drm/i915: Drop I915_CONTEXT_PARAM_RINGSIZE
[linux-2.6-microblaze.git] / drivers / pwm / pwm-sprd.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2019 Spreadtrum Communications Inc.
4  */
5
6 #include <linux/clk.h>
7 #include <linux/err.h>
8 #include <linux/io.h>
9 #include <linux/math64.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/pwm.h>
13
14 #define SPRD_PWM_PRESCALE       0x0
15 #define SPRD_PWM_MOD            0x4
16 #define SPRD_PWM_DUTY           0x8
17 #define SPRD_PWM_ENABLE         0x18
18
19 #define SPRD_PWM_MOD_MAX        GENMASK(7, 0)
20 #define SPRD_PWM_DUTY_MSK       GENMASK(15, 0)
21 #define SPRD_PWM_PRESCALE_MSK   GENMASK(7, 0)
22 #define SPRD_PWM_ENABLE_BIT     BIT(0)
23
24 #define SPRD_PWM_CHN_NUM        4
25 #define SPRD_PWM_REGS_SHIFT     5
26 #define SPRD_PWM_CHN_CLKS_NUM   2
27 #define SPRD_PWM_CHN_OUTPUT_CLK 1
28
29 struct sprd_pwm_chn {
30         struct clk_bulk_data clks[SPRD_PWM_CHN_CLKS_NUM];
31         u32 clk_rate;
32 };
33
34 struct sprd_pwm_chip {
35         void __iomem *base;
36         struct device *dev;
37         struct pwm_chip chip;
38         int num_pwms;
39         struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
40 };
41
42 /*
43  * The list of clocks required by PWM channels, and each channel has 2 clocks:
44  * enable clock and pwm clock.
45  */
46 static const char * const sprd_pwm_clks[] = {
47         "enable0", "pwm0",
48         "enable1", "pwm1",
49         "enable2", "pwm2",
50         "enable3", "pwm3",
51 };
52
53 static u32 sprd_pwm_read(struct sprd_pwm_chip *spc, u32 hwid, u32 reg)
54 {
55         u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
56
57         return readl_relaxed(spc->base + offset);
58 }
59
60 static void sprd_pwm_write(struct sprd_pwm_chip *spc, u32 hwid,
61                            u32 reg, u32 val)
62 {
63         u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
64
65         writel_relaxed(val, spc->base + offset);
66 }
67
68 static void sprd_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
69                                struct pwm_state *state)
70 {
71         struct sprd_pwm_chip *spc =
72                 container_of(chip, struct sprd_pwm_chip, chip);
73         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
74         u32 val, duty, prescale;
75         u64 tmp;
76         int ret;
77
78         /*
79          * The clocks to PWM channel has to be enabled first before
80          * reading to the registers.
81          */
82         ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
83         if (ret) {
84                 dev_err(spc->dev, "failed to enable pwm%u clocks\n",
85                         pwm->hwpwm);
86                 return;
87         }
88
89         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_ENABLE);
90         if (val & SPRD_PWM_ENABLE_BIT)
91                 state->enabled = true;
92         else
93                 state->enabled = false;
94
95         /*
96          * The hardware provides a counter that is feed by the source clock.
97          * The period length is (PRESCALE + 1) * MOD counter steps.
98          * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
99          * Thus the period_ns and duty_ns calculation formula should be:
100          * period_ns = NSEC_PER_SEC * (prescale + 1) * mod / clk_rate
101          * duty_ns = NSEC_PER_SEC * (prescale + 1) * duty / clk_rate
102          */
103         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_PRESCALE);
104         prescale = val & SPRD_PWM_PRESCALE_MSK;
105         tmp = (prescale + 1) * NSEC_PER_SEC * SPRD_PWM_MOD_MAX;
106         state->period = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
107
108         val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_DUTY);
109         duty = val & SPRD_PWM_DUTY_MSK;
110         tmp = (prescale + 1) * NSEC_PER_SEC * duty;
111         state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
112
113         /* Disable PWM clocks if the PWM channel is not in enable state. */
114         if (!state->enabled)
115                 clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
116 }
117
118 static int sprd_pwm_config(struct sprd_pwm_chip *spc, struct pwm_device *pwm,
119                            int duty_ns, int period_ns)
120 {
121         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
122         u32 prescale, duty;
123         u64 tmp;
124
125         /*
126          * The hardware provides a counter that is feed by the source clock.
127          * The period length is (PRESCALE + 1) * MOD counter steps.
128          * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
129          *
130          * To keep the maths simple we're always using MOD = SPRD_PWM_MOD_MAX.
131          * The value for PRESCALE is selected such that the resulting period
132          * gets the maximal length not bigger than the requested one with the
133          * given settings (MOD = SPRD_PWM_MOD_MAX and input clock).
134          */
135         duty = duty_ns * SPRD_PWM_MOD_MAX / period_ns;
136
137         tmp = (u64)chn->clk_rate * period_ns;
138         do_div(tmp, NSEC_PER_SEC);
139         prescale = DIV_ROUND_CLOSEST_ULL(tmp, SPRD_PWM_MOD_MAX) - 1;
140         if (prescale > SPRD_PWM_PRESCALE_MSK)
141                 prescale = SPRD_PWM_PRESCALE_MSK;
142
143         /*
144          * Note: Writing DUTY triggers the hardware to actually apply the
145          * values written to MOD and DUTY to the output, so must keep writing
146          * DUTY last.
147          *
148          * The hardware can ensures that current running period is completed
149          * before changing a new configuration to avoid mixed settings.
150          */
151         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_PRESCALE, prescale);
152         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_MOD, SPRD_PWM_MOD_MAX);
153         sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_DUTY, duty);
154
155         return 0;
156 }
157
158 static int sprd_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
159                           const struct pwm_state *state)
160 {
161         struct sprd_pwm_chip *spc =
162                 container_of(chip, struct sprd_pwm_chip, chip);
163         struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
164         struct pwm_state *cstate = &pwm->state;
165         int ret;
166
167         if (state->polarity != PWM_POLARITY_NORMAL)
168                 return -EINVAL;
169
170         if (state->enabled) {
171                 if (!cstate->enabled) {
172                         /*
173                          * The clocks to PWM channel has to be enabled first
174                          * before writing to the registers.
175                          */
176                         ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM,
177                                                       chn->clks);
178                         if (ret) {
179                                 dev_err(spc->dev,
180                                         "failed to enable pwm%u clocks\n",
181                                         pwm->hwpwm);
182                                 return ret;
183                         }
184                 }
185
186                 if (state->period != cstate->period ||
187                     state->duty_cycle != cstate->duty_cycle) {
188                         ret = sprd_pwm_config(spc, pwm, state->duty_cycle,
189                                               state->period);
190                         if (ret)
191                                 return ret;
192                 }
193
194                 sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 1);
195         } else if (cstate->enabled) {
196                 /*
197                  * Note: After setting SPRD_PWM_ENABLE to zero, the controller
198                  * will not wait for current period to be completed, instead it
199                  * will stop the PWM channel immediately.
200                  */
201                 sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 0);
202
203                 clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
204         }
205
206         return 0;
207 }
208
209 static const struct pwm_ops sprd_pwm_ops = {
210         .apply = sprd_pwm_apply,
211         .get_state = sprd_pwm_get_state,
212         .owner = THIS_MODULE,
213 };
214
215 static int sprd_pwm_clk_init(struct sprd_pwm_chip *spc)
216 {
217         struct clk *clk_pwm;
218         int ret, i;
219
220         for (i = 0; i < SPRD_PWM_CHN_NUM; i++) {
221                 struct sprd_pwm_chn *chn = &spc->chn[i];
222                 int j;
223
224                 for (j = 0; j < SPRD_PWM_CHN_CLKS_NUM; ++j)
225                         chn->clks[j].id =
226                                 sprd_pwm_clks[i * SPRD_PWM_CHN_CLKS_NUM + j];
227
228                 ret = devm_clk_bulk_get(spc->dev, SPRD_PWM_CHN_CLKS_NUM,
229                                         chn->clks);
230                 if (ret) {
231                         if (ret == -ENOENT)
232                                 break;
233
234                         return dev_err_probe(spc->dev, ret,
235                                              "failed to get channel clocks\n");
236                 }
237
238                 clk_pwm = chn->clks[SPRD_PWM_CHN_OUTPUT_CLK].clk;
239                 chn->clk_rate = clk_get_rate(clk_pwm);
240         }
241
242         if (!i) {
243                 dev_err(spc->dev, "no available PWM channels\n");
244                 return -ENODEV;
245         }
246
247         spc->num_pwms = i;
248
249         return 0;
250 }
251
252 static int sprd_pwm_probe(struct platform_device *pdev)
253 {
254         struct sprd_pwm_chip *spc;
255         int ret;
256
257         spc = devm_kzalloc(&pdev->dev, sizeof(*spc), GFP_KERNEL);
258         if (!spc)
259                 return -ENOMEM;
260
261         spc->base = devm_platform_ioremap_resource(pdev, 0);
262         if (IS_ERR(spc->base))
263                 return PTR_ERR(spc->base);
264
265         spc->dev = &pdev->dev;
266         platform_set_drvdata(pdev, spc);
267
268         ret = sprd_pwm_clk_init(spc);
269         if (ret)
270                 return ret;
271
272         spc->chip.dev = &pdev->dev;
273         spc->chip.ops = &sprd_pwm_ops;
274         spc->chip.npwm = spc->num_pwms;
275
276         ret = pwmchip_add(&spc->chip);
277         if (ret)
278                 dev_err(&pdev->dev, "failed to add PWM chip\n");
279
280         return ret;
281 }
282
283 static int sprd_pwm_remove(struct platform_device *pdev)
284 {
285         struct sprd_pwm_chip *spc = platform_get_drvdata(pdev);
286
287         return pwmchip_remove(&spc->chip);
288 }
289
290 static const struct of_device_id sprd_pwm_of_match[] = {
291         { .compatible = "sprd,ums512-pwm", },
292         { },
293 };
294 MODULE_DEVICE_TABLE(of, sprd_pwm_of_match);
295
296 static struct platform_driver sprd_pwm_driver = {
297         .driver = {
298                 .name = "sprd-pwm",
299                 .of_match_table = sprd_pwm_of_match,
300         },
301         .probe = sprd_pwm_probe,
302         .remove = sprd_pwm_remove,
303 };
304
305 module_platform_driver(sprd_pwm_driver);
306
307 MODULE_DESCRIPTION("Spreadtrum PWM Driver");
308 MODULE_LICENSE("GPL v2");