clk: core: replace clk_{readl,writel} with {readl,writel}
[linux-2.6-microblaze.git] / drivers / power / supply / cpcap-battery.c
1 /*
2  * Battery driver for CPCAP PMIC
3  *
4  * Copyright (C) 2017 Tony Lindgren <tony@atomide.com>
5  *
6  * Some parts of the code based on earlie Motorola mapphone Linux kernel
7  * drivers:
8  *
9  * Copyright (C) 2009-2010 Motorola, Inc.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14
15  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
16  * kind, whether express or implied; without even the implied warranty
17  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  */
20
21 #include <linux/delay.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/of_device.h>
27 #include <linux/platform_device.h>
28 #include <linux/power_supply.h>
29 #include <linux/reboot.h>
30 #include <linux/regmap.h>
31
32 #include <linux/iio/consumer.h>
33 #include <linux/iio/types.h>
34 #include <linux/mfd/motorola-cpcap.h>
35
36 #include <asm/div64.h>
37
38 /*
39  * Register bit defines for CPCAP_REG_BPEOL. Some of these seem to
40  * map to MC13783UG.pdf "Table 5-19. Register 13, Power Control 0"
41  * to enable BATTDETEN, LOBAT and EOL features. We currently use
42  * LOBAT interrupts instead of EOL.
43  */
44 #define CPCAP_REG_BPEOL_BIT_EOL9        BIT(9)  /* Set for EOL irq */
45 #define CPCAP_REG_BPEOL_BIT_EOL8        BIT(8)  /* Set for EOL irq */
46 #define CPCAP_REG_BPEOL_BIT_UNKNOWN7    BIT(7)
47 #define CPCAP_REG_BPEOL_BIT_UNKNOWN6    BIT(6)
48 #define CPCAP_REG_BPEOL_BIT_UNKNOWN5    BIT(5)
49 #define CPCAP_REG_BPEOL_BIT_EOL_MULTI   BIT(4)  /* Set for multiple EOL irqs */
50 #define CPCAP_REG_BPEOL_BIT_UNKNOWN3    BIT(3)
51 #define CPCAP_REG_BPEOL_BIT_UNKNOWN2    BIT(2)
52 #define CPCAP_REG_BPEOL_BIT_BATTDETEN   BIT(1)  /* Enable battery detect */
53 #define CPCAP_REG_BPEOL_BIT_EOLSEL      BIT(0)  /* BPDET = 0, EOL = 1 */
54
55 #define CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS       250
56
57 enum {
58         CPCAP_BATTERY_IIO_BATTDET,
59         CPCAP_BATTERY_IIO_VOLTAGE,
60         CPCAP_BATTERY_IIO_CHRG_CURRENT,
61         CPCAP_BATTERY_IIO_BATT_CURRENT,
62         CPCAP_BATTERY_IIO_NR,
63 };
64
65 enum cpcap_battery_irq_action {
66         CPCAP_BATTERY_IRQ_ACTION_NONE,
67         CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW,
68         CPCAP_BATTERY_IRQ_ACTION_POWEROFF,
69 };
70
71 struct cpcap_interrupt_desc {
72         const char *name;
73         struct list_head node;
74         int irq;
75         enum cpcap_battery_irq_action action;
76 };
77
78 struct cpcap_battery_config {
79         int ccm;
80         int cd_factor;
81         struct power_supply_info info;
82 };
83
84 struct cpcap_coulomb_counter_data {
85         s32 sample;             /* 24-bits */
86         s32 accumulator;
87         s16 offset;             /* 10-bits */
88 };
89
90 enum cpcap_battery_state {
91         CPCAP_BATTERY_STATE_PREVIOUS,
92         CPCAP_BATTERY_STATE_LATEST,
93         CPCAP_BATTERY_STATE_NR,
94 };
95
96 struct cpcap_battery_state_data {
97         int voltage;
98         int current_ua;
99         int counter_uah;
100         int temperature;
101         ktime_t time;
102         struct cpcap_coulomb_counter_data cc;
103 };
104
105 struct cpcap_battery_ddata {
106         struct device *dev;
107         struct regmap *reg;
108         struct list_head irq_list;
109         struct iio_channel *channels[CPCAP_BATTERY_IIO_NR];
110         struct power_supply *psy;
111         struct cpcap_battery_config config;
112         struct cpcap_battery_state_data state[CPCAP_BATTERY_STATE_NR];
113         atomic_t active;
114         int status;
115         u16 vendor;
116 };
117
118 #define CPCAP_NO_BATTERY        -400
119
120 static struct cpcap_battery_state_data *
121 cpcap_battery_get_state(struct cpcap_battery_ddata *ddata,
122                         enum cpcap_battery_state state)
123 {
124         if (state >= CPCAP_BATTERY_STATE_NR)
125                 return NULL;
126
127         return &ddata->state[state];
128 }
129
130 static struct cpcap_battery_state_data *
131 cpcap_battery_latest(struct cpcap_battery_ddata *ddata)
132 {
133         return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_LATEST);
134 }
135
136 static struct cpcap_battery_state_data *
137 cpcap_battery_previous(struct cpcap_battery_ddata *ddata)
138 {
139         return cpcap_battery_get_state(ddata, CPCAP_BATTERY_STATE_PREVIOUS);
140 }
141
142 static int cpcap_charger_battery_temperature(struct cpcap_battery_ddata *ddata,
143                                              int *value)
144 {
145         struct iio_channel *channel;
146         int error;
147
148         channel = ddata->channels[CPCAP_BATTERY_IIO_BATTDET];
149         error = iio_read_channel_processed(channel, value);
150         if (error < 0) {
151                 dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
152                 *value = CPCAP_NO_BATTERY;
153
154                 return error;
155         }
156
157         *value /= 100;
158
159         return 0;
160 }
161
162 static int cpcap_battery_get_voltage(struct cpcap_battery_ddata *ddata)
163 {
164         struct iio_channel *channel;
165         int error, value = 0;
166
167         channel = ddata->channels[CPCAP_BATTERY_IIO_VOLTAGE];
168         error = iio_read_channel_processed(channel, &value);
169         if (error < 0) {
170                 dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
171
172                 return 0;
173         }
174
175         return value * 1000;
176 }
177
178 static int cpcap_battery_get_current(struct cpcap_battery_ddata *ddata)
179 {
180         struct iio_channel *channel;
181         int error, value = 0;
182
183         channel = ddata->channels[CPCAP_BATTERY_IIO_BATT_CURRENT];
184         error = iio_read_channel_processed(channel, &value);
185         if (error < 0) {
186                 dev_warn(ddata->dev, "%s failed: %i\n", __func__, error);
187
188                 return 0;
189         }
190
191         return value * 1000;
192 }
193
194 /**
195  * cpcap_battery_cc_raw_div - calculate and divide coulomb counter μAms values
196  * @ddata: device driver data
197  * @sample: coulomb counter sample value
198  * @accumulator: coulomb counter integrator value
199  * @offset: coulomb counter offset value
200  * @divider: conversion divider
201  *
202  * Note that cc_lsb and cc_dur values are from Motorola Linux kernel
203  * function data_get_avg_curr_ua() and seem to be based on measured test
204  * results. It also has the following comment:
205  *
206  * Adjustment factors are applied here as a temp solution per the test
207  * results. Need to work out a formal solution for this adjustment.
208  *
209  * A coulomb counter for similar hardware seems to be documented in
210  * "TWL6030 Gas Gauging Basics (Rev. A)" swca095a.pdf in chapter
211  * "10 Calculating Accumulated Current". We however follow what the
212  * Motorola mapphone Linux kernel is doing as there may be either a
213  * TI or ST coulomb counter in the PMIC.
214  */
215 static int cpcap_battery_cc_raw_div(struct cpcap_battery_ddata *ddata,
216                                     u32 sample, s32 accumulator,
217                                     s16 offset, u32 divider)
218 {
219         s64 acc;
220         u64 tmp;
221         int avg_current;
222         u32 cc_lsb;
223
224         sample &= 0xffffff;             /* 24-bits, unsigned */
225         offset &= 0x7ff;                /* 10-bits, signed */
226
227         switch (ddata->vendor) {
228         case CPCAP_VENDOR_ST:
229                 cc_lsb = 95374;         /* μAms per LSB */
230                 break;
231         case CPCAP_VENDOR_TI:
232                 cc_lsb = 91501;         /* μAms per LSB */
233                 break;
234         default:
235                 return -EINVAL;
236         }
237
238         acc = accumulator;
239         acc = acc - ((s64)sample * offset);
240         cc_lsb = (cc_lsb * ddata->config.cd_factor) / 1000;
241
242         if (acc >=  0)
243                 tmp = acc;
244         else
245                 tmp = acc * -1;
246
247         tmp = tmp * cc_lsb;
248         do_div(tmp, divider);
249         avg_current = tmp;
250
251         if (acc >= 0)
252                 return -avg_current;
253         else
254                 return avg_current;
255 }
256
257 /* 3600000μAms = 1μAh */
258 static int cpcap_battery_cc_to_uah(struct cpcap_battery_ddata *ddata,
259                                    u32 sample, s32 accumulator,
260                                    s16 offset)
261 {
262         return cpcap_battery_cc_raw_div(ddata, sample,
263                                         accumulator, offset,
264                                         3600000);
265 }
266
267 static int cpcap_battery_cc_to_ua(struct cpcap_battery_ddata *ddata,
268                                   u32 sample, s32 accumulator,
269                                   s16 offset)
270 {
271         return cpcap_battery_cc_raw_div(ddata, sample,
272                                         accumulator, offset,
273                                         sample *
274                                         CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS);
275 }
276
277 /**
278  * cpcap_battery_read_accumulated - reads cpcap coulomb counter
279  * @ddata: device driver data
280  * @regs: coulomb counter values
281  *
282  * Based on Motorola mapphone kernel function data_read_regs().
283  * Looking at the registers, the coulomb counter seems similar to
284  * the coulomb counter in TWL6030. See "TWL6030 Gas Gauging Basics
285  * (Rev. A) swca095a.pdf for "10 Calculating Accumulated Current".
286  *
287  * Note that swca095a.pdf instructs to stop the coulomb counter
288  * before reading to avoid values changing. Motorola mapphone
289  * Linux kernel does not do it, so let's assume they've verified
290  * the data produced is correct.
291  */
292 static int
293 cpcap_battery_read_accumulated(struct cpcap_battery_ddata *ddata,
294                                struct cpcap_coulomb_counter_data *ccd)
295 {
296         u16 buf[7];     /* CPCAP_REG_CC1 to CCI */
297         int error;
298
299         ccd->sample = 0;
300         ccd->accumulator = 0;
301         ccd->offset = 0;
302
303         /* Read coulomb counter register range */
304         error = regmap_bulk_read(ddata->reg, CPCAP_REG_CCS1,
305                                  buf, ARRAY_SIZE(buf));
306         if (error)
307                 return 0;
308
309         /* Sample value CPCAP_REG_CCS1 & 2 */
310         ccd->sample = (buf[1] & 0x0fff) << 16;
311         ccd->sample |= buf[0];
312
313         /* Accumulator value CPCAP_REG_CCA1 & 2 */
314         ccd->accumulator = ((s16)buf[3]) << 16;
315         ccd->accumulator |= buf[2];
316
317         /* Offset value CPCAP_REG_CCO */
318         ccd->offset = buf[5];
319
320         /* Adjust offset based on mode value CPCAP_REG_CCM? */
321         if (buf[4] >= 0x200)
322                 ccd->offset |= 0xfc00;
323
324         return cpcap_battery_cc_to_uah(ddata,
325                                        ccd->sample,
326                                        ccd->accumulator,
327                                        ccd->offset);
328 }
329
330 /**
331  * cpcap_battery_cc_get_avg_current - read cpcap coulumb counter
332  * @ddata: cpcap battery driver device data
333  */
334 static int cpcap_battery_cc_get_avg_current(struct cpcap_battery_ddata *ddata)
335 {
336         int value, acc, error;
337         s32 sample = 1;
338         s16 offset;
339
340         if (ddata->vendor == CPCAP_VENDOR_ST)
341                 sample = 4;
342
343         /* Coulomb counter integrator */
344         error = regmap_read(ddata->reg, CPCAP_REG_CCI, &value);
345         if (error)
346                 return error;
347
348         if ((ddata->vendor == CPCAP_VENDOR_TI) && (value > 0x2000))
349                 value = value | 0xc000;
350
351         acc = (s16)value;
352
353         /* Coulomb counter sample time */
354         error = regmap_read(ddata->reg, CPCAP_REG_CCM, &value);
355         if (error)
356                 return error;
357
358         if (value < 0x200)
359                 offset = value;
360         else
361                 offset = value | 0xfc00;
362
363         return cpcap_battery_cc_to_ua(ddata, sample, acc, offset);
364 }
365
366 static bool cpcap_battery_full(struct cpcap_battery_ddata *ddata)
367 {
368         struct cpcap_battery_state_data *state = cpcap_battery_latest(ddata);
369
370         /* Basically anything that measures above 4347000 is full */
371         if (state->voltage >= (ddata->config.info.voltage_max_design - 4000))
372                 return true;
373
374         return false;
375 }
376
377 static int cpcap_battery_update_status(struct cpcap_battery_ddata *ddata)
378 {
379         struct cpcap_battery_state_data state, *latest, *previous;
380         ktime_t now;
381         int error;
382
383         memset(&state, 0, sizeof(state));
384         now = ktime_get();
385
386         latest = cpcap_battery_latest(ddata);
387         if (latest) {
388                 s64 delta_ms = ktime_to_ms(ktime_sub(now, latest->time));
389
390                 if (delta_ms < CPCAP_BATTERY_CC_SAMPLE_PERIOD_MS)
391                         return delta_ms;
392         }
393
394         state.time = now;
395         state.voltage = cpcap_battery_get_voltage(ddata);
396         state.current_ua = cpcap_battery_get_current(ddata);
397         state.counter_uah = cpcap_battery_read_accumulated(ddata, &state.cc);
398
399         error = cpcap_charger_battery_temperature(ddata,
400                                                   &state.temperature);
401         if (error)
402                 return error;
403
404         previous = cpcap_battery_previous(ddata);
405         memcpy(previous, latest, sizeof(*previous));
406         memcpy(latest, &state, sizeof(*latest));
407
408         return 0;
409 }
410
411 static enum power_supply_property cpcap_battery_props[] = {
412         POWER_SUPPLY_PROP_STATUS,
413         POWER_SUPPLY_PROP_PRESENT,
414         POWER_SUPPLY_PROP_TECHNOLOGY,
415         POWER_SUPPLY_PROP_VOLTAGE_NOW,
416         POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
417         POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
418         POWER_SUPPLY_PROP_CURRENT_AVG,
419         POWER_SUPPLY_PROP_CURRENT_NOW,
420         POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
421         POWER_SUPPLY_PROP_CHARGE_COUNTER,
422         POWER_SUPPLY_PROP_POWER_NOW,
423         POWER_SUPPLY_PROP_POWER_AVG,
424         POWER_SUPPLY_PROP_CAPACITY_LEVEL,
425         POWER_SUPPLY_PROP_SCOPE,
426         POWER_SUPPLY_PROP_TEMP,
427 };
428
429 static int cpcap_battery_get_property(struct power_supply *psy,
430                                       enum power_supply_property psp,
431                                       union power_supply_propval *val)
432 {
433         struct cpcap_battery_ddata *ddata = power_supply_get_drvdata(psy);
434         struct cpcap_battery_state_data *latest, *previous;
435         u32 sample;
436         s32 accumulator;
437         int cached;
438         s64 tmp;
439
440         cached = cpcap_battery_update_status(ddata);
441         if (cached < 0)
442                 return cached;
443
444         latest = cpcap_battery_latest(ddata);
445         previous = cpcap_battery_previous(ddata);
446
447         switch (psp) {
448         case POWER_SUPPLY_PROP_PRESENT:
449                 if (latest->temperature > CPCAP_NO_BATTERY)
450                         val->intval = 1;
451                 else
452                         val->intval = 0;
453                 break;
454         case POWER_SUPPLY_PROP_STATUS:
455                 if (cpcap_battery_full(ddata)) {
456                         val->intval = POWER_SUPPLY_STATUS_FULL;
457                         break;
458                 }
459                 if (cpcap_battery_cc_get_avg_current(ddata) < 0)
460                         val->intval = POWER_SUPPLY_STATUS_CHARGING;
461                 else
462                         val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
463                 break;
464         case POWER_SUPPLY_PROP_TECHNOLOGY:
465                 val->intval = ddata->config.info.technology;
466                 break;
467         case POWER_SUPPLY_PROP_VOLTAGE_NOW:
468                 val->intval = cpcap_battery_get_voltage(ddata);
469                 break;
470         case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
471                 val->intval = ddata->config.info.voltage_max_design;
472                 break;
473         case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
474                 val->intval = ddata->config.info.voltage_min_design;
475                 break;
476         case POWER_SUPPLY_PROP_CURRENT_AVG:
477                 if (cached) {
478                         val->intval = cpcap_battery_cc_get_avg_current(ddata);
479                         break;
480                 }
481                 sample = latest->cc.sample - previous->cc.sample;
482                 accumulator = latest->cc.accumulator - previous->cc.accumulator;
483                 val->intval = cpcap_battery_cc_to_ua(ddata, sample,
484                                                      accumulator,
485                                                      latest->cc.offset);
486                 break;
487         case POWER_SUPPLY_PROP_CURRENT_NOW:
488                 val->intval = latest->current_ua;
489                 break;
490         case POWER_SUPPLY_PROP_CHARGE_COUNTER:
491                 val->intval = latest->counter_uah;
492                 break;
493         case POWER_SUPPLY_PROP_POWER_NOW:
494                 tmp = (latest->voltage / 10000) * latest->current_ua;
495                 val->intval = div64_s64(tmp, 100);
496                 break;
497         case POWER_SUPPLY_PROP_POWER_AVG:
498                 if (cached) {
499                         tmp = cpcap_battery_cc_get_avg_current(ddata);
500                         tmp *= (latest->voltage / 10000);
501                         val->intval = div64_s64(tmp, 100);
502                         break;
503                 }
504                 sample = latest->cc.sample - previous->cc.sample;
505                 accumulator = latest->cc.accumulator - previous->cc.accumulator;
506                 tmp = cpcap_battery_cc_to_ua(ddata, sample, accumulator,
507                                              latest->cc.offset);
508                 tmp *= ((latest->voltage + previous->voltage) / 20000);
509                 val->intval = div64_s64(tmp, 100);
510                 break;
511         case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
512                 if (cpcap_battery_full(ddata))
513                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
514                 else if (latest->voltage >= 3750000)
515                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
516                 else if (latest->voltage >= 3300000)
517                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
518                 else if (latest->voltage > 3100000)
519                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
520                 else if (latest->voltage <= 3100000)
521                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
522                 else
523                         val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
524                 break;
525         case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
526                 val->intval = ddata->config.info.charge_full_design;
527                 break;
528         case POWER_SUPPLY_PROP_SCOPE:
529                 val->intval = POWER_SUPPLY_SCOPE_SYSTEM;
530                 break;
531         case POWER_SUPPLY_PROP_TEMP:
532                 val->intval = latest->temperature;
533                 break;
534         default:
535                 return -EINVAL;
536         }
537
538         return 0;
539 }
540
541 static irqreturn_t cpcap_battery_irq_thread(int irq, void *data)
542 {
543         struct cpcap_battery_ddata *ddata = data;
544         struct cpcap_battery_state_data *latest;
545         struct cpcap_interrupt_desc *d;
546
547         if (!atomic_read(&ddata->active))
548                 return IRQ_NONE;
549
550         list_for_each_entry(d, &ddata->irq_list, node) {
551                 if (irq == d->irq)
552                         break;
553         }
554
555         if (!d)
556                 return IRQ_NONE;
557
558         latest = cpcap_battery_latest(ddata);
559
560         switch (d->action) {
561         case CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW:
562                 if (latest->counter_uah >= 0)
563                         dev_warn(ddata->dev, "Battery low at 3.3V!\n");
564                 break;
565         case CPCAP_BATTERY_IRQ_ACTION_POWEROFF:
566                 if (latest->counter_uah >= 0) {
567                         dev_emerg(ddata->dev,
568                                   "Battery empty at 3.1V, powering off\n");
569                         orderly_poweroff(true);
570                 }
571                 break;
572         default:
573                 break;
574         }
575
576         power_supply_changed(ddata->psy);
577
578         return IRQ_HANDLED;
579 }
580
581 static int cpcap_battery_init_irq(struct platform_device *pdev,
582                                   struct cpcap_battery_ddata *ddata,
583                                   const char *name)
584 {
585         struct cpcap_interrupt_desc *d;
586         int irq, error;
587
588         irq = platform_get_irq_byname(pdev, name);
589         if (irq < 0)
590                 return irq;
591
592         error = devm_request_threaded_irq(ddata->dev, irq, NULL,
593                                           cpcap_battery_irq_thread,
594                                           IRQF_SHARED,
595                                           name, ddata);
596         if (error) {
597                 dev_err(ddata->dev, "could not get irq %s: %i\n",
598                         name, error);
599
600                 return error;
601         }
602
603         d = devm_kzalloc(ddata->dev, sizeof(*d), GFP_KERNEL);
604         if (!d)
605                 return -ENOMEM;
606
607         d->name = name;
608         d->irq = irq;
609
610         if (!strncmp(name, "lowbph", 6))
611                 d->action = CPCAP_BATTERY_IRQ_ACTION_BATTERY_LOW;
612         else if (!strncmp(name, "lowbpl", 6))
613                 d->action = CPCAP_BATTERY_IRQ_ACTION_POWEROFF;
614
615         list_add(&d->node, &ddata->irq_list);
616
617         return 0;
618 }
619
620 static int cpcap_battery_init_interrupts(struct platform_device *pdev,
621                                          struct cpcap_battery_ddata *ddata)
622 {
623         static const char * const cpcap_battery_irqs[] = {
624                 "eol", "lowbph", "lowbpl",
625                 "chrgcurr1", "battdetb"
626         };
627         int i, error;
628
629         for (i = 0; i < ARRAY_SIZE(cpcap_battery_irqs); i++) {
630                 error = cpcap_battery_init_irq(pdev, ddata,
631                                                cpcap_battery_irqs[i]);
632                 if (error)
633                         return error;
634         }
635
636         /* Enable low battery interrupts for 3.3V high and 3.1V low */
637         error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
638                                    0xffff,
639                                    CPCAP_REG_BPEOL_BIT_BATTDETEN);
640         if (error)
641                 return error;
642
643         return 0;
644 }
645
646 static int cpcap_battery_init_iio(struct cpcap_battery_ddata *ddata)
647 {
648         const char * const names[CPCAP_BATTERY_IIO_NR] = {
649                 "battdetb", "battp", "chg_isense", "batti",
650         };
651         int error, i;
652
653         for (i = 0; i < CPCAP_BATTERY_IIO_NR; i++) {
654                 ddata->channels[i] = devm_iio_channel_get(ddata->dev,
655                                                           names[i]);
656                 if (IS_ERR(ddata->channels[i])) {
657                         error = PTR_ERR(ddata->channels[i]);
658                         goto out_err;
659                 }
660
661                 if (!ddata->channels[i]->indio_dev) {
662                         error = -ENXIO;
663                         goto out_err;
664                 }
665         }
666
667         return 0;
668
669 out_err:
670         dev_err(ddata->dev, "could not initialize VBUS or ID IIO: %i\n",
671                 error);
672
673         return error;
674 }
675
676 /*
677  * Based on the values from Motorola mapphone Linux kernel. In the
678  * the Motorola mapphone Linux kernel tree the value for pm_cd_factor
679  * is passed to the kernel via device tree. If it turns out to be
680  * something device specific we can consider that too later.
681  *
682  * And looking at the battery full and shutdown values for the stock
683  * kernel on droid 4, full is 4351000 and software initiates shutdown
684  * at 3078000. The device will die around 2743000.
685  */
686 static const struct cpcap_battery_config cpcap_battery_default_data = {
687         .ccm = 0x3ff,
688         .cd_factor = 0x3cc,
689         .info.technology = POWER_SUPPLY_TECHNOLOGY_LION,
690         .info.voltage_max_design = 4351000,
691         .info.voltage_min_design = 3100000,
692         .info.charge_full_design = 1740000,
693 };
694
695 #ifdef CONFIG_OF
696 static const struct of_device_id cpcap_battery_id_table[] = {
697         {
698                 .compatible = "motorola,cpcap-battery",
699                 .data = &cpcap_battery_default_data,
700         },
701         {},
702 };
703 MODULE_DEVICE_TABLE(of, cpcap_battery_id_table);
704 #endif
705
706 static int cpcap_battery_probe(struct platform_device *pdev)
707 {
708         struct power_supply_desc *psy_desc;
709         struct cpcap_battery_ddata *ddata;
710         const struct of_device_id *match;
711         struct power_supply_config psy_cfg = {};
712         int error;
713
714         match = of_match_device(of_match_ptr(cpcap_battery_id_table),
715                                 &pdev->dev);
716         if (!match)
717                 return -EINVAL;
718
719         if (!match->data) {
720                 dev_err(&pdev->dev, "no configuration data found\n");
721
722                 return -ENODEV;
723         }
724
725         ddata = devm_kzalloc(&pdev->dev, sizeof(*ddata), GFP_KERNEL);
726         if (!ddata)
727                 return -ENOMEM;
728
729         INIT_LIST_HEAD(&ddata->irq_list);
730         ddata->dev = &pdev->dev;
731         memcpy(&ddata->config, match->data, sizeof(ddata->config));
732
733         ddata->reg = dev_get_regmap(ddata->dev->parent, NULL);
734         if (!ddata->reg)
735                 return -ENODEV;
736
737         error = cpcap_get_vendor(ddata->dev, ddata->reg, &ddata->vendor);
738         if (error)
739                 return error;
740
741         platform_set_drvdata(pdev, ddata);
742
743         error = regmap_update_bits(ddata->reg, CPCAP_REG_CCM,
744                                    0xffff, ddata->config.ccm);
745         if (error)
746                 return error;
747
748         error = cpcap_battery_init_interrupts(pdev, ddata);
749         if (error)
750                 return error;
751
752         error = cpcap_battery_init_iio(ddata);
753         if (error)
754                 return error;
755
756         psy_desc = devm_kzalloc(ddata->dev, sizeof(*psy_desc), GFP_KERNEL);
757         if (!psy_desc)
758                 return -ENOMEM;
759
760         psy_desc->name = "battery",
761         psy_desc->type = POWER_SUPPLY_TYPE_BATTERY,
762         psy_desc->properties = cpcap_battery_props,
763         psy_desc->num_properties = ARRAY_SIZE(cpcap_battery_props),
764         psy_desc->get_property = cpcap_battery_get_property,
765
766         psy_cfg.of_node = pdev->dev.of_node;
767         psy_cfg.drv_data = ddata;
768
769         ddata->psy = devm_power_supply_register(ddata->dev, psy_desc,
770                                                 &psy_cfg);
771         error = PTR_ERR_OR_ZERO(ddata->psy);
772         if (error) {
773                 dev_err(ddata->dev, "failed to register power supply\n");
774                 return error;
775         }
776
777         atomic_set(&ddata->active, 1);
778
779         return 0;
780 }
781
782 static int cpcap_battery_remove(struct platform_device *pdev)
783 {
784         struct cpcap_battery_ddata *ddata = platform_get_drvdata(pdev);
785         int error;
786
787         atomic_set(&ddata->active, 0);
788         error = regmap_update_bits(ddata->reg, CPCAP_REG_BPEOL,
789                                    0xffff, 0);
790         if (error)
791                 dev_err(&pdev->dev, "could not disable: %i\n", error);
792
793         return 0;
794 }
795
796 static struct platform_driver cpcap_battery_driver = {
797         .driver = {
798                 .name           = "cpcap_battery",
799                 .of_match_table = of_match_ptr(cpcap_battery_id_table),
800         },
801         .probe  = cpcap_battery_probe,
802         .remove = cpcap_battery_remove,
803 };
804 module_platform_driver(cpcap_battery_driver);
805
806 MODULE_LICENSE("GPL v2");
807 MODULE_AUTHOR("Tony Lindgren <tony@atomide.com>");
808 MODULE_DESCRIPTION("CPCAP PMIC Battery Driver");