Linux 6.9-rc1
[linux-2.6-microblaze.git] / drivers / pwm / pwm-brcmstb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Broadcom BCM7038 PWM driver
4  * Author: Florian Fainelli
5  *
6  * Copyright (C) 2015 Broadcom Corporation
7  */
8
9 #define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
10
11 #include <linux/clk.h>
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/io.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pwm.h>
20 #include <linux/spinlock.h>
21
22 #define PWM_CTRL                0x00
23 #define  CTRL_START             BIT(0)
24 #define  CTRL_OEB               BIT(1)
25 #define  CTRL_FORCE_HIGH        BIT(2)
26 #define  CTRL_OPENDRAIN         BIT(3)
27 #define  CTRL_CHAN_OFFS         4
28
29 #define PWM_CTRL2               0x04
30 #define  CTRL2_OUT_SELECT       BIT(0)
31
32 #define PWM_CH_SIZE             0x8
33
34 #define PWM_CWORD_MSB(ch)       (0x08 + ((ch) * PWM_CH_SIZE))
35 #define PWM_CWORD_LSB(ch)       (0x0c + ((ch) * PWM_CH_SIZE))
36
37 /* Number of bits for the CWORD value */
38 #define CWORD_BIT_SIZE          16
39
40 /*
41  * Maximum control word value allowed when variable-frequency PWM is used as a
42  * clock for the constant-frequency PMW.
43  */
44 #define CONST_VAR_F_MAX         32768
45 #define CONST_VAR_F_MIN         1
46
47 #define PWM_ON(ch)              (0x18 + ((ch) * PWM_CH_SIZE))
48 #define  PWM_ON_MIN             1
49 #define PWM_PERIOD(ch)          (0x1c + ((ch) * PWM_CH_SIZE))
50 #define  PWM_PERIOD_MIN         0
51
52 #define PWM_ON_PERIOD_MAX       0xff
53
54 struct brcmstb_pwm {
55         void __iomem *base;
56         struct clk *clk;
57 };
58
59 static inline u32 brcmstb_pwm_readl(struct brcmstb_pwm *p,
60                                     unsigned int offset)
61 {
62         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
63                 return __raw_readl(p->base + offset);
64         else
65                 return readl_relaxed(p->base + offset);
66 }
67
68 static inline void brcmstb_pwm_writel(struct brcmstb_pwm *p, u32 value,
69                                       unsigned int offset)
70 {
71         if (IS_ENABLED(CONFIG_MIPS) && IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
72                 __raw_writel(value, p->base + offset);
73         else
74                 writel_relaxed(value, p->base + offset);
75 }
76
77 static inline struct brcmstb_pwm *to_brcmstb_pwm(struct pwm_chip *chip)
78 {
79         return pwmchip_get_drvdata(chip);
80 }
81
82 /*
83  * Fv is derived from the variable frequency output. The variable frequency
84  * output is configured using this formula:
85  *
86  * W = cword, if cword < 2 ^ 15 else 16-bit 2's complement of cword
87  *
88  * Fv = W x 2 ^ -16 x 27Mhz (reference clock)
89  *
90  * The period is: (period + 1) / Fv and "on" time is on / (period + 1)
91  *
92  * The PWM core framework specifies that the "duty_ns" parameter is in fact the
93  * "on" time, so this translates directly into our HW programming here.
94  */
95 static int brcmstb_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
96                               u64 duty_ns, u64 period_ns)
97 {
98         struct brcmstb_pwm *p = to_brcmstb_pwm(chip);
99         unsigned long pc, dc, cword = CONST_VAR_F_MAX;
100         unsigned int channel = pwm->hwpwm;
101         u32 value;
102
103         /*
104          * If asking for a duty_ns equal to period_ns, we need to substract
105          * the period value by 1 to make it shorter than the "on" time and
106          * produce a flat 100% duty cycle signal, and max out the "on" time
107          */
108         if (duty_ns == period_ns) {
109                 dc = PWM_ON_PERIOD_MAX;
110                 pc = PWM_ON_PERIOD_MAX - 1;
111                 goto done;
112         }
113
114         while (1) {
115                 u64 rate;
116
117                 /*
118                  * Calculate the base rate from base frequency and current
119                  * cword
120                  */
121                 rate = (u64)clk_get_rate(p->clk) * (u64)cword;
122                 rate >>= CWORD_BIT_SIZE;
123
124                 pc = mul_u64_u64_div_u64(period_ns, rate, NSEC_PER_SEC);
125                 dc = mul_u64_u64_div_u64(duty_ns + 1, rate, NSEC_PER_SEC);
126
127                 /*
128                  * We can be called with separate duty and period updates,
129                  * so do not reject dc == 0 right away
130                  */
131                 if (pc == PWM_PERIOD_MIN || (dc < PWM_ON_MIN && duty_ns))
132                         return -EINVAL;
133
134                 /* We converged on a calculation */
135                 if (pc <= PWM_ON_PERIOD_MAX && dc <= PWM_ON_PERIOD_MAX)
136                         break;
137
138                 /*
139                  * The cword needs to be a power of 2 for the variable
140                  * frequency generator to output a 50% duty cycle variable
141                  * frequency which is used as input clock to the fixed
142                  * frequency generator.
143                  */
144                 cword >>= 1;
145
146                 /*
147                  * Desired periods are too large, we do not have a divider
148                  * for them
149                  */
150                 if (cword < CONST_VAR_F_MIN)
151                         return -EINVAL;
152         }
153
154 done:
155         /*
156          * Configure the defined "cword" value to have the variable frequency
157          * generator output a base frequency for the constant frequency
158          * generator to derive from.
159          */
160         brcmstb_pwm_writel(p, cword >> 8, PWM_CWORD_MSB(channel));
161         brcmstb_pwm_writel(p, cword & 0xff, PWM_CWORD_LSB(channel));
162
163         /* Select constant frequency signal output */
164         value = brcmstb_pwm_readl(p, PWM_CTRL2);
165         value |= CTRL2_OUT_SELECT << (channel * CTRL_CHAN_OFFS);
166         brcmstb_pwm_writel(p, value, PWM_CTRL2);
167
168         /* Configure on and period value */
169         brcmstb_pwm_writel(p, pc, PWM_PERIOD(channel));
170         brcmstb_pwm_writel(p, dc, PWM_ON(channel));
171
172         return 0;
173 }
174
175 static inline void brcmstb_pwm_enable_set(struct brcmstb_pwm *p,
176                                           unsigned int channel, bool enable)
177 {
178         unsigned int shift = channel * CTRL_CHAN_OFFS;
179         u32 value;
180
181         value = brcmstb_pwm_readl(p, PWM_CTRL);
182
183         if (enable) {
184                 value &= ~(CTRL_OEB << shift);
185                 value |= (CTRL_START | CTRL_OPENDRAIN) << shift;
186         } else {
187                 value &= ~((CTRL_START | CTRL_OPENDRAIN) << shift);
188                 value |= CTRL_OEB << shift;
189         }
190
191         brcmstb_pwm_writel(p, value, PWM_CTRL);
192 }
193
194 static int brcmstb_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
195                              const struct pwm_state *state)
196 {
197         struct brcmstb_pwm *p = to_brcmstb_pwm(chip);
198         int err;
199
200         if (state->polarity != PWM_POLARITY_NORMAL)
201                 return -EINVAL;
202
203         if (!state->enabled) {
204                 if (pwm->state.enabled)
205                         brcmstb_pwm_enable_set(p, pwm->hwpwm, false);
206
207                 return 0;
208         }
209
210         err = brcmstb_pwm_config(chip, pwm, state->duty_cycle, state->period);
211         if (err)
212                 return err;
213
214         if (!pwm->state.enabled)
215                 brcmstb_pwm_enable_set(p, pwm->hwpwm, true);
216
217         return 0;
218 }
219
220 static const struct pwm_ops brcmstb_pwm_ops = {
221         .apply = brcmstb_pwm_apply,
222 };
223
224 static const struct of_device_id brcmstb_pwm_of_match[] = {
225         { .compatible = "brcm,bcm7038-pwm", },
226         { /* sentinel */ }
227 };
228 MODULE_DEVICE_TABLE(of, brcmstb_pwm_of_match);
229
230 static int brcmstb_pwm_probe(struct platform_device *pdev)
231 {
232         struct pwm_chip *chip;
233         struct brcmstb_pwm *p;
234         int ret;
235
236         chip = devm_pwmchip_alloc(&pdev->dev, 2, sizeof(*p));
237         if (IS_ERR(chip))
238                 return PTR_ERR(chip);
239         p = to_brcmstb_pwm(chip);
240
241         p->clk = devm_clk_get_enabled(&pdev->dev, NULL);
242         if (IS_ERR(p->clk))
243                 return dev_err_probe(&pdev->dev, PTR_ERR(p->clk),
244                                      "failed to obtain clock\n");
245
246         platform_set_drvdata(pdev, p);
247
248         chip->ops = &brcmstb_pwm_ops;
249
250         p->base = devm_platform_ioremap_resource(pdev, 0);
251         if (IS_ERR(p->base))
252                 return PTR_ERR(p->base);
253
254         ret = devm_pwmchip_add(&pdev->dev, chip);
255         if (ret)
256                 return dev_err_probe(&pdev->dev, ret, "failed to add PWM chip\n");
257
258         return 0;
259 }
260
261 static int brcmstb_pwm_suspend(struct device *dev)
262 {
263         struct brcmstb_pwm *p = dev_get_drvdata(dev);
264
265         clk_disable_unprepare(p->clk);
266
267         return 0;
268 }
269
270 static int brcmstb_pwm_resume(struct device *dev)
271 {
272         struct brcmstb_pwm *p = dev_get_drvdata(dev);
273
274         return clk_prepare_enable(p->clk);
275 }
276
277 static DEFINE_SIMPLE_DEV_PM_OPS(brcmstb_pwm_pm_ops, brcmstb_pwm_suspend,
278                                 brcmstb_pwm_resume);
279
280 static struct platform_driver brcmstb_pwm_driver = {
281         .probe = brcmstb_pwm_probe,
282         .driver = {
283                 .name = "pwm-brcmstb",
284                 .of_match_table = brcmstb_pwm_of_match,
285                 .pm = pm_ptr(&brcmstb_pwm_pm_ops),
286         },
287 };
288 module_platform_driver(brcmstb_pwm_driver);
289
290 MODULE_AUTHOR("Florian Fainelli <f.fainelli@gmail.com>");
291 MODULE_DESCRIPTION("Broadcom STB PWM driver");
292 MODULE_ALIAS("platform:pwm-brcmstb");
293 MODULE_LICENSE("GPL");