iommu: arm-smmu-impl: Add a space before open parenthesis
[linux-2.6-microblaze.git] / drivers / regulator / core.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c  --  Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
32
33 #include "dummy.h"
34 #include "internal.h"
35
36 #define rdev_crit(rdev, fmt, ...)                                       \
37         pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...)                                        \
39         pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...)                                       \
41         pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...)                                       \
43         pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...)                                        \
45         pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
46
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
55
56 static struct dentry *debugfs_root;
57
58 /*
59  * struct regulator_map
60  *
61  * Used to provide symbolic supply names to devices.
62  */
63 struct regulator_map {
64         struct list_head list;
65         const char *dev_name;   /* The dev_name() for the consumer */
66         const char *supply;
67         struct regulator_dev *regulator;
68 };
69
70 /*
71  * struct regulator_enable_gpio
72  *
73  * Management for shared enable GPIO pin
74  */
75 struct regulator_enable_gpio {
76         struct list_head list;
77         struct gpio_desc *gpiod;
78         u32 enable_count;       /* a number of enabled shared GPIO */
79         u32 request_count;      /* a number of requested shared GPIO */
80 };
81
82 /*
83  * struct regulator_supply_alias
84  *
85  * Used to map lookups for a supply onto an alternative device.
86  */
87 struct regulator_supply_alias {
88         struct list_head list;
89         struct device *src_dev;
90         const char *src_supply;
91         struct device *alias_dev;
92         const char *alias_supply;
93 };
94
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100                                   unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102                                      int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104                                      suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106                                           struct device *dev,
107                                           const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
110
111 const char *rdev_get_name(struct regulator_dev *rdev)
112 {
113         if (rdev->constraints && rdev->constraints->name)
114                 return rdev->constraints->name;
115         else if (rdev->desc->name)
116                 return rdev->desc->name;
117         else
118                 return "";
119 }
120
121 static bool have_full_constraints(void)
122 {
123         return has_full_constraints || of_have_populated_dt();
124 }
125
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
127 {
128         if (!rdev->constraints) {
129                 rdev_err(rdev, "no constraints\n");
130                 return false;
131         }
132
133         if (rdev->constraints->valid_ops_mask & ops)
134                 return true;
135
136         return false;
137 }
138
139 /**
140  * regulator_lock_nested - lock a single regulator
141  * @rdev:               regulator source
142  * @ww_ctx:             w/w mutex acquire context
143  *
144  * This function can be called many times by one task on
145  * a single regulator and its mutex will be locked only
146  * once. If a task, which is calling this function is other
147  * than the one, which initially locked the mutex, it will
148  * wait on mutex.
149  */
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151                                         struct ww_acquire_ctx *ww_ctx)
152 {
153         bool lock = false;
154         int ret = 0;
155
156         mutex_lock(&regulator_nesting_mutex);
157
158         if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159                 if (rdev->mutex_owner == current)
160                         rdev->ref_cnt++;
161                 else
162                         lock = true;
163
164                 if (lock) {
165                         mutex_unlock(&regulator_nesting_mutex);
166                         ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167                         mutex_lock(&regulator_nesting_mutex);
168                 }
169         } else {
170                 lock = true;
171         }
172
173         if (lock && ret != -EDEADLK) {
174                 rdev->ref_cnt++;
175                 rdev->mutex_owner = current;
176         }
177
178         mutex_unlock(&regulator_nesting_mutex);
179
180         return ret;
181 }
182
183 /**
184  * regulator_lock - lock a single regulator
185  * @rdev:               regulator source
186  *
187  * This function can be called many times by one task on
188  * a single regulator and its mutex will be locked only
189  * once. If a task, which is calling this function is other
190  * than the one, which initially locked the mutex, it will
191  * wait on mutex.
192  */
193 static void regulator_lock(struct regulator_dev *rdev)
194 {
195         regulator_lock_nested(rdev, NULL);
196 }
197
198 /**
199  * regulator_unlock - unlock a single regulator
200  * @rdev:               regulator_source
201  *
202  * This function unlocks the mutex when the
203  * reference counter reaches 0.
204  */
205 static void regulator_unlock(struct regulator_dev *rdev)
206 {
207         mutex_lock(&regulator_nesting_mutex);
208
209         if (--rdev->ref_cnt == 0) {
210                 rdev->mutex_owner = NULL;
211                 ww_mutex_unlock(&rdev->mutex);
212         }
213
214         WARN_ON_ONCE(rdev->ref_cnt < 0);
215
216         mutex_unlock(&regulator_nesting_mutex);
217 }
218
219 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
220 {
221         struct regulator_dev *c_rdev;
222         int i;
223
224         for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
225                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
226
227                 if (rdev->supply->rdev == c_rdev)
228                         return true;
229         }
230
231         return false;
232 }
233
234 static void regulator_unlock_recursive(struct regulator_dev *rdev,
235                                        unsigned int n_coupled)
236 {
237         struct regulator_dev *c_rdev, *supply_rdev;
238         int i, supply_n_coupled;
239
240         for (i = n_coupled; i > 0; i--) {
241                 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
242
243                 if (!c_rdev)
244                         continue;
245
246                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
247                         supply_rdev = c_rdev->supply->rdev;
248                         supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
249
250                         regulator_unlock_recursive(supply_rdev,
251                                                    supply_n_coupled);
252                 }
253
254                 regulator_unlock(c_rdev);
255         }
256 }
257
258 static int regulator_lock_recursive(struct regulator_dev *rdev,
259                                     struct regulator_dev **new_contended_rdev,
260                                     struct regulator_dev **old_contended_rdev,
261                                     struct ww_acquire_ctx *ww_ctx)
262 {
263         struct regulator_dev *c_rdev;
264         int i, err;
265
266         for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
267                 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
268
269                 if (!c_rdev)
270                         continue;
271
272                 if (c_rdev != *old_contended_rdev) {
273                         err = regulator_lock_nested(c_rdev, ww_ctx);
274                         if (err) {
275                                 if (err == -EDEADLK) {
276                                         *new_contended_rdev = c_rdev;
277                                         goto err_unlock;
278                                 }
279
280                                 /* shouldn't happen */
281                                 WARN_ON_ONCE(err != -EALREADY);
282                         }
283                 } else {
284                         *old_contended_rdev = NULL;
285                 }
286
287                 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
288                         err = regulator_lock_recursive(c_rdev->supply->rdev,
289                                                        new_contended_rdev,
290                                                        old_contended_rdev,
291                                                        ww_ctx);
292                         if (err) {
293                                 regulator_unlock(c_rdev);
294                                 goto err_unlock;
295                         }
296                 }
297         }
298
299         return 0;
300
301 err_unlock:
302         regulator_unlock_recursive(rdev, i);
303
304         return err;
305 }
306
307 /**
308  * regulator_unlock_dependent - unlock regulator's suppliers and coupled
309  *                              regulators
310  * @rdev:                       regulator source
311  * @ww_ctx:                     w/w mutex acquire context
312  *
313  * Unlock all regulators related with rdev by coupling or supplying.
314  */
315 static void regulator_unlock_dependent(struct regulator_dev *rdev,
316                                        struct ww_acquire_ctx *ww_ctx)
317 {
318         regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
319         ww_acquire_fini(ww_ctx);
320 }
321
322 /**
323  * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
324  * @rdev:                       regulator source
325  * @ww_ctx:                     w/w mutex acquire context
326  *
327  * This function as a wrapper on regulator_lock_recursive(), which locks
328  * all regulators related with rdev by coupling or supplying.
329  */
330 static void regulator_lock_dependent(struct regulator_dev *rdev,
331                                      struct ww_acquire_ctx *ww_ctx)
332 {
333         struct regulator_dev *new_contended_rdev = NULL;
334         struct regulator_dev *old_contended_rdev = NULL;
335         int err;
336
337         mutex_lock(&regulator_list_mutex);
338
339         ww_acquire_init(ww_ctx, &regulator_ww_class);
340
341         do {
342                 if (new_contended_rdev) {
343                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
344                         old_contended_rdev = new_contended_rdev;
345                         old_contended_rdev->ref_cnt++;
346                 }
347
348                 err = regulator_lock_recursive(rdev,
349                                                &new_contended_rdev,
350                                                &old_contended_rdev,
351                                                ww_ctx);
352
353                 if (old_contended_rdev)
354                         regulator_unlock(old_contended_rdev);
355
356         } while (err == -EDEADLK);
357
358         ww_acquire_done(ww_ctx);
359
360         mutex_unlock(&regulator_list_mutex);
361 }
362
363 /**
364  * of_get_child_regulator - get a child regulator device node
365  * based on supply name
366  * @parent: Parent device node
367  * @prop_name: Combination regulator supply name and "-supply"
368  *
369  * Traverse all child nodes.
370  * Extract the child regulator device node corresponding to the supply name.
371  * returns the device node corresponding to the regulator if found, else
372  * returns NULL.
373  */
374 static struct device_node *of_get_child_regulator(struct device_node *parent,
375                                                   const char *prop_name)
376 {
377         struct device_node *regnode = NULL;
378         struct device_node *child = NULL;
379
380         for_each_child_of_node(parent, child) {
381                 regnode = of_parse_phandle(child, prop_name, 0);
382
383                 if (!regnode) {
384                         regnode = of_get_child_regulator(child, prop_name);
385                         if (regnode)
386                                 goto err_node_put;
387                 } else {
388                         goto err_node_put;
389                 }
390         }
391         return NULL;
392
393 err_node_put:
394         of_node_put(child);
395         return regnode;
396 }
397
398 /**
399  * of_get_regulator - get a regulator device node based on supply name
400  * @dev: Device pointer for the consumer (of regulator) device
401  * @supply: regulator supply name
402  *
403  * Extract the regulator device node corresponding to the supply name.
404  * returns the device node corresponding to the regulator if found, else
405  * returns NULL.
406  */
407 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
408 {
409         struct device_node *regnode = NULL;
410         char prop_name[64]; /* 64 is max size of property name */
411
412         dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
413
414         snprintf(prop_name, 64, "%s-supply", supply);
415         regnode = of_parse_phandle(dev->of_node, prop_name, 0);
416
417         if (!regnode) {
418                 regnode = of_get_child_regulator(dev->of_node, prop_name);
419                 if (regnode)
420                         return regnode;
421
422                 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
423                                 prop_name, dev->of_node);
424                 return NULL;
425         }
426         return regnode;
427 }
428
429 /* Platform voltage constraint check */
430 int regulator_check_voltage(struct regulator_dev *rdev,
431                             int *min_uV, int *max_uV)
432 {
433         BUG_ON(*min_uV > *max_uV);
434
435         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
436                 rdev_err(rdev, "voltage operation not allowed\n");
437                 return -EPERM;
438         }
439
440         if (*max_uV > rdev->constraints->max_uV)
441                 *max_uV = rdev->constraints->max_uV;
442         if (*min_uV < rdev->constraints->min_uV)
443                 *min_uV = rdev->constraints->min_uV;
444
445         if (*min_uV > *max_uV) {
446                 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
447                          *min_uV, *max_uV);
448                 return -EINVAL;
449         }
450
451         return 0;
452 }
453
454 /* return 0 if the state is valid */
455 static int regulator_check_states(suspend_state_t state)
456 {
457         return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
458 }
459
460 /* Make sure we select a voltage that suits the needs of all
461  * regulator consumers
462  */
463 int regulator_check_consumers(struct regulator_dev *rdev,
464                               int *min_uV, int *max_uV,
465                               suspend_state_t state)
466 {
467         struct regulator *regulator;
468         struct regulator_voltage *voltage;
469
470         list_for_each_entry(regulator, &rdev->consumer_list, list) {
471                 voltage = &regulator->voltage[state];
472                 /*
473                  * Assume consumers that didn't say anything are OK
474                  * with anything in the constraint range.
475                  */
476                 if (!voltage->min_uV && !voltage->max_uV)
477                         continue;
478
479                 if (*max_uV > voltage->max_uV)
480                         *max_uV = voltage->max_uV;
481                 if (*min_uV < voltage->min_uV)
482                         *min_uV = voltage->min_uV;
483         }
484
485         if (*min_uV > *max_uV) {
486                 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
487                         *min_uV, *max_uV);
488                 return -EINVAL;
489         }
490
491         return 0;
492 }
493
494 /* current constraint check */
495 static int regulator_check_current_limit(struct regulator_dev *rdev,
496                                         int *min_uA, int *max_uA)
497 {
498         BUG_ON(*min_uA > *max_uA);
499
500         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
501                 rdev_err(rdev, "current operation not allowed\n");
502                 return -EPERM;
503         }
504
505         if (*max_uA > rdev->constraints->max_uA)
506                 *max_uA = rdev->constraints->max_uA;
507         if (*min_uA < rdev->constraints->min_uA)
508                 *min_uA = rdev->constraints->min_uA;
509
510         if (*min_uA > *max_uA) {
511                 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
512                          *min_uA, *max_uA);
513                 return -EINVAL;
514         }
515
516         return 0;
517 }
518
519 /* operating mode constraint check */
520 static int regulator_mode_constrain(struct regulator_dev *rdev,
521                                     unsigned int *mode)
522 {
523         switch (*mode) {
524         case REGULATOR_MODE_FAST:
525         case REGULATOR_MODE_NORMAL:
526         case REGULATOR_MODE_IDLE:
527         case REGULATOR_MODE_STANDBY:
528                 break;
529         default:
530                 rdev_err(rdev, "invalid mode %x specified\n", *mode);
531                 return -EINVAL;
532         }
533
534         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
535                 rdev_err(rdev, "mode operation not allowed\n");
536                 return -EPERM;
537         }
538
539         /* The modes are bitmasks, the most power hungry modes having
540          * the lowest values. If the requested mode isn't supported
541          * try higher modes. */
542         while (*mode) {
543                 if (rdev->constraints->valid_modes_mask & *mode)
544                         return 0;
545                 *mode /= 2;
546         }
547
548         return -EINVAL;
549 }
550
551 static inline struct regulator_state *
552 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
553 {
554         if (rdev->constraints == NULL)
555                 return NULL;
556
557         switch (state) {
558         case PM_SUSPEND_STANDBY:
559                 return &rdev->constraints->state_standby;
560         case PM_SUSPEND_MEM:
561                 return &rdev->constraints->state_mem;
562         case PM_SUSPEND_MAX:
563                 return &rdev->constraints->state_disk;
564         default:
565                 return NULL;
566         }
567 }
568
569 static const struct regulator_state *
570 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
571 {
572         const struct regulator_state *rstate;
573
574         rstate = regulator_get_suspend_state(rdev, state);
575         if (rstate == NULL)
576                 return NULL;
577
578         /* If we have no suspend mode configuration don't set anything;
579          * only warn if the driver implements set_suspend_voltage or
580          * set_suspend_mode callback.
581          */
582         if (rstate->enabled != ENABLE_IN_SUSPEND &&
583             rstate->enabled != DISABLE_IN_SUSPEND) {
584                 if (rdev->desc->ops->set_suspend_voltage ||
585                     rdev->desc->ops->set_suspend_mode)
586                         rdev_warn(rdev, "No configuration\n");
587                 return NULL;
588         }
589
590         return rstate;
591 }
592
593 static ssize_t regulator_uV_show(struct device *dev,
594                                 struct device_attribute *attr, char *buf)
595 {
596         struct regulator_dev *rdev = dev_get_drvdata(dev);
597         int uV;
598
599         regulator_lock(rdev);
600         uV = regulator_get_voltage_rdev(rdev);
601         regulator_unlock(rdev);
602
603         if (uV < 0)
604                 return uV;
605         return sprintf(buf, "%d\n", uV);
606 }
607 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
608
609 static ssize_t regulator_uA_show(struct device *dev,
610                                 struct device_attribute *attr, char *buf)
611 {
612         struct regulator_dev *rdev = dev_get_drvdata(dev);
613
614         return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
615 }
616 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
617
618 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
619                          char *buf)
620 {
621         struct regulator_dev *rdev = dev_get_drvdata(dev);
622
623         return sprintf(buf, "%s\n", rdev_get_name(rdev));
624 }
625 static DEVICE_ATTR_RO(name);
626
627 static const char *regulator_opmode_to_str(int mode)
628 {
629         switch (mode) {
630         case REGULATOR_MODE_FAST:
631                 return "fast";
632         case REGULATOR_MODE_NORMAL:
633                 return "normal";
634         case REGULATOR_MODE_IDLE:
635                 return "idle";
636         case REGULATOR_MODE_STANDBY:
637                 return "standby";
638         }
639         return "unknown";
640 }
641
642 static ssize_t regulator_print_opmode(char *buf, int mode)
643 {
644         return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
645 }
646
647 static ssize_t regulator_opmode_show(struct device *dev,
648                                     struct device_attribute *attr, char *buf)
649 {
650         struct regulator_dev *rdev = dev_get_drvdata(dev);
651
652         return regulator_print_opmode(buf, _regulator_get_mode(rdev));
653 }
654 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
655
656 static ssize_t regulator_print_state(char *buf, int state)
657 {
658         if (state > 0)
659                 return sprintf(buf, "enabled\n");
660         else if (state == 0)
661                 return sprintf(buf, "disabled\n");
662         else
663                 return sprintf(buf, "unknown\n");
664 }
665
666 static ssize_t regulator_state_show(struct device *dev,
667                                    struct device_attribute *attr, char *buf)
668 {
669         struct regulator_dev *rdev = dev_get_drvdata(dev);
670         ssize_t ret;
671
672         regulator_lock(rdev);
673         ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
674         regulator_unlock(rdev);
675
676         return ret;
677 }
678 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
679
680 static ssize_t regulator_status_show(struct device *dev,
681                                    struct device_attribute *attr, char *buf)
682 {
683         struct regulator_dev *rdev = dev_get_drvdata(dev);
684         int status;
685         char *label;
686
687         status = rdev->desc->ops->get_status(rdev);
688         if (status < 0)
689                 return status;
690
691         switch (status) {
692         case REGULATOR_STATUS_OFF:
693                 label = "off";
694                 break;
695         case REGULATOR_STATUS_ON:
696                 label = "on";
697                 break;
698         case REGULATOR_STATUS_ERROR:
699                 label = "error";
700                 break;
701         case REGULATOR_STATUS_FAST:
702                 label = "fast";
703                 break;
704         case REGULATOR_STATUS_NORMAL:
705                 label = "normal";
706                 break;
707         case REGULATOR_STATUS_IDLE:
708                 label = "idle";
709                 break;
710         case REGULATOR_STATUS_STANDBY:
711                 label = "standby";
712                 break;
713         case REGULATOR_STATUS_BYPASS:
714                 label = "bypass";
715                 break;
716         case REGULATOR_STATUS_UNDEFINED:
717                 label = "undefined";
718                 break;
719         default:
720                 return -ERANGE;
721         }
722
723         return sprintf(buf, "%s\n", label);
724 }
725 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
726
727 static ssize_t regulator_min_uA_show(struct device *dev,
728                                     struct device_attribute *attr, char *buf)
729 {
730         struct regulator_dev *rdev = dev_get_drvdata(dev);
731
732         if (!rdev->constraints)
733                 return sprintf(buf, "constraint not defined\n");
734
735         return sprintf(buf, "%d\n", rdev->constraints->min_uA);
736 }
737 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
738
739 static ssize_t regulator_max_uA_show(struct device *dev,
740                                     struct device_attribute *attr, char *buf)
741 {
742         struct regulator_dev *rdev = dev_get_drvdata(dev);
743
744         if (!rdev->constraints)
745                 return sprintf(buf, "constraint not defined\n");
746
747         return sprintf(buf, "%d\n", rdev->constraints->max_uA);
748 }
749 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
750
751 static ssize_t regulator_min_uV_show(struct device *dev,
752                                     struct device_attribute *attr, char *buf)
753 {
754         struct regulator_dev *rdev = dev_get_drvdata(dev);
755
756         if (!rdev->constraints)
757                 return sprintf(buf, "constraint not defined\n");
758
759         return sprintf(buf, "%d\n", rdev->constraints->min_uV);
760 }
761 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
762
763 static ssize_t regulator_max_uV_show(struct device *dev,
764                                     struct device_attribute *attr, char *buf)
765 {
766         struct regulator_dev *rdev = dev_get_drvdata(dev);
767
768         if (!rdev->constraints)
769                 return sprintf(buf, "constraint not defined\n");
770
771         return sprintf(buf, "%d\n", rdev->constraints->max_uV);
772 }
773 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
774
775 static ssize_t regulator_total_uA_show(struct device *dev,
776                                       struct device_attribute *attr, char *buf)
777 {
778         struct regulator_dev *rdev = dev_get_drvdata(dev);
779         struct regulator *regulator;
780         int uA = 0;
781
782         regulator_lock(rdev);
783         list_for_each_entry(regulator, &rdev->consumer_list, list) {
784                 if (regulator->enable_count)
785                         uA += regulator->uA_load;
786         }
787         regulator_unlock(rdev);
788         return sprintf(buf, "%d\n", uA);
789 }
790 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
791
792 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
793                               char *buf)
794 {
795         struct regulator_dev *rdev = dev_get_drvdata(dev);
796         return sprintf(buf, "%d\n", rdev->use_count);
797 }
798 static DEVICE_ATTR_RO(num_users);
799
800 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
801                          char *buf)
802 {
803         struct regulator_dev *rdev = dev_get_drvdata(dev);
804
805         switch (rdev->desc->type) {
806         case REGULATOR_VOLTAGE:
807                 return sprintf(buf, "voltage\n");
808         case REGULATOR_CURRENT:
809                 return sprintf(buf, "current\n");
810         }
811         return sprintf(buf, "unknown\n");
812 }
813 static DEVICE_ATTR_RO(type);
814
815 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
816                                 struct device_attribute *attr, char *buf)
817 {
818         struct regulator_dev *rdev = dev_get_drvdata(dev);
819
820         return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
821 }
822 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
823                 regulator_suspend_mem_uV_show, NULL);
824
825 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
826                                 struct device_attribute *attr, char *buf)
827 {
828         struct regulator_dev *rdev = dev_get_drvdata(dev);
829
830         return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
831 }
832 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
833                 regulator_suspend_disk_uV_show, NULL);
834
835 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
836                                 struct device_attribute *attr, char *buf)
837 {
838         struct regulator_dev *rdev = dev_get_drvdata(dev);
839
840         return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
841 }
842 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
843                 regulator_suspend_standby_uV_show, NULL);
844
845 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
846                                 struct device_attribute *attr, char *buf)
847 {
848         struct regulator_dev *rdev = dev_get_drvdata(dev);
849
850         return regulator_print_opmode(buf,
851                 rdev->constraints->state_mem.mode);
852 }
853 static DEVICE_ATTR(suspend_mem_mode, 0444,
854                 regulator_suspend_mem_mode_show, NULL);
855
856 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
857                                 struct device_attribute *attr, char *buf)
858 {
859         struct regulator_dev *rdev = dev_get_drvdata(dev);
860
861         return regulator_print_opmode(buf,
862                 rdev->constraints->state_disk.mode);
863 }
864 static DEVICE_ATTR(suspend_disk_mode, 0444,
865                 regulator_suspend_disk_mode_show, NULL);
866
867 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
868                                 struct device_attribute *attr, char *buf)
869 {
870         struct regulator_dev *rdev = dev_get_drvdata(dev);
871
872         return regulator_print_opmode(buf,
873                 rdev->constraints->state_standby.mode);
874 }
875 static DEVICE_ATTR(suspend_standby_mode, 0444,
876                 regulator_suspend_standby_mode_show, NULL);
877
878 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
879                                    struct device_attribute *attr, char *buf)
880 {
881         struct regulator_dev *rdev = dev_get_drvdata(dev);
882
883         return regulator_print_state(buf,
884                         rdev->constraints->state_mem.enabled);
885 }
886 static DEVICE_ATTR(suspend_mem_state, 0444,
887                 regulator_suspend_mem_state_show, NULL);
888
889 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
890                                    struct device_attribute *attr, char *buf)
891 {
892         struct regulator_dev *rdev = dev_get_drvdata(dev);
893
894         return regulator_print_state(buf,
895                         rdev->constraints->state_disk.enabled);
896 }
897 static DEVICE_ATTR(suspend_disk_state, 0444,
898                 regulator_suspend_disk_state_show, NULL);
899
900 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
901                                    struct device_attribute *attr, char *buf)
902 {
903         struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905         return regulator_print_state(buf,
906                         rdev->constraints->state_standby.enabled);
907 }
908 static DEVICE_ATTR(suspend_standby_state, 0444,
909                 regulator_suspend_standby_state_show, NULL);
910
911 static ssize_t regulator_bypass_show(struct device *dev,
912                                      struct device_attribute *attr, char *buf)
913 {
914         struct regulator_dev *rdev = dev_get_drvdata(dev);
915         const char *report;
916         bool bypass;
917         int ret;
918
919         ret = rdev->desc->ops->get_bypass(rdev, &bypass);
920
921         if (ret != 0)
922                 report = "unknown";
923         else if (bypass)
924                 report = "enabled";
925         else
926                 report = "disabled";
927
928         return sprintf(buf, "%s\n", report);
929 }
930 static DEVICE_ATTR(bypass, 0444,
931                    regulator_bypass_show, NULL);
932
933 /* Calculate the new optimum regulator operating mode based on the new total
934  * consumer load. All locks held by caller */
935 static int drms_uA_update(struct regulator_dev *rdev)
936 {
937         struct regulator *sibling;
938         int current_uA = 0, output_uV, input_uV, err;
939         unsigned int mode;
940
941         /*
942          * first check to see if we can set modes at all, otherwise just
943          * tell the consumer everything is OK.
944          */
945         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
946                 rdev_dbg(rdev, "DRMS operation not allowed\n");
947                 return 0;
948         }
949
950         if (!rdev->desc->ops->get_optimum_mode &&
951             !rdev->desc->ops->set_load)
952                 return 0;
953
954         if (!rdev->desc->ops->set_mode &&
955             !rdev->desc->ops->set_load)
956                 return -EINVAL;
957
958         /* calc total requested load */
959         list_for_each_entry(sibling, &rdev->consumer_list, list) {
960                 if (sibling->enable_count)
961                         current_uA += sibling->uA_load;
962         }
963
964         current_uA += rdev->constraints->system_load;
965
966         if (rdev->desc->ops->set_load) {
967                 /* set the optimum mode for our new total regulator load */
968                 err = rdev->desc->ops->set_load(rdev, current_uA);
969                 if (err < 0)
970                         rdev_err(rdev, "failed to set load %d: %pe\n",
971                                  current_uA, ERR_PTR(err));
972         } else {
973                 /* get output voltage */
974                 output_uV = regulator_get_voltage_rdev(rdev);
975                 if (output_uV <= 0) {
976                         rdev_err(rdev, "invalid output voltage found\n");
977                         return -EINVAL;
978                 }
979
980                 /* get input voltage */
981                 input_uV = 0;
982                 if (rdev->supply)
983                         input_uV = regulator_get_voltage(rdev->supply);
984                 if (input_uV <= 0)
985                         input_uV = rdev->constraints->input_uV;
986                 if (input_uV <= 0) {
987                         rdev_err(rdev, "invalid input voltage found\n");
988                         return -EINVAL;
989                 }
990
991                 /* now get the optimum mode for our new total regulator load */
992                 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
993                                                          output_uV, current_uA);
994
995                 /* check the new mode is allowed */
996                 err = regulator_mode_constrain(rdev, &mode);
997                 if (err < 0) {
998                         rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
999                                  current_uA, input_uV, output_uV, ERR_PTR(err));
1000                         return err;
1001                 }
1002
1003                 err = rdev->desc->ops->set_mode(rdev, mode);
1004                 if (err < 0)
1005                         rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1006                                  mode, ERR_PTR(err));
1007         }
1008
1009         return err;
1010 }
1011
1012 static int __suspend_set_state(struct regulator_dev *rdev,
1013                                const struct regulator_state *rstate)
1014 {
1015         int ret = 0;
1016
1017         if (rstate->enabled == ENABLE_IN_SUSPEND &&
1018                 rdev->desc->ops->set_suspend_enable)
1019                 ret = rdev->desc->ops->set_suspend_enable(rdev);
1020         else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1021                 rdev->desc->ops->set_suspend_disable)
1022                 ret = rdev->desc->ops->set_suspend_disable(rdev);
1023         else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1024                 ret = 0;
1025
1026         if (ret < 0) {
1027                 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1028                 return ret;
1029         }
1030
1031         if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1032                 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1033                 if (ret < 0) {
1034                         rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1035                         return ret;
1036                 }
1037         }
1038
1039         if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1040                 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1041                 if (ret < 0) {
1042                         rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1043                         return ret;
1044                 }
1045         }
1046
1047         return ret;
1048 }
1049
1050 static int suspend_set_initial_state(struct regulator_dev *rdev)
1051 {
1052         const struct regulator_state *rstate;
1053
1054         rstate = regulator_get_suspend_state_check(rdev,
1055                         rdev->constraints->initial_state);
1056         if (!rstate)
1057                 return 0;
1058
1059         return __suspend_set_state(rdev, rstate);
1060 }
1061
1062 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1063 static void print_constraints_debug(struct regulator_dev *rdev)
1064 {
1065         struct regulation_constraints *constraints = rdev->constraints;
1066         char buf[160] = "";
1067         size_t len = sizeof(buf) - 1;
1068         int count = 0;
1069         int ret;
1070
1071         if (constraints->min_uV && constraints->max_uV) {
1072                 if (constraints->min_uV == constraints->max_uV)
1073                         count += scnprintf(buf + count, len - count, "%d mV ",
1074                                            constraints->min_uV / 1000);
1075                 else
1076                         count += scnprintf(buf + count, len - count,
1077                                            "%d <--> %d mV ",
1078                                            constraints->min_uV / 1000,
1079                                            constraints->max_uV / 1000);
1080         }
1081
1082         if (!constraints->min_uV ||
1083             constraints->min_uV != constraints->max_uV) {
1084                 ret = regulator_get_voltage_rdev(rdev);
1085                 if (ret > 0)
1086                         count += scnprintf(buf + count, len - count,
1087                                            "at %d mV ", ret / 1000);
1088         }
1089
1090         if (constraints->uV_offset)
1091                 count += scnprintf(buf + count, len - count, "%dmV offset ",
1092                                    constraints->uV_offset / 1000);
1093
1094         if (constraints->min_uA && constraints->max_uA) {
1095                 if (constraints->min_uA == constraints->max_uA)
1096                         count += scnprintf(buf + count, len - count, "%d mA ",
1097                                            constraints->min_uA / 1000);
1098                 else
1099                         count += scnprintf(buf + count, len - count,
1100                                            "%d <--> %d mA ",
1101                                            constraints->min_uA / 1000,
1102                                            constraints->max_uA / 1000);
1103         }
1104
1105         if (!constraints->min_uA ||
1106             constraints->min_uA != constraints->max_uA) {
1107                 ret = _regulator_get_current_limit(rdev);
1108                 if (ret > 0)
1109                         count += scnprintf(buf + count, len - count,
1110                                            "at %d mA ", ret / 1000);
1111         }
1112
1113         if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1114                 count += scnprintf(buf + count, len - count, "fast ");
1115         if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1116                 count += scnprintf(buf + count, len - count, "normal ");
1117         if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1118                 count += scnprintf(buf + count, len - count, "idle ");
1119         if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1120                 count += scnprintf(buf + count, len - count, "standby ");
1121
1122         if (!count)
1123                 count = scnprintf(buf, len, "no parameters");
1124         else
1125                 --count;
1126
1127         count += scnprintf(buf + count, len - count, ", %s",
1128                 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1129
1130         rdev_dbg(rdev, "%s\n", buf);
1131 }
1132 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1133 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1134 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1135
1136 static void print_constraints(struct regulator_dev *rdev)
1137 {
1138         struct regulation_constraints *constraints = rdev->constraints;
1139
1140         print_constraints_debug(rdev);
1141
1142         if ((constraints->min_uV != constraints->max_uV) &&
1143             !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1144                 rdev_warn(rdev,
1145                           "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1146 }
1147
1148 static int machine_constraints_voltage(struct regulator_dev *rdev,
1149         struct regulation_constraints *constraints)
1150 {
1151         const struct regulator_ops *ops = rdev->desc->ops;
1152         int ret;
1153
1154         /* do we need to apply the constraint voltage */
1155         if (rdev->constraints->apply_uV &&
1156             rdev->constraints->min_uV && rdev->constraints->max_uV) {
1157                 int target_min, target_max;
1158                 int current_uV = regulator_get_voltage_rdev(rdev);
1159
1160                 if (current_uV == -ENOTRECOVERABLE) {
1161                         /* This regulator can't be read and must be initialized */
1162                         rdev_info(rdev, "Setting %d-%duV\n",
1163                                   rdev->constraints->min_uV,
1164                                   rdev->constraints->max_uV);
1165                         _regulator_do_set_voltage(rdev,
1166                                                   rdev->constraints->min_uV,
1167                                                   rdev->constraints->max_uV);
1168                         current_uV = regulator_get_voltage_rdev(rdev);
1169                 }
1170
1171                 if (current_uV < 0) {
1172                         rdev_err(rdev,
1173                                  "failed to get the current voltage: %pe\n",
1174                                  ERR_PTR(current_uV));
1175                         return current_uV;
1176                 }
1177
1178                 /*
1179                  * If we're below the minimum voltage move up to the
1180                  * minimum voltage, if we're above the maximum voltage
1181                  * then move down to the maximum.
1182                  */
1183                 target_min = current_uV;
1184                 target_max = current_uV;
1185
1186                 if (current_uV < rdev->constraints->min_uV) {
1187                         target_min = rdev->constraints->min_uV;
1188                         target_max = rdev->constraints->min_uV;
1189                 }
1190
1191                 if (current_uV > rdev->constraints->max_uV) {
1192                         target_min = rdev->constraints->max_uV;
1193                         target_max = rdev->constraints->max_uV;
1194                 }
1195
1196                 if (target_min != current_uV || target_max != current_uV) {
1197                         rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1198                                   current_uV, target_min, target_max);
1199                         ret = _regulator_do_set_voltage(
1200                                 rdev, target_min, target_max);
1201                         if (ret < 0) {
1202                                 rdev_err(rdev,
1203                                         "failed to apply %d-%duV constraint: %pe\n",
1204                                         target_min, target_max, ERR_PTR(ret));
1205                                 return ret;
1206                         }
1207                 }
1208         }
1209
1210         /* constrain machine-level voltage specs to fit
1211          * the actual range supported by this regulator.
1212          */
1213         if (ops->list_voltage && rdev->desc->n_voltages) {
1214                 int     count = rdev->desc->n_voltages;
1215                 int     i;
1216                 int     min_uV = INT_MAX;
1217                 int     max_uV = INT_MIN;
1218                 int     cmin = constraints->min_uV;
1219                 int     cmax = constraints->max_uV;
1220
1221                 /* it's safe to autoconfigure fixed-voltage supplies
1222                    and the constraints are used by list_voltage. */
1223                 if (count == 1 && !cmin) {
1224                         cmin = 1;
1225                         cmax = INT_MAX;
1226                         constraints->min_uV = cmin;
1227                         constraints->max_uV = cmax;
1228                 }
1229
1230                 /* voltage constraints are optional */
1231                 if ((cmin == 0) && (cmax == 0))
1232                         return 0;
1233
1234                 /* else require explicit machine-level constraints */
1235                 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1236                         rdev_err(rdev, "invalid voltage constraints\n");
1237                         return -EINVAL;
1238                 }
1239
1240                 /* no need to loop voltages if range is continuous */
1241                 if (rdev->desc->continuous_voltage_range)
1242                         return 0;
1243
1244                 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1245                 for (i = 0; i < count; i++) {
1246                         int     value;
1247
1248                         value = ops->list_voltage(rdev, i);
1249                         if (value <= 0)
1250                                 continue;
1251
1252                         /* maybe adjust [min_uV..max_uV] */
1253                         if (value >= cmin && value < min_uV)
1254                                 min_uV = value;
1255                         if (value <= cmax && value > max_uV)
1256                                 max_uV = value;
1257                 }
1258
1259                 /* final: [min_uV..max_uV] valid iff constraints valid */
1260                 if (max_uV < min_uV) {
1261                         rdev_err(rdev,
1262                                  "unsupportable voltage constraints %u-%uuV\n",
1263                                  min_uV, max_uV);
1264                         return -EINVAL;
1265                 }
1266
1267                 /* use regulator's subset of machine constraints */
1268                 if (constraints->min_uV < min_uV) {
1269                         rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1270                                  constraints->min_uV, min_uV);
1271                         constraints->min_uV = min_uV;
1272                 }
1273                 if (constraints->max_uV > max_uV) {
1274                         rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1275                                  constraints->max_uV, max_uV);
1276                         constraints->max_uV = max_uV;
1277                 }
1278         }
1279
1280         return 0;
1281 }
1282
1283 static int machine_constraints_current(struct regulator_dev *rdev,
1284         struct regulation_constraints *constraints)
1285 {
1286         const struct regulator_ops *ops = rdev->desc->ops;
1287         int ret;
1288
1289         if (!constraints->min_uA && !constraints->max_uA)
1290                 return 0;
1291
1292         if (constraints->min_uA > constraints->max_uA) {
1293                 rdev_err(rdev, "Invalid current constraints\n");
1294                 return -EINVAL;
1295         }
1296
1297         if (!ops->set_current_limit || !ops->get_current_limit) {
1298                 rdev_warn(rdev, "Operation of current configuration missing\n");
1299                 return 0;
1300         }
1301
1302         /* Set regulator current in constraints range */
1303         ret = ops->set_current_limit(rdev, constraints->min_uA,
1304                         constraints->max_uA);
1305         if (ret < 0) {
1306                 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1307                 return ret;
1308         }
1309
1310         return 0;
1311 }
1312
1313 static int _regulator_do_enable(struct regulator_dev *rdev);
1314
1315 /**
1316  * set_machine_constraints - sets regulator constraints
1317  * @rdev: regulator source
1318  * @constraints: constraints to apply
1319  *
1320  * Allows platform initialisation code to define and constrain
1321  * regulator circuits e.g. valid voltage/current ranges, etc.  NOTE:
1322  * Constraints *must* be set by platform code in order for some
1323  * regulator operations to proceed i.e. set_voltage, set_current_limit,
1324  * set_mode.
1325  */
1326 static int set_machine_constraints(struct regulator_dev *rdev,
1327         const struct regulation_constraints *constraints)
1328 {
1329         int ret = 0;
1330         const struct regulator_ops *ops = rdev->desc->ops;
1331
1332         if (constraints)
1333                 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1334                                             GFP_KERNEL);
1335         else
1336                 rdev->constraints = kzalloc(sizeof(*constraints),
1337                                             GFP_KERNEL);
1338         if (!rdev->constraints)
1339                 return -ENOMEM;
1340
1341         ret = machine_constraints_voltage(rdev, rdev->constraints);
1342         if (ret != 0)
1343                 return ret;
1344
1345         ret = machine_constraints_current(rdev, rdev->constraints);
1346         if (ret != 0)
1347                 return ret;
1348
1349         if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1350                 ret = ops->set_input_current_limit(rdev,
1351                                                    rdev->constraints->ilim_uA);
1352                 if (ret < 0) {
1353                         rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1354                         return ret;
1355                 }
1356         }
1357
1358         /* do we need to setup our suspend state */
1359         if (rdev->constraints->initial_state) {
1360                 ret = suspend_set_initial_state(rdev);
1361                 if (ret < 0) {
1362                         rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1363                         return ret;
1364                 }
1365         }
1366
1367         if (rdev->constraints->initial_mode) {
1368                 if (!ops->set_mode) {
1369                         rdev_err(rdev, "no set_mode operation\n");
1370                         return -EINVAL;
1371                 }
1372
1373                 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1374                 if (ret < 0) {
1375                         rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1376                         return ret;
1377                 }
1378         } else if (rdev->constraints->system_load) {
1379                 /*
1380                  * We'll only apply the initial system load if an
1381                  * initial mode wasn't specified.
1382                  */
1383                 drms_uA_update(rdev);
1384         }
1385
1386         if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1387                 && ops->set_ramp_delay) {
1388                 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1389                 if (ret < 0) {
1390                         rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1391                         return ret;
1392                 }
1393         }
1394
1395         if (rdev->constraints->pull_down && ops->set_pull_down) {
1396                 ret = ops->set_pull_down(rdev);
1397                 if (ret < 0) {
1398                         rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1399                         return ret;
1400                 }
1401         }
1402
1403         if (rdev->constraints->soft_start && ops->set_soft_start) {
1404                 ret = ops->set_soft_start(rdev);
1405                 if (ret < 0) {
1406                         rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1407                         return ret;
1408                 }
1409         }
1410
1411         if (rdev->constraints->over_current_protection
1412                 && ops->set_over_current_protection) {
1413                 ret = ops->set_over_current_protection(rdev);
1414                 if (ret < 0) {
1415                         rdev_err(rdev, "failed to set over current protection: %pe\n",
1416                                  ERR_PTR(ret));
1417                         return ret;
1418                 }
1419         }
1420
1421         if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1422                 bool ad_state = (rdev->constraints->active_discharge ==
1423                               REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1424
1425                 ret = ops->set_active_discharge(rdev, ad_state);
1426                 if (ret < 0) {
1427                         rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1428                         return ret;
1429                 }
1430         }
1431
1432         /* If the constraints say the regulator should be on at this point
1433          * and we have control then make sure it is enabled.
1434          */
1435         if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1436                 if (rdev->supply) {
1437                         ret = regulator_enable(rdev->supply);
1438                         if (ret < 0) {
1439                                 _regulator_put(rdev->supply);
1440                                 rdev->supply = NULL;
1441                                 return ret;
1442                         }
1443                 }
1444
1445                 ret = _regulator_do_enable(rdev);
1446                 if (ret < 0 && ret != -EINVAL) {
1447                         rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1448                         return ret;
1449                 }
1450
1451                 if (rdev->constraints->always_on)
1452                         rdev->use_count++;
1453         }
1454
1455         print_constraints(rdev);
1456         return 0;
1457 }
1458
1459 /**
1460  * set_supply - set regulator supply regulator
1461  * @rdev: regulator name
1462  * @supply_rdev: supply regulator name
1463  *
1464  * Called by platform initialisation code to set the supply regulator for this
1465  * regulator. This ensures that a regulators supply will also be enabled by the
1466  * core if it's child is enabled.
1467  */
1468 static int set_supply(struct regulator_dev *rdev,
1469                       struct regulator_dev *supply_rdev)
1470 {
1471         int err;
1472
1473         rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1474
1475         if (!try_module_get(supply_rdev->owner))
1476                 return -ENODEV;
1477
1478         rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1479         if (rdev->supply == NULL) {
1480                 err = -ENOMEM;
1481                 return err;
1482         }
1483         supply_rdev->open_count++;
1484
1485         return 0;
1486 }
1487
1488 /**
1489  * set_consumer_device_supply - Bind a regulator to a symbolic supply
1490  * @rdev:         regulator source
1491  * @consumer_dev_name: dev_name() string for device supply applies to
1492  * @supply:       symbolic name for supply
1493  *
1494  * Allows platform initialisation code to map physical regulator
1495  * sources to symbolic names for supplies for use by devices.  Devices
1496  * should use these symbolic names to request regulators, avoiding the
1497  * need to provide board-specific regulator names as platform data.
1498  */
1499 static int set_consumer_device_supply(struct regulator_dev *rdev,
1500                                       const char *consumer_dev_name,
1501                                       const char *supply)
1502 {
1503         struct regulator_map *node, *new_node;
1504         int has_dev;
1505
1506         if (supply == NULL)
1507                 return -EINVAL;
1508
1509         if (consumer_dev_name != NULL)
1510                 has_dev = 1;
1511         else
1512                 has_dev = 0;
1513
1514         new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1515         if (new_node == NULL)
1516                 return -ENOMEM;
1517
1518         new_node->regulator = rdev;
1519         new_node->supply = supply;
1520
1521         if (has_dev) {
1522                 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1523                 if (new_node->dev_name == NULL) {
1524                         kfree(new_node);
1525                         return -ENOMEM;
1526                 }
1527         }
1528
1529         mutex_lock(&regulator_list_mutex);
1530         list_for_each_entry(node, &regulator_map_list, list) {
1531                 if (node->dev_name && consumer_dev_name) {
1532                         if (strcmp(node->dev_name, consumer_dev_name) != 0)
1533                                 continue;
1534                 } else if (node->dev_name || consumer_dev_name) {
1535                         continue;
1536                 }
1537
1538                 if (strcmp(node->supply, supply) != 0)
1539                         continue;
1540
1541                 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1542                          consumer_dev_name,
1543                          dev_name(&node->regulator->dev),
1544                          node->regulator->desc->name,
1545                          supply,
1546                          dev_name(&rdev->dev), rdev_get_name(rdev));
1547                 goto fail;
1548         }
1549
1550         list_add(&new_node->list, &regulator_map_list);
1551         mutex_unlock(&regulator_list_mutex);
1552
1553         return 0;
1554
1555 fail:
1556         mutex_unlock(&regulator_list_mutex);
1557         kfree(new_node->dev_name);
1558         kfree(new_node);
1559         return -EBUSY;
1560 }
1561
1562 static void unset_regulator_supplies(struct regulator_dev *rdev)
1563 {
1564         struct regulator_map *node, *n;
1565
1566         list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1567                 if (rdev == node->regulator) {
1568                         list_del(&node->list);
1569                         kfree(node->dev_name);
1570                         kfree(node);
1571                 }
1572         }
1573 }
1574
1575 #ifdef CONFIG_DEBUG_FS
1576 static ssize_t constraint_flags_read_file(struct file *file,
1577                                           char __user *user_buf,
1578                                           size_t count, loff_t *ppos)
1579 {
1580         const struct regulator *regulator = file->private_data;
1581         const struct regulation_constraints *c = regulator->rdev->constraints;
1582         char *buf;
1583         ssize_t ret;
1584
1585         if (!c)
1586                 return 0;
1587
1588         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1589         if (!buf)
1590                 return -ENOMEM;
1591
1592         ret = snprintf(buf, PAGE_SIZE,
1593                         "always_on: %u\n"
1594                         "boot_on: %u\n"
1595                         "apply_uV: %u\n"
1596                         "ramp_disable: %u\n"
1597                         "soft_start: %u\n"
1598                         "pull_down: %u\n"
1599                         "over_current_protection: %u\n",
1600                         c->always_on,
1601                         c->boot_on,
1602                         c->apply_uV,
1603                         c->ramp_disable,
1604                         c->soft_start,
1605                         c->pull_down,
1606                         c->over_current_protection);
1607
1608         ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1609         kfree(buf);
1610
1611         return ret;
1612 }
1613
1614 #endif
1615
1616 static const struct file_operations constraint_flags_fops = {
1617 #ifdef CONFIG_DEBUG_FS
1618         .open = simple_open,
1619         .read = constraint_flags_read_file,
1620         .llseek = default_llseek,
1621 #endif
1622 };
1623
1624 #define REG_STR_SIZE    64
1625
1626 static struct regulator *create_regulator(struct regulator_dev *rdev,
1627                                           struct device *dev,
1628                                           const char *supply_name)
1629 {
1630         struct regulator *regulator;
1631         int err;
1632
1633         if (dev) {
1634                 char buf[REG_STR_SIZE];
1635                 int size;
1636
1637                 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1638                                 dev->kobj.name, supply_name);
1639                 if (size >= REG_STR_SIZE)
1640                         return NULL;
1641
1642                 supply_name = kstrdup(buf, GFP_KERNEL);
1643                 if (supply_name == NULL)
1644                         return NULL;
1645         } else {
1646                 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1647                 if (supply_name == NULL)
1648                         return NULL;
1649         }
1650
1651         regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1652         if (regulator == NULL) {
1653                 kfree(supply_name);
1654                 return NULL;
1655         }
1656
1657         regulator->rdev = rdev;
1658         regulator->supply_name = supply_name;
1659
1660         regulator_lock(rdev);
1661         list_add(&regulator->list, &rdev->consumer_list);
1662         regulator_unlock(rdev);
1663
1664         if (dev) {
1665                 regulator->dev = dev;
1666
1667                 /* Add a link to the device sysfs entry */
1668                 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1669                                                supply_name);
1670                 if (err) {
1671                         rdev_dbg(rdev, "could not add device link %s: %pe\n",
1672                                   dev->kobj.name, ERR_PTR(err));
1673                         /* non-fatal */
1674                 }
1675         }
1676
1677         regulator->debugfs = debugfs_create_dir(supply_name,
1678                                                 rdev->debugfs);
1679         if (!regulator->debugfs) {
1680                 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1681         } else {
1682                 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1683                                    &regulator->uA_load);
1684                 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1685                                    &regulator->voltage[PM_SUSPEND_ON].min_uV);
1686                 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1687                                    &regulator->voltage[PM_SUSPEND_ON].max_uV);
1688                 debugfs_create_file("constraint_flags", 0444,
1689                                     regulator->debugfs, regulator,
1690                                     &constraint_flags_fops);
1691         }
1692
1693         /*
1694          * Check now if the regulator is an always on regulator - if
1695          * it is then we don't need to do nearly so much work for
1696          * enable/disable calls.
1697          */
1698         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1699             _regulator_is_enabled(rdev))
1700                 regulator->always_on = true;
1701
1702         return regulator;
1703 }
1704
1705 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1706 {
1707         if (rdev->constraints && rdev->constraints->enable_time)
1708                 return rdev->constraints->enable_time;
1709         if (rdev->desc->ops->enable_time)
1710                 return rdev->desc->ops->enable_time(rdev);
1711         return rdev->desc->enable_time;
1712 }
1713
1714 static struct regulator_supply_alias *regulator_find_supply_alias(
1715                 struct device *dev, const char *supply)
1716 {
1717         struct regulator_supply_alias *map;
1718
1719         list_for_each_entry(map, &regulator_supply_alias_list, list)
1720                 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1721                         return map;
1722
1723         return NULL;
1724 }
1725
1726 static void regulator_supply_alias(struct device **dev, const char **supply)
1727 {
1728         struct regulator_supply_alias *map;
1729
1730         map = regulator_find_supply_alias(*dev, *supply);
1731         if (map) {
1732                 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1733                                 *supply, map->alias_supply,
1734                                 dev_name(map->alias_dev));
1735                 *dev = map->alias_dev;
1736                 *supply = map->alias_supply;
1737         }
1738 }
1739
1740 static int regulator_match(struct device *dev, const void *data)
1741 {
1742         struct regulator_dev *r = dev_to_rdev(dev);
1743
1744         return strcmp(rdev_get_name(r), data) == 0;
1745 }
1746
1747 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1748 {
1749         struct device *dev;
1750
1751         dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1752
1753         return dev ? dev_to_rdev(dev) : NULL;
1754 }
1755
1756 /**
1757  * regulator_dev_lookup - lookup a regulator device.
1758  * @dev: device for regulator "consumer".
1759  * @supply: Supply name or regulator ID.
1760  *
1761  * If successful, returns a struct regulator_dev that corresponds to the name
1762  * @supply and with the embedded struct device refcount incremented by one.
1763  * The refcount must be dropped by calling put_device().
1764  * On failure one of the following ERR-PTR-encoded values is returned:
1765  * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1766  * in the future.
1767  */
1768 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1769                                                   const char *supply)
1770 {
1771         struct regulator_dev *r = NULL;
1772         struct device_node *node;
1773         struct regulator_map *map;
1774         const char *devname = NULL;
1775
1776         regulator_supply_alias(&dev, &supply);
1777
1778         /* first do a dt based lookup */
1779         if (dev && dev->of_node) {
1780                 node = of_get_regulator(dev, supply);
1781                 if (node) {
1782                         r = of_find_regulator_by_node(node);
1783                         if (r)
1784                                 return r;
1785
1786                         /*
1787                          * We have a node, but there is no device.
1788                          * assume it has not registered yet.
1789                          */
1790                         return ERR_PTR(-EPROBE_DEFER);
1791                 }
1792         }
1793
1794         /* if not found, try doing it non-dt way */
1795         if (dev)
1796                 devname = dev_name(dev);
1797
1798         mutex_lock(&regulator_list_mutex);
1799         list_for_each_entry(map, &regulator_map_list, list) {
1800                 /* If the mapping has a device set up it must match */
1801                 if (map->dev_name &&
1802                     (!devname || strcmp(map->dev_name, devname)))
1803                         continue;
1804
1805                 if (strcmp(map->supply, supply) == 0 &&
1806                     get_device(&map->regulator->dev)) {
1807                         r = map->regulator;
1808                         break;
1809                 }
1810         }
1811         mutex_unlock(&regulator_list_mutex);
1812
1813         if (r)
1814                 return r;
1815
1816         r = regulator_lookup_by_name(supply);
1817         if (r)
1818                 return r;
1819
1820         return ERR_PTR(-ENODEV);
1821 }
1822
1823 static int regulator_resolve_supply(struct regulator_dev *rdev)
1824 {
1825         struct regulator_dev *r;
1826         struct device *dev = rdev->dev.parent;
1827         int ret;
1828
1829         /* No supply to resolve? */
1830         if (!rdev->supply_name)
1831                 return 0;
1832
1833         /* Supply already resolved? */
1834         if (rdev->supply)
1835                 return 0;
1836
1837         r = regulator_dev_lookup(dev, rdev->supply_name);
1838         if (IS_ERR(r)) {
1839                 ret = PTR_ERR(r);
1840
1841                 /* Did the lookup explicitly defer for us? */
1842                 if (ret == -EPROBE_DEFER)
1843                         return ret;
1844
1845                 if (have_full_constraints()) {
1846                         r = dummy_regulator_rdev;
1847                         get_device(&r->dev);
1848                 } else {
1849                         dev_err(dev, "Failed to resolve %s-supply for %s\n",
1850                                 rdev->supply_name, rdev->desc->name);
1851                         return -EPROBE_DEFER;
1852                 }
1853         }
1854
1855         /*
1856          * If the supply's parent device is not the same as the
1857          * regulator's parent device, then ensure the parent device
1858          * is bound before we resolve the supply, in case the parent
1859          * device get probe deferred and unregisters the supply.
1860          */
1861         if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1862                 if (!device_is_bound(r->dev.parent)) {
1863                         put_device(&r->dev);
1864                         return -EPROBE_DEFER;
1865                 }
1866         }
1867
1868         /* Recursively resolve the supply of the supply */
1869         ret = regulator_resolve_supply(r);
1870         if (ret < 0) {
1871                 put_device(&r->dev);
1872                 return ret;
1873         }
1874
1875         ret = set_supply(rdev, r);
1876         if (ret < 0) {
1877                 put_device(&r->dev);
1878                 return ret;
1879         }
1880
1881         /*
1882          * In set_machine_constraints() we may have turned this regulator on
1883          * but we couldn't propagate to the supply if it hadn't been resolved
1884          * yet.  Do it now.
1885          */
1886         if (rdev->use_count) {
1887                 ret = regulator_enable(rdev->supply);
1888                 if (ret < 0) {
1889                         _regulator_put(rdev->supply);
1890                         rdev->supply = NULL;
1891                         return ret;
1892                 }
1893         }
1894
1895         return 0;
1896 }
1897
1898 /* Internal regulator request function */
1899 struct regulator *_regulator_get(struct device *dev, const char *id,
1900                                  enum regulator_get_type get_type)
1901 {
1902         struct regulator_dev *rdev;
1903         struct regulator *regulator;
1904         struct device_link *link;
1905         int ret;
1906
1907         if (get_type >= MAX_GET_TYPE) {
1908                 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1909                 return ERR_PTR(-EINVAL);
1910         }
1911
1912         if (id == NULL) {
1913                 pr_err("get() with no identifier\n");
1914                 return ERR_PTR(-EINVAL);
1915         }
1916
1917         rdev = regulator_dev_lookup(dev, id);
1918         if (IS_ERR(rdev)) {
1919                 ret = PTR_ERR(rdev);
1920
1921                 /*
1922                  * If regulator_dev_lookup() fails with error other
1923                  * than -ENODEV our job here is done, we simply return it.
1924                  */
1925                 if (ret != -ENODEV)
1926                         return ERR_PTR(ret);
1927
1928                 if (!have_full_constraints()) {
1929                         dev_warn(dev,
1930                                  "incomplete constraints, dummy supplies not allowed\n");
1931                         return ERR_PTR(-ENODEV);
1932                 }
1933
1934                 switch (get_type) {
1935                 case NORMAL_GET:
1936                         /*
1937                          * Assume that a regulator is physically present and
1938                          * enabled, even if it isn't hooked up, and just
1939                          * provide a dummy.
1940                          */
1941                         dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1942                         rdev = dummy_regulator_rdev;
1943                         get_device(&rdev->dev);
1944                         break;
1945
1946                 case EXCLUSIVE_GET:
1947                         dev_warn(dev,
1948                                  "dummy supplies not allowed for exclusive requests\n");
1949                         fallthrough;
1950
1951                 default:
1952                         return ERR_PTR(-ENODEV);
1953                 }
1954         }
1955
1956         if (rdev->exclusive) {
1957                 regulator = ERR_PTR(-EPERM);
1958                 put_device(&rdev->dev);
1959                 return regulator;
1960         }
1961
1962         if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1963                 regulator = ERR_PTR(-EBUSY);
1964                 put_device(&rdev->dev);
1965                 return regulator;
1966         }
1967
1968         mutex_lock(&regulator_list_mutex);
1969         ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1970         mutex_unlock(&regulator_list_mutex);
1971
1972         if (ret != 0) {
1973                 regulator = ERR_PTR(-EPROBE_DEFER);
1974                 put_device(&rdev->dev);
1975                 return regulator;
1976         }
1977
1978         ret = regulator_resolve_supply(rdev);
1979         if (ret < 0) {
1980                 regulator = ERR_PTR(ret);
1981                 put_device(&rdev->dev);
1982                 return regulator;
1983         }
1984
1985         if (!try_module_get(rdev->owner)) {
1986                 regulator = ERR_PTR(-EPROBE_DEFER);
1987                 put_device(&rdev->dev);
1988                 return regulator;
1989         }
1990
1991         regulator = create_regulator(rdev, dev, id);
1992         if (regulator == NULL) {
1993                 regulator = ERR_PTR(-ENOMEM);
1994                 module_put(rdev->owner);
1995                 put_device(&rdev->dev);
1996                 return regulator;
1997         }
1998
1999         rdev->open_count++;
2000         if (get_type == EXCLUSIVE_GET) {
2001                 rdev->exclusive = 1;
2002
2003                 ret = _regulator_is_enabled(rdev);
2004                 if (ret > 0)
2005                         rdev->use_count = 1;
2006                 else
2007                         rdev->use_count = 0;
2008         }
2009
2010         link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2011         if (!IS_ERR_OR_NULL(link))
2012                 regulator->device_link = true;
2013
2014         return regulator;
2015 }
2016
2017 /**
2018  * regulator_get - lookup and obtain a reference to a regulator.
2019  * @dev: device for regulator "consumer"
2020  * @id: Supply name or regulator ID.
2021  *
2022  * Returns a struct regulator corresponding to the regulator producer,
2023  * or IS_ERR() condition containing errno.
2024  *
2025  * Use of supply names configured via regulator_set_device_supply() is
2026  * strongly encouraged.  It is recommended that the supply name used
2027  * should match the name used for the supply and/or the relevant
2028  * device pins in the datasheet.
2029  */
2030 struct regulator *regulator_get(struct device *dev, const char *id)
2031 {
2032         return _regulator_get(dev, id, NORMAL_GET);
2033 }
2034 EXPORT_SYMBOL_GPL(regulator_get);
2035
2036 /**
2037  * regulator_get_exclusive - obtain exclusive access to a regulator.
2038  * @dev: device for regulator "consumer"
2039  * @id: Supply name or regulator ID.
2040  *
2041  * Returns a struct regulator corresponding to the regulator producer,
2042  * or IS_ERR() condition containing errno.  Other consumers will be
2043  * unable to obtain this regulator while this reference is held and the
2044  * use count for the regulator will be initialised to reflect the current
2045  * state of the regulator.
2046  *
2047  * This is intended for use by consumers which cannot tolerate shared
2048  * use of the regulator such as those which need to force the
2049  * regulator off for correct operation of the hardware they are
2050  * controlling.
2051  *
2052  * Use of supply names configured via regulator_set_device_supply() is
2053  * strongly encouraged.  It is recommended that the supply name used
2054  * should match the name used for the supply and/or the relevant
2055  * device pins in the datasheet.
2056  */
2057 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2058 {
2059         return _regulator_get(dev, id, EXCLUSIVE_GET);
2060 }
2061 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2062
2063 /**
2064  * regulator_get_optional - obtain optional access to a regulator.
2065  * @dev: device for regulator "consumer"
2066  * @id: Supply name or regulator ID.
2067  *
2068  * Returns a struct regulator corresponding to the regulator producer,
2069  * or IS_ERR() condition containing errno.
2070  *
2071  * This is intended for use by consumers for devices which can have
2072  * some supplies unconnected in normal use, such as some MMC devices.
2073  * It can allow the regulator core to provide stub supplies for other
2074  * supplies requested using normal regulator_get() calls without
2075  * disrupting the operation of drivers that can handle absent
2076  * supplies.
2077  *
2078  * Use of supply names configured via regulator_set_device_supply() is
2079  * strongly encouraged.  It is recommended that the supply name used
2080  * should match the name used for the supply and/or the relevant
2081  * device pins in the datasheet.
2082  */
2083 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2084 {
2085         return _regulator_get(dev, id, OPTIONAL_GET);
2086 }
2087 EXPORT_SYMBOL_GPL(regulator_get_optional);
2088
2089 static void destroy_regulator(struct regulator *regulator)
2090 {
2091         struct regulator_dev *rdev = regulator->rdev;
2092
2093         debugfs_remove_recursive(regulator->debugfs);
2094
2095         if (regulator->dev) {
2096                 if (regulator->device_link)
2097                         device_link_remove(regulator->dev, &rdev->dev);
2098
2099                 /* remove any sysfs entries */
2100                 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2101         }
2102
2103         regulator_lock(rdev);
2104         list_del(&regulator->list);
2105
2106         rdev->open_count--;
2107         rdev->exclusive = 0;
2108         regulator_unlock(rdev);
2109
2110         kfree_const(regulator->supply_name);
2111         kfree(regulator);
2112 }
2113
2114 /* regulator_list_mutex lock held by regulator_put() */
2115 static void _regulator_put(struct regulator *regulator)
2116 {
2117         struct regulator_dev *rdev;
2118
2119         if (IS_ERR_OR_NULL(regulator))
2120                 return;
2121
2122         lockdep_assert_held_once(&regulator_list_mutex);
2123
2124         /* Docs say you must disable before calling regulator_put() */
2125         WARN_ON(regulator->enable_count);
2126
2127         rdev = regulator->rdev;
2128
2129         destroy_regulator(regulator);
2130
2131         module_put(rdev->owner);
2132         put_device(&rdev->dev);
2133 }
2134
2135 /**
2136  * regulator_put - "free" the regulator source
2137  * @regulator: regulator source
2138  *
2139  * Note: drivers must ensure that all regulator_enable calls made on this
2140  * regulator source are balanced by regulator_disable calls prior to calling
2141  * this function.
2142  */
2143 void regulator_put(struct regulator *regulator)
2144 {
2145         mutex_lock(&regulator_list_mutex);
2146         _regulator_put(regulator);
2147         mutex_unlock(&regulator_list_mutex);
2148 }
2149 EXPORT_SYMBOL_GPL(regulator_put);
2150
2151 /**
2152  * regulator_register_supply_alias - Provide device alias for supply lookup
2153  *
2154  * @dev: device that will be given as the regulator "consumer"
2155  * @id: Supply name or regulator ID
2156  * @alias_dev: device that should be used to lookup the supply
2157  * @alias_id: Supply name or regulator ID that should be used to lookup the
2158  * supply
2159  *
2160  * All lookups for id on dev will instead be conducted for alias_id on
2161  * alias_dev.
2162  */
2163 int regulator_register_supply_alias(struct device *dev, const char *id,
2164                                     struct device *alias_dev,
2165                                     const char *alias_id)
2166 {
2167         struct regulator_supply_alias *map;
2168
2169         map = regulator_find_supply_alias(dev, id);
2170         if (map)
2171                 return -EEXIST;
2172
2173         map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2174         if (!map)
2175                 return -ENOMEM;
2176
2177         map->src_dev = dev;
2178         map->src_supply = id;
2179         map->alias_dev = alias_dev;
2180         map->alias_supply = alias_id;
2181
2182         list_add(&map->list, &regulator_supply_alias_list);
2183
2184         pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2185                 id, dev_name(dev), alias_id, dev_name(alias_dev));
2186
2187         return 0;
2188 }
2189 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2190
2191 /**
2192  * regulator_unregister_supply_alias - Remove device alias
2193  *
2194  * @dev: device that will be given as the regulator "consumer"
2195  * @id: Supply name or regulator ID
2196  *
2197  * Remove a lookup alias if one exists for id on dev.
2198  */
2199 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2200 {
2201         struct regulator_supply_alias *map;
2202
2203         map = regulator_find_supply_alias(dev, id);
2204         if (map) {
2205                 list_del(&map->list);
2206                 kfree(map);
2207         }
2208 }
2209 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2210
2211 /**
2212  * regulator_bulk_register_supply_alias - register multiple aliases
2213  *
2214  * @dev: device that will be given as the regulator "consumer"
2215  * @id: List of supply names or regulator IDs
2216  * @alias_dev: device that should be used to lookup the supply
2217  * @alias_id: List of supply names or regulator IDs that should be used to
2218  * lookup the supply
2219  * @num_id: Number of aliases to register
2220  *
2221  * @return 0 on success, an errno on failure.
2222  *
2223  * This helper function allows drivers to register several supply
2224  * aliases in one operation.  If any of the aliases cannot be
2225  * registered any aliases that were registered will be removed
2226  * before returning to the caller.
2227  */
2228 int regulator_bulk_register_supply_alias(struct device *dev,
2229                                          const char *const *id,
2230                                          struct device *alias_dev,
2231                                          const char *const *alias_id,
2232                                          int num_id)
2233 {
2234         int i;
2235         int ret;
2236
2237         for (i = 0; i < num_id; ++i) {
2238                 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2239                                                       alias_id[i]);
2240                 if (ret < 0)
2241                         goto err;
2242         }
2243
2244         return 0;
2245
2246 err:
2247         dev_err(dev,
2248                 "Failed to create supply alias %s,%s -> %s,%s\n",
2249                 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2250
2251         while (--i >= 0)
2252                 regulator_unregister_supply_alias(dev, id[i]);
2253
2254         return ret;
2255 }
2256 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2257
2258 /**
2259  * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2260  *
2261  * @dev: device that will be given as the regulator "consumer"
2262  * @id: List of supply names or regulator IDs
2263  * @num_id: Number of aliases to unregister
2264  *
2265  * This helper function allows drivers to unregister several supply
2266  * aliases in one operation.
2267  */
2268 void regulator_bulk_unregister_supply_alias(struct device *dev,
2269                                             const char *const *id,
2270                                             int num_id)
2271 {
2272         int i;
2273
2274         for (i = 0; i < num_id; ++i)
2275                 regulator_unregister_supply_alias(dev, id[i]);
2276 }
2277 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2278
2279
2280 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2281 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2282                                 const struct regulator_config *config)
2283 {
2284         struct regulator_enable_gpio *pin, *new_pin;
2285         struct gpio_desc *gpiod;
2286
2287         gpiod = config->ena_gpiod;
2288         new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2289
2290         mutex_lock(&regulator_list_mutex);
2291
2292         list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2293                 if (pin->gpiod == gpiod) {
2294                         rdev_dbg(rdev, "GPIO is already used\n");
2295                         goto update_ena_gpio_to_rdev;
2296                 }
2297         }
2298
2299         if (new_pin == NULL) {
2300                 mutex_unlock(&regulator_list_mutex);
2301                 return -ENOMEM;
2302         }
2303
2304         pin = new_pin;
2305         new_pin = NULL;
2306
2307         pin->gpiod = gpiod;
2308         list_add(&pin->list, &regulator_ena_gpio_list);
2309
2310 update_ena_gpio_to_rdev:
2311         pin->request_count++;
2312         rdev->ena_pin = pin;
2313
2314         mutex_unlock(&regulator_list_mutex);
2315         kfree(new_pin);
2316
2317         return 0;
2318 }
2319
2320 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2321 {
2322         struct regulator_enable_gpio *pin, *n;
2323
2324         if (!rdev->ena_pin)
2325                 return;
2326
2327         /* Free the GPIO only in case of no use */
2328         list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2329                 if (pin != rdev->ena_pin)
2330                         continue;
2331
2332                 if (--pin->request_count)
2333                         break;
2334
2335                 gpiod_put(pin->gpiod);
2336                 list_del(&pin->list);
2337                 kfree(pin);
2338                 break;
2339         }
2340
2341         rdev->ena_pin = NULL;
2342 }
2343
2344 /**
2345  * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2346  * @rdev: regulator_dev structure
2347  * @enable: enable GPIO at initial use?
2348  *
2349  * GPIO is enabled in case of initial use. (enable_count is 0)
2350  * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2351  */
2352 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2353 {
2354         struct regulator_enable_gpio *pin = rdev->ena_pin;
2355
2356         if (!pin)
2357                 return -EINVAL;
2358
2359         if (enable) {
2360                 /* Enable GPIO at initial use */
2361                 if (pin->enable_count == 0)
2362                         gpiod_set_value_cansleep(pin->gpiod, 1);
2363
2364                 pin->enable_count++;
2365         } else {
2366                 if (pin->enable_count > 1) {
2367                         pin->enable_count--;
2368                         return 0;
2369                 }
2370
2371                 /* Disable GPIO if not used */
2372                 if (pin->enable_count <= 1) {
2373                         gpiod_set_value_cansleep(pin->gpiod, 0);
2374                         pin->enable_count = 0;
2375                 }
2376         }
2377
2378         return 0;
2379 }
2380
2381 /**
2382  * _regulator_enable_delay - a delay helper function
2383  * @delay: time to delay in microseconds
2384  *
2385  * Delay for the requested amount of time as per the guidelines in:
2386  *
2387  *     Documentation/timers/timers-howto.rst
2388  *
2389  * The assumption here is that regulators will never be enabled in
2390  * atomic context and therefore sleeping functions can be used.
2391  */
2392 static void _regulator_enable_delay(unsigned int delay)
2393 {
2394         unsigned int ms = delay / 1000;
2395         unsigned int us = delay % 1000;
2396
2397         if (ms > 0) {
2398                 /*
2399                  * For small enough values, handle super-millisecond
2400                  * delays in the usleep_range() call below.
2401                  */
2402                 if (ms < 20)
2403                         us += ms * 1000;
2404                 else
2405                         msleep(ms);
2406         }
2407
2408         /*
2409          * Give the scheduler some room to coalesce with any other
2410          * wakeup sources. For delays shorter than 10 us, don't even
2411          * bother setting up high-resolution timers and just busy-
2412          * loop.
2413          */
2414         if (us >= 10)
2415                 usleep_range(us, us + 100);
2416         else
2417                 udelay(us);
2418 }
2419
2420 /**
2421  * _regulator_check_status_enabled
2422  *
2423  * A helper function to check if the regulator status can be interpreted
2424  * as 'regulator is enabled'.
2425  * @rdev: the regulator device to check
2426  *
2427  * Return:
2428  * * 1                  - if status shows regulator is in enabled state
2429  * * 0                  - if not enabled state
2430  * * Error Value        - as received from ops->get_status()
2431  */
2432 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2433 {
2434         int ret = rdev->desc->ops->get_status(rdev);
2435
2436         if (ret < 0) {
2437                 rdev_info(rdev, "get_status returned error: %d\n", ret);
2438                 return ret;
2439         }
2440
2441         switch (ret) {
2442         case REGULATOR_STATUS_OFF:
2443         case REGULATOR_STATUS_ERROR:
2444         case REGULATOR_STATUS_UNDEFINED:
2445                 return 0;
2446         default:
2447                 return 1;
2448         }
2449 }
2450
2451 static int _regulator_do_enable(struct regulator_dev *rdev)
2452 {
2453         int ret, delay;
2454
2455         /* Query before enabling in case configuration dependent.  */
2456         ret = _regulator_get_enable_time(rdev);
2457         if (ret >= 0) {
2458                 delay = ret;
2459         } else {
2460                 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2461                 delay = 0;
2462         }
2463
2464         trace_regulator_enable(rdev_get_name(rdev));
2465
2466         if (rdev->desc->off_on_delay) {
2467                 /* if needed, keep a distance of off_on_delay from last time
2468                  * this regulator was disabled.
2469                  */
2470                 unsigned long start_jiffy = jiffies;
2471                 unsigned long intended, max_delay, remaining;
2472
2473                 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2474                 intended = rdev->last_off_jiffy + max_delay;
2475
2476                 if (time_before(start_jiffy, intended)) {
2477                         /* calc remaining jiffies to deal with one-time
2478                          * timer wrapping.
2479                          * in case of multiple timer wrapping, either it can be
2480                          * detected by out-of-range remaining, or it cannot be
2481                          * detected and we get a penalty of
2482                          * _regulator_enable_delay().
2483                          */
2484                         remaining = intended - start_jiffy;
2485                         if (remaining <= max_delay)
2486                                 _regulator_enable_delay(
2487                                                 jiffies_to_usecs(remaining));
2488                 }
2489         }
2490
2491         if (rdev->ena_pin) {
2492                 if (!rdev->ena_gpio_state) {
2493                         ret = regulator_ena_gpio_ctrl(rdev, true);
2494                         if (ret < 0)
2495                                 return ret;
2496                         rdev->ena_gpio_state = 1;
2497                 }
2498         } else if (rdev->desc->ops->enable) {
2499                 ret = rdev->desc->ops->enable(rdev);
2500                 if (ret < 0)
2501                         return ret;
2502         } else {
2503                 return -EINVAL;
2504         }
2505
2506         /* Allow the regulator to ramp; it would be useful to extend
2507          * this for bulk operations so that the regulators can ramp
2508          * together.  */
2509         trace_regulator_enable_delay(rdev_get_name(rdev));
2510
2511         /* If poll_enabled_time is set, poll upto the delay calculated
2512          * above, delaying poll_enabled_time uS to check if the regulator
2513          * actually got enabled.
2514          * If the regulator isn't enabled after enable_delay has
2515          * expired, return -ETIMEDOUT.
2516          */
2517         if (rdev->desc->poll_enabled_time) {
2518                 unsigned int time_remaining = delay;
2519
2520                 while (time_remaining > 0) {
2521                         _regulator_enable_delay(rdev->desc->poll_enabled_time);
2522
2523                         if (rdev->desc->ops->get_status) {
2524                                 ret = _regulator_check_status_enabled(rdev);
2525                                 if (ret < 0)
2526                                         return ret;
2527                                 else if (ret)
2528                                         break;
2529                         } else if (rdev->desc->ops->is_enabled(rdev))
2530                                 break;
2531
2532                         time_remaining -= rdev->desc->poll_enabled_time;
2533                 }
2534
2535                 if (time_remaining <= 0) {
2536                         rdev_err(rdev, "Enabled check timed out\n");
2537                         return -ETIMEDOUT;
2538                 }
2539         } else {
2540                 _regulator_enable_delay(delay);
2541         }
2542
2543         trace_regulator_enable_complete(rdev_get_name(rdev));
2544
2545         return 0;
2546 }
2547
2548 /**
2549  * _regulator_handle_consumer_enable - handle that a consumer enabled
2550  * @regulator: regulator source
2551  *
2552  * Some things on a regulator consumer (like the contribution towards total
2553  * load on the regulator) only have an effect when the consumer wants the
2554  * regulator enabled.  Explained in example with two consumers of the same
2555  * regulator:
2556  *   consumer A: set_load(100);       => total load = 0
2557  *   consumer A: regulator_enable();  => total load = 100
2558  *   consumer B: set_load(1000);      => total load = 100
2559  *   consumer B: regulator_enable();  => total load = 1100
2560  *   consumer A: regulator_disable(); => total_load = 1000
2561  *
2562  * This function (together with _regulator_handle_consumer_disable) is
2563  * responsible for keeping track of the refcount for a given regulator consumer
2564  * and applying / unapplying these things.
2565  *
2566  * Returns 0 upon no error; -error upon error.
2567  */
2568 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2569 {
2570         struct regulator_dev *rdev = regulator->rdev;
2571
2572         lockdep_assert_held_once(&rdev->mutex.base);
2573
2574         regulator->enable_count++;
2575         if (regulator->uA_load && regulator->enable_count == 1)
2576                 return drms_uA_update(rdev);
2577
2578         return 0;
2579 }
2580
2581 /**
2582  * _regulator_handle_consumer_disable - handle that a consumer disabled
2583  * @regulator: regulator source
2584  *
2585  * The opposite of _regulator_handle_consumer_enable().
2586  *
2587  * Returns 0 upon no error; -error upon error.
2588  */
2589 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2590 {
2591         struct regulator_dev *rdev = regulator->rdev;
2592
2593         lockdep_assert_held_once(&rdev->mutex.base);
2594
2595         if (!regulator->enable_count) {
2596                 rdev_err(rdev, "Underflow of regulator enable count\n");
2597                 return -EINVAL;
2598         }
2599
2600         regulator->enable_count--;
2601         if (regulator->uA_load && regulator->enable_count == 0)
2602                 return drms_uA_update(rdev);
2603
2604         return 0;
2605 }
2606
2607 /* locks held by regulator_enable() */
2608 static int _regulator_enable(struct regulator *regulator)
2609 {
2610         struct regulator_dev *rdev = regulator->rdev;
2611         int ret;
2612
2613         lockdep_assert_held_once(&rdev->mutex.base);
2614
2615         if (rdev->use_count == 0 && rdev->supply) {
2616                 ret = _regulator_enable(rdev->supply);
2617                 if (ret < 0)
2618                         return ret;
2619         }
2620
2621         /* balance only if there are regulators coupled */
2622         if (rdev->coupling_desc.n_coupled > 1) {
2623                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2624                 if (ret < 0)
2625                         goto err_disable_supply;
2626         }
2627
2628         ret = _regulator_handle_consumer_enable(regulator);
2629         if (ret < 0)
2630                 goto err_disable_supply;
2631
2632         if (rdev->use_count == 0) {
2633                 /* The regulator may on if it's not switchable or left on */
2634                 ret = _regulator_is_enabled(rdev);
2635                 if (ret == -EINVAL || ret == 0) {
2636                         if (!regulator_ops_is_valid(rdev,
2637                                         REGULATOR_CHANGE_STATUS)) {
2638                                 ret = -EPERM;
2639                                 goto err_consumer_disable;
2640                         }
2641
2642                         ret = _regulator_do_enable(rdev);
2643                         if (ret < 0)
2644                                 goto err_consumer_disable;
2645
2646                         _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2647                                              NULL);
2648                 } else if (ret < 0) {
2649                         rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2650                         goto err_consumer_disable;
2651                 }
2652                 /* Fallthrough on positive return values - already enabled */
2653         }
2654
2655         rdev->use_count++;
2656
2657         return 0;
2658
2659 err_consumer_disable:
2660         _regulator_handle_consumer_disable(regulator);
2661
2662 err_disable_supply:
2663         if (rdev->use_count == 0 && rdev->supply)
2664                 _regulator_disable(rdev->supply);
2665
2666         return ret;
2667 }
2668
2669 /**
2670  * regulator_enable - enable regulator output
2671  * @regulator: regulator source
2672  *
2673  * Request that the regulator be enabled with the regulator output at
2674  * the predefined voltage or current value.  Calls to regulator_enable()
2675  * must be balanced with calls to regulator_disable().
2676  *
2677  * NOTE: the output value can be set by other drivers, boot loader or may be
2678  * hardwired in the regulator.
2679  */
2680 int regulator_enable(struct regulator *regulator)
2681 {
2682         struct regulator_dev *rdev = regulator->rdev;
2683         struct ww_acquire_ctx ww_ctx;
2684         int ret;
2685
2686         regulator_lock_dependent(rdev, &ww_ctx);
2687         ret = _regulator_enable(regulator);
2688         regulator_unlock_dependent(rdev, &ww_ctx);
2689
2690         return ret;
2691 }
2692 EXPORT_SYMBOL_GPL(regulator_enable);
2693
2694 static int _regulator_do_disable(struct regulator_dev *rdev)
2695 {
2696         int ret;
2697
2698         trace_regulator_disable(rdev_get_name(rdev));
2699
2700         if (rdev->ena_pin) {
2701                 if (rdev->ena_gpio_state) {
2702                         ret = regulator_ena_gpio_ctrl(rdev, false);
2703                         if (ret < 0)
2704                                 return ret;
2705                         rdev->ena_gpio_state = 0;
2706                 }
2707
2708         } else if (rdev->desc->ops->disable) {
2709                 ret = rdev->desc->ops->disable(rdev);
2710                 if (ret != 0)
2711                         return ret;
2712         }
2713
2714         /* cares about last_off_jiffy only if off_on_delay is required by
2715          * device.
2716          */
2717         if (rdev->desc->off_on_delay)
2718                 rdev->last_off_jiffy = jiffies;
2719
2720         trace_regulator_disable_complete(rdev_get_name(rdev));
2721
2722         return 0;
2723 }
2724
2725 /* locks held by regulator_disable() */
2726 static int _regulator_disable(struct regulator *regulator)
2727 {
2728         struct regulator_dev *rdev = regulator->rdev;
2729         int ret = 0;
2730
2731         lockdep_assert_held_once(&rdev->mutex.base);
2732
2733         if (WARN(rdev->use_count <= 0,
2734                  "unbalanced disables for %s\n", rdev_get_name(rdev)))
2735                 return -EIO;
2736
2737         /* are we the last user and permitted to disable ? */
2738         if (rdev->use_count == 1 &&
2739             (rdev->constraints && !rdev->constraints->always_on)) {
2740
2741                 /* we are last user */
2742                 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2743                         ret = _notifier_call_chain(rdev,
2744                                                    REGULATOR_EVENT_PRE_DISABLE,
2745                                                    NULL);
2746                         if (ret & NOTIFY_STOP_MASK)
2747                                 return -EINVAL;
2748
2749                         ret = _regulator_do_disable(rdev);
2750                         if (ret < 0) {
2751                                 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2752                                 _notifier_call_chain(rdev,
2753                                                 REGULATOR_EVENT_ABORT_DISABLE,
2754                                                 NULL);
2755                                 return ret;
2756                         }
2757                         _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2758                                         NULL);
2759                 }
2760
2761                 rdev->use_count = 0;
2762         } else if (rdev->use_count > 1) {
2763                 rdev->use_count--;
2764         }
2765
2766         if (ret == 0)
2767                 ret = _regulator_handle_consumer_disable(regulator);
2768
2769         if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2770                 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2771
2772         if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2773                 ret = _regulator_disable(rdev->supply);
2774
2775         return ret;
2776 }
2777
2778 /**
2779  * regulator_disable - disable regulator output
2780  * @regulator: regulator source
2781  *
2782  * Disable the regulator output voltage or current.  Calls to
2783  * regulator_enable() must be balanced with calls to
2784  * regulator_disable().
2785  *
2786  * NOTE: this will only disable the regulator output if no other consumer
2787  * devices have it enabled, the regulator device supports disabling and
2788  * machine constraints permit this operation.
2789  */
2790 int regulator_disable(struct regulator *regulator)
2791 {
2792         struct regulator_dev *rdev = regulator->rdev;
2793         struct ww_acquire_ctx ww_ctx;
2794         int ret;
2795
2796         regulator_lock_dependent(rdev, &ww_ctx);
2797         ret = _regulator_disable(regulator);
2798         regulator_unlock_dependent(rdev, &ww_ctx);
2799
2800         return ret;
2801 }
2802 EXPORT_SYMBOL_GPL(regulator_disable);
2803
2804 /* locks held by regulator_force_disable() */
2805 static int _regulator_force_disable(struct regulator_dev *rdev)
2806 {
2807         int ret = 0;
2808
2809         lockdep_assert_held_once(&rdev->mutex.base);
2810
2811         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2812                         REGULATOR_EVENT_PRE_DISABLE, NULL);
2813         if (ret & NOTIFY_STOP_MASK)
2814                 return -EINVAL;
2815
2816         ret = _regulator_do_disable(rdev);
2817         if (ret < 0) {
2818                 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2819                 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2820                                 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2821                 return ret;
2822         }
2823
2824         _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2825                         REGULATOR_EVENT_DISABLE, NULL);
2826
2827         return 0;
2828 }
2829
2830 /**
2831  * regulator_force_disable - force disable regulator output
2832  * @regulator: regulator source
2833  *
2834  * Forcibly disable the regulator output voltage or current.
2835  * NOTE: this *will* disable the regulator output even if other consumer
2836  * devices have it enabled. This should be used for situations when device
2837  * damage will likely occur if the regulator is not disabled (e.g. over temp).
2838  */
2839 int regulator_force_disable(struct regulator *regulator)
2840 {
2841         struct regulator_dev *rdev = regulator->rdev;
2842         struct ww_acquire_ctx ww_ctx;
2843         int ret;
2844
2845         regulator_lock_dependent(rdev, &ww_ctx);
2846
2847         ret = _regulator_force_disable(regulator->rdev);
2848
2849         if (rdev->coupling_desc.n_coupled > 1)
2850                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2851
2852         if (regulator->uA_load) {
2853                 regulator->uA_load = 0;
2854                 ret = drms_uA_update(rdev);
2855         }
2856
2857         if (rdev->use_count != 0 && rdev->supply)
2858                 _regulator_disable(rdev->supply);
2859
2860         regulator_unlock_dependent(rdev, &ww_ctx);
2861
2862         return ret;
2863 }
2864 EXPORT_SYMBOL_GPL(regulator_force_disable);
2865
2866 static void regulator_disable_work(struct work_struct *work)
2867 {
2868         struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2869                                                   disable_work.work);
2870         struct ww_acquire_ctx ww_ctx;
2871         int count, i, ret;
2872         struct regulator *regulator;
2873         int total_count = 0;
2874
2875         regulator_lock_dependent(rdev, &ww_ctx);
2876
2877         /*
2878          * Workqueue functions queue the new work instance while the previous
2879          * work instance is being processed. Cancel the queued work instance
2880          * as the work instance under processing does the job of the queued
2881          * work instance.
2882          */
2883         cancel_delayed_work(&rdev->disable_work);
2884
2885         list_for_each_entry(regulator, &rdev->consumer_list, list) {
2886                 count = regulator->deferred_disables;
2887
2888                 if (!count)
2889                         continue;
2890
2891                 total_count += count;
2892                 regulator->deferred_disables = 0;
2893
2894                 for (i = 0; i < count; i++) {
2895                         ret = _regulator_disable(regulator);
2896                         if (ret != 0)
2897                                 rdev_err(rdev, "Deferred disable failed: %pe\n",
2898                                          ERR_PTR(ret));
2899                 }
2900         }
2901         WARN_ON(!total_count);
2902
2903         if (rdev->coupling_desc.n_coupled > 1)
2904                 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2905
2906         regulator_unlock_dependent(rdev, &ww_ctx);
2907 }
2908
2909 /**
2910  * regulator_disable_deferred - disable regulator output with delay
2911  * @regulator: regulator source
2912  * @ms: milliseconds until the regulator is disabled
2913  *
2914  * Execute regulator_disable() on the regulator after a delay.  This
2915  * is intended for use with devices that require some time to quiesce.
2916  *
2917  * NOTE: this will only disable the regulator output if no other consumer
2918  * devices have it enabled, the regulator device supports disabling and
2919  * machine constraints permit this operation.
2920  */
2921 int regulator_disable_deferred(struct regulator *regulator, int ms)
2922 {
2923         struct regulator_dev *rdev = regulator->rdev;
2924
2925         if (!ms)
2926                 return regulator_disable(regulator);
2927
2928         regulator_lock(rdev);
2929         regulator->deferred_disables++;
2930         mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2931                          msecs_to_jiffies(ms));
2932         regulator_unlock(rdev);
2933
2934         return 0;
2935 }
2936 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2937
2938 static int _regulator_is_enabled(struct regulator_dev *rdev)
2939 {
2940         /* A GPIO control always takes precedence */
2941         if (rdev->ena_pin)
2942                 return rdev->ena_gpio_state;
2943
2944         /* If we don't know then assume that the regulator is always on */
2945         if (!rdev->desc->ops->is_enabled)
2946                 return 1;
2947
2948         return rdev->desc->ops->is_enabled(rdev);
2949 }
2950
2951 static int _regulator_list_voltage(struct regulator_dev *rdev,
2952                                    unsigned selector, int lock)
2953 {
2954         const struct regulator_ops *ops = rdev->desc->ops;
2955         int ret;
2956
2957         if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2958                 return rdev->desc->fixed_uV;
2959
2960         if (ops->list_voltage) {
2961                 if (selector >= rdev->desc->n_voltages)
2962                         return -EINVAL;
2963                 if (lock)
2964                         regulator_lock(rdev);
2965                 ret = ops->list_voltage(rdev, selector);
2966                 if (lock)
2967                         regulator_unlock(rdev);
2968         } else if (rdev->is_switch && rdev->supply) {
2969                 ret = _regulator_list_voltage(rdev->supply->rdev,
2970                                               selector, lock);
2971         } else {
2972                 return -EINVAL;
2973         }
2974
2975         if (ret > 0) {
2976                 if (ret < rdev->constraints->min_uV)
2977                         ret = 0;
2978                 else if (ret > rdev->constraints->max_uV)
2979                         ret = 0;
2980         }
2981
2982         return ret;
2983 }
2984
2985 /**
2986  * regulator_is_enabled - is the regulator output enabled
2987  * @regulator: regulator source
2988  *
2989  * Returns positive if the regulator driver backing the source/client
2990  * has requested that the device be enabled, zero if it hasn't, else a
2991  * negative errno code.
2992  *
2993  * Note that the device backing this regulator handle can have multiple
2994  * users, so it might be enabled even if regulator_enable() was never
2995  * called for this particular source.
2996  */
2997 int regulator_is_enabled(struct regulator *regulator)
2998 {
2999         int ret;
3000
3001         if (regulator->always_on)
3002                 return 1;
3003
3004         regulator_lock(regulator->rdev);
3005         ret = _regulator_is_enabled(regulator->rdev);
3006         regulator_unlock(regulator->rdev);
3007
3008         return ret;
3009 }
3010 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3011
3012 /**
3013  * regulator_count_voltages - count regulator_list_voltage() selectors
3014  * @regulator: regulator source
3015  *
3016  * Returns number of selectors, or negative errno.  Selectors are
3017  * numbered starting at zero, and typically correspond to bitfields
3018  * in hardware registers.
3019  */
3020 int regulator_count_voltages(struct regulator *regulator)
3021 {
3022         struct regulator_dev    *rdev = regulator->rdev;
3023
3024         if (rdev->desc->n_voltages)
3025                 return rdev->desc->n_voltages;
3026
3027         if (!rdev->is_switch || !rdev->supply)
3028                 return -EINVAL;
3029
3030         return regulator_count_voltages(rdev->supply);
3031 }
3032 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3033
3034 /**
3035  * regulator_list_voltage - enumerate supported voltages
3036  * @regulator: regulator source
3037  * @selector: identify voltage to list
3038  * Context: can sleep
3039  *
3040  * Returns a voltage that can be passed to @regulator_set_voltage(),
3041  * zero if this selector code can't be used on this system, or a
3042  * negative errno.
3043  */
3044 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3045 {
3046         return _regulator_list_voltage(regulator->rdev, selector, 1);
3047 }
3048 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3049
3050 /**
3051  * regulator_get_regmap - get the regulator's register map
3052  * @regulator: regulator source
3053  *
3054  * Returns the register map for the given regulator, or an ERR_PTR value
3055  * if the regulator doesn't use regmap.
3056  */
3057 struct regmap *regulator_get_regmap(struct regulator *regulator)
3058 {
3059         struct regmap *map = regulator->rdev->regmap;
3060
3061         return map ? map : ERR_PTR(-EOPNOTSUPP);
3062 }
3063
3064 /**
3065  * regulator_get_hardware_vsel_register - get the HW voltage selector register
3066  * @regulator: regulator source
3067  * @vsel_reg: voltage selector register, output parameter
3068  * @vsel_mask: mask for voltage selector bitfield, output parameter
3069  *
3070  * Returns the hardware register offset and bitmask used for setting the
3071  * regulator voltage. This might be useful when configuring voltage-scaling
3072  * hardware or firmware that can make I2C requests behind the kernel's back,
3073  * for example.
3074  *
3075  * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3076  * and 0 is returned, otherwise a negative errno is returned.
3077  */
3078 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3079                                          unsigned *vsel_reg,
3080                                          unsigned *vsel_mask)
3081 {
3082         struct regulator_dev *rdev = regulator->rdev;
3083         const struct regulator_ops *ops = rdev->desc->ops;
3084
3085         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3086                 return -EOPNOTSUPP;
3087
3088         *vsel_reg = rdev->desc->vsel_reg;
3089         *vsel_mask = rdev->desc->vsel_mask;
3090
3091         return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3094
3095 /**
3096  * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3097  * @regulator: regulator source
3098  * @selector: identify voltage to list
3099  *
3100  * Converts the selector to a hardware-specific voltage selector that can be
3101  * directly written to the regulator registers. The address of the voltage
3102  * register can be determined by calling @regulator_get_hardware_vsel_register.
3103  *
3104  * On error a negative errno is returned.
3105  */
3106 int regulator_list_hardware_vsel(struct regulator *regulator,
3107                                  unsigned selector)
3108 {
3109         struct regulator_dev *rdev = regulator->rdev;
3110         const struct regulator_ops *ops = rdev->desc->ops;
3111
3112         if (selector >= rdev->desc->n_voltages)
3113                 return -EINVAL;
3114         if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3115                 return -EOPNOTSUPP;
3116
3117         return selector;
3118 }
3119 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3120
3121 /**
3122  * regulator_get_linear_step - return the voltage step size between VSEL values
3123  * @regulator: regulator source
3124  *
3125  * Returns the voltage step size between VSEL values for linear
3126  * regulators, or return 0 if the regulator isn't a linear regulator.
3127  */
3128 unsigned int regulator_get_linear_step(struct regulator *regulator)
3129 {
3130         struct regulator_dev *rdev = regulator->rdev;
3131
3132         return rdev->desc->uV_step;
3133 }
3134 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3135
3136 /**
3137  * regulator_is_supported_voltage - check if a voltage range can be supported
3138  *
3139  * @regulator: Regulator to check.
3140  * @min_uV: Minimum required voltage in uV.
3141  * @max_uV: Maximum required voltage in uV.
3142  *
3143  * Returns a boolean.
3144  */
3145 int regulator_is_supported_voltage(struct regulator *regulator,
3146                                    int min_uV, int max_uV)
3147 {
3148         struct regulator_dev *rdev = regulator->rdev;
3149         int i, voltages, ret;
3150
3151         /* If we can't change voltage check the current voltage */
3152         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3153                 ret = regulator_get_voltage(regulator);
3154                 if (ret >= 0)
3155                         return min_uV <= ret && ret <= max_uV;
3156                 else
3157                         return ret;
3158         }
3159
3160         /* Any voltage within constrains range is fine? */
3161         if (rdev->desc->continuous_voltage_range)
3162                 return min_uV >= rdev->constraints->min_uV &&
3163                                 max_uV <= rdev->constraints->max_uV;
3164
3165         ret = regulator_count_voltages(regulator);
3166         if (ret < 0)
3167                 return 0;
3168         voltages = ret;
3169
3170         for (i = 0; i < voltages; i++) {
3171                 ret = regulator_list_voltage(regulator, i);
3172
3173                 if (ret >= min_uV && ret <= max_uV)
3174                         return 1;
3175         }
3176
3177         return 0;
3178 }
3179 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3180
3181 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3182                                  int max_uV)
3183 {
3184         const struct regulator_desc *desc = rdev->desc;
3185
3186         if (desc->ops->map_voltage)
3187                 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3188
3189         if (desc->ops->list_voltage == regulator_list_voltage_linear)
3190                 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3191
3192         if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3193                 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3194
3195         if (desc->ops->list_voltage ==
3196                 regulator_list_voltage_pickable_linear_range)
3197                 return regulator_map_voltage_pickable_linear_range(rdev,
3198                                                         min_uV, max_uV);
3199
3200         return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3201 }
3202
3203 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3204                                        int min_uV, int max_uV,
3205                                        unsigned *selector)
3206 {
3207         struct pre_voltage_change_data data;
3208         int ret;
3209
3210         data.old_uV = regulator_get_voltage_rdev(rdev);
3211         data.min_uV = min_uV;
3212         data.max_uV = max_uV;
3213         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3214                                    &data);
3215         if (ret & NOTIFY_STOP_MASK)
3216                 return -EINVAL;
3217
3218         ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3219         if (ret >= 0)
3220                 return ret;
3221
3222         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3223                              (void *)data.old_uV);
3224
3225         return ret;
3226 }
3227
3228 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3229                                            int uV, unsigned selector)
3230 {
3231         struct pre_voltage_change_data data;
3232         int ret;
3233
3234         data.old_uV = regulator_get_voltage_rdev(rdev);
3235         data.min_uV = uV;
3236         data.max_uV = uV;
3237         ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3238                                    &data);
3239         if (ret & NOTIFY_STOP_MASK)
3240                 return -EINVAL;
3241
3242         ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3243         if (ret >= 0)
3244                 return ret;
3245
3246         _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3247                              (void *)data.old_uV);
3248
3249         return ret;
3250 }
3251
3252 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3253                                            int uV, int new_selector)
3254 {
3255         const struct regulator_ops *ops = rdev->desc->ops;
3256         int diff, old_sel, curr_sel, ret;
3257
3258         /* Stepping is only needed if the regulator is enabled. */
3259         if (!_regulator_is_enabled(rdev))
3260                 goto final_set;
3261
3262         if (!ops->get_voltage_sel)
3263                 return -EINVAL;
3264
3265         old_sel = ops->get_voltage_sel(rdev);
3266         if (old_sel < 0)
3267                 return old_sel;
3268
3269         diff = new_selector - old_sel;
3270         if (diff == 0)
3271                 return 0; /* No change needed. */
3272
3273         if (diff > 0) {
3274                 /* Stepping up. */
3275                 for (curr_sel = old_sel + rdev->desc->vsel_step;
3276                      curr_sel < new_selector;
3277                      curr_sel += rdev->desc->vsel_step) {
3278                         /*
3279                          * Call the callback directly instead of using
3280                          * _regulator_call_set_voltage_sel() as we don't
3281                          * want to notify anyone yet. Same in the branch
3282                          * below.
3283                          */
3284                         ret = ops->set_voltage_sel(rdev, curr_sel);
3285                         if (ret)
3286                                 goto try_revert;
3287                 }
3288         } else {
3289                 /* Stepping down. */
3290                 for (curr_sel = old_sel - rdev->desc->vsel_step;
3291                      curr_sel > new_selector;
3292                      curr_sel -= rdev->desc->vsel_step) {
3293                         ret = ops->set_voltage_sel(rdev, curr_sel);
3294                         if (ret)
3295                                 goto try_revert;
3296                 }
3297         }
3298
3299 final_set:
3300         /* The final selector will trigger the notifiers. */
3301         return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3302
3303 try_revert:
3304         /*
3305          * At least try to return to the previous voltage if setting a new
3306          * one failed.
3307          */
3308         (void)ops->set_voltage_sel(rdev, old_sel);
3309         return ret;
3310 }
3311
3312 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3313                                        int old_uV, int new_uV)
3314 {
3315         unsigned int ramp_delay = 0;
3316
3317         if (rdev->constraints->ramp_delay)
3318                 ramp_delay = rdev->constraints->ramp_delay;
3319         else if (rdev->desc->ramp_delay)
3320                 ramp_delay = rdev->desc->ramp_delay;
3321         else if (rdev->constraints->settling_time)
3322                 return rdev->constraints->settling_time;
3323         else if (rdev->constraints->settling_time_up &&
3324                  (new_uV > old_uV))
3325                 return rdev->constraints->settling_time_up;
3326         else if (rdev->constraints->settling_time_down &&
3327                  (new_uV < old_uV))
3328                 return rdev->constraints->settling_time_down;
3329
3330         if (ramp_delay == 0) {
3331                 rdev_dbg(rdev, "ramp_delay not set\n");
3332                 return 0;
3333         }
3334
3335         return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3336 }
3337
3338 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3339                                      int min_uV, int max_uV)
3340 {
3341         int ret;
3342         int delay = 0;
3343         int best_val = 0;
3344         unsigned int selector;
3345         int old_selector = -1;
3346         const struct regulator_ops *ops = rdev->desc->ops;
3347         int old_uV = regulator_get_voltage_rdev(rdev);
3348
3349         trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3350
3351         min_uV += rdev->constraints->uV_offset;
3352         max_uV += rdev->constraints->uV_offset;
3353
3354         /*
3355          * If we can't obtain the old selector there is not enough
3356          * info to call set_voltage_time_sel().
3357          */
3358         if (_regulator_is_enabled(rdev) &&
3359             ops->set_voltage_time_sel && ops->get_voltage_sel) {
3360                 old_selector = ops->get_voltage_sel(rdev);
3361                 if (old_selector < 0)
3362                         return old_selector;
3363         }
3364
3365         if (ops->set_voltage) {
3366                 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3367                                                   &selector);
3368
3369                 if (ret >= 0) {
3370                         if (ops->list_voltage)
3371                                 best_val = ops->list_voltage(rdev,
3372                                                              selector);
3373                         else
3374                                 best_val = regulator_get_voltage_rdev(rdev);
3375                 }
3376
3377         } else if (ops->set_voltage_sel) {
3378                 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3379                 if (ret >= 0) {
3380                         best_val = ops->list_voltage(rdev, ret);
3381                         if (min_uV <= best_val && max_uV >= best_val) {
3382                                 selector = ret;
3383                                 if (old_selector == selector)
3384                                         ret = 0;
3385                                 else if (rdev->desc->vsel_step)
3386                                         ret = _regulator_set_voltage_sel_step(
3387                                                 rdev, best_val, selector);
3388                                 else
3389                                         ret = _regulator_call_set_voltage_sel(
3390                                                 rdev, best_val, selector);
3391                         } else {
3392                                 ret = -EINVAL;
3393                         }
3394                 }
3395         } else {
3396                 ret = -EINVAL;
3397         }
3398
3399         if (ret)
3400                 goto out;
3401
3402         if (ops->set_voltage_time_sel) {
3403                 /*
3404                  * Call set_voltage_time_sel if successfully obtained
3405                  * old_selector
3406                  */
3407                 if (old_selector >= 0 && old_selector != selector)
3408                         delay = ops->set_voltage_time_sel(rdev, old_selector,
3409                                                           selector);
3410         } else {
3411                 if (old_uV != best_val) {
3412                         if (ops->set_voltage_time)
3413                                 delay = ops->set_voltage_time(rdev, old_uV,
3414                                                               best_val);
3415                         else
3416                                 delay = _regulator_set_voltage_time(rdev,
3417                                                                     old_uV,
3418                                                                     best_val);
3419                 }
3420         }
3421
3422         if (delay < 0) {
3423                 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3424                 delay = 0;
3425         }
3426
3427         /* Insert any necessary delays */
3428         if (delay >= 1000) {
3429                 mdelay(delay / 1000);
3430                 udelay(delay % 1000);
3431         } else if (delay) {
3432                 udelay(delay);
3433         }
3434
3435         if (best_val >= 0) {
3436                 unsigned long data = best_val;
3437
3438                 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3439                                      (void *)data);
3440         }
3441
3442 out:
3443         trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3444
3445         return ret;
3446 }
3447
3448 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3449                                   int min_uV, int max_uV, suspend_state_t state)
3450 {
3451         struct regulator_state *rstate;
3452         int uV, sel;
3453
3454         rstate = regulator_get_suspend_state(rdev, state);
3455         if (rstate == NULL)
3456                 return -EINVAL;
3457
3458         if (min_uV < rstate->min_uV)
3459                 min_uV = rstate->min_uV;
3460         if (max_uV > rstate->max_uV)
3461                 max_uV = rstate->max_uV;
3462
3463         sel = regulator_map_voltage(rdev, min_uV, max_uV);
3464         if (sel < 0)
3465                 return sel;
3466
3467         uV = rdev->desc->ops->list_voltage(rdev, sel);
3468         if (uV >= min_uV && uV <= max_uV)
3469                 rstate->uV = uV;
3470
3471         return 0;
3472 }
3473
3474 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3475                                           int min_uV, int max_uV,
3476                                           suspend_state_t state)
3477 {
3478         struct regulator_dev *rdev = regulator->rdev;
3479         struct regulator_voltage *voltage = &regulator->voltage[state];
3480         int ret = 0;
3481         int old_min_uV, old_max_uV;
3482         int current_uV;
3483
3484         /* If we're setting the same range as last time the change
3485          * should be a noop (some cpufreq implementations use the same
3486          * voltage for multiple frequencies, for example).
3487          */
3488         if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3489                 goto out;
3490
3491         /* If we're trying to set a range that overlaps the current voltage,
3492          * return successfully even though the regulator does not support
3493          * changing the voltage.
3494          */
3495         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3496                 current_uV = regulator_get_voltage_rdev(rdev);
3497                 if (min_uV <= current_uV && current_uV <= max_uV) {
3498                         voltage->min_uV = min_uV;
3499                         voltage->max_uV = max_uV;
3500                         goto out;
3501                 }
3502         }
3503
3504         /* sanity check */
3505         if (!rdev->desc->ops->set_voltage &&
3506             !rdev->desc->ops->set_voltage_sel) {
3507                 ret = -EINVAL;
3508                 goto out;
3509         }
3510
3511         /* constraints check */
3512         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3513         if (ret < 0)
3514                 goto out;
3515
3516         /* restore original values in case of error */
3517         old_min_uV = voltage->min_uV;
3518         old_max_uV = voltage->max_uV;
3519         voltage->min_uV = min_uV;
3520         voltage->max_uV = max_uV;
3521
3522         /* for not coupled regulators this will just set the voltage */
3523         ret = regulator_balance_voltage(rdev, state);
3524         if (ret < 0) {
3525                 voltage->min_uV = old_min_uV;
3526                 voltage->max_uV = old_max_uV;
3527         }
3528
3529 out:
3530         return ret;
3531 }
3532
3533 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3534                                int max_uV, suspend_state_t state)
3535 {
3536         int best_supply_uV = 0;
3537         int supply_change_uV = 0;
3538         int ret;
3539
3540         if (rdev->supply &&
3541             regulator_ops_is_valid(rdev->supply->rdev,
3542                                    REGULATOR_CHANGE_VOLTAGE) &&
3543             (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3544                                            rdev->desc->ops->get_voltage_sel))) {
3545                 int current_supply_uV;
3546                 int selector;
3547
3548                 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3549                 if (selector < 0) {
3550                         ret = selector;
3551                         goto out;
3552                 }
3553
3554                 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3555                 if (best_supply_uV < 0) {
3556                         ret = best_supply_uV;
3557                         goto out;
3558                 }
3559
3560                 best_supply_uV += rdev->desc->min_dropout_uV;
3561
3562                 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3563                 if (current_supply_uV < 0) {
3564                         ret = current_supply_uV;
3565                         goto out;
3566                 }
3567
3568                 supply_change_uV = best_supply_uV - current_supply_uV;
3569         }
3570
3571         if (supply_change_uV > 0) {
3572                 ret = regulator_set_voltage_unlocked(rdev->supply,
3573                                 best_supply_uV, INT_MAX, state);
3574                 if (ret) {
3575                         dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3576                                 ERR_PTR(ret));
3577                         goto out;
3578                 }
3579         }
3580
3581         if (state == PM_SUSPEND_ON)
3582                 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3583         else
3584                 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3585                                                         max_uV, state);
3586         if (ret < 0)
3587                 goto out;
3588
3589         if (supply_change_uV < 0) {
3590                 ret = regulator_set_voltage_unlocked(rdev->supply,
3591                                 best_supply_uV, INT_MAX, state);
3592                 if (ret)
3593                         dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3594                                  ERR_PTR(ret));
3595                 /* No need to fail here */
3596                 ret = 0;
3597         }
3598
3599 out:
3600         return ret;
3601 }
3602 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3603
3604 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3605                                         int *current_uV, int *min_uV)
3606 {
3607         struct regulation_constraints *constraints = rdev->constraints;
3608
3609         /* Limit voltage change only if necessary */
3610         if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3611                 return 1;
3612
3613         if (*current_uV < 0) {
3614                 *current_uV = regulator_get_voltage_rdev(rdev);
3615
3616                 if (*current_uV < 0)
3617                         return *current_uV;
3618         }
3619
3620         if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3621                 return 1;
3622
3623         /* Clamp target voltage within the given step */
3624         if (*current_uV < *min_uV)
3625                 *min_uV = min(*current_uV + constraints->max_uV_step,
3626                               *min_uV);
3627         else
3628                 *min_uV = max(*current_uV - constraints->max_uV_step,
3629                               *min_uV);
3630
3631         return 0;
3632 }
3633
3634 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3635                                          int *current_uV,
3636                                          int *min_uV, int *max_uV,
3637                                          suspend_state_t state,
3638                                          int n_coupled)
3639 {
3640         struct coupling_desc *c_desc = &rdev->coupling_desc;
3641         struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3642         struct regulation_constraints *constraints = rdev->constraints;
3643         int desired_min_uV = 0, desired_max_uV = INT_MAX;
3644         int max_current_uV = 0, min_current_uV = INT_MAX;
3645         int highest_min_uV = 0, target_uV, possible_uV;
3646         int i, ret, max_spread;
3647         bool done;
3648
3649         *current_uV = -1;
3650
3651         /*
3652          * If there are no coupled regulators, simply set the voltage
3653          * demanded by consumers.
3654          */
3655         if (n_coupled == 1) {
3656                 /*
3657                  * If consumers don't provide any demands, set voltage
3658                  * to min_uV
3659                  */
3660                 desired_min_uV = constraints->min_uV;
3661                 desired_max_uV = constraints->max_uV;
3662
3663                 ret = regulator_check_consumers(rdev,
3664                                                 &desired_min_uV,
3665                                                 &desired_max_uV, state);
3666                 if (ret < 0)
3667                         return ret;
3668
3669                 possible_uV = desired_min_uV;
3670                 done = true;
3671
3672                 goto finish;
3673         }
3674
3675         /* Find highest min desired voltage */
3676         for (i = 0; i < n_coupled; i++) {
3677                 int tmp_min = 0;
3678                 int tmp_max = INT_MAX;
3679
3680                 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3681
3682                 ret = regulator_check_consumers(c_rdevs[i],
3683                                                 &tmp_min,
3684                                                 &tmp_max, state);
3685                 if (ret < 0)
3686                         return ret;
3687
3688                 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3689                 if (ret < 0)
3690                         return ret;
3691
3692                 highest_min_uV = max(highest_min_uV, tmp_min);
3693
3694                 if (i == 0) {
3695                         desired_min_uV = tmp_min;
3696                         desired_max_uV = tmp_max;
3697                 }
3698         }
3699
3700         max_spread = constraints->max_spread[0];
3701
3702         /*
3703          * Let target_uV be equal to the desired one if possible.
3704          * If not, set it to minimum voltage, allowed by other coupled
3705          * regulators.
3706          */
3707         target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3708
3709         /*
3710          * Find min and max voltages, which currently aren't violating
3711          * max_spread.
3712          */
3713         for (i = 1; i < n_coupled; i++) {
3714                 int tmp_act;
3715
3716                 if (!_regulator_is_enabled(c_rdevs[i]))
3717                         continue;
3718
3719                 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3720                 if (tmp_act < 0)
3721                         return tmp_act;
3722
3723                 min_current_uV = min(tmp_act, min_current_uV);
3724                 max_current_uV = max(tmp_act, max_current_uV);
3725         }
3726
3727         /* There aren't any other regulators enabled */
3728         if (max_current_uV == 0) {
3729                 possible_uV = target_uV;
3730         } else {
3731                 /*
3732                  * Correct target voltage, so as it currently isn't
3733                  * violating max_spread
3734                  */
3735                 possible_uV = max(target_uV, max_current_uV - max_spread);
3736                 possible_uV = min(possible_uV, min_current_uV + max_spread);
3737         }
3738
3739         if (possible_uV > desired_max_uV)
3740                 return -EINVAL;
3741
3742         done = (possible_uV == target_uV);
3743         desired_min_uV = possible_uV;
3744
3745 finish:
3746         /* Apply max_uV_step constraint if necessary */
3747         if (state == PM_SUSPEND_ON) {
3748                 ret = regulator_limit_voltage_step(rdev, current_uV,
3749                                                    &desired_min_uV);
3750                 if (ret < 0)
3751                         return ret;
3752
3753                 if (ret == 0)
3754                         done = false;
3755         }
3756
3757         /* Set current_uV if wasn't done earlier in the code and if necessary */
3758         if (n_coupled > 1 && *current_uV == -1) {
3759
3760                 if (_regulator_is_enabled(rdev)) {
3761                         ret = regulator_get_voltage_rdev(rdev);
3762                         if (ret < 0)
3763                                 return ret;
3764
3765                         *current_uV = ret;
3766                 } else {
3767                         *current_uV = desired_min_uV;
3768                 }
3769         }
3770
3771         *min_uV = desired_min_uV;
3772         *max_uV = desired_max_uV;
3773
3774         return done;
3775 }
3776
3777 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3778                                  suspend_state_t state, bool skip_coupled)
3779 {
3780         struct regulator_dev **c_rdevs;
3781         struct regulator_dev *best_rdev;
3782         struct coupling_desc *c_desc = &rdev->coupling_desc;
3783         int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3784         unsigned int delta, best_delta;
3785         unsigned long c_rdev_done = 0;
3786         bool best_c_rdev_done;
3787
3788         c_rdevs = c_desc->coupled_rdevs;
3789         n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3790
3791         /*
3792          * Find the best possible voltage change on each loop. Leave the loop
3793          * if there isn't any possible change.
3794          */
3795         do {
3796                 best_c_rdev_done = false;
3797                 best_delta = 0;
3798                 best_min_uV = 0;
3799                 best_max_uV = 0;
3800                 best_c_rdev = 0;
3801                 best_rdev = NULL;
3802
3803                 /*
3804                  * Find highest difference between optimal voltage
3805                  * and current voltage.
3806                  */
3807                 for (i = 0; i < n_coupled; i++) {
3808                         /*
3809                          * optimal_uV is the best voltage that can be set for
3810                          * i-th regulator at the moment without violating
3811                          * max_spread constraint in order to balance
3812                          * the coupled voltages.
3813                          */
3814                         int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3815
3816                         if (test_bit(i, &c_rdev_done))
3817                                 continue;
3818
3819                         ret = regulator_get_optimal_voltage(c_rdevs[i],
3820                                                             &current_uV,
3821                                                             &optimal_uV,
3822                                                             &optimal_max_uV,
3823                                                             state, n_coupled);
3824                         if (ret < 0)
3825                                 goto out;
3826
3827                         delta = abs(optimal_uV - current_uV);
3828
3829                         if (delta && best_delta <= delta) {
3830                                 best_c_rdev_done = ret;
3831                                 best_delta = delta;
3832                                 best_rdev = c_rdevs[i];
3833                                 best_min_uV = optimal_uV;
3834                                 best_max_uV = optimal_max_uV;
3835                                 best_c_rdev = i;
3836                         }
3837                 }
3838
3839                 /* Nothing to change, return successfully */
3840                 if (!best_rdev) {
3841                         ret = 0;
3842                         goto out;
3843                 }
3844
3845                 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3846                                                  best_max_uV, state);
3847
3848                 if (ret < 0)
3849                         goto out;
3850
3851                 if (best_c_rdev_done)
3852                         set_bit(best_c_rdev, &c_rdev_done);
3853
3854         } while (n_coupled > 1);
3855
3856 out:
3857         return ret;
3858 }
3859
3860 static int regulator_balance_voltage(struct regulator_dev *rdev,
3861                                      suspend_state_t state)
3862 {
3863         struct coupling_desc *c_desc = &rdev->coupling_desc;
3864         struct regulator_coupler *coupler = c_desc->coupler;
3865         bool skip_coupled = false;
3866
3867         /*
3868          * If system is in a state other than PM_SUSPEND_ON, don't check
3869          * other coupled regulators.
3870          */
3871         if (state != PM_SUSPEND_ON)
3872                 skip_coupled = true;
3873
3874         if (c_desc->n_resolved < c_desc->n_coupled) {
3875                 rdev_err(rdev, "Not all coupled regulators registered\n");
3876                 return -EPERM;
3877         }
3878
3879         /* Invoke custom balancer for customized couplers */
3880         if (coupler && coupler->balance_voltage)
3881                 return coupler->balance_voltage(coupler, rdev, state);
3882
3883         return regulator_do_balance_voltage(rdev, state, skip_coupled);
3884 }
3885
3886 /**
3887  * regulator_set_voltage - set regulator output voltage
3888  * @regulator: regulator source
3889  * @min_uV: Minimum required voltage in uV
3890  * @max_uV: Maximum acceptable voltage in uV
3891  *
3892  * Sets a voltage regulator to the desired output voltage. This can be set
3893  * during any regulator state. IOW, regulator can be disabled or enabled.
3894  *
3895  * If the regulator is enabled then the voltage will change to the new value
3896  * immediately otherwise if the regulator is disabled the regulator will
3897  * output at the new voltage when enabled.
3898  *
3899  * NOTE: If the regulator is shared between several devices then the lowest
3900  * request voltage that meets the system constraints will be used.
3901  * Regulator system constraints must be set for this regulator before
3902  * calling this function otherwise this call will fail.
3903  */
3904 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3905 {
3906         struct ww_acquire_ctx ww_ctx;
3907         int ret;
3908
3909         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3910
3911         ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3912                                              PM_SUSPEND_ON);
3913
3914         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3915
3916         return ret;
3917 }
3918 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3919
3920 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3921                                            suspend_state_t state, bool en)
3922 {
3923         struct regulator_state *rstate;
3924
3925         rstate = regulator_get_suspend_state(rdev, state);
3926         if (rstate == NULL)
3927                 return -EINVAL;
3928
3929         if (!rstate->changeable)
3930                 return -EPERM;
3931
3932         rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3933
3934         return 0;
3935 }
3936
3937 int regulator_suspend_enable(struct regulator_dev *rdev,
3938                                     suspend_state_t state)
3939 {
3940         return regulator_suspend_toggle(rdev, state, true);
3941 }
3942 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3943
3944 int regulator_suspend_disable(struct regulator_dev *rdev,
3945                                      suspend_state_t state)
3946 {
3947         struct regulator *regulator;
3948         struct regulator_voltage *voltage;
3949
3950         /*
3951          * if any consumer wants this regulator device keeping on in
3952          * suspend states, don't set it as disabled.
3953          */
3954         list_for_each_entry(regulator, &rdev->consumer_list, list) {
3955                 voltage = &regulator->voltage[state];
3956                 if (voltage->min_uV || voltage->max_uV)
3957                         return 0;
3958         }
3959
3960         return regulator_suspend_toggle(rdev, state, false);
3961 }
3962 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3963
3964 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3965                                           int min_uV, int max_uV,
3966                                           suspend_state_t state)
3967 {
3968         struct regulator_dev *rdev = regulator->rdev;
3969         struct regulator_state *rstate;
3970
3971         rstate = regulator_get_suspend_state(rdev, state);
3972         if (rstate == NULL)
3973                 return -EINVAL;
3974
3975         if (rstate->min_uV == rstate->max_uV) {
3976                 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3977                 return -EPERM;
3978         }
3979
3980         return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3981 }
3982
3983 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3984                                   int max_uV, suspend_state_t state)
3985 {
3986         struct ww_acquire_ctx ww_ctx;
3987         int ret;
3988
3989         /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3990         if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3991                 return -EINVAL;
3992
3993         regulator_lock_dependent(regulator->rdev, &ww_ctx);
3994
3995         ret = _regulator_set_suspend_voltage(regulator, min_uV,
3996                                              max_uV, state);
3997
3998         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3999
4000         return ret;
4001 }
4002 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4003
4004 /**
4005  * regulator_set_voltage_time - get raise/fall time
4006  * @regulator: regulator source
4007  * @old_uV: starting voltage in microvolts
4008  * @new_uV: target voltage in microvolts
4009  *
4010  * Provided with the starting and ending voltage, this function attempts to
4011  * calculate the time in microseconds required to rise or fall to this new
4012  * voltage.
4013  */
4014 int regulator_set_voltage_time(struct regulator *regulator,
4015                                int old_uV, int new_uV)
4016 {
4017         struct regulator_dev *rdev = regulator->rdev;
4018         const struct regulator_ops *ops = rdev->desc->ops;
4019         int old_sel = -1;
4020         int new_sel = -1;
4021         int voltage;
4022         int i;
4023
4024         if (ops->set_voltage_time)
4025                 return ops->set_voltage_time(rdev, old_uV, new_uV);
4026         else if (!ops->set_voltage_time_sel)
4027                 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4028
4029         /* Currently requires operations to do this */
4030         if (!ops->list_voltage || !rdev->desc->n_voltages)
4031                 return -EINVAL;
4032
4033         for (i = 0; i < rdev->desc->n_voltages; i++) {
4034                 /* We only look for exact voltage matches here */
4035                 voltage = regulator_list_voltage(regulator, i);
4036                 if (voltage < 0)
4037                         return -EINVAL;
4038                 if (voltage == 0)
4039                         continue;
4040                 if (voltage == old_uV)
4041                         old_sel = i;
4042                 if (voltage == new_uV)
4043                         new_sel = i;
4044         }
4045
4046         if (old_sel < 0 || new_sel < 0)
4047                 return -EINVAL;
4048
4049         return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4050 }
4051 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4052
4053 /**
4054  * regulator_set_voltage_time_sel - get raise/fall time
4055  * @rdev: regulator source device
4056  * @old_selector: selector for starting voltage
4057  * @new_selector: selector for target voltage
4058  *
4059  * Provided with the starting and target voltage selectors, this function
4060  * returns time in microseconds required to rise or fall to this new voltage
4061  *
4062  * Drivers providing ramp_delay in regulation_constraints can use this as their
4063  * set_voltage_time_sel() operation.
4064  */
4065 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4066                                    unsigned int old_selector,
4067                                    unsigned int new_selector)
4068 {
4069         int old_volt, new_volt;
4070
4071         /* sanity check */
4072         if (!rdev->desc->ops->list_voltage)
4073                 return -EINVAL;
4074
4075         old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4076         new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4077
4078         if (rdev->desc->ops->set_voltage_time)
4079                 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4080                                                          new_volt);
4081         else
4082                 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4083 }
4084 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4085
4086 /**
4087  * regulator_sync_voltage - re-apply last regulator output voltage
4088  * @regulator: regulator source
4089  *
4090  * Re-apply the last configured voltage.  This is intended to be used
4091  * where some external control source the consumer is cooperating with
4092  * has caused the configured voltage to change.
4093  */
4094 int regulator_sync_voltage(struct regulator *regulator)
4095 {
4096         struct regulator_dev *rdev = regulator->rdev;
4097         struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4098         int ret, min_uV, max_uV;
4099
4100         regulator_lock(rdev);
4101
4102         if (!rdev->desc->ops->set_voltage &&
4103             !rdev->desc->ops->set_voltage_sel) {
4104                 ret = -EINVAL;
4105                 goto out;
4106         }
4107
4108         /* This is only going to work if we've had a voltage configured. */
4109         if (!voltage->min_uV && !voltage->max_uV) {
4110                 ret = -EINVAL;
4111                 goto out;
4112         }
4113
4114         min_uV = voltage->min_uV;
4115         max_uV = voltage->max_uV;
4116
4117         /* This should be a paranoia check... */
4118         ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4119         if (ret < 0)
4120                 goto out;
4121
4122         ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4123         if (ret < 0)
4124                 goto out;
4125
4126         ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4127
4128 out:
4129         regulator_unlock(rdev);
4130         return ret;
4131 }
4132 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4133
4134 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4135 {
4136         int sel, ret;
4137         bool bypassed;
4138
4139         if (rdev->desc->ops->get_bypass) {
4140                 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4141                 if (ret < 0)
4142                         return ret;
4143                 if (bypassed) {
4144                         /* if bypassed the regulator must have a supply */
4145                         if (!rdev->supply) {
4146                                 rdev_err(rdev,
4147                                          "bypassed regulator has no supply!\n");
4148                                 return -EPROBE_DEFER;
4149                         }
4150
4151                         return regulator_get_voltage_rdev(rdev->supply->rdev);
4152                 }
4153         }
4154
4155         if (rdev->desc->ops->get_voltage_sel) {
4156                 sel = rdev->desc->ops->get_voltage_sel(rdev);
4157                 if (sel < 0)
4158                         return sel;
4159                 ret = rdev->desc->ops->list_voltage(rdev, sel);
4160         } else if (rdev->desc->ops->get_voltage) {
4161                 ret = rdev->desc->ops->get_voltage(rdev);
4162         } else if (rdev->desc->ops->list_voltage) {
4163                 ret = rdev->desc->ops->list_voltage(rdev, 0);
4164         } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4165                 ret = rdev->desc->fixed_uV;
4166         } else if (rdev->supply) {
4167                 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4168         } else {
4169                 return -EINVAL;
4170         }
4171
4172         if (ret < 0)
4173                 return ret;
4174         return ret - rdev->constraints->uV_offset;
4175 }
4176 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4177
4178 /**
4179  * regulator_get_voltage - get regulator output voltage
4180  * @regulator: regulator source
4181  *
4182  * This returns the current regulator voltage in uV.
4183  *
4184  * NOTE: If the regulator is disabled it will return the voltage value. This
4185  * function should not be used to determine regulator state.
4186  */
4187 int regulator_get_voltage(struct regulator *regulator)
4188 {
4189         struct ww_acquire_ctx ww_ctx;
4190         int ret;
4191
4192         regulator_lock_dependent(regulator->rdev, &ww_ctx);
4193         ret = regulator_get_voltage_rdev(regulator->rdev);
4194         regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4195
4196         return ret;
4197 }
4198 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4199
4200 /**
4201  * regulator_set_current_limit - set regulator output current limit
4202  * @regulator: regulator source
4203  * @min_uA: Minimum supported current in uA
4204  * @max_uA: Maximum supported current in uA
4205  *
4206  * Sets current sink to the desired output current. This can be set during
4207  * any regulator state. IOW, regulator can be disabled or enabled.
4208  *
4209  * If the regulator is enabled then the current will change to the new value
4210  * immediately otherwise if the regulator is disabled the regulator will
4211  * output at the new current when enabled.
4212  *
4213  * NOTE: Regulator system constraints must be set for this regulator before
4214  * calling this function otherwise this call will fail.
4215  */
4216 int regulator_set_current_limit(struct regulator *regulator,
4217                                int min_uA, int max_uA)
4218 {
4219         struct regulator_dev *rdev = regulator->rdev;
4220         int ret;
4221
4222         regulator_lock(rdev);
4223
4224         /* sanity check */
4225         if (!rdev->desc->ops->set_current_limit) {
4226                 ret = -EINVAL;
4227                 goto out;
4228         }
4229
4230         /* constraints check */
4231         ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4232         if (ret < 0)
4233                 goto out;
4234
4235         ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4236 out:
4237         regulator_unlock(rdev);
4238         return ret;
4239 }
4240 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4241
4242 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4243 {
4244         /* sanity check */
4245         if (!rdev->desc->ops->get_current_limit)
4246                 return -EINVAL;
4247
4248         return rdev->desc->ops->get_current_limit(rdev);
4249 }
4250
4251 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4252 {
4253         int ret;
4254
4255         regulator_lock(rdev);
4256         ret = _regulator_get_current_limit_unlocked(rdev);
4257         regulator_unlock(rdev);
4258
4259         return ret;
4260 }
4261
4262 /**
4263  * regulator_get_current_limit - get regulator output current
4264  * @regulator: regulator source
4265  *
4266  * This returns the current supplied by the specified current sink in uA.
4267  *
4268  * NOTE: If the regulator is disabled it will return the current value. This
4269  * function should not be used to determine regulator state.
4270  */
4271 int regulator_get_current_limit(struct regulator *regulator)
4272 {
4273         return _regulator_get_current_limit(regulator->rdev);
4274 }
4275 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4276
4277 /**
4278  * regulator_set_mode - set regulator operating mode
4279  * @regulator: regulator source
4280  * @mode: operating mode - one of the REGULATOR_MODE constants
4281  *
4282  * Set regulator operating mode to increase regulator efficiency or improve
4283  * regulation performance.
4284  *
4285  * NOTE: Regulator system constraints must be set for this regulator before
4286  * calling this function otherwise this call will fail.
4287  */
4288 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4289 {
4290         struct regulator_dev *rdev = regulator->rdev;
4291         int ret;
4292         int regulator_curr_mode;
4293
4294         regulator_lock(rdev);
4295
4296         /* sanity check */
4297         if (!rdev->desc->ops->set_mode) {
4298                 ret = -EINVAL;
4299                 goto out;
4300         }
4301
4302         /* return if the same mode is requested */
4303         if (rdev->desc->ops->get_mode) {
4304                 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4305                 if (regulator_curr_mode == mode) {
4306                         ret = 0;
4307                         goto out;
4308                 }
4309         }
4310
4311         /* constraints check */
4312         ret = regulator_mode_constrain(rdev, &mode);
4313         if (ret < 0)
4314                 goto out;
4315
4316         ret = rdev->desc->ops->set_mode(rdev, mode);
4317 out:
4318         regulator_unlock(rdev);
4319         return ret;
4320 }
4321 EXPORT_SYMBOL_GPL(regulator_set_mode);
4322
4323 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4324 {
4325         /* sanity check */
4326         if (!rdev->desc->ops->get_mode)
4327                 return -EINVAL;
4328
4329         return rdev->desc->ops->get_mode(rdev);
4330 }
4331
4332 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4333 {
4334         int ret;
4335
4336         regulator_lock(rdev);
4337         ret = _regulator_get_mode_unlocked(rdev);
4338         regulator_unlock(rdev);
4339
4340         return ret;
4341 }
4342
4343 /**
4344  * regulator_get_mode - get regulator operating mode
4345  * @regulator: regulator source
4346  *
4347  * Get the current regulator operating mode.
4348  */
4349 unsigned int regulator_get_mode(struct regulator *regulator)
4350 {
4351         return _regulator_get_mode(regulator->rdev);
4352 }
4353 EXPORT_SYMBOL_GPL(regulator_get_mode);
4354
4355 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4356                                         unsigned int *flags)
4357 {
4358         int ret;
4359
4360         regulator_lock(rdev);
4361
4362         /* sanity check */
4363         if (!rdev->desc->ops->get_error_flags) {
4364                 ret = -EINVAL;
4365                 goto out;
4366         }
4367
4368         ret = rdev->desc->ops->get_error_flags(rdev, flags);
4369 out:
4370         regulator_unlock(rdev);
4371         return ret;
4372 }
4373
4374 /**
4375  * regulator_get_error_flags - get regulator error information
4376  * @regulator: regulator source
4377  * @flags: pointer to store error flags
4378  *
4379  * Get the current regulator error information.
4380  */
4381 int regulator_get_error_flags(struct regulator *regulator,
4382                                 unsigned int *flags)
4383 {
4384         return _regulator_get_error_flags(regulator->rdev, flags);
4385 }
4386 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4387
4388 /**
4389  * regulator_set_load - set regulator load
4390  * @regulator: regulator source
4391  * @uA_load: load current
4392  *
4393  * Notifies the regulator core of a new device load. This is then used by
4394  * DRMS (if enabled by constraints) to set the most efficient regulator
4395  * operating mode for the new regulator loading.
4396  *
4397  * Consumer devices notify their supply regulator of the maximum power
4398  * they will require (can be taken from device datasheet in the power
4399  * consumption tables) when they change operational status and hence power
4400  * state. Examples of operational state changes that can affect power
4401  * consumption are :-
4402  *
4403  *    o Device is opened / closed.
4404  *    o Device I/O is about to begin or has just finished.
4405  *    o Device is idling in between work.
4406  *
4407  * This information is also exported via sysfs to userspace.
4408  *
4409  * DRMS will sum the total requested load on the regulator and change
4410  * to the most efficient operating mode if platform constraints allow.
4411  *
4412  * NOTE: when a regulator consumer requests to have a regulator
4413  * disabled then any load that consumer requested no longer counts
4414  * toward the total requested load.  If the regulator is re-enabled
4415  * then the previously requested load will start counting again.
4416  *
4417  * If a regulator is an always-on regulator then an individual consumer's
4418  * load will still be removed if that consumer is fully disabled.
4419  *
4420  * On error a negative errno is returned.
4421  */
4422 int regulator_set_load(struct regulator *regulator, int uA_load)
4423 {
4424         struct regulator_dev *rdev = regulator->rdev;
4425         int old_uA_load;
4426         int ret = 0;
4427
4428         regulator_lock(rdev);
4429         old_uA_load = regulator->uA_load;
4430         regulator->uA_load = uA_load;
4431         if (regulator->enable_count && old_uA_load != uA_load) {
4432                 ret = drms_uA_update(rdev);
4433                 if (ret < 0)
4434                         regulator->uA_load = old_uA_load;
4435         }
4436         regulator_unlock(rdev);
4437
4438         return ret;
4439 }
4440 EXPORT_SYMBOL_GPL(regulator_set_load);
4441
4442 /**
4443  * regulator_allow_bypass - allow the regulator to go into bypass mode
4444  *
4445  * @regulator: Regulator to configure
4446  * @enable: enable or disable bypass mode
4447  *
4448  * Allow the regulator to go into bypass mode if all other consumers
4449  * for the regulator also enable bypass mode and the machine
4450  * constraints allow this.  Bypass mode means that the regulator is
4451  * simply passing the input directly to the output with no regulation.
4452  */
4453 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4454 {
4455         struct regulator_dev *rdev = regulator->rdev;
4456         const char *name = rdev_get_name(rdev);
4457         int ret = 0;
4458
4459         if (!rdev->desc->ops->set_bypass)
4460                 return 0;
4461
4462         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4463                 return 0;
4464
4465         regulator_lock(rdev);
4466
4467         if (enable && !regulator->bypass) {
4468                 rdev->bypass_count++;
4469
4470                 if (rdev->bypass_count == rdev->open_count) {
4471                         trace_regulator_bypass_enable(name);
4472
4473                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4474                         if (ret != 0)
4475                                 rdev->bypass_count--;
4476                         else
4477                                 trace_regulator_bypass_enable_complete(name);
4478                 }
4479
4480         } else if (!enable && regulator->bypass) {
4481                 rdev->bypass_count--;
4482
4483                 if (rdev->bypass_count != rdev->open_count) {
4484                         trace_regulator_bypass_disable(name);
4485
4486                         ret = rdev->desc->ops->set_bypass(rdev, enable);
4487                         if (ret != 0)
4488                                 rdev->bypass_count++;
4489                         else
4490                                 trace_regulator_bypass_disable_complete(name);
4491                 }
4492         }
4493
4494         if (ret == 0)
4495                 regulator->bypass = enable;
4496
4497         regulator_unlock(rdev);
4498
4499         return ret;
4500 }
4501 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4502
4503 /**
4504  * regulator_register_notifier - register regulator event notifier
4505  * @regulator: regulator source
4506  * @nb: notifier block
4507  *
4508  * Register notifier block to receive regulator events.
4509  */
4510 int regulator_register_notifier(struct regulator *regulator,
4511                               struct notifier_block *nb)
4512 {
4513         return blocking_notifier_chain_register(&regulator->rdev->notifier,
4514                                                 nb);
4515 }
4516 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4517
4518 /**
4519  * regulator_unregister_notifier - unregister regulator event notifier
4520  * @regulator: regulator source
4521  * @nb: notifier block
4522  *
4523  * Unregister regulator event notifier block.
4524  */
4525 int regulator_unregister_notifier(struct regulator *regulator,
4526                                 struct notifier_block *nb)
4527 {
4528         return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4529                                                   nb);
4530 }
4531 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4532
4533 /* notify regulator consumers and downstream regulator consumers.
4534  * Note mutex must be held by caller.
4535  */
4536 static int _notifier_call_chain(struct regulator_dev *rdev,
4537                                   unsigned long event, void *data)
4538 {
4539         /* call rdev chain first */
4540         return blocking_notifier_call_chain(&rdev->notifier, event, data);
4541 }
4542
4543 /**
4544  * regulator_bulk_get - get multiple regulator consumers
4545  *
4546  * @dev:           Device to supply
4547  * @num_consumers: Number of consumers to register
4548  * @consumers:     Configuration of consumers; clients are stored here.
4549  *
4550  * @return 0 on success, an errno on failure.
4551  *
4552  * This helper function allows drivers to get several regulator
4553  * consumers in one operation.  If any of the regulators cannot be
4554  * acquired then any regulators that were allocated will be freed
4555  * before returning to the caller.
4556  */
4557 int regulator_bulk_get(struct device *dev, int num_consumers,
4558                        struct regulator_bulk_data *consumers)
4559 {
4560         int i;
4561         int ret;
4562
4563         for (i = 0; i < num_consumers; i++)
4564                 consumers[i].consumer = NULL;
4565
4566         for (i = 0; i < num_consumers; i++) {
4567                 consumers[i].consumer = regulator_get(dev,
4568                                                       consumers[i].supply);
4569                 if (IS_ERR(consumers[i].consumer)) {
4570                         ret = PTR_ERR(consumers[i].consumer);
4571                         consumers[i].consumer = NULL;
4572                         goto err;
4573                 }
4574         }
4575
4576         return 0;
4577
4578 err:
4579         if (ret != -EPROBE_DEFER)
4580                 dev_err(dev, "Failed to get supply '%s': %pe\n",
4581                         consumers[i].supply, ERR_PTR(ret));
4582         else
4583                 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4584                         consumers[i].supply);
4585
4586         while (--i >= 0)
4587                 regulator_put(consumers[i].consumer);
4588
4589         return ret;
4590 }
4591 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4592
4593 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4594 {
4595         struct regulator_bulk_data *bulk = data;
4596
4597         bulk->ret = regulator_enable(bulk->consumer);
4598 }
4599
4600 /**
4601  * regulator_bulk_enable - enable multiple regulator consumers
4602  *
4603  * @num_consumers: Number of consumers
4604  * @consumers:     Consumer data; clients are stored here.
4605  * @return         0 on success, an errno on failure
4606  *
4607  * This convenience API allows consumers to enable multiple regulator
4608  * clients in a single API call.  If any consumers cannot be enabled
4609  * then any others that were enabled will be disabled again prior to
4610  * return.
4611  */
4612 int regulator_bulk_enable(int num_consumers,
4613                           struct regulator_bulk_data *consumers)
4614 {
4615         ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4616         int i;
4617         int ret = 0;
4618
4619         for (i = 0; i < num_consumers; i++) {
4620                 async_schedule_domain(regulator_bulk_enable_async,
4621                                       &consumers[i], &async_domain);
4622         }
4623
4624         async_synchronize_full_domain(&async_domain);
4625
4626         /* If any consumer failed we need to unwind any that succeeded */
4627         for (i = 0; i < num_consumers; i++) {
4628                 if (consumers[i].ret != 0) {
4629                         ret = consumers[i].ret;
4630                         goto err;
4631                 }
4632         }
4633
4634         return 0;
4635
4636 err:
4637         for (i = 0; i < num_consumers; i++) {
4638                 if (consumers[i].ret < 0)
4639                         pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4640                                ERR_PTR(consumers[i].ret));
4641                 else
4642                         regulator_disable(consumers[i].consumer);
4643         }
4644
4645         return ret;
4646 }
4647 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4648
4649 /**
4650  * regulator_bulk_disable - disable multiple regulator consumers
4651  *
4652  * @num_consumers: Number of consumers
4653  * @consumers:     Consumer data; clients are stored here.
4654  * @return         0 on success, an errno on failure
4655  *
4656  * This convenience API allows consumers to disable multiple regulator
4657  * clients in a single API call.  If any consumers cannot be disabled
4658  * then any others that were disabled will be enabled again prior to
4659  * return.
4660  */
4661 int regulator_bulk_disable(int num_consumers,
4662                            struct regulator_bulk_data *consumers)
4663 {
4664         int i;
4665         int ret, r;
4666
4667         for (i = num_consumers - 1; i >= 0; --i) {
4668                 ret = regulator_disable(consumers[i].consumer);
4669                 if (ret != 0)
4670                         goto err;
4671         }
4672
4673         return 0;
4674
4675 err:
4676         pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4677         for (++i; i < num_consumers; ++i) {
4678                 r = regulator_enable(consumers[i].consumer);
4679                 if (r != 0)
4680                         pr_err("Failed to re-enable %s: %pe\n",
4681                                consumers[i].supply, ERR_PTR(r));
4682         }
4683
4684         return ret;
4685 }
4686 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4687
4688 /**
4689  * regulator_bulk_force_disable - force disable multiple regulator consumers
4690  *
4691  * @num_consumers: Number of consumers
4692  * @consumers:     Consumer data; clients are stored here.
4693  * @return         0 on success, an errno on failure
4694  *
4695  * This convenience API allows consumers to forcibly disable multiple regulator
4696  * clients in a single API call.
4697  * NOTE: This should be used for situations when device damage will
4698  * likely occur if the regulators are not disabled (e.g. over temp).
4699  * Although regulator_force_disable function call for some consumers can
4700  * return error numbers, the function is called for all consumers.
4701  */
4702 int regulator_bulk_force_disable(int num_consumers,
4703                            struct regulator_bulk_data *consumers)
4704 {
4705         int i;
4706         int ret = 0;
4707
4708         for (i = 0; i < num_consumers; i++) {
4709                 consumers[i].ret =
4710                             regulator_force_disable(consumers[i].consumer);
4711
4712                 /* Store first error for reporting */
4713                 if (consumers[i].ret && !ret)
4714                         ret = consumers[i].ret;
4715         }
4716
4717         return ret;
4718 }
4719 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4720
4721 /**
4722  * regulator_bulk_free - free multiple regulator consumers
4723  *
4724  * @num_consumers: Number of consumers
4725  * @consumers:     Consumer data; clients are stored here.
4726  *
4727  * This convenience API allows consumers to free multiple regulator
4728  * clients in a single API call.
4729  */
4730 void regulator_bulk_free(int num_consumers,
4731                          struct regulator_bulk_data *consumers)
4732 {
4733         int i;
4734
4735         for (i = 0; i < num_consumers; i++) {
4736                 regulator_put(consumers[i].consumer);
4737                 consumers[i].consumer = NULL;
4738         }
4739 }
4740 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4741
4742 /**
4743  * regulator_notifier_call_chain - call regulator event notifier
4744  * @rdev: regulator source
4745  * @event: notifier block
4746  * @data: callback-specific data.
4747  *
4748  * Called by regulator drivers to notify clients a regulator event has
4749  * occurred.
4750  */
4751 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4752                                   unsigned long event, void *data)
4753 {
4754         _notifier_call_chain(rdev, event, data);
4755         return NOTIFY_DONE;
4756
4757 }
4758 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4759
4760 /**
4761  * regulator_mode_to_status - convert a regulator mode into a status
4762  *
4763  * @mode: Mode to convert
4764  *
4765  * Convert a regulator mode into a status.
4766  */
4767 int regulator_mode_to_status(unsigned int mode)
4768 {
4769         switch (mode) {
4770         case REGULATOR_MODE_FAST:
4771                 return REGULATOR_STATUS_FAST;
4772         case REGULATOR_MODE_NORMAL:
4773                 return REGULATOR_STATUS_NORMAL;
4774         case REGULATOR_MODE_IDLE:
4775                 return REGULATOR_STATUS_IDLE;
4776         case REGULATOR_MODE_STANDBY:
4777                 return REGULATOR_STATUS_STANDBY;
4778         default:
4779                 return REGULATOR_STATUS_UNDEFINED;
4780         }
4781 }
4782 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4783
4784 static struct attribute *regulator_dev_attrs[] = {
4785         &dev_attr_name.attr,
4786         &dev_attr_num_users.attr,
4787         &dev_attr_type.attr,
4788         &dev_attr_microvolts.attr,
4789         &dev_attr_microamps.attr,
4790         &dev_attr_opmode.attr,
4791         &dev_attr_state.attr,
4792         &dev_attr_status.attr,
4793         &dev_attr_bypass.attr,
4794         &dev_attr_requested_microamps.attr,
4795         &dev_attr_min_microvolts.attr,
4796         &dev_attr_max_microvolts.attr,
4797         &dev_attr_min_microamps.attr,
4798         &dev_attr_max_microamps.attr,
4799         &dev_attr_suspend_standby_state.attr,
4800         &dev_attr_suspend_mem_state.attr,
4801         &dev_attr_suspend_disk_state.attr,
4802         &dev_attr_suspend_standby_microvolts.attr,
4803         &dev_attr_suspend_mem_microvolts.attr,
4804         &dev_attr_suspend_disk_microvolts.attr,
4805         &dev_attr_suspend_standby_mode.attr,
4806         &dev_attr_suspend_mem_mode.attr,
4807         &dev_attr_suspend_disk_mode.attr,
4808         NULL
4809 };
4810
4811 /*
4812  * To avoid cluttering sysfs (and memory) with useless state, only
4813  * create attributes that can be meaningfully displayed.
4814  */
4815 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4816                                          struct attribute *attr, int idx)
4817 {
4818         struct device *dev = kobj_to_dev(kobj);
4819         struct regulator_dev *rdev = dev_to_rdev(dev);
4820         const struct regulator_ops *ops = rdev->desc->ops;
4821         umode_t mode = attr->mode;
4822
4823         /* these three are always present */
4824         if (attr == &dev_attr_name.attr ||
4825             attr == &dev_attr_num_users.attr ||
4826             attr == &dev_attr_type.attr)
4827                 return mode;
4828
4829         /* some attributes need specific methods to be displayed */
4830         if (attr == &dev_attr_microvolts.attr) {
4831                 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4832                     (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4833                     (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4834                     (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4835                         return mode;
4836                 return 0;
4837         }
4838
4839         if (attr == &dev_attr_microamps.attr)
4840                 return ops->get_current_limit ? mode : 0;
4841
4842         if (attr == &dev_attr_opmode.attr)
4843                 return ops->get_mode ? mode : 0;
4844
4845         if (attr == &dev_attr_state.attr)
4846                 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4847
4848         if (attr == &dev_attr_status.attr)
4849                 return ops->get_status ? mode : 0;
4850
4851         if (attr == &dev_attr_bypass.attr)
4852                 return ops->get_bypass ? mode : 0;
4853
4854         /* constraints need specific supporting methods */
4855         if (attr == &dev_attr_min_microvolts.attr ||
4856             attr == &dev_attr_max_microvolts.attr)
4857                 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4858
4859         if (attr == &dev_attr_min_microamps.attr ||
4860             attr == &dev_attr_max_microamps.attr)
4861                 return ops->set_current_limit ? mode : 0;
4862
4863         if (attr == &dev_attr_suspend_standby_state.attr ||
4864             attr == &dev_attr_suspend_mem_state.attr ||
4865             attr == &dev_attr_suspend_disk_state.attr)
4866                 return mode;
4867
4868         if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4869             attr == &dev_attr_suspend_mem_microvolts.attr ||
4870             attr == &dev_attr_suspend_disk_microvolts.attr)
4871                 return ops->set_suspend_voltage ? mode : 0;
4872
4873         if (attr == &dev_attr_suspend_standby_mode.attr ||
4874             attr == &dev_attr_suspend_mem_mode.attr ||
4875             attr == &dev_attr_suspend_disk_mode.attr)
4876                 return ops->set_suspend_mode ? mode : 0;
4877
4878         return mode;
4879 }
4880
4881 static const struct attribute_group regulator_dev_group = {
4882         .attrs = regulator_dev_attrs,
4883         .is_visible = regulator_attr_is_visible,
4884 };
4885
4886 static const struct attribute_group *regulator_dev_groups[] = {
4887         &regulator_dev_group,
4888         NULL
4889 };
4890
4891 static void regulator_dev_release(struct device *dev)
4892 {
4893         struct regulator_dev *rdev = dev_get_drvdata(dev);
4894
4895         kfree(rdev->constraints);
4896         of_node_put(rdev->dev.of_node);
4897         kfree(rdev);
4898 }
4899
4900 static void rdev_init_debugfs(struct regulator_dev *rdev)
4901 {
4902         struct device *parent = rdev->dev.parent;
4903         const char *rname = rdev_get_name(rdev);
4904         char name[NAME_MAX];
4905
4906         /* Avoid duplicate debugfs directory names */
4907         if (parent && rname == rdev->desc->name) {
4908                 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4909                          rname);
4910                 rname = name;
4911         }
4912
4913         rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4914         if (!rdev->debugfs) {
4915                 rdev_warn(rdev, "Failed to create debugfs directory\n");
4916                 return;
4917         }
4918
4919         debugfs_create_u32("use_count", 0444, rdev->debugfs,
4920                            &rdev->use_count);
4921         debugfs_create_u32("open_count", 0444, rdev->debugfs,
4922                            &rdev->open_count);
4923         debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4924                            &rdev->bypass_count);
4925 }
4926
4927 static int regulator_register_resolve_supply(struct device *dev, void *data)
4928 {
4929         struct regulator_dev *rdev = dev_to_rdev(dev);
4930
4931         if (regulator_resolve_supply(rdev))
4932                 rdev_dbg(rdev, "unable to resolve supply\n");
4933
4934         return 0;
4935 }
4936
4937 int regulator_coupler_register(struct regulator_coupler *coupler)
4938 {
4939         mutex_lock(&regulator_list_mutex);
4940         list_add_tail(&coupler->list, &regulator_coupler_list);
4941         mutex_unlock(&regulator_list_mutex);
4942
4943         return 0;
4944 }
4945
4946 static struct regulator_coupler *
4947 regulator_find_coupler(struct regulator_dev *rdev)
4948 {
4949         struct regulator_coupler *coupler;
4950         int err;
4951
4952         /*
4953          * Note that regulators are appended to the list and the generic
4954          * coupler is registered first, hence it will be attached at last
4955          * if nobody cared.
4956          */
4957         list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4958                 err = coupler->attach_regulator(coupler, rdev);
4959                 if (!err) {
4960                         if (!coupler->balance_voltage &&
4961                             rdev->coupling_desc.n_coupled > 2)
4962                                 goto err_unsupported;
4963
4964                         return coupler;
4965                 }
4966
4967                 if (err < 0)
4968                         return ERR_PTR(err);
4969
4970                 if (err == 1)
4971                         continue;
4972
4973                 break;
4974         }
4975
4976         return ERR_PTR(-EINVAL);
4977
4978 err_unsupported:
4979         if (coupler->detach_regulator)
4980                 coupler->detach_regulator(coupler, rdev);
4981
4982         rdev_err(rdev,
4983                 "Voltage balancing for multiple regulator couples is unimplemented\n");
4984
4985         return ERR_PTR(-EPERM);
4986 }
4987
4988 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4989 {
4990         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4991         struct coupling_desc *c_desc = &rdev->coupling_desc;
4992         int n_coupled = c_desc->n_coupled;
4993         struct regulator_dev *c_rdev;
4994         int i;
4995
4996         for (i = 1; i < n_coupled; i++) {
4997                 /* already resolved */
4998                 if (c_desc->coupled_rdevs[i])
4999                         continue;
5000
5001                 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5002
5003                 if (!c_rdev)
5004                         continue;
5005
5006                 if (c_rdev->coupling_desc.coupler != coupler) {
5007                         rdev_err(rdev, "coupler mismatch with %s\n",
5008                                  rdev_get_name(c_rdev));
5009                         return;
5010                 }
5011
5012                 c_desc->coupled_rdevs[i] = c_rdev;
5013                 c_desc->n_resolved++;
5014
5015                 regulator_resolve_coupling(c_rdev);
5016         }
5017 }
5018
5019 static void regulator_remove_coupling(struct regulator_dev *rdev)
5020 {
5021         struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5022         struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5023         struct regulator_dev *__c_rdev, *c_rdev;
5024         unsigned int __n_coupled, n_coupled;
5025         int i, k;
5026         int err;
5027
5028         n_coupled = c_desc->n_coupled;
5029
5030         for (i = 1; i < n_coupled; i++) {
5031                 c_rdev = c_desc->coupled_rdevs[i];
5032
5033                 if (!c_rdev)
5034                         continue;
5035
5036                 regulator_lock(c_rdev);
5037
5038                 __c_desc = &c_rdev->coupling_desc;
5039                 __n_coupled = __c_desc->n_coupled;
5040
5041                 for (k = 1; k < __n_coupled; k++) {
5042                         __c_rdev = __c_desc->coupled_rdevs[k];
5043
5044                         if (__c_rdev == rdev) {
5045                                 __c_desc->coupled_rdevs[k] = NULL;
5046                                 __c_desc->n_resolved--;
5047                                 break;
5048                         }
5049                 }
5050
5051                 regulator_unlock(c_rdev);
5052
5053                 c_desc->coupled_rdevs[i] = NULL;
5054                 c_desc->n_resolved--;
5055         }
5056
5057         if (coupler && coupler->detach_regulator) {
5058                 err = coupler->detach_regulator(coupler, rdev);
5059                 if (err)
5060                         rdev_err(rdev, "failed to detach from coupler: %pe\n",
5061                                  ERR_PTR(err));
5062         }
5063
5064         kfree(rdev->coupling_desc.coupled_rdevs);
5065         rdev->coupling_desc.coupled_rdevs = NULL;
5066 }
5067
5068 static int regulator_init_coupling(struct regulator_dev *rdev)
5069 {
5070         struct regulator_dev **coupled;
5071         int err, n_phandles;
5072
5073         if (!IS_ENABLED(CONFIG_OF))
5074                 n_phandles = 0;
5075         else
5076                 n_phandles = of_get_n_coupled(rdev);
5077
5078         coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5079         if (!coupled)
5080                 return -ENOMEM;
5081
5082         rdev->coupling_desc.coupled_rdevs = coupled;
5083
5084         /*
5085          * Every regulator should always have coupling descriptor filled with
5086          * at least pointer to itself.
5087          */
5088         rdev->coupling_desc.coupled_rdevs[0] = rdev;
5089         rdev->coupling_desc.n_coupled = n_phandles + 1;
5090         rdev->coupling_desc.n_resolved++;
5091
5092         /* regulator isn't coupled */
5093         if (n_phandles == 0)
5094                 return 0;
5095
5096         if (!of_check_coupling_data(rdev))
5097                 return -EPERM;
5098
5099         mutex_lock(&regulator_list_mutex);
5100         rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5101         mutex_unlock(&regulator_list_mutex);
5102
5103         if (IS_ERR(rdev->coupling_desc.coupler)) {
5104                 err = PTR_ERR(rdev->coupling_desc.coupler);
5105                 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5106                 return err;
5107         }
5108
5109         return 0;
5110 }
5111
5112 static int generic_coupler_attach(struct regulator_coupler *coupler,
5113                                   struct regulator_dev *rdev)
5114 {
5115         if (rdev->coupling_desc.n_coupled > 2) {
5116                 rdev_err(rdev,
5117                          "Voltage balancing for multiple regulator couples is unimplemented\n");
5118                 return -EPERM;
5119         }
5120
5121         if (!rdev->constraints->always_on) {
5122                 rdev_err(rdev,
5123                          "Coupling of a non always-on regulator is unimplemented\n");
5124                 return -ENOTSUPP;
5125         }
5126
5127         return 0;
5128 }
5129
5130 static struct regulator_coupler generic_regulator_coupler = {
5131         .attach_regulator = generic_coupler_attach,
5132 };
5133
5134 /**
5135  * regulator_register - register regulator
5136  * @regulator_desc: regulator to register
5137  * @cfg: runtime configuration for regulator
5138  *
5139  * Called by regulator drivers to register a regulator.
5140  * Returns a valid pointer to struct regulator_dev on success
5141  * or an ERR_PTR() on error.
5142  */
5143 struct regulator_dev *
5144 regulator_register(const struct regulator_desc *regulator_desc,
5145                    const struct regulator_config *cfg)
5146 {
5147         const struct regulation_constraints *constraints = NULL;
5148         const struct regulator_init_data *init_data;
5149         struct regulator_config *config = NULL;
5150         static atomic_t regulator_no = ATOMIC_INIT(-1);
5151         struct regulator_dev *rdev;
5152         bool dangling_cfg_gpiod = false;
5153         bool dangling_of_gpiod = false;
5154         struct device *dev;
5155         int ret, i;
5156
5157         if (cfg == NULL)
5158                 return ERR_PTR(-EINVAL);
5159         if (cfg->ena_gpiod)
5160                 dangling_cfg_gpiod = true;
5161         if (regulator_desc == NULL) {
5162                 ret = -EINVAL;
5163                 goto rinse;
5164         }
5165
5166         dev = cfg->dev;
5167         WARN_ON(!dev);
5168
5169         if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5170                 ret = -EINVAL;
5171                 goto rinse;
5172         }
5173
5174         if (regulator_desc->type != REGULATOR_VOLTAGE &&
5175             regulator_desc->type != REGULATOR_CURRENT) {
5176                 ret = -EINVAL;
5177                 goto rinse;
5178         }
5179
5180         /* Only one of each should be implemented */
5181         WARN_ON(regulator_desc->ops->get_voltage &&
5182                 regulator_desc->ops->get_voltage_sel);
5183         WARN_ON(regulator_desc->ops->set_voltage &&
5184                 regulator_desc->ops->set_voltage_sel);
5185
5186         /* If we're using selectors we must implement list_voltage. */
5187         if (regulator_desc->ops->get_voltage_sel &&
5188             !regulator_desc->ops->list_voltage) {
5189                 ret = -EINVAL;
5190                 goto rinse;
5191         }
5192         if (regulator_desc->ops->set_voltage_sel &&
5193             !regulator_desc->ops->list_voltage) {
5194                 ret = -EINVAL;
5195                 goto rinse;
5196         }
5197
5198         rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5199         if (rdev == NULL) {
5200                 ret = -ENOMEM;
5201                 goto rinse;
5202         }
5203         device_initialize(&rdev->dev);
5204
5205         /*
5206          * Duplicate the config so the driver could override it after
5207          * parsing init data.
5208          */
5209         config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5210         if (config == NULL) {
5211                 ret = -ENOMEM;
5212                 goto clean;
5213         }
5214
5215         init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5216                                                &rdev->dev.of_node);
5217
5218         /*
5219          * Sometimes not all resources are probed already so we need to take
5220          * that into account. This happens most the time if the ena_gpiod comes
5221          * from a gpio extender or something else.
5222          */
5223         if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5224                 ret = -EPROBE_DEFER;
5225                 goto clean;
5226         }
5227
5228         /*
5229          * We need to keep track of any GPIO descriptor coming from the
5230          * device tree until we have handled it over to the core. If the
5231          * config that was passed in to this function DOES NOT contain
5232          * a descriptor, and the config after this call DOES contain
5233          * a descriptor, we definitely got one from parsing the device
5234          * tree.
5235          */
5236         if (!cfg->ena_gpiod && config->ena_gpiod)
5237                 dangling_of_gpiod = true;
5238         if (!init_data) {
5239                 init_data = config->init_data;
5240                 rdev->dev.of_node = of_node_get(config->of_node);
5241         }
5242
5243         ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5244         rdev->reg_data = config->driver_data;
5245         rdev->owner = regulator_desc->owner;
5246         rdev->desc = regulator_desc;
5247         if (config->regmap)
5248                 rdev->regmap = config->regmap;
5249         else if (dev_get_regmap(dev, NULL))
5250                 rdev->regmap = dev_get_regmap(dev, NULL);
5251         else if (dev->parent)
5252                 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5253         INIT_LIST_HEAD(&rdev->consumer_list);
5254         INIT_LIST_HEAD(&rdev->list);
5255         BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5256         INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5257
5258         /* preform any regulator specific init */
5259         if (init_data && init_data->regulator_init) {
5260                 ret = init_data->regulator_init(rdev->reg_data);
5261                 if (ret < 0)
5262                         goto clean;
5263         }
5264
5265         if (config->ena_gpiod) {
5266                 ret = regulator_ena_gpio_request(rdev, config);
5267                 if (ret != 0) {
5268                         rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5269                                  ERR_PTR(ret));
5270                         goto clean;
5271                 }
5272                 /* The regulator core took over the GPIO descriptor */
5273                 dangling_cfg_gpiod = false;
5274                 dangling_of_gpiod = false;
5275         }
5276
5277         /* register with sysfs */
5278         rdev->dev.class = &regulator_class;
5279         rdev->dev.parent = dev;
5280         dev_set_name(&rdev->dev, "regulator.%lu",
5281                     (unsigned long) atomic_inc_return(&regulator_no));
5282         dev_set_drvdata(&rdev->dev, rdev);
5283
5284         /* set regulator constraints */
5285         if (init_data)
5286                 constraints = &init_data->constraints;
5287
5288         if (init_data && init_data->supply_regulator)
5289                 rdev->supply_name = init_data->supply_regulator;
5290         else if (regulator_desc->supply_name)
5291                 rdev->supply_name = regulator_desc->supply_name;
5292
5293         ret = set_machine_constraints(rdev, constraints);
5294         if (ret == -EPROBE_DEFER) {
5295                 /* Regulator might be in bypass mode and so needs its supply
5296                  * to set the constraints */
5297                 /* FIXME: this currently triggers a chicken-and-egg problem
5298                  * when creating -SUPPLY symlink in sysfs to a regulator
5299                  * that is just being created */
5300                 ret = regulator_resolve_supply(rdev);
5301                 if (!ret)
5302                         ret = set_machine_constraints(rdev, constraints);
5303                 else
5304                         rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5305                                  ERR_PTR(ret));
5306         }
5307         if (ret < 0)
5308                 goto wash;
5309
5310         ret = regulator_init_coupling(rdev);
5311         if (ret < 0)
5312                 goto wash;
5313
5314         /* add consumers devices */
5315         if (init_data) {
5316                 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5317                         ret = set_consumer_device_supply(rdev,
5318                                 init_data->consumer_supplies[i].dev_name,
5319                                 init_data->consumer_supplies[i].supply);
5320                         if (ret < 0) {
5321                                 dev_err(dev, "Failed to set supply %s\n",
5322                                         init_data->consumer_supplies[i].supply);
5323                                 goto unset_supplies;
5324                         }
5325                 }
5326         }
5327
5328         if (!rdev->desc->ops->get_voltage &&
5329             !rdev->desc->ops->list_voltage &&
5330             !rdev->desc->fixed_uV)
5331                 rdev->is_switch = true;
5332
5333         ret = device_add(&rdev->dev);
5334         if (ret != 0)
5335                 goto unset_supplies;
5336
5337         rdev_init_debugfs(rdev);
5338
5339         /* try to resolve regulators coupling since a new one was registered */
5340         mutex_lock(&regulator_list_mutex);
5341         regulator_resolve_coupling(rdev);
5342         mutex_unlock(&regulator_list_mutex);
5343
5344         /* try to resolve regulators supply since a new one was registered */
5345         class_for_each_device(&regulator_class, NULL, NULL,
5346                               regulator_register_resolve_supply);
5347         kfree(config);
5348         return rdev;
5349
5350 unset_supplies:
5351         mutex_lock(&regulator_list_mutex);
5352         unset_regulator_supplies(rdev);
5353         regulator_remove_coupling(rdev);
5354         mutex_unlock(&regulator_list_mutex);
5355 wash:
5356         kfree(rdev->coupling_desc.coupled_rdevs);
5357         mutex_lock(&regulator_list_mutex);
5358         regulator_ena_gpio_free(rdev);
5359         mutex_unlock(&regulator_list_mutex);
5360 clean:
5361         if (dangling_of_gpiod)
5362                 gpiod_put(config->ena_gpiod);
5363         kfree(config);
5364         put_device(&rdev->dev);
5365 rinse:
5366         if (dangling_cfg_gpiod)
5367                 gpiod_put(cfg->ena_gpiod);
5368         return ERR_PTR(ret);
5369 }
5370 EXPORT_SYMBOL_GPL(regulator_register);
5371
5372 /**
5373  * regulator_unregister - unregister regulator
5374  * @rdev: regulator to unregister
5375  *
5376  * Called by regulator drivers to unregister a regulator.
5377  */
5378 void regulator_unregister(struct regulator_dev *rdev)
5379 {
5380         if (rdev == NULL)
5381                 return;
5382
5383         if (rdev->supply) {
5384                 while (rdev->use_count--)
5385                         regulator_disable(rdev->supply);
5386                 regulator_put(rdev->supply);
5387         }
5388
5389         flush_work(&rdev->disable_work.work);
5390
5391         mutex_lock(&regulator_list_mutex);
5392
5393         debugfs_remove_recursive(rdev->debugfs);
5394         WARN_ON(rdev->open_count);
5395         regulator_remove_coupling(rdev);
5396         unset_regulator_supplies(rdev);
5397         list_del(&rdev->list);
5398         regulator_ena_gpio_free(rdev);
5399         device_unregister(&rdev->dev);
5400
5401         mutex_unlock(&regulator_list_mutex);
5402 }
5403 EXPORT_SYMBOL_GPL(regulator_unregister);
5404
5405 #ifdef CONFIG_SUSPEND
5406 /**
5407  * regulator_suspend - prepare regulators for system wide suspend
5408  * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5409  *
5410  * Configure each regulator with it's suspend operating parameters for state.
5411  */
5412 static int regulator_suspend(struct device *dev)
5413 {
5414         struct regulator_dev *rdev = dev_to_rdev(dev);
5415         suspend_state_t state = pm_suspend_target_state;
5416         int ret;
5417         const struct regulator_state *rstate;
5418
5419         rstate = regulator_get_suspend_state_check(rdev, state);
5420         if (!rstate)
5421                 return 0;
5422
5423         regulator_lock(rdev);
5424         ret = __suspend_set_state(rdev, rstate);
5425         regulator_unlock(rdev);
5426
5427         return ret;
5428 }
5429
5430 static int regulator_resume(struct device *dev)
5431 {
5432         suspend_state_t state = pm_suspend_target_state;
5433         struct regulator_dev *rdev = dev_to_rdev(dev);
5434         struct regulator_state *rstate;
5435         int ret = 0;
5436
5437         rstate = regulator_get_suspend_state(rdev, state);
5438         if (rstate == NULL)
5439                 return 0;
5440
5441         /* Avoid grabbing the lock if we don't need to */
5442         if (!rdev->desc->ops->resume)
5443                 return 0;
5444
5445         regulator_lock(rdev);
5446
5447         if (rstate->enabled == ENABLE_IN_SUSPEND ||
5448             rstate->enabled == DISABLE_IN_SUSPEND)
5449                 ret = rdev->desc->ops->resume(rdev);
5450
5451         regulator_unlock(rdev);
5452
5453         return ret;
5454 }
5455 #else /* !CONFIG_SUSPEND */
5456
5457 #define regulator_suspend       NULL
5458 #define regulator_resume        NULL
5459
5460 #endif /* !CONFIG_SUSPEND */
5461
5462 #ifdef CONFIG_PM
5463 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5464         .suspend        = regulator_suspend,
5465         .resume         = regulator_resume,
5466 };
5467 #endif
5468
5469 struct class regulator_class = {
5470         .name = "regulator",
5471         .dev_release = regulator_dev_release,
5472         .dev_groups = regulator_dev_groups,
5473 #ifdef CONFIG_PM
5474         .pm = &regulator_pm_ops,
5475 #endif
5476 };
5477 /**
5478  * regulator_has_full_constraints - the system has fully specified constraints
5479  *
5480  * Calling this function will cause the regulator API to disable all
5481  * regulators which have a zero use count and don't have an always_on
5482  * constraint in a late_initcall.
5483  *
5484  * The intention is that this will become the default behaviour in a
5485  * future kernel release so users are encouraged to use this facility
5486  * now.
5487  */
5488 void regulator_has_full_constraints(void)
5489 {
5490         has_full_constraints = 1;
5491 }
5492 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5493
5494 /**
5495  * rdev_get_drvdata - get rdev regulator driver data
5496  * @rdev: regulator
5497  *
5498  * Get rdev regulator driver private data. This call can be used in the
5499  * regulator driver context.
5500  */
5501 void *rdev_get_drvdata(struct regulator_dev *rdev)
5502 {
5503         return rdev->reg_data;
5504 }
5505 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5506
5507 /**
5508  * regulator_get_drvdata - get regulator driver data
5509  * @regulator: regulator
5510  *
5511  * Get regulator driver private data. This call can be used in the consumer
5512  * driver context when non API regulator specific functions need to be called.
5513  */
5514 void *regulator_get_drvdata(struct regulator *regulator)
5515 {
5516         return regulator->rdev->reg_data;
5517 }
5518 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5519
5520 /**
5521  * regulator_set_drvdata - set regulator driver data
5522  * @regulator: regulator
5523  * @data: data
5524  */
5525 void regulator_set_drvdata(struct regulator *regulator, void *data)
5526 {
5527         regulator->rdev->reg_data = data;
5528 }
5529 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5530
5531 /**
5532  * regulator_get_id - get regulator ID
5533  * @rdev: regulator
5534  */
5535 int rdev_get_id(struct regulator_dev *rdev)
5536 {
5537         return rdev->desc->id;
5538 }
5539 EXPORT_SYMBOL_GPL(rdev_get_id);
5540
5541 struct device *rdev_get_dev(struct regulator_dev *rdev)
5542 {
5543         return &rdev->dev;
5544 }
5545 EXPORT_SYMBOL_GPL(rdev_get_dev);
5546
5547 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5548 {
5549         return rdev->regmap;
5550 }
5551 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5552
5553 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5554 {
5555         return reg_init_data->driver_data;
5556 }
5557 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5558
5559 #ifdef CONFIG_DEBUG_FS
5560 static int supply_map_show(struct seq_file *sf, void *data)
5561 {
5562         struct regulator_map *map;
5563
5564         list_for_each_entry(map, &regulator_map_list, list) {
5565                 seq_printf(sf, "%s -> %s.%s\n",
5566                                 rdev_get_name(map->regulator), map->dev_name,
5567                                 map->supply);
5568         }
5569
5570         return 0;
5571 }
5572 DEFINE_SHOW_ATTRIBUTE(supply_map);
5573
5574 struct summary_data {
5575         struct seq_file *s;
5576         struct regulator_dev *parent;
5577         int level;
5578 };
5579
5580 static void regulator_summary_show_subtree(struct seq_file *s,
5581                                            struct regulator_dev *rdev,
5582                                            int level);
5583
5584 static int regulator_summary_show_children(struct device *dev, void *data)
5585 {
5586         struct regulator_dev *rdev = dev_to_rdev(dev);
5587         struct summary_data *summary_data = data;
5588
5589         if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5590                 regulator_summary_show_subtree(summary_data->s, rdev,
5591                                                summary_data->level + 1);
5592
5593         return 0;
5594 }
5595
5596 static void regulator_summary_show_subtree(struct seq_file *s,
5597                                            struct regulator_dev *rdev,
5598                                            int level)
5599 {
5600         struct regulation_constraints *c;
5601         struct regulator *consumer;
5602         struct summary_data summary_data;
5603         unsigned int opmode;
5604
5605         if (!rdev)
5606                 return;
5607
5608         opmode = _regulator_get_mode_unlocked(rdev);
5609         seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5610                    level * 3 + 1, "",
5611                    30 - level * 3, rdev_get_name(rdev),
5612                    rdev->use_count, rdev->open_count, rdev->bypass_count,
5613                    regulator_opmode_to_str(opmode));
5614
5615         seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5616         seq_printf(s, "%5dmA ",
5617                    _regulator_get_current_limit_unlocked(rdev) / 1000);
5618
5619         c = rdev->constraints;
5620         if (c) {
5621                 switch (rdev->desc->type) {
5622                 case REGULATOR_VOLTAGE:
5623                         seq_printf(s, "%5dmV %5dmV ",
5624                                    c->min_uV / 1000, c->max_uV / 1000);
5625                         break;
5626                 case REGULATOR_CURRENT:
5627                         seq_printf(s, "%5dmA %5dmA ",
5628                                    c->min_uA / 1000, c->max_uA / 1000);
5629                         break;
5630                 }
5631         }
5632
5633         seq_puts(s, "\n");
5634
5635         list_for_each_entry(consumer, &rdev->consumer_list, list) {
5636                 if (consumer->dev && consumer->dev->class == &regulator_class)
5637                         continue;
5638
5639                 seq_printf(s, "%*s%-*s ",
5640                            (level + 1) * 3 + 1, "",
5641                            30 - (level + 1) * 3,
5642                            consumer->supply_name ? consumer->supply_name :
5643                            consumer->dev ? dev_name(consumer->dev) : "deviceless");
5644
5645                 switch (rdev->desc->type) {
5646                 case REGULATOR_VOLTAGE:
5647                         seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5648                                    consumer->enable_count,
5649                                    consumer->uA_load / 1000,
5650                                    consumer->uA_load && !consumer->enable_count ?
5651                                    '*' : ' ',
5652                                    consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5653                                    consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5654                         break;
5655                 case REGULATOR_CURRENT:
5656                         break;
5657                 }
5658
5659                 seq_puts(s, "\n");
5660         }
5661
5662         summary_data.s = s;
5663         summary_data.level = level;
5664         summary_data.parent = rdev;
5665
5666         class_for_each_device(&regulator_class, NULL, &summary_data,
5667                               regulator_summary_show_children);
5668 }
5669
5670 struct summary_lock_data {
5671         struct ww_acquire_ctx *ww_ctx;
5672         struct regulator_dev **new_contended_rdev;
5673         struct regulator_dev **old_contended_rdev;
5674 };
5675
5676 static int regulator_summary_lock_one(struct device *dev, void *data)
5677 {
5678         struct regulator_dev *rdev = dev_to_rdev(dev);
5679         struct summary_lock_data *lock_data = data;
5680         int ret = 0;
5681
5682         if (rdev != *lock_data->old_contended_rdev) {
5683                 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5684
5685                 if (ret == -EDEADLK)
5686                         *lock_data->new_contended_rdev = rdev;
5687                 else
5688                         WARN_ON_ONCE(ret);
5689         } else {
5690                 *lock_data->old_contended_rdev = NULL;
5691         }
5692
5693         return ret;
5694 }
5695
5696 static int regulator_summary_unlock_one(struct device *dev, void *data)
5697 {
5698         struct regulator_dev *rdev = dev_to_rdev(dev);
5699         struct summary_lock_data *lock_data = data;
5700
5701         if (lock_data) {
5702                 if (rdev == *lock_data->new_contended_rdev)
5703                         return -EDEADLK;
5704         }
5705
5706         regulator_unlock(rdev);
5707
5708         return 0;
5709 }
5710
5711 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5712                                       struct regulator_dev **new_contended_rdev,
5713                                       struct regulator_dev **old_contended_rdev)
5714 {
5715         struct summary_lock_data lock_data;
5716         int ret;
5717
5718         lock_data.ww_ctx = ww_ctx;
5719         lock_data.new_contended_rdev = new_contended_rdev;
5720         lock_data.old_contended_rdev = old_contended_rdev;
5721
5722         ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5723                                     regulator_summary_lock_one);
5724         if (ret)
5725                 class_for_each_device(&regulator_class, NULL, &lock_data,
5726                                       regulator_summary_unlock_one);
5727
5728         return ret;
5729 }
5730
5731 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5732 {
5733         struct regulator_dev *new_contended_rdev = NULL;
5734         struct regulator_dev *old_contended_rdev = NULL;
5735         int err;
5736
5737         mutex_lock(&regulator_list_mutex);
5738
5739         ww_acquire_init(ww_ctx, &regulator_ww_class);
5740
5741         do {
5742                 if (new_contended_rdev) {
5743                         ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5744                         old_contended_rdev = new_contended_rdev;
5745                         old_contended_rdev->ref_cnt++;
5746                 }
5747
5748                 err = regulator_summary_lock_all(ww_ctx,
5749                                                  &new_contended_rdev,
5750                                                  &old_contended_rdev);
5751
5752                 if (old_contended_rdev)
5753                         regulator_unlock(old_contended_rdev);
5754
5755         } while (err == -EDEADLK);
5756
5757         ww_acquire_done(ww_ctx);
5758 }
5759
5760 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5761 {
5762         class_for_each_device(&regulator_class, NULL, NULL,
5763                               regulator_summary_unlock_one);
5764         ww_acquire_fini(ww_ctx);
5765
5766         mutex_unlock(&regulator_list_mutex);
5767 }
5768
5769 static int regulator_summary_show_roots(struct device *dev, void *data)
5770 {
5771         struct regulator_dev *rdev = dev_to_rdev(dev);
5772         struct seq_file *s = data;
5773
5774         if (!rdev->supply)
5775                 regulator_summary_show_subtree(s, rdev, 0);
5776
5777         return 0;
5778 }
5779
5780 static int regulator_summary_show(struct seq_file *s, void *data)
5781 {
5782         struct ww_acquire_ctx ww_ctx;
5783
5784         seq_puts(s, " regulator                      use open bypass  opmode voltage current     min     max\n");
5785         seq_puts(s, "---------------------------------------------------------------------------------------\n");
5786
5787         regulator_summary_lock(&ww_ctx);
5788
5789         class_for_each_device(&regulator_class, NULL, s,
5790                               regulator_summary_show_roots);
5791
5792         regulator_summary_unlock(&ww_ctx);
5793
5794         return 0;
5795 }
5796 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5797 #endif /* CONFIG_DEBUG_FS */
5798
5799 static int __init regulator_init(void)
5800 {
5801         int ret;
5802
5803         ret = class_register(&regulator_class);
5804
5805         debugfs_root = debugfs_create_dir("regulator", NULL);
5806         if (!debugfs_root)
5807                 pr_warn("regulator: Failed to create debugfs directory\n");
5808
5809 #ifdef CONFIG_DEBUG_FS
5810         debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5811                             &supply_map_fops);
5812
5813         debugfs_create_file("regulator_summary", 0444, debugfs_root,
5814                             NULL, &regulator_summary_fops);
5815 #endif
5816         regulator_dummy_init();
5817
5818         regulator_coupler_register(&generic_regulator_coupler);
5819
5820         return ret;
5821 }
5822
5823 /* init early to allow our consumers to complete system booting */
5824 core_initcall(regulator_init);
5825
5826 static int regulator_late_cleanup(struct device *dev, void *data)
5827 {
5828         struct regulator_dev *rdev = dev_to_rdev(dev);
5829         const struct regulator_ops *ops = rdev->desc->ops;
5830         struct regulation_constraints *c = rdev->constraints;
5831         int enabled, ret;
5832
5833         if (c && c->always_on)
5834                 return 0;
5835
5836         if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5837                 return 0;
5838
5839         regulator_lock(rdev);
5840
5841         if (rdev->use_count)
5842                 goto unlock;
5843
5844         /* If we can't read the status assume it's on. */
5845         if (ops->is_enabled)
5846                 enabled = ops->is_enabled(rdev);
5847         else
5848                 enabled = 1;
5849
5850         if (!enabled)
5851                 goto unlock;
5852
5853         if (have_full_constraints()) {
5854                 /* We log since this may kill the system if it goes
5855                  * wrong. */
5856                 rdev_info(rdev, "disabling\n");
5857                 ret = _regulator_do_disable(rdev);
5858                 if (ret != 0)
5859                         rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
5860         } else {
5861                 /* The intention is that in future we will
5862                  * assume that full constraints are provided
5863                  * so warn even if we aren't going to do
5864                  * anything here.
5865                  */
5866                 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5867         }
5868
5869 unlock:
5870         regulator_unlock(rdev);
5871
5872         return 0;
5873 }
5874
5875 static void regulator_init_complete_work_function(struct work_struct *work)
5876 {
5877         /*
5878          * Regulators may had failed to resolve their input supplies
5879          * when were registered, either because the input supply was
5880          * not registered yet or because its parent device was not
5881          * bound yet. So attempt to resolve the input supplies for
5882          * pending regulators before trying to disable unused ones.
5883          */
5884         class_for_each_device(&regulator_class, NULL, NULL,
5885                               regulator_register_resolve_supply);
5886
5887         /* If we have a full configuration then disable any regulators
5888          * we have permission to change the status for and which are
5889          * not in use or always_on.  This is effectively the default
5890          * for DT and ACPI as they have full constraints.
5891          */
5892         class_for_each_device(&regulator_class, NULL, NULL,
5893                               regulator_late_cleanup);
5894 }
5895
5896 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5897                             regulator_init_complete_work_function);
5898
5899 static int __init regulator_init_complete(void)
5900 {
5901         /*
5902          * Since DT doesn't provide an idiomatic mechanism for
5903          * enabling full constraints and since it's much more natural
5904          * with DT to provide them just assume that a DT enabled
5905          * system has full constraints.
5906          */
5907         if (of_have_populated_dt())
5908                 has_full_constraints = true;
5909
5910         /*
5911          * We punt completion for an arbitrary amount of time since
5912          * systems like distros will load many drivers from userspace
5913          * so consumers might not always be ready yet, this is
5914          * particularly an issue with laptops where this might bounce
5915          * the display off then on.  Ideally we'd get a notification
5916          * from userspace when this happens but we don't so just wait
5917          * a bit and hope we waited long enough.  It'd be better if
5918          * we'd only do this on systems that need it, and a kernel
5919          * command line option might be useful.
5920          */
5921         schedule_delayed_work(&regulator_init_complete_work,
5922                               msecs_to_jiffies(30000));
5923
5924         return 0;
5925 }
5926 late_initcall_sync(regulator_init_complete);