4164                 if (voltage < 0)
4165                         return -EINVAL;
4166                 if (voltage == 0)
4167                         continue;
4168                 if (voltage == old_uV)
4169                         old_sel = i;
4170                 if (voltage == new_uV)
4171                         new_sel = i;
4172         }
4173
4174         if (old_sel < 0 || new_sel < 0)
4175                 return -EINVAL;
4176
4177         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4178 }
4179 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4180
4181 /**
4182  * regulator_set_voltage_time_sel - get raise/fall time
4183  * @rdev: regulator source device
4184  * @old_selector: selector for starting voltage
4185  * @new_selector: selector for target voltage
4186  *
4187  * Provided with the starting and target voltage selectors, this function
4188  * returns time in microseconds required to rise or fall to this new voltage
4189  *
4190  * Drivers providing ramp_delay in regulation_constraints can use this as their
4191  * set_voltage_time_sel() operation.
4192  */
4193 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4194                                    unsigned int old_selector,
4195                                    unsigned int new_selector)
4196 {
4197         int old_volt, new_volt;
4198
4199         /* sanity check */
4200         if (!rdev->desc->ops->list_voltage)
4201                 return -EINVAL;
4202
4203         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4204         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4205
4206         if (rdev->desc->ops->set_voltage_time)
4207                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4208                                                          new_volt);
4209         else
4210                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4211 }
4212 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4213
4214 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4215 {
4216         int ret;
4217
4218         regulator_lock(rdev);
4219
4220         if (!rdev->desc->ops->set_voltage &&
4221             !rdev->desc->ops->set_voltage_sel) {
4222                 ret = -EINVAL;
4223                 goto out;
4224         }
4225
4226         /* balance only, if regulator is coupled */
4227         if (rdev->coupling_desc.n_coupled > 1)
4228                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4229         else
4230                 ret = -EOPNOTSUPP;
4231
4232 out:
4233         regulator_unlock(rdev);
4234         return ret;
4235 }
4236
4237 /**
4238  * regulator_sync_voltage - re-apply last regulator output voltage
4239  * @regulator: regulator source
4240  *
4241  * Re-apply the last configured voltage.  This is intended to be used
4242  * where some external control source the consumer is cooperating with
4243  * has caused the configured voltage to change.
4244  */
4245 int regulator_sync_voltage(struct regulator *regulator)
4246 {
4247         struct regulator_dev *rdev = regulator->rdev;
4248         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4249         int ret, min_uV, max_uV;
4250
4251         regulator_lock(rdev);
4252
4253         if (!rdev->desc->ops->set_voltage &&
4254             !rdev->desc->ops->set_voltage_sel) {
4255                 ret = -EINVAL;
4256                 goto out;
4257         }
4258
4259         /* This is only going to work if we've had a voltage configured. */
4260         if (!voltage->min_uV && !voltage->max_uV) {
4261                 ret = -EINVAL;
4262                 goto out;
4263         }
4264
4265         min_uV = voltage->min_uV;
4266         max_uV = voltage->max_uV;
4267
4268         /* This should be a paranoia check... */
4269         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4270         if (ret < 0)
4271                 goto out;
4272
4273         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4274         if (ret < 0)
4275                 goto out;
4276
4277         /* balance only, if regulator is coupled */
4278         if (rdev->coupling_desc.n_coupled > 1)
4279                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4280         else
4281                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4282
4283 out:
4284         regulator_unlock(rdev);
4285         return ret;
4286 }
4287 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4288
4289 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4290 {
4291         int sel, ret;
4292         bool bypassed;
4293
4294         if (rdev->desc->ops->get_bypass) {
4295                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4296                 if (ret < 0)
4297                         return ret;
4298                 if (bypassed) {
4299                         /* if bypassed the regulator must have a supply */
4300                         if (!rdev->supply) {
4301                                 rdev_err(rdev,
4302                                          "bypassed regulator has no supply!\n");
4303                                 return -EPROBE_DEFER;
4304                         }
4305
4306                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4307                 }
4308         }
4309
4310         if (rdev->desc->ops->get_voltage_sel) {
4311                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4312                 if (sel < 0)
4313                         return sel;
4314                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4315         } else if (rdev->desc->ops->get_voltage) {
4316                 ret = rdev->desc->ops->get_voltage(rdev);
4317         } else if (rdev->desc->ops->list_voltage) {
4318                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4319         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4320                 ret = rdev->desc->fixed_uV;
4321         } else if (rdev->supply) {
4322                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4323         } else if (rdev->supply_name) {
4324                 return -EPROBE_DEFER;
4325         } else {
4326                 return -EINVAL;
4327         }
4328
4329         if (ret < 0)
4330                 return ret;
4331         return ret - rdev->constraints->uV_offset;
4332 }
4333 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4334
4335 /**
4336  * regulator_get_voltage - get regulator output voltage
4337  * @regulator: regulator source
4338  *
4339  * This returns the current regulator voltage in uV.
4340  *
4341  * NOTE: If the regulator is disabled it will return the voltage value. This
4342  * function should not be used to determine regulator state.
4343  */
4344 int regulator_get_voltage(struct regulator *regulator)
4345 {
4346         struct ww_acquire_ctx ww_ctx;
4347         int ret;
4348
4349         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4350         ret = regulator_get_voltage_rdev(regulator->rdev);
4351         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4352
4353         return ret;
4354 }
4355 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4356
4357 /**
4358  * regulator_set_current_limit - set regulator output current limit
4359  * @regulator: regulator source
4360  * @min_uA: Minimum supported current in uA
4361  * @max_uA: Maximum supported current in uA
4362  *
4363  * Sets current sink to the desired output current. This can be set during
4364  * any regulator state. IOW, regulator can be disabled or enabled.
4365  *
4366  * If the regulator is enabled then the current will change to the new value
4367  * immediately otherwise if the regulator is disabled the regulator will
4368  * output at the new current when enabled.
4369  *
4370  * NOTE: Regulator system constraints must be set for this regulator before
4371  * calling this function otherwise this call will fail.
4372  */
4373 int regulator_set_current_limit(struct regulator *regulator,
4374                                int min_uA, int max_uA)
4375 {
4376         struct regulator_dev *rdev = regulator->rdev;
4377         int ret;
4378
4379         regulator_lock(rdev);
4380
4381         /* sanity check */
4382         if (!rdev->desc->ops->set_current_limit) {
4383                 ret = -EINVAL;
4384                 goto out;
4385         }
4386
4387         /* constraints check */
4388         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4389         if (ret < 0)
4390                 goto out;
4391
4392         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4393 out:
4394         regulator_unlock(rdev);
4395         return ret;
4396 }
4397 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4398
4399 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4400 {
4401         /* sanity check */
4402         if (!rdev->desc->ops->get_current_limit)
4403                 return -EINVAL;
4404
4405         return rdev->desc->ops->get_current_limit(rdev);
4406 }
4407
4408 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4409 {
4410         int ret;
4411
4412         regulator_lock(rdev);
4413         ret = _regulator_get_current_limit_unlocked(rdev);
4414         regulator_unlock(rdev);
4415
4416         return ret;
4417 }
4418
4419 /**
4420  * regulator_get_current_limit - get regulator output current
4421  * @regulator: regulator source
4422  *
4423  * This returns the current supplied by the specified current sink in uA.
4424  *
4425  * NOTE: If the regulator is disabled it will return the current value. This
4426  * function should not be used to determine regulator state.
4427  */
4428 int regulator_get_current_limit(struct regulator *regulator)
4429 {
4430         return _regulator_get_current_limit(regulator->rdev);
4431 }
4432 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4433
4434 /**
4435  * regulator_set_mode - set regulator operating mode
4436  * @regulator: regulator source
4437  * @mode: operating mode - one of the REGULATOR_MODE constants
4438  *
4439  * Set regulator operating mode to increase regulator efficiency or improve
4440  * regulation performance.
4441  *
4442  * NOTE: Regulator system constraints must be set for this regulator before
4443  * calling this function otherwise this call will fail.
4444  */
4445 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4446 {
4447         struct regulator_dev *rdev = regulator->rdev;
4448         int ret;
4449         int regulator_curr_mode;
4450
4451         regulator_lock(rdev);
4452
4453         /* sanity check */
4454         if (!rdev->desc->ops->set_mode) {
4455                 ret = -EINVAL;
4456                 goto out;
4457         }
4458
4459         /* return if the same mode is requested */
4460         if (rdev->desc->ops->get_mode) {
4461                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4462                 if (regulator_curr_mode == mode) {
4463                         ret = 0;
4464                         goto out;
4465                 }
4466         }
4467
4468         /* constraints check */
4469         ret = regulator_mode_constrain(rdev, &mode);
4470         if (ret < 0)
4471                 goto out;
4472
4473         ret = rdev->desc->ops->set_mode(rdev, mode);
4474 out:
4475         regulator_unlock(rdev);
4476         return ret;
4477 }
4478 EXPORT_SYMBOL_GPL(regulator_set_mode);
4479
4480 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4481 {
4482         /* sanity check */
4483         if (!rdev->desc->ops->get_mode)
4484                 return -EINVAL;
4485
4486         return rdev->desc->ops->get_mode(rdev);
4487 }
4488
4489 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4490 {
4491         int ret;
4492
4493         regulator_lock(rdev);
4494         ret = _regulator_get_mode_unlocked(rdev);
4495         regulator_unlock(rdev);
4496
4497         return ret;
4498 }
4499
4500 /**
4501  * regulator_get_mode - get regulator operating mode
4502  * @regulator: regulator source
4503  *
4504  * Get the current regulator operating mode.
4505  */
4506 unsigned int regulator_get_mode(struct regulator *regulator)
4507 {
4508         return _regulator_get_mode(regulator->rdev);
4509 }
4510 EXPORT_SYMBOL_GPL(regulator_get_mode);
4511
4512 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4513 {
4514         int ret = 0;
4515
4516         if (rdev->use_cached_err) {
4517                 spin_lock(&rdev->err_lock);
4518                 ret = rdev->cached_err;
4519                 spin_unlock(&rdev->err_lock);
4520         }
4521         return ret;
4522 }
4523
4524 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4525                                         unsigned int *flags)
4526 {
4527         int cached_flags, ret = 0;
4528
4529         regulator_lock(rdev);
4530
4531         cached_flags = rdev_get_cached_err_flags(rdev);
4532
4533         if (rdev->desc->ops->get_error_flags)
4534                 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4535         else if (!rdev->use_cached_err)
4536                 ret = -EINVAL;
4537
4538         *flags |= cached_flags;
4539
4540         regulator_unlock(rdev);
4541
4542         return ret;
4543 }
4544
4545 /**
4546  * regulator_get_error_flags - get regulator error information
4547  * @regulator: regulator source
4548  * @flags: pointer to store error flags
4549  *
4550  * Get the current regulator error information.
4551  */
4552 int regulator_get_error_flags(struct regulator *regulator,
4553                                 unsigned int *flags)
4554 {
4555         return _regulator_get_error_flags(regulator->rdev, flags);
4556 }
4557 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4558
4559 /**
4560  * regulator_set_load - set regulator load
4561  * @regulator: regulator source
4562  * @uA_load: load current
4563  *
4564  * Notifies the regulator core of a new device load. This is then used by
4565  * DRMS (if enabled by constraints) to set the most efficient regulator
4566  * operating mode for the new regulator loading.
4567  *
4568  * Consumer devices notify their supply regulator of the maximum power
4569  * they will require (can be taken from device datasheet in the power
4570  * consumption tables) when they change operational status and hence power
4571  * state. Examples of operational state changes that can affect power
4572  * consumption are :-
4573  *
4574  *    o Device is opened / closed.
4575  *    o Device I/O is about to begin or has just finished.
4576  *    o Device is idling in between work.
4577  *
4578  * This information is also exported via sysfs to userspace.
4579  *
4580  * DRMS will sum the total requested load on the regulator and change
4581  * to the most efficient operating mode if platform constraints allow.
4582  *
4583  * NOTE: when a regulator consumer requests to have a regulator
4584  * disabled then any load that consumer requested no longer counts
4585  * toward the total requested load.  If the regulator is re-enabled
4586  * then the previously requested load will start counting again.
4587  *
4588  * If a regulator is an always-on regulator then an individual consumer's
4589  * load will still be removed if that consumer is fully disabled.
4590  *
4591  * On error a negative errno is returned.
4592  */
4593 int regulator_set_load(struct regulator *regulator, int uA_load)
4594 {
4595         struct regulator_dev *rdev = regulator->rdev;
4596         int old_uA_load;
4597         int ret = 0;
4598
4599         regulator_lock(rdev);
4600         old_uA_load = regulator->uA_load;
4601         regulator->uA_load = uA_load;
4602         if (regulator->enable_count && old_uA_load != uA_load) {
4603                 ret = drms_uA_update(rdev);
4604                 if (ret < 0)
4605                         regulator->uA_load = old_uA_load;
4606         }
4607         regulator_unlock(rdev);
4608
4609         return ret;
4610 }
4611 EXPORT_SYMBOL_GPL(regulator_set_load);
4612
4613 /**
4614  * regulator_allow_bypass - allow the regulator to go into bypass mode
4615  *
4616  * @regulator: Regulator to configure
4617  * @enable: enable or disable bypass mode
4618  *
4619  * Allow the regulator to go into bypass mode if all other consumers
4620  * for the regulator also enable bypass mode and the machine
4621  * constraints allow this.  Bypass mode means that the regulator is
4622  * simply passing the input directly to the output with no regulation.
4623  */
4624 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4625 {
4626         struct regulator_dev *rdev = regulator->rdev;
4627         const char *name = rdev_get_name(rdev);
4628         int ret = 0;
4629
4630         if (!rdev->desc->ops->set_bypass)
4631                 return 0;
4632
4633         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4634                 return 0;
4635
4636         regulator_lock(rdev);
4637
4638         if (enable && !regulator->bypass) {
4639                 rdev->bypass_count++;
4640
4641                 if (rdev->bypass_count == rdev->open_count) {
4642                         trace_regulator_bypass_enable(name);
4643
4644                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4645                         if (ret != 0)
4646                                 rdev->bypass_count--;
4647                         else
4648                                 trace_regulator_bypass_enable_complete(name);
4649                 }
4650
4651         } else if (!enable && regulator->bypass) {
4652                 rdev->bypass_count--;
4653
4654                 if (rdev->bypass_count != rdev->open_count) {
4655                         trace_regulator_bypass_disable(name);
4656
4657                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4658                         if (ret != 0)
4659                                 rdev->bypass_count++;
4660                         else
4661                                 trace_regulator_bypass_disable_complete(name);
4662                 }
4663         }
4664
4665         if (ret == 0)
4666                 regulator->bypass = enable;
4667
4668         regulator_unlock(rdev);
4669
4670         return ret;
4671 }
4672 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4673
4674 /**
4675  * regulator_register_notifier - register regulator event notifier
4676  * @regulator: regulator source
4677  * @nb: notifier block
4678  *
4679  * Register notifier block to receive regulator events.
4680  */
4681 int regulator_register_notifier(struct regulator *regulator,
4682                               struct notifier_block *nb)
4683 {
4684         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4685                                                 nb);
4686 }
4687 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4688
4689 /**
4690  * regulator_unregister_notifier - unregister regulator event notifier
4691  * @regulator: regulator source
4692  * @nb: notifier block
4693  *
4694  * Unregister regulator event notifier block.
4695  */
4696 int regulator_unregister_notifier(struct regulator *regulator,
4697                                 struct notifier_block *nb)
4698 {
4699         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4700                                                   nb);
4701 }
4702 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4703
4704 /* notify regulator consumers and downstream regulator consumers.
4705  * Note mutex must be held by caller.
4706  */
4707 static int _notifier_call_chain(struct regulator_dev *rdev,
4708                                   unsigned long event, void *data)
4709 {
4710         /* call rdev chain first */
4711         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4712 }
4713
4714 /**
4715  * regulator_bulk_get - get multiple regulator consumers
4716  *
4717  * @dev:           Device to supply
4718  * @num_consumers: Number of consumers to register
4719  * @consumers:     Configuration of consumers; clients are stored here.
4720  *
4721  * @return 0 on success, an errno on failure.
4722  *
4723  * This helper function allows drivers to get several regulator
4724  * consumers in one operation.  If any of the regulators cannot be
4725  * acquired then any regulators that were allocated will be freed
4726  * before returning to the caller.
4727  */
4728 int regulator_bulk_get(struct device *dev, int num_consumers,
4729                        struct regulator_bulk_data *consumers)
4730 {
4731         int i;
4732         int ret;
4733
4734         for (i = 0; i < num_consumers; i++)
4735                 consumers[i].consumer = NULL;
4736
4737         for (i = 0; i < num_consumers; i++) {
4738                 consumers[i].consumer = regulator_get(dev,
4739                                                       consumers[i].supply);
4740                 if (IS_ERR(consumers[i].consumer)) {
4741                         ret = PTR_ERR(consumers[i].consumer);
4742                         consumers[i].consumer = NULL;
4743                         goto err;
4744                 }
4745         }
4746
4747         return 0;
4748
4749 err:
4750         if (ret != -EPROBE_DEFER)
4751                 dev_err(dev, "Failed to get supply '%s': %pe\n",
4752                         consumers[i].supply, ERR_PTR(ret));
4753         else
4754                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4755                         consumers[i].supply);
4756
4757         while (--i >= 0)
4758                 regulator_put(consumers[i].consumer);
4759
4760         return ret;
4761 }
4762 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4763
4764 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4765 {
4766         struct regulator_bulk_data *bulk = data;
4767
4768         bulk->ret = regulator_enable(bulk->consumer);
4769 }
4770
4771 /**
4772  * regulator_bulk_enable - enable multiple regulator consumers
4773  *
4774  * @num_consumers: Number of consumers
4775  * @consumers:     Consumer data; clients are stored here.
4776  * @return         0 on success, an errno on failure
4777  *
4778  * This convenience API allows consumers to enable multiple regulator
4779  * clients in a single API call.  If any consumers cannot be enabled
4780  * then any others that were enabled will be disabled again prior to
4781  * return.
4782  */
4783 int regulator_bulk_enable(int num_consumers,
4784                           struct regulator_bulk_data *consumers)
4785 {
4786         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4787         int i;
4788         int ret = 0;
4789
4790         for (i = 0; i < num_consumers; i++) {
4791                 async_schedule_domain(regulator_bulk_enable_async,
4792                                       &consumers[i], &async_domain);
4793         }
4794
4795         async_synchronize_full_domain(&async_domain);
4796
4797         /* If any consumer failed we need to unwind any that succeeded */
4798         for (i = 0; i < num_consumers; i++) {
4799                 if (consumers[i].ret != 0) {
4800                         ret = consumers[i].ret;
4801                         goto err;
4802                 }
4803         }
4804
4805         return 0;
4806
4807 err:
4808         for (i = 0; i < num_consumers; i++) {
4809                 if (consumers[i].ret < 0)
4810                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4811                                ERR_PTR(consumers[i].ret));
4812                 else
4813                         regulator_disable(consumers[i].consumer);
4814         }
4815
4816         return ret;
4817 }
4818 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4819
4820 /**
4821  * regulator_bulk_disable - disable multiple regulator consumers
4822  *
4823  * @num_consumers: Number of consumers
4824  * @consumers:     Consumer data; clients are stored here.
4825  * @return         0 on success, an errno on failure
4826  *
4827  * This convenience API allows consumers to disable multiple regulator
4828  * clients in a single API call.  If any consumers cannot be disabled
4829  * then any others that were disabled will be enabled again prior to
4830  * return.
4831  */
4832 int regulator_bulk_disable(int num_consumers,
4833                            struct regulator_bulk_data *consumers)
4834 {
4835         int i;
4836         int ret, r;
4837
4838         for (i = num_consumers - 1; i >= 0; --i) {
4839                 ret = regulator_disable(consumers[i].consumer);
4840                 if (ret != 0)
4841                         goto err;
4842         }
4843
4844         return 0;
4845
4846 err:
4847         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4848         for (++i; i < num_consumers; ++i) {
4849                 r = regulator_enable(consumers[i].consumer);
4850                 if (r != 0)
4851                         pr_err("Failed to re-enable %s: %pe\n",
4852                                consumers[i].supply, ERR_PTR(r));
4853         }
4854
4855         return ret;
4856 }
4857 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4858
4859 /**
4860  * regulator_bulk_force_disable - force disable multiple regulator consumers
4861  *
4862  * @num_consumers: Number of consumers
4863  * @consumers:     Consumer data; clients are stored here.
4864  * @return         0 on success, an errno on failure
4865  *
4866  * This convenience API allows consumers to forcibly disable multiple regulator
4867  * clients in a single API call.
4868  * NOTE: This should be used for situations when device damage will
4869  * likely occur if the regulators are not disabled (e.g. over temp).
4870  * Although regulator_force_disable function call for some consumers can
4871  * return error numbers, the function is called for all consumers.
4872  */
4873 int regulator_bulk_force_disable(int num_consumers,
4874                            struct regulator_bulk_data *consumers)
4875 {
4876         int i;
4877         int ret = 0;
4878
4879         for (i = 0; i < num_consumers; i++) {
4880                 consumers[i].ret =
4881                             regulator_force_disable(consumers[i].consumer);
4882
4883                 /* Store first error for reporting */
4884                 if (consumers[i].ret && !ret)
4885                         ret = consumers[i].ret;
4886         }
4887
4888         return ret;
4889 }
4890 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4891
4892 /**
4893  * regulator_bulk_free - free multiple regulator consumers
4894  *
4895  * @num_consumers: Number of consumers
4896  * @consumers:     Consumer data; clients are stored here.
4897  *
4898  * This convenience API allows consumers to free multiple regulator
4899  * clients in a single API call.
4900  */
4901 void regulator_bulk_free(int num_consumers,
4902                          struct regulator_bulk_data *consumers)
4903 {
4904         int i;
4905
4906         for (i = 0; i < num_consumers; i++) {
4907                 regulator_put(consumers[i].consumer);
4908                 consumers[i].consumer = NULL;
4909         }
4910 }
4911 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4912
4913 /**
4914  * regulator_notifier_call_chain - call regulator event notifier
4915  * @rdev: regulator source
4916  * @event: notifier block
4917  * @data: callback-specific data.
4918  *
4919  * Called by regulator drivers to notify clients a regulator event has
4920  * occurred.
4921  */
4922 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4923                                   unsigned long event, void *data)
4924 {
4925         _notifier_call_chain(rdev, event, data);
4926         return NOTIFY_DONE;
4927
4928 }
4929 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4930
4931 /**
4932  * regulator_mode_to_status - convert a regulator mode into a status
4933  *
4934  * @mode: Mode to convert
4935  *
4936  * Convert a regulator mode into a status.
4937  */
4938 int regulator_mode_to_status(unsigned int mode)
4939 {
4940         switch (mode) {
4941         case REGULATOR_MODE_FAST:
4942                 return REGULATOR_STATUS_FAST;
4943         case REGULATOR_MODE_NORMAL:
4944                 return REGULATOR_STATUS_NORMAL;
4945         case REGULATOR_MODE_IDLE:
4946                 return REGULATOR_STATUS_IDLE;
4947         case REGULATOR_MODE_STANDBY:
4948                 return REGULATOR_STATUS_STANDBY;
4949         default:
4950                 return REGULATOR_STATUS_UNDEFINED;
4951         }
4952 }
4953 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4954
4955 static struct attribute *regulator_dev_attrs[] = {
4956         &dev_attr_name.attr,
4957         &dev_attr_num_users.attr,
4958         &dev_attr_type.attr,
4959         &dev_attr_microvolts.attr,
4960         &dev_attr_microamps.attr,
4961         &dev_attr_opmode.attr,
4962         &dev_attr_state.attr,
4963         &dev_attr_status.attr,
4964         &dev_attr_bypass.attr,
4965         &dev_attr_requested_microamps.attr,
4966         &dev_attr_min_microvolts.attr,
4967         &dev_attr_max_microvolts.attr,
4968         &dev_attr_min_microamps.attr,
4969         &dev_attr_max_microamps.attr,
4970         &dev_attr_suspend_standby_state.attr,
4971         &dev_attr_suspend_mem_state.attr,
4972         &dev_attr_suspend_disk_state.attr,
4973         &dev_attr_suspend_standby_microvolts.attr,
4974         &dev_attr_suspend_mem_microvolts.attr,
4975         &dev_attr_suspend_disk_microvolts.attr,
4976         &dev_attr_suspend_standby_mode.attr,
4977         &dev_attr_suspend_mem_mode.attr,
4978         &dev_attr_suspend_disk_mode.attr,
4979         NULL
4980 };
4981
4982 /*
4983  * To avoid cluttering sysfs (and memory) with useless state, only
4984  * create attributes that can be meaningfully displayed.
4985  */
4986 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4987                                          struct attribute *attr, int idx)
4988 {
4989         struct device *dev = kobj_to_dev(kobj);
4990         struct regulator_dev *rdev = dev_to_rdev(dev);
4991         const struct regulator_ops *ops = rdev->desc->ops;
4992         umode_t mode = attr->mode;
4993
4994         /* these three are always present */
4995         if (attr == &dev_attr_name.attr ||
4996             attr == &dev_attr_num_users.attr ||
4997             attr == &dev_attr_type.attr)
4998                 return mode;
4999
5000         /* some attributes need specific methods to be displayed */
5001         if (attr == &dev_attr_microvolts.attr) {
5002                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5003                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5004                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5005                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5006                         return mode;
5007                 return 0;
5008         }
5009
5010         if (attr == &dev_attr_microamps.attr)
5011                 return ops->get_current_limit ? mode : 0;
5012
5013         if (attr == &dev_attr_opmode.attr)
5014                 return ops->get_mode ? mode : 0;
5015
5016         if (attr == &dev_attr_state.attr)
5017                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5018
5019         if (attr == &dev_attr_status.attr)
5020                 return ops->get_status ? mode : 0;
5021
5022         if (attr == &dev_attr_bypass.attr)
5023                 return ops->get_bypass ? mode : 0;
5024
5025         /* constraints need specific supporting methods */
5026         if (attr == &dev_attr_min_microvolts.attr ||
5027             attr == &dev_attr_max_microvolts.attr)
5028                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5029
5030         if (attr == &dev_attr_min_microamps.attr ||
5031             attr == &dev_attr_max_microamps.attr)
5032                 return ops->set_current_limit ? mode : 0;
5033
5034         if (attr == &dev_attr_suspend_standby_state.attr ||
5035             attr == &dev_attr_suspend_mem_state.attr ||
5036             attr == &dev_attr_suspend_disk_state.attr)
5037                 return mode;
5038
5039         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5040             attr == &dev_attr_suspend_mem_microvolts.attr ||
5041             attr == &dev_attr_suspend_disk_microvolts.attr)
5042                 return ops->set_suspend_voltage ? mode : 0;
5043
5044         if (attr == &dev_attr_suspend_standby_mode.attr ||
5045             attr == &dev_attr_suspend_mem_mode.attr ||
5046             attr == &dev_attr_suspend_disk_mode.attr)
5047                 return ops->set_suspend_mode ? mode : 0;
5048
5049         return mode;
5050 }
5051
5052 static const struct attribute_group regulator_dev_group = {
5053         .attrs = regulator_dev_attrs,
5054         .is_visible = regulator_attr_is_visible,
5055 };
5056
5057 static const struct attribute_group *regulator_dev_groups[] = {
5058         &regulator_dev_group,
5059         NULL
5060 };
5061
5062 static void regulator_dev_release(struct device *dev)
5063 {
5064         struct regulator_dev *rdev = dev_get_drvdata(dev);
5065
5066         kfree(rdev->constraints);
5067         of_node_put(rdev->dev.of_node);
5068         kfree(rdev);
5069 }
5070
5071 static void rdev_init_debugfs(struct regulator_dev *rdev)
5072 {
5073         struct device *parent = rdev->dev.parent;
5074         const char *rname = rdev_get_name(rdev);
5075         char name[NAME_MAX];
5076
5077         /* Avoid duplicate debugfs directory names */
5078         if (parent && rname == rdev->desc->name) {
5079                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5080                          rname);
5081                 rname = name;
5082         }
5083
5084         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5085         if (!rdev->debugfs) {
5086                 rdev_warn(rdev, "Failed to create debugfs directory\n");
5087                 return;
5088         }
5089
5090         debugfs_create_u32("use_count", 0444, rdev->debugfs,
5091                            &rdev->use_count);
5092         debugfs_create_u32("open_count", 0444, rdev->debugfs,
5093                            &rdev->open_count);
5094         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5095                            &rdev->bypass_count);
5096 }
5097
5098 static int regulator_register_resolve_supply(struct device *dev, void *data)
5099 {
5100         struct regulator_dev *rdev = dev_to_rdev(dev);
5101
5102         if (regulator_resolve_supply(rdev))
5103                 rdev_dbg(rdev, "unable to resolve supply\n");
5104
5105         return 0;
5106 }
5107
5108 int regulator_coupler_register(struct regulator_coupler *coupler)
5109 {
5110         mutex_lock(&regulator_list_mutex);
5111         list_add_tail(&coupler->list, &regulator_coupler_list);
5112         mutex_unlock(&regulator_list_mutex);
5113
5114         return 0;
5115 }
5116
5117 static struct regulator_coupler *
5118 regulator_find_coupler(struct regulator_dev *rdev)
5119 {
5120         struct regulator_coupler *coupler;
5121         int err;
5122
5123         /*
5124          * Note that regulators are appended to the list and the generic
5125          * coupler is registered first, hence it will be attached at last
5126          * if nobody cared.
5127          */
5128         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
5129                 err = coupler->attach_regulator(coupler, rdev);
5130                 if (!err) {
5131                         if (!coupler->balance_voltage &&
5132                             rdev->coupling_desc.n_coupled > 2)
5133                                 goto err_unsupported;
5134
5135                         return coupler;
5136                 }
5137
5138                 if (err < 0)
5139                         return ERR_PTR(err);
5140
5141                 if (err == 1)
5142                         continue;
5143
5144                 break;
5145         }
5146
5147         return ERR_PTR(-EINVAL);
5148
5149 err_unsupported:
5150         if (coupler->detach_regulator)
5151                 coupler->detach_regulator(coupler, rdev);
5152
5153         rdev_err(rdev,
5154                 "Voltage balancing for multiple regulator couples is unimplemented\n");
5155
5156         return ERR_PTR(-EPERM);
5157 }
5158
5159 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5160 {
5161         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5162         struct coupling_desc *c_desc = &rdev->coupling_desc;
5163         int n_coupled = c_desc->n_coupled;
5164         struct regulator_dev *c_rdev;
5165         int i;
5166
5167         for (i = 1; i < n_coupled; i++) {
5168                 /* already resolved */
5169                 if (c_desc->coupled_rdevs[i])
5170                         continue;
5171
5172                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5173
5174                 if (!c_rdev)
5175                         continue;
5176
5177                 if (c_rdev->coupling_desc.coupler != coupler) {
5178                         rdev_err(rdev, "coupler mismatch with %s\n",
5179                                  rdev_get_name(c_rdev));
5180                         return;
5181                 }
5182
5183                 c_desc->coupled_rdevs[i] = c_rdev;
5184                 c_desc->n_resolved++;
5185
5186                 regulator_resolve_coupling(c_rdev);
5187         }
5188 }
5189
5190 static void regulator_remove_coupling(struct regulator_dev *rdev)
5191 {
5192         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5193         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5194         struct regulator_dev *__c_rdev, *c_rdev;
5195         unsigned int __n_coupled, n_coupled;
5196         int i, k;
5197         int err;
5198
5199         n_coupled = c_desc->n_coupled;
5200
5201         for (i = 1; i < n_coupled; i++) {
5202                 c_rdev = c_desc->coupled_rdevs[i];
5203
5204                 if (!c_rdev)
5205                         continue;
5206
5207                 regulator_lock(c_rdev);
5208
5209                 __c_desc = &c_rdev->coupling_desc;
5210                 __n_coupled = __c_desc->n_coupled;
5211
5212                 for (k = 1; k < __n_coupled; k++) {
5213                         __c_rdev = __c_desc->coupled_rdevs[k];
5214
5215                         if (__c_rdev == rdev) {
5216                                 __c_desc->coupled_rdevs[k] = NULL;
5217                                 __c_desc->n_resolved--;
5218                                 break;
5219                         }
5220                 }
5221
5222                 regulator_unlock(c_rdev);
5223
5224                 c_desc->coupled_rdevs[i] = NULL;
5225                 c_desc->n_resolved--;
5226         }
5227
5228         if (coupler && coupler->detach_regulator) {
5229                 err = coupler->detach_regulator(coupler, rdev);
5230                 if (err)
5231                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5232                                  ERR_PTR(err));
5233         }
5234
5235         kfree(rdev->coupling_desc.coupled_rdevs);
5236         rdev->coupling_desc.coupled_rdevs = NULL;
5237 }
5238
5239 static int regulator_init_coupling(struct regulator_dev *rdev)
5240 {
5241         struct regulator_dev **coupled;
5242         int err, n_phandles;
5243
5244         if (!IS_ENABLED(CONFIG_OF))
5245                 n_phandles = 0;
5246         else
5247                 n_phandles = of_get_n_coupled(rdev);
5248
5249         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5250         if (!coupled)
5251                 return -ENOMEM;
5252
5253         rdev->coupling_desc.coupled_rdevs = coupled;
5254
5255         /*
5256          * Every regulator should always have coupling descriptor filled with
5257          * at least pointer to itself.
5258          */
5259         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5260         rdev->coupling_desc.n_coupled = n_phandles + 1;
5261         rdev->coupling_desc.n_resolved++;
5262
5263         /* regulator isn't coupled */
5264         if (n_phandles == 0)
5265                 return 0;
5266
5267         if (!of_check_coupling_data(rdev))
5268                 return -EPERM;
5269
5270         mutex_lock(&regulator_list_mutex);
5271         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5272         mutex_unlock(&regulator_list_mutex);
5273
5274         if (IS_ERR(rdev->coupling_desc.coupler)) {
5275                 err = PTR_ERR(rdev->coupling_desc.coupler);
5276                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5277                 return err;
5278         }
5279
5280         return 0;
5281 }
5282
5283 static int generic_coupler_attach(struct regulator_coupler *coupler,
5284                                   struct regulator_dev *rdev)
5285 {
5286         if (rdev->coupling_desc.n_coupled > 2) {
5287                 rdev_err(rdev,
5288                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5289                 return -EPERM;
5290         }
5291
5292         if (!rdev->constraints->always_on) {
5293                 rdev_err(rdev,
5294                          "Coupling of a non always-on regulator is unimplemented\n");
5295                 return -ENOTSUPP;
5296         }
5297
5298         return 0;
5299 }
5300
5301 static struct regulator_coupler generic_regulator_coupler = {
5302         .attach_regulator = generic_coupler_attach,
5303 };
5304
5305 /**
5306  * regulator_register - register regulator
5307  * @regulator_desc: regulator to register
5308  * @cfg: runtime configuration for regulator
5309  *
5310  * Called by regulator drivers to register a regulator.
5311  * Returns a valid pointer to struct regulator_dev on success
5312  * or an ERR_PTR() on error.
5313  */
5314 struct regulator_dev *
5315 regulator_register(const struct regulator_desc *regulator_desc,
5316                    const struct regulator_config *cfg)
5317 {
5318         const struct regulator_init_data *init_data;
5319         struct regulator_config *config = NULL;
5320         static atomic_t regulator_no = ATOMIC_INIT(-1);
5321         struct regulator_dev *rdev;
5322         bool dangling_cfg_gpiod = false;
5323         bool dangling_of_gpiod = false;
5324         struct device *dev;
5325         int ret, i;
5326
5327         if (cfg == NULL)
5328                 return ERR_PTR(-EINVAL);
5329         if (cfg->ena_gpiod)
5330                 dangling_cfg_gpiod = true;
5331         if (regulator_desc == NULL) {
5332                 ret = -EINVAL;
5333                 goto rinse;
5334         }
5335
5336         dev = cfg->dev;
5337         WARN_ON(!dev);
5338
5339         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5340                 ret = -EINVAL;
5341                 goto rinse;
5342         }
5343
5344         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5345             regulator_desc->type != REGULATOR_CURRENT) {
5346                 ret = -EINVAL;
5347                 goto rinse;
5348         }
5349
5350         /* Only one of each should be implemented */
5351         WARN_ON(regulator_desc->ops->get_voltage &&
5352                 regulator_desc->ops->get_voltage_sel);
5353         WARN_ON(regulator_desc->ops->set_voltage &&
5354                 regulator_desc->ops->set_voltage_sel);
5355
5356         /* If we're using selectors we must implement list_voltage. */
5357         if (regulator_desc->ops->get_voltage_sel &&
5358             !regulator_desc->ops->list_voltage) {
5359                 ret = -EINVAL;
5360                 goto rinse;
5361         }
5362         if (regulator_desc->ops->set_voltage_sel &&
5363             !regulator_desc->ops->list_voltage) {
5364                 ret = -EINVAL;
5365                 goto rinse;
5366         }
5367
5368         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5369         if (rdev == NULL) {
5370                 ret = -ENOMEM;
5371                 goto rinse;
5372         }
5373         device_initialize(&rdev->dev);
5374         spin_lock_init(&rdev->err_lock);
5375
5376         /*
5377          * Duplicate the config so the driver could override it after
5378          * parsing init data.
5379          */
5380         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5381         if (config == NULL) {
5382                 ret = -ENOMEM;
5383                 goto clean;
5384         }
5385
5386         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5387                                                &rdev->dev.of_node);
5388
5389         /*
5390          * Sometimes not all resources are probed already so we need to take
5391          * that into account. This happens most the time if the ena_gpiod comes
5392          * from a gpio extender or something else.
5393          */
5394         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5395                 ret = -EPROBE_DEFER;
5396                 goto clean;
5397         }
5398
5399         /*
5400          * We need to keep track of any GPIO descriptor coming from the
5401          * device tree until we have handled it over to the core. If the
5402          * config that was passed in to this function DOES NOT contain
5403          * a descriptor, and the config after this call DOES contain
5404          * a descriptor, we definitely got one from parsing the device
5405          * tree.
5406          */
5407         if (!cfg->ena_gpiod && config->ena_gpiod)
5408                 dangling_of_gpiod = true;
5409         if (!init_data) {
5410                 init_data = config->init_data;
5411                 rdev->dev.of_node = of_node_get(config->of_node);
5412         }
5413
5414         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5415         rdev->reg_data = config->driver_data;
5416         rdev->owner = regulator_desc->owner;
5417         rdev->desc = regulator_desc;
5418         if (config->regmap)
5419                 rdev->regmap = config->regmap;
5420         else if (dev_get_regmap(dev, NULL))
5421                 rdev->regmap = dev_get_regmap(dev, NULL);
5422         else if (dev->parent)
5423                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5424         INIT_LIST_HEAD(&rdev->consumer_list);
5425         INIT_LIST_HEAD(&rdev->list);
5426         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5427         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5428
5429         /* preform any regulator specific init */
5430         if (init_data && init_data->regulator_init) {
5431                 ret = init_data->regulator_init(rdev->reg_data);
5432                 if (ret < 0)
5433                         goto clean;
5434         }
5435
5436         if (config->ena_gpiod) {
5437                 ret = regulator_ena_gpio_request(rdev, config);
5438                 if (ret != 0) {
5439                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5440                                  ERR_PTR(ret));
5441                         goto clean;
5442                 }
5443                 /* The regulator core took over the GPIO descriptor */
5444                 dangling_cfg_gpiod = false;
5445                 dangling_of_gpiod = false;
5446         }
5447
5448         /* register with sysfs */
5449         rdev->dev.class = &regulator_class;
5450         rdev->dev.parent = dev;
5451         dev_set_name(&rdev->dev, "regulator.%lu",
5452                     (unsigned long) atomic_inc_return(&regulator_no));
5453         dev_set_drvdata(&rdev->dev, rdev);
5454
5455         /* set regulator constraints */
5456         if (init_data)
5457                 rdev->constraints = kmemdup(&init_data->constraints,
5458                                             sizeof(*rdev->constraints),
5459                                             GFP_KERNEL);
5460         else
5461                 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5462                                             GFP_KERNEL);
5463         if (!rdev->constraints) {
5464                 ret = -ENOMEM;
5465                 goto wash;
5466         }
5467
5468         if (init_data && init_data->supply_regulator)
5469                 rdev->supply_name = init_data->supply_regulator;
5470         else if (regulator_desc->supply_name)
5471                 rdev->supply_name = regulator_desc->supply_name;
5472
5473         ret = set_machine_constraints(rdev);
5474         if (ret == -EPROBE_DEFER) {
5475                 /* Regulator might be in bypass mode and so needs its supply
5476                  * to set the constraints
5477                  */
5478                 /* FIXME: this currently triggers a chicken-and-egg problem
5479                  * when creating -SUPPLY symlink in sysfs to a regulator
5480                  * that is just being created
5481                  */
5482                 rdev_dbg(rdev, "will resolve supply early: %s\n",
5483                          rdev->supply_name);
5484                 ret = regulator_resolve_supply(rdev);
5485                 if (!ret)
5486                         ret = set_machine_constraints(rdev);
5487                 else
5488                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5489                                  ERR_PTR(ret));
5490         }
5491         if (ret < 0)
5492                 goto wash;
5493
5494         ret = regulator_init_coupling(rdev);
5495         if (ret < 0)
5496                 goto wash;
5497
5498         /* add consumers devices */
5499         if (init_data) {
5500                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5501                         ret = set_consumer_device_supply(rdev,
5502                                 init_data->consumer_supplies[i].dev_name,
5503                                 init_data->consumer_supplies[i].supply);
5504                         if (ret < 0) {
5505                                 dev_err(dev, "Failed to set supply %s\n",
5506                                         init_data->consumer_supplies[i].supply);
5507                                 goto unset_supplies;
5508                         }
5509                 }
5510         }
5511
5512         if (!rdev->desc->ops->get_voltage &&
5513             !rdev->desc->ops->list_voltage &&
5514             !rdev->desc->fixed_uV)
5515                 rdev->is_switch = true;
5516
5517         ret = device_add(&rdev->dev);
5518         if (ret != 0)
5519                 goto unset_supplies;
5520
5521         rdev_init_debugfs(rdev);
5522
5523         /* try to resolve regulators coupling since a new one was registered */
5524         mutex_lock(&regulator_list_mutex);
5525         regulator_resolve_coupling(rdev);
5526         mutex_unlock(&regulator_list_mutex);
5527
5528         /* try to resolve regulators supply since a new one was registered */
5529         class_for_each_device(&regulator_class, NULL, NULL,
5530                               regulator_register_resolve_supply);
5531         kfree(config);
5532         return rdev;
5533
5534 unset_supplies:
5535         mutex_lock(&regulator_list_mutex);
5536         unset_regulator_supplies(rdev);
5537         regulator_remove_coupling(rdev);
5538         mutex_unlock(&regulator_list_mutex);
5539 wash:
5540         kfree(rdev->coupling_desc.coupled_rdevs);
5541         mutex_lock(&regulator_list_mutex);
5542         regulator_ena_gpio_free(rdev);
5543         mutex_unlock(&regulator_list_mutex);
5544 clean:
5545         if (dangling_of_gpiod)
5546                 gpiod_put(config->ena_gpiod);
5547         kfree(config);
5548         put_device(&rdev->dev);
5549 rinse:
5550         if (dangling_cfg_gpiod)
5551                 gpiod_put(cfg->ena_gpiod);
5552         return ERR_PTR(ret);
5553 }
5554 EXPORT_SYMBOL_GPL(regulator_register);
5555
5556 /**
5557  * regulator_unregister - unregister regulator
5558  * @rdev: regulator to unregister
5559  *
5560  * Called by regulator drivers to unregister a regulator.
5561  */
5562 void regulator_unregister(struct regulator_dev *rdev)
5563 {
5564         if (rdev == NULL)
5565                 return;
5566
5567         if (rdev->supply) {
5568                 while (rdev->use_count--)
5569                         regulator_disable(rdev->supply);
5570                 regulator_put(rdev->supply);
5571         }
5572
5573         flush_work(&rdev->disable_work.work);
5574
5575         mutex_lock(&regulator_list_mutex);
5576
5577         debugfs_remove_recursive(rdev->debugfs);
5578         WARN_ON(rdev->open_count);
5579         regulator_remove_coupling(rdev);
5580         unset_regulator_supplies(rdev);
5581         list_del(&rdev->list);
5582         regulator_ena_gpio_free(rdev);
5583         device_unregister(&rdev->dev);
5584
5585         mutex_unlock(&regulator_list_mutex);
5586 }
5587 EXPORT_SYMBOL_GPL(regulator_unregister);
5588
5589 #ifdef CONFIG_SUSPEND
5590 /**
5591  * regulator_suspend - prepare regulators for system wide suspend
5592  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5593  *
5594  * Configure each regulator with it's suspend operating parameters for state.
5595  */
5596 static int regulator_suspend(struct device *dev)
5597 {
5598         struct regulator_dev *rdev = dev_to_rdev(dev);
5599         suspend_state_t state = pm_suspend_target_state;
5600         int ret;
5601         const struct regulator_state *rstate;
5602
5603         rstate = regulator_get_suspend_state_check(rdev, state);
5604         if (!rstate)
5605                 return 0;
5606
5607         regulator_lock(rdev);
5608         ret = __suspend_set_state(rdev, rstate);
5609         regulator_unlock(rdev);
5610
5611         return ret;
5612 }
5613
5614 static int regulator_resume(struct device *dev)
5615 {
5616         suspend_state_t state = pm_suspend_target_state;
5617         struct regulator_dev *rdev = dev_to_rdev(dev);
5618         struct regulator_state *rstate;
5619         int ret = 0;
5620
5621         rstate = regulator_get_suspend_state(rdev, state);
5622         if (rstate == NULL)
5623                 return 0;
5624
5625         /* Avoid grabbing the lock if we don't need to */
5626         if (!rdev->desc->ops->resume)
5627                 return 0;
5628
5629         regulator_lock(rdev);
5630
5631         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5632             rstate->enabled == DISABLE_IN_SUSPEND)
5633                 ret = rdev->desc->ops->resume(rdev);
5634
5635         regulator_unlock(rdev);
5636
5637         return ret;
5638 }
5639 #else /* !CONFIG_SUSPEND */
5640
5641 #define regulator_suspend       NULL
5642 #define regulator_resume        NULL
5643
5644 #endif /* !CONFIG_SUSPEND */
5645
5646 #ifdef CONFIG_PM
5647 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5648         .suspend        = regulator_suspend,
5649         .resume         = regulator_resume,
5650 };
5651 #endif
5652
5653 struct class regulator_class = {
5654         .name = "regulator",
5655         .dev_release = regulator_dev_release,
5656         .dev_groups = regulator_dev_groups,
5657 #ifdef CONFIG_PM
5658         .pm = &regulator_pm_ops,
5659 #endif
5660 };
5661 /**
5662  * regulator_has_full_constraints - the system has fully specified constraints
5663  *
5664  * Calling this function will cause the regulator API to disable all
5665  * regulators which have a zero use count and don't have an always_on
5666  * constraint in a late_initcall.
5667  *
5668  * The intention is that this will become the default behaviour in a
5669  * future kernel release so users are encouraged to use this facility
5670  * now.
5671  */
5672 void regulator_has_full_constraints(void)
5673 {
5674         has_full_constraints = 1;
5675 }
5676 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5677
5678 /**
5679  * rdev_get_drvdata - get rdev regulator driver data
5680  * @rdev: regulator
5681  *
5682  * Get rdev regulator driver private data. This call can be used in the
5683  * regulator driver context.
5684  */
5685 void *rdev_get_drvdata(struct regulator_dev *rdev)
5686 {
5687         return rdev->reg_data;
5688 }
5689 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5690
5691 /**
5692  * regulator_get_drvdata - get regulator driver data
5693  * @regulator: regulator
5694  *
5695  * Get regulator driver private data. This call can be used in the consumer
5696  * driver context when non API regulator specific functions need to be called.
5697  */
5698 void *regulator_get_drvdata(struct regulator *regulator)
5699 {
5700         return regulator->rdev->reg_data;
5701 }
5702 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5703
5704 /**
5705  * regulator_set_drvdata - set regulator driver data
5706  * @regulator: regulator
5707  * @data: data
5708  */
5709 void regulator_set_drvdata(struct regulator *regulator, void *data)
5710 {
5711         regulator->rdev->reg_data = data;
5712 }
5713 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5714
5715 /**
5716  * rdev_get_id - get regulator ID
5717  * @rdev: regulator
5718  */
5719 int rdev_get_id(struct regulator_dev *rdev)
5720 {
5721         return rdev->desc->id;
5722 }
5723 EXPORT_SYMBOL_GPL(rdev_get_id);
5724
5725 struct device *rdev_get_dev(struct regulator_dev *rdev)
5726 {
5727         return &rdev->dev;
5728 }
5729 EXPORT_SYMBOL_GPL(rdev_get_dev);
5730
5731 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5732 {
5733         return rdev->regmap;
5734 }
5735 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5736
5737 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5738 {
5739         return reg_init_data->driver_data;
5740 }
5741 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5742
5743 #ifdef CONFIG_DEBUG_FS
5744 static int supply_map_show(struct seq_file *sf, void *data)
5745 {
5746         struct regulator_map *map;
5747
5748         list_for_each_entry(map, &regulator_map_list, list) {
5749                 seq_printf(sf, "%s -> %s.%s\n",
5750                                 rdev_get_name(map->regulator), map->dev_name,
5751                                 map->supply);
5752         }
5753
5754         return 0;
5755 }
5756 DEFINE_SHOW_ATTRIBUTE(supply_map);
5757
5758 struct summary_data {
5759         struct seq_file *s;
5760         struct regulator_dev *parent;
5761         int level;
5762 };
5763
5764 static void regulator_summary_show_subtree(struct seq_file *s,
5765                                            struct regulator_dev *rdev,
5766                                            int level);
5767
5768 static int regulator_summary_show_children(struct device *dev, void *data)
5769 {
5770         struct regulator_dev *rdev = dev_to_rdev(dev);
5771         struct summary_data *summary_data = data;
5772
5773         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5774                 regulator_summary_show_subtree(summary_data->s, rdev,
5775                                                summary_data->level + 1);
5776
5777         return 0;
5778 }
5779
5780 static void regulator_summary_show_subtree(struct seq_file *s,
5781                                            struct regulator_dev *rdev,
5782                                            int level)
5783 {
5784         struct regulation_constraints *c;
5785         struct regulator *consumer;
5786         struct summary_data summary_data;
5787         unsigned int opmode;
5788
5789         if (!rdev)
5790                 return;
5791
5792         opmode = _regulator_get_mode_unlocked(rdev);
5793         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5794                    level * 3 + 1, "",
5795                    30 - level * 3, rdev_get_name(rdev),
5796                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5797                    regulator_opmode_to_str(opmode));
5798
5799         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5800         seq_printf(s, "%5dmA ",
5801                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5802
5803         c = rdev->constraints;
5804         if (c) {
5805                 switch (rdev->desc->type) {
5806                 case REGULATOR_VOLTAGE:
5807                         seq_printf(s, "%5dmV %5dmV ",
5808                                    c->min_uV / 1000, c->max_uV / 1000);
5809                         break;
5810                 case REGULATOR_CURRENT:
5811                         seq_printf(s, "%5dmA %5dmA ",
5812                                    c->min_uA / 1000, c->max_uA / 1000);
5813                         break;
5814                 }
5815         }
5816
5817         seq_puts(s, "\n");
5818
5819         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5820                 if (consumer->dev && consumer->dev->class == &regulator_class)
5821                         continue;
5822
5823                 seq_printf(s, "%*s%-*s ",
5824                            (level + 1) * 3 + 1, "",
5825                            30 - (level + 1) * 3,
5826                            consumer->supply_name ? consumer->supply_name :
5827                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5828
5829                 switch (rdev->desc->type) {
5830                 case REGULATOR_VOLTAGE:
5831                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5832                                    consumer->enable_count,
5833                                    consumer->uA_load / 1000,
5834                                    consumer->uA_load && !consumer->enable_count ?
5835                                    '*' : ' ',
5836                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5837                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5838                         break;
5839                 case REGULATOR_CURRENT:
5840                         break;
5841                 }
5842
5843                 seq_puts(s, "\n");
5844         }
5845
5846         summary_data.s = s;
5847         summary_data.level = level;
5848         summary_data.parent = rdev;
5849
5850         class_for_each_device(&regulator_class, NULL, &summary_data,
5851                               regulator_summary_show_children);
5852 }
5853
5854 struct summary_lock_data {
5855         struct ww_acquire_ctx *ww_ctx;
5856         struct regulator_dev **new_contended_rdev;
5857         struct regulator_dev **old_contended_rdev;
5858 };
5859
5860 static int regulator_summary_lock_one(struct device *dev, void *data)
5861 {
5862         struct regulator_dev *rdev = dev_to_rdev(dev);
5863         struct summary_lock_data *lock_data = data;
5864         int ret = 0;
5865
5866         if (rdev != *lock_data->old_contended_rdev) {
5867                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5868
5869                 if (ret == -EDEADLK)
5870                         *lock_data->new_contended_rdev = rdev;
5871                 else
5872                         WARN_ON_ONCE(ret);
5873         } else {
5874                 *lock_data->old_contended_rdev = NULL;
5875         }
5876
5877         return ret;
5878 }
5879
5880 static int regulator_summary_unlock_one(struct device *dev, void *data)
5881 {
5882         struct regulator_dev *rdev = dev_to_rdev(dev);
5883         struct summary_lock_data *lock_data = data;
5884
5885         if (lock_data) {
5886                 if (rdev == *lock_data->new_contended_rdev)
5887                         return -EDEADLK;
5888         }
5889
5890         regulator_unlock(rdev);
5891
5892         return 0;
5893 }
5894
5895 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5896                                       struct regulator_dev **new_contended_rdev,
5897                                       struct regulator_dev **old_contended_rdev)
5898 {
5899         struct summary_lock_data lock_data;
5900         int ret;
5901
5902         lock_data.ww_ctx = ww_ctx;
5903         lock_data.new_contended_rdev = new_contended_rdev;
5904         lock_data.old_contended_rdev = old_contended_rdev;
5905
5906         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5907                                     regulator_summary_lock_one);
5908         if (ret)
5909                 class_for_each_device(&regulator_class, NULL, &lock_data,
5910                                       regulator_summary_unlock_one);
5911
5912         return ret;
5913 }
5914
5915 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5916 {
5917         struct regulator_dev *new_contended_rdev = NULL;
5918         struct regulator_dev *old_contended_rdev = NULL;
5919         int err;
5920
5921         mutex_lock(&regulator_list_mutex);
5922
5923         ww_acquire_init(ww_ctx, &regulator_ww_class);
5924
5925         do {
5926                 if (new_contended_rdev) {
5927                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5928                         old_contended_rdev = new_contended_rdev;
5929                         old_contended_rdev->ref_cnt++;
5930                 }
5931
5932                 err = regulator_summary_lock_all(ww_ctx,
5933                                                  &new_contended_rdev,
5934                                                  &old_contended_rdev);
5935
5936                 if (old_contended_rdev)
5937                         regulator_unlock(old_contended_rdev);
5938
5939         } while (err == -EDEADLK);
5940
5941         ww_acquire_done(ww_ctx);
5942 }
5943
5944 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5945 {
5946         class_for_each_device(&regulator_class, NULL, NULL,
5947                               regulator_summary_unlock_one);
5948         ww_acquire_fini(ww_ctx);
5949
5950         mutex_unlock(&regulator_list_mutex);
5951 }
5952
5953 static int regulator_summary_show_roots(struct device *dev, void *data)
5954 {
5955         struct regulator_dev *rdev = dev_to_rdev(dev);
5956         struct seq_file *s = data;
5957
5958         if (!rdev->supply)
5959                 regulator_summary_show_subtree(s, rdev, 0);
5960
5961         return 0;
5962 }
5963
5964 static int regulator_summary_show(struct seq_file *s, void *data)
5965 {
5966         struct ww_acquire_ctx ww_ctx;
5967
5968         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5969         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5970
5971         regulator_summary_lock(&ww_ctx);
5972
5973         class_for_each_device(&regulator_class, NULL, s,
5974                               regulator_summary_show_roots);
5975
5976         regulator_summary_unlock(&ww_ctx);
5977
5978         return 0;
5979 }
5980 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5981 #endif /* CONFIG_DEBUG_FS */
5982
5983 static int __init regulator_init(void)
5984 {
5985         int ret;
5986
5987         ret = class_register(&regulator_class);
5988
5989         debugfs_root = debugfs_create_dir("regulator", NULL);
5990         if (!debugfs_root)
5991                 pr_warn("regulator: Failed to create debugfs directory\n");
5992
5993 #ifdef CONFIG_DEBUG_FS
5994         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5995                             &supply_map_fops);
5996
5997         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5998                             NULL, &regulator_summary_fops);
5999 #endif
6000         regulator_dummy_init();
6001
6002         regulator_coupler_register(&generic_regulator_coupler);
6003
6004         return ret;
6005 }
6006
6007 /* init early to allow our consumers to complete system booting */
6008 core_initcall(regulator_init);
6009
6010 static int regulator_late_cleanup(struct device *dev, void *data)
6011 {
6012         struct regulator_dev *rdev = dev_to_rdev(dev);
6013         const struct regulator_ops *ops = rdev->desc->ops;
6014         struct regulation_constraints *c = rdev->constraints;
6015         int enabled, ret;
6016
6017         if (c && c->always_on)
6018                 return 0;
6019
6020         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6021                 return 0;
6022
6023         regulator_lock(rdev);
6024
6025         if (rdev->use_count)
6026                 goto unlock;
6027
6028         /* If we can't read the status assume it's always on. */
6029         if (ops->is_enabled)
6030                 enabled = ops->is_enabled(rdev);
6031         else
6032                 enabled = 1;
6033
6034         /* But if reading the status failed, assume that it's off. */
6035         if (enabled <= 0)
6036                 goto unlock;
6037
6038         if (have_full_constraints()) {
6039                 /* We log since this may kill the system if it goes
6040                  * wrong.
6041                  */
6042                 rdev_info(rdev, "disabling\n");
6043                 ret = _regulator_do_disable(rdev);
6044                 if (ret != 0)
6045                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6046         } else {
6047                 /* The intention is that in future we will
6048                  * assume that full constraints are provided
6049                  * so warn even if we aren't going to do
6050                  * anything here.
6051                  */
6052                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6053         }
6054
6055 unlock:
6056         regulator_unlock(rdev);
6057
6058         return 0;
6059 }
6060
6061 static void regulator_init_complete_work_function(struct work_struct *work)
6062 {
6063         /*
6064          * Regulators may had failed to resolve their input supplies
6065          * when were registered, either because the input supply was
6066          * not registered yet or because its parent device was not
6067          * bound yet. So attempt to resolve the input supplies for
6068          * pending regulators before trying to disable unused ones.
6069          */
6070         class_for_each_device(&regulator_class, NULL, NULL,
6071                               regulator_register_resolve_supply);
6072
6073         /* If we have a full configuration then disable any regulators
6074          * we have permission to change the status for and which are
6075          * not in use or always_on.  This is effectively the default
6076          * for DT and ACPI as they have full constraints.
6077          */
6078         class_for_each_device(&regulator_class, NULL, NULL,
6079                               regulator_late_cleanup);
6080 }
6081
6082 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6083                             regulator_init_complete_work_function);
6084
6085 static int __init regulator_init_complete(void)
6086 {
6087         /*
6088          * Since DT doesn't provide an idiomatic mechanism for
6089          * enabling full constraints and since it's much more natural
6090          * with DT to provide them just assume that a DT enabled
6091          * system has full constraints.
6092          */
6093         if (of_have_populated_dt())
6094                 has_full_constraints = true;
6095
6096         /*
6097          * We punt completion for an arbitrary amount of time since
6098          * systems like distros will load many drivers from userspace
6099          * so consumers might not always be ready yet, this is
6100          * particularly an issue with laptops where this might bounce
6101          * the display off then on.  Ideally we'd get a notification
6102          * from userspace when this happens but we don't so just wait
6103          * a bit and hope we waited long enough.  It'd be better if
6104          * we'd only do this on systems that need it, and a kernel
6105          * command line option might be useful.
6106          */
6107         schedule_delayed_work(&regulator_init_complete_work,
6108                               msecs_to_jiffies(30000));
6109
6110         return 0;
6111 }
6112 late_initcall_sync(regulator_init_complete);